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Geometrical aspects of relativistic nuclear collisions
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The geometrical component common to many nuclear collisional models is reformulated to permit analytical
calculation of experimental observables. Nuclear diffuseness is easily incorporated. As an application, the firestreak
model is used to explore the effect of diffuseness on triton and deuteron spectra in relativistic heavy ion collisions. In
light colliding systems, the peripheral regions contain insufficient nuclear material to form composites, and must be
excluded. The density cutoff obtained for C on C at 800 MeV/A yields a minimum tube cross section of 3.8 fm?,

consistent with the nucleon-nucleon cross section.
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I. INTRODUCTION

The geometrical aspects of relativistic heavy
ion collisions were emphasized in the firestreak
model.’ In conjunction with a thermodynamical
description,®? the model has been widely used*®
to predict the inclusive spectra of protons, pions,
and composites.

In this paper we further develop the ideas of Ref.
1. This generalization of the firestreak model
can be used to include, among others, effects of
transparency® and two-body knock-on collisions.”
For example, it can be exploited to improve the
calculation of composite spectra in the thermo-
dynamical prescription. In Sec. II, we develop
these geometrical aspects. Some applications are
made in Sec. III.

I. GEOMETRICAL ASPECTS

A common feature of many approaches to rela-
tivistic nuclear collisions is that the experimen-
tally observed quantities in inclusive measure-
ments of various kinds are calculated by means
of a four-dimensional integral of the following
form:

Q= j d [ d54,@, (1)

where @ is the quantity of interest (a differential
cross section, for example). ' Here § is the two-
dimensional vector impact parameter, G is the two-
dimensional vector position in the plane perpendi-
cular to the beam, and ¢,(0) is the local contribu-
tion to @ for impact parameter $ from the point

&. This integral can be recast in the form®

Q:fzﬂsldslf21rs2a's2q(s1,s2), ()

where s; and s, are one-dimensional radial vari-
ables measured from the centers of the projec-
tions of the target and projectile nuclear density
distributions on to a plane. Finally, for the .
idealization of nuclei as sharp surface spheres
of constant density p, the integral can be written

2R, 2R

@=/ " Tada [ * T pdpala,p), (3)
V] )

where R, and R, are the sharp radii and @ and B

are length variables proportional to the number of

particles per unit area when the nuclear densities

are projected on to a plane. Here

(%a)z + 312=R12 ,

and similarly for 8.

As an application of this expression, consider
the question of the total cross section for a par-
ticle that is to emerge from a relativistic nuclear
collision. Assuming all the particles to come
from the overlap region and none from the “spec-
tators,” the quantity g = (e+B)p, and the total
cross section is calculated to be® o, =m(4,R,?
+A,R,?. Similarly, if we wish to calculate
the total cross section assuming the yield to come
exclusively from single knock-on collisions in the
overlap region (under the drastic assumption of
infinite nucleon-nucleon cross section), then for
R2 21217

g=2min(a,B)p
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and’

0= 27IAI(Rzz —R12/5) .

To continue, let us choose to measure the lengths
a and B in units of A=6.9 fm, which is simply the
length of a column one Fermi square containing
one nucleon when the nucleon density is p=0.145
fm™, Then the integral for the total (nucleon in-

clusive) cross section can be written

@ Q
Q=Cf dw, f dw,W(w,,w,) , (4)
i) (4
with w, = a/x, w,=p/A, and @, =2R,/x, C a pro-
portionality constant, and the density function
W(w,,w,)=w,w,(w, +w,). The latter quantity is
plotted in Fig. 1 and the boundaries for various
target and projectile combinations are indicated.
Such plots illustrate the relative importance of
different w,, w, combinations and their depen-
dence on the particular target and projectile. The
quantity W can be defined with respect to w and 7,

W(w,,w,)
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FIG. 1. Contour plot of W(w;,w,), no diffuseness.
(Surface shape is invariant with nuclear mass number.)
Integration limits for different systems are indicated as
follows: dashed square for C on C, dash-dot rectangle
for Ar on Cu, and dotted rectangle for Ne on U.

where w=w, +w, and 1=w,/w. In the thermo-
dynamic model, 7 is particularly important; it
alone fixes all intensive properties such as tem-
perature and chemical potential. In terms of 7
and w, the integral of Eq. (4) becomes

Q:Cffdnde(‘n,w), (5)
with W(n,w)=w* W(w,,w,)=n(1 -=n)w*, and

Qa/ (1-m)
f Wn,w)de if < 9/(Q,+9,),

W(n) —, 001/17 (6)
f W(n,w)dw if n> 941/(91 + 92) ’
0

the dimensionless analog of Y (1) of Ref. 1.

