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Geometrical aspects of relativistic nuclear collisions
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The geometrical component common to many nuclear collisional models is reformulated to permit analytical
calculation of experimental observables. Nuclear difFuseness is easily incorporated. As an application, the firestreak
model is used to explore the efFect of diff'useness on triton and deuteron spectra in relativistic heavy ion collisions. In
light colliding systems, the peripheral regions contain insufficient nuclear material to form composites, and must be
excluded. The density cutoff' obtained for C on C at 800 MeV/A yields a minimum tube cross section of 3.8 fm,
consistent with the nucleon-nucleon cross section.

NUCLEAR REACTIONS Relativistic nuclear collisions; nuclear diffuseness;
firestreak; calculated differential cross sections of d, t; comparisons with ex-

periment.

I. INTRODUCTION

The geometrical aspects of relativistic heavy
ion collisions were emphasized in the firestreak
model. ' In conjunction with a thermodynamical
description, ' the model has been widely used"
to predict the inclusive spectra of protons, pions,
and composites.

In this paper we further develop the ideas of Ref.
1. This generalization of the firestreak model
can be used to include, among others, effects of
transparency' and two-body knock-on collisions. '
For example, it can be exploited to improve the
calculation of composite spectra in the thermo-
dynamical prescription. In Sec. II, we develop
these geometrical aspects. Some applications are
made in Sec. IG.

II. GEOMETRICAL ASPECTS

A common feature of many approaches to rela-
tivistic nuclear collisions is that the experimen-
tally observed quantities in inclusive measure-
ments of various kinds are calculated by means
of a four-dimensional integral of the following
form:

Q= ds doq 0',

where Q is the quantity of interest (a differential
cross section, for example). ' Here s is the two-
dimensional vector impact parameter, 0' is the two-
dimensional vector position in the plane perpendi-
cular to the beam, and q, (o) is the local contribu-
tion to Q for impact parameter s from the point

a. This integral can be recast in the form'

0 = f 2ms, ds, f Rws, ds,q(s„s,), (2)

q = 2 min(n, P)p

where s, and s, are one-dimensional radial vari-
ables measured from the centers of the projec-
tions of the target and projectile nuclear density
distributions on to a plane. Finally, for the
idealization of nuclei as sharp surface spheres
of constant density p, the integral can be written

2' g 2R2—ndn —PdP q(n, P),
0

where B, and R, are the sharp radii and ~ and P
are length variables proportional to the number of
particles per unit area when the nuclear densities
are projected on to a plane. Here

(-,'n)'+ s,'=R,',
and similarly for P.

As an application of this expression, consider
the question of the total cross section for a par-
ticle that is to emerge from a relativistic nuclear
collision. Assuming all the particles to come
from the overlap region and none from the "spec-
tators, " the quantity q = (n+ P)p, and the total
cross section is calculated to be' a', =w(A, R,'
+A+, '). Similarly, if we wish to calculate
the total cross section assuming the yield to come
exclusively from single knock-on collisions in the
overlap region (under the drastic assumption of
infinite nucleon-nucleon cross section), then for
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TABLE I. Best-fit parameter sets.

Nucleus

f2C

2PNe

4PA

"Cu
"'Xb
238U

gp (fm)

2.34
2.70
3.39
4.04
6.59
6.73

R (fm)

2.01
2.39
2.96
3.63
6.21
6.31

p (fm )

0.160
0.192
0.188
0.187
0.159
0.170

where

W( g, ~) Nc+ U

y.
' =Q [&,„(s,.) —](s,.)]'

subject to the analytically integrable constraint

A=21Tp & 9 gdg ~

0

where A is the mass number of the given nucleus.
8 and 8 are given in

T ble I below. (An alternative procedure, whic
'd this minimization, is ou ine

dix ) The integral of Eq. (2) is now

0.4 0.8

W(q, ar) C+ C
I

1.0

0.5

I

0.4
I

0.8
0

GO, 1

FIG. 3. on oG. 3. C ntour plot of diffuse casee W(co, co ), drawn
tI b th th and the foQomng figure,

contour levels are scaled by C o q.

FIG. 4. Contour plots of diffuse case S'(g, co), with
t (a) NeonU, (b) ConC.dash-dot integration loni s.

The dashpot lines in (b) circumscribcribe the contri u zng
region to 8'(g) for triton production.
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ds, '=-d(an)' for s&R»

2 1 (n) t du
ds, '= —

1n~
—

~

-A for s&R, ,
C2 C2 (Cg j

with similar expressions for ds, ' in terms of P
and R2.

