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We derive a new exact self-consistent crystalline condensate in the (1� 1)-dimensional chiral Gross-
Neveu model. This also yields a new exact crystalline solution for the one dimensional Bogoliubov–de
Gennes equations and the Eilenberger equation of semiclassical superconductivity. We show that the
functional gap equation can be reduced to a solvable nonlinear equation and discuss implications for the
temperature-chemical potential phase diagram.

DOI: 10.1103/PhysRevLett.100.200404 PACS numbers: 11.10.Kk, 11.30.Rd, 71.10.Pm

Interacting fermion systems describe a wide range of
physical phenomena, from particle physics, to solid state
and atomic physics [1–4]. Important paradigms include the
Peierls-Frohlich model of conduction [5], the Gorkov–
Bogoliubov–de Gennes approach to superconductivity
[6], and the Nambu–Jona-Lasinio (NJL) model of symme-
try breaking in particle physics [7]. A (1� 1)-dimensional
version of the NJL model, the NJL2 model [also known as
the chiral Gross-Neveu model, �GN2] has been widely
studied as it exhibits asymptotic freedom, dynamical mass
generation, and chiral symmetry breaking [8–11]. Surpris-
ingly, the temperature-density phase diagram of this sys-
tem is not yet fully understood. A gap equation analysis
based on a homogeneous condensate suggests its phase
diagram is the same as its discrete-chiral cousin, the origi-
nal Gross-Neveu (GN2) model [8], while recent work finds
an inhomogeneous Larkin-Ovchinikov-Fulde-Ferrell
(LOFF) helical complex condensate (‘‘chiral spiral’’) be-
low a critical temperature [12]. In fact, the phase diagram
of the discrete-chiral version, the GN2 model, has only
recently been solved in the particle physics literature,
analytically [13], and on the lattice [14]. There is a crys-
talline phase at low temperature and high density, and this
phase is characterized by a periodically inhomogeneous
(real) condensate that solves exactly the gap equation. This
phase is not seen in the old phase diagram which was based
on a uniform condensate [15]. Interestingly, this discrete-
chiral GN2 model (with vanishing bare fermion mass) is
mathematically equivalent to several models in condensed
matter physics: the real periodic condensate may be iden-
tified with a polaron crystal in conducting polymers
[1,16,17], with a periodic pair potential in quasi 1D super-
conductors [18,19], and with the real order parameter for
superconductors in a ferromagnetic field [20]. This system
also is a paradigm of the phenomenon of fermion number
fractionalization [21,22]. Variants of such models also
apply to ultracold fermionic systems, for which there are
interesting new theoretical and experimental developments
[4,23,24].

In this Letter, we present an analogous complex crystal-
line condensate for the chiral GN system, the NJL2 model.

This condensate is an exact inhomogeneous solution to the
gap equation, and also provides a new self-consistent
solution to the Bogoliubov–de Gennes (BdG) [6] and
Eilenberger [25] equations of superconductivity. Our solu-
tion may also be relevant for chiral superconductors and for
incommensurate charge density waves in quasi 1D systems
[26], which have chiral symmetry and an inherently com-
plex order parameter.

Consider the massless NJL2 model with Lagrangian

 L � � i@6  �
g2

2
�� �  �2 � � � i�5 �2�; (1)

which has a continuous chiral symmetry  ! ei�
5� . We

have suppressed summation over N flavors, which makes
the semiclassical gap equation analysis exact in the N !
1 limit, a limit in which we can consistently discuss chiral
symmetry breaking in 2D. The original GN2 model [8],
without the pseudoscalar interaction term � � i�5 �2, has a
discrete chiral symmetry  ! �5 . There are two equiva-
lent ways to find self-consistent static condensates. First,
introduce bosonic condensate fields, S � �  and P �
� i�5 , which we combine into a complex condensate

field: � � S� iP � Mei�. Integrating out the fermion
fields we obtain an effective action for the condensate as

 Seff � �
1

2Ng2

Z
j�j2 � i ln det�i@6 �Me�i�

5��: (2)

The corresponding (complex) gap equation is

 ��x� � �2iNg2 �
���x�	

ln det�i@6 �M�x�e�i�
5��x��: (3)

One of the main results of this Letter is that this gap
equation can be reduced in an elementary manner to an or-
dinary differential equation, which moreover is soluble. A
second approach to finding a self-consistent condensate is
to solve the relativistic Hartree-Fock problem H � E ,
subject to the consistency condition h �  i � ih � i�5 i �
��=g2, with single-particle Hamiltonian
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 H � �i�5 d
dx
� �0M�x�e�i�

5��x� �
�i ddx ��x�
�	�x� i ddx

 !
:

(4)

This is the Bogoliubov–de Gennes (BdG), or Andreev,
Hamiltonian, with ��