These generally useful relations allow analytic
calculation of various differential cross sections
in the firestreak,' rows-on-rows,’ and knock-on’
models but are limited by the unrealistic assump-
tion of sharp nuclear surfaces. Fortunately, they
may be °gxtended by using an approximation. Let
€(s)=f_,,p(s,z)dz, where p(s,z) is a realistic nu-
clear density distribution'®; with p some average
density to be defined, the quantity a(s)=&(s)/p
can be closely represented by a circle joined to
an exponential as shown in Fig. 2. Thus, define

£, (s)=pals), (7
where a(s) satisfies

s?+(a/22=RS for s<R, (8)

a(s)=c, exp[—c,(s —R)] for s> R,

where ¢, and ¢, are eliminated by matching a and
da/ds at s=R. Sampling £(s,) at s;=iAs within
the nucleus, the quantities R, and R are then
found by minimizing

n

£ (S)no/fm?2)

N

(o]

4 s(fm) © 8

FIG. 2. Solid curves: experimental density distribu-
tions, parametrized by modified Gaussian or 3-param-
eter Fermi distributions (Ref. 10) and projected on to
the plane perpendicular to the beam axis. Dashed
curves: our approximations, Egs. (7) and (8).
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TABLE 1. Best-fit parameter sets.

Nucleus Ry (fm) R (fm) p (fm™3)
L2¢c 2.34 2.01 0.160
2Ne 2.70 2.39 0.192
Ar 3.39 2.96 0.188
83Cu 4.04 3.63 0.187
208pp, 6.59 6.21 0.159
238y 6.73 6.31 0.170
=2 [E,(s,) - E(s)T ©)
: .

subject to the analytically integrable constraint
A= Zﬂﬁf a(s)sds ,
: ]

where A is the mass number of the given nucleus.
Some typical values of p, R,, and R are given in
Table I below. (An alternative procedure, which
avoids this minimization, is outlined in the Appen-
dix.) The integral of Eq. (2) is now rewritten

0

FIG. 3. Contour plot of diffuse case W(w;,w,), drawn
for Ne on U. [In both this and the following figure, the
contour levels are scaled by C of Eq. (4).]

ﬁlz w R22
Q:nz(f ds?+ f dsf)(f dsy’ +f“ dsf)
() filz 0 Ry
x(p,a +P28) , (10)
where

W(’Z"”) Ne + U
.\ T T T (O)

FIG. 4. Contour plots of diffuse case W(n,w), with
dash-dot integration limits. (a) Ne on U, (b) C on C.
The dash-dot lines in (b) circumscribe the contributing
region to W(n) for triton production.
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ds,?=-d(3)? for s<R,,

and

ds,? =02—[cl—2 1“(%) -R]i:— for s> R,
with similar expressions for ds,? in terms of 8
and R,.

We can now reconsider such quantities as
W(w,,w,), shown in Fig, 3. The figure was drawn
for the case Ne +U, and the dashed lines show the
boundaries of the region to be considered, as in
Fig. 1. Here these limits become ;=2(R,),/7,,
with ;;, =1/(5,0), =1 fm®. The presence of the
diffuse tails of the nuclear density distributions
add a new aspect, the dot-dashed lines dividing
the surface into four regions. Region A concerns
that part of the collision process in which the dif-
fuse fringe around the projectile collides with the
fringe around the target. In region B the fringe
of the projectile is incident on the massive central
part of the target. In C the central part of the
projectile is incident on the fringe around the tar-
get, and in D the two central regions are incident
on each other,

As before the weight function W(w,,w,) can be
converted to W(5, w), and then projected on to the
7 axis to give W(n), which is the exact analog of
the Y(n) functions tabulated in Ref. 1. Figure
4(a) shows W(n,w) for Ne on U, Fig. 4(b) for C on
C.