We can now reconsider such quantities as
W(m„ar, ), shown in Fig. 3. The figure was drawn
for the case Ne+ U, and the dashed lines show the
boundaries of the region to be considered, as in
Fig. 1. Here these limits become Q,. = 2(R,},/A.„
with X, =1/(p, o}, 0=1 fm'. The presence of the
diffuse tails of the nuclear density distributions
add a new aspect, the dot-dashed lines dividing
the surface into four regions. Region A concerns
that part of the collision process in which the dif-
fuse fringe around the projectile collides with the
fringe around the target. In region B the fringe
of the projectile is incident on the massive central
part of the target. In C the central part of the
projectile is incident on the fringe around the tar-
get, and in D the two central regions are incident
on each other.

As before the weight function W(~„&o,) can be
converted to W(g, u&), and then projected on to the
q axis to give W(q), which is the exact analog of
the F(q} functions tabulated in Ref. 1. Figure
4(a) shows W(q, &o) for Ne on U, Fig. 4(b) for C on
C.
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FIG, 5. Invariant cross section vs lab momentum for
triton production from C on C at 800 MeV/A. Data from
Ref. 12. Firestreak calculations co,= 0.0 (solid curves),
0.8 (dashed curve —best visual fit to data, see text Sec.
III), and 1.0 (dotted curve).

HI. APPLICATIONS TO COMPOSITE PARTICLE
SPECTRA

As an application of these geometrical concepts,
we consider the inclusive spectra of tritons and
deuterons for the reactions C on C and Ne on NaF
at 800 MeV/A. ""' The prediction of the original
firestreak model'* for triton spectra in a C on C
collision (solid curve in Fig. 5) seems worse than
expected for this model. We now argue that a cut-
off in the minimum value of co = ~, + v, should be
imposed in the calculation of W(q}, the justification
being that ht least three nucleons are required
in an elemental tube to produce a triton. (This
value of v we call m, .) Furthermore, since p is
almost constant for nuclei, we would expect the
same ~, to apply for, say, Ne on NaF. Of course,
as we move to heavier systems, the influence of
this cutoff on the triton spectra will decrease.

could be estimated by recognizing that the
cross section of each tube should be about 4 fm'
(the pp cross section) but we keep it a parameter
to study the dependence of the spectra on its value.
~,=0.8 produces a much improved fit to the data
(dashed curve in Fig. 5). Equating or+=3, we
obtain A. =3.8 fm' as the approximate area of a
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FIG. 6. Invariant cross section vs lab momentum for
tritons from Ne on NaF at 800 MeV/A. Data from Ref.
12. Identification of curves as for Fig. 5.
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Consider the density distribution of Ref. 1:
R

( R/ }
sinh(r/'a

a
'" '

r/ap(.}=p. &

R q ~-ala—cosh(R/a) —sinh(R/a)
a r/a

g 10

~ 1O

where

R=1.1L4'~' fm, a=1/~2fm.
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FIG. 7. Invariant cross section vs lab momentum for
deuteron production from C on C at 800 MeV/A. Data
from Bef. .12. Firestreak calculations: ~,= 0.0 (solid
curve) and 0.7 (dashed curve).

tube. To illustrate the sensitivity of the calcula-
tion to ~„ the dotted line in Fig. 5 is drawn for ~,
=1.0. Figure 6 shows the effect of co =0.8 for
the case of Ne on NaF; it is much less, a pleasing
result as the original firestreak calculation pro-
duced a reasonable fit.

For deuterons, one might expect a&, =0.8(—',);
however, a larger value ~,=0.7 produces better
results (Fig. 7). This may be due to the "loose"
binding of the deuteron, which results in a large
size for this composite.

This distribution is sufficiently realistic for our
purposes and has the advantage that the equivalent
sharp radius R is simply proportional to A' '
while the half-density radius of a Fermi distribu-
tion does not have this simple proportionality.
The other advantage is that no special normaliza-
tion is required to ensure that the total number of
particles is correct since

4w p(r)r'dr =—p~'.4n

0 3 (As)

c =2[(R '-R")]'",
R = (c,/2)'c, .

Finally, equating

4~ p~' =p, 2w 2[(R,' —s')]'"sds
0

(A4)

Co '

+ 2m c,exp(-c, [s R]}sds—(A5)

With the choice of R above, p, =0.145 fm '; in ad-
dition, Eqs. (Al} and (A2} suggest that c, of Eq.
(8) in the text is ~2 fm '. The unknowns of Eq.
(8) a,re then R, c„and R,. Two conditions are
obtained by matching at R
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—(/ y2/ )~~ y 3//2/ (Av)

to solve for x.

we find that

R'=R, ' —(c,/2)'+ 8(c,/2)[1+Re, ](1/c,') . (A&)

Using c, = ~2, x =c,/2, R = v &x', and R,' = (c,/2)'
+R2, one obtains
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