III. APPLICATIONS TO COMPOSITE PARTICLE
SPECTRA

As an application of these geometrical concepts,
we consider the inclusive spectra of tritons and
deuterons for the reactions C on C and Ne on NaF
at 800 MeV/A.''*?* The prediction of the original
firestreak model™* for triton spectra in a C on C
collision (solid curve in Fig. 5) seems worse than
expected for this model. We now argue that a cut-
off in the minimum value of w=w, + w, should be
imposed in the calculation of W(n), the justification
being that at least three nucleons are required -
in an elemental tube to produce a triton. (This
value of w we call w,..) Furthermore, since p is
almost constant for nuclei, we would expect the
same w, to apply for, say, Ne on NaF. Of course,
as we move to heavier systems, the influence of
this cutoff on the triton spectra will decrease.

w, could be estimated by recognizing that the
cross section of each tube should be about 4 fm?
(the pp cross section) but we keep it a parameter

" to study the dependence of the spectra on its value.
w,=0.8 produces a much improved fit to the data
(dashed curve in Fig. 5). Equating w A=3, we
obtain A =3.8 fm? as the approximate area of a

C+C > t+X 800Mev/A
I !
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FIG. 5. Invariant cross section vs lab momentum for
triton production from C on C at 800 MeV/A. Data from
Ref. 12. Firestreak calculations w,=0.0 (solid curves),
0.8 (dashed curve—best visual fit to data, see text Sec.
III), and 1.0 (dotted curve).
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FIG. 6. Invariant cross section vs lab momentum for
tritons from Ne on NaF at 800 MeV/A. Data from Ref.
12. Identification of curves as for Fig. 5.
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FIG. 7. Invariant cross section vs lab momentum for
deuteron production from C on C at 800 MeV/A, Data
from Ref. 12. Firestreak calculations: w,=0.0 (solid
curve) and 0.7 (dashed curve).

tube. To illustrate the sensitivity of the calcula-
tion to w,, the dotted line in Fig. 5 is drawn for w,
=1.0. Figure 6 shows the effect of w_=0. 8 for
the case of Ne on NaF; it is much less, a pleasing
result as the original firestreak calculation pro-
duced a reasonable fit.

For deuterons, one might expect w,=0.8(3);
however, a larger value w,=0.7 produces better
results (Fig. 7). This may be due to the “loose”
binding of the deuteron, which results in a large
size for this composite.
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APPENDIX

Consider the density distribution of Ref. 1:

[1 - (1 +—§-> exp(—R/a)s—hl%;lda—)] <R,

p(r)=p,
[B- cosh(R/a) - sinh(R/a)] e/ >R
a v/a ’
(A1)
where
R=1.18AY3fm, a=1/Y2 fm. (A2)

This distribution is sufficiently realistic for our
purposes and has the advantage that the equivalent
sharp radius R is simply proportional to A!/3
while the half-density radius of a Fermi distribu-
tion does not have this simple proportionality.
The other advantage is that no special normaliza-
tion is required to ensure that the total number of
particles is correct since

47 '[o p(r)ﬁdv:%poR" . (A3)

With the choice of R above, p,=0.145 fm™; in ad-
dition, Egs. (A1) and (A2) suggest that c, of Eq.
(8) in the text is V2 fm™. The unknowns of Eq.
(8) are then R, ¢,, and R,. Two conditions are
obtained by matching at R
Cl=2[(R02 _EZ)]1/2 R
RA = (01/2)202 .

Finally, equating

(A4)

4m 3 & 2 _2v1/2
5 PR’ =0, an 2[(R,? = s*)]*/2sds
)

+27 j:“"clexp(—cz[s —é])sds] (A5)
R

we find that
R3=R03"(61/2)3+3(Cl/2)[1+§CZ](1/022).. (A6)

Using ¢,=V2, x=c,/2, R=V2x*, and R,*=(c,/2)?
+R?, one obtains

R¥=(x®+2x%)3/2 + 35 + 2x° (AT)

to solve for «x.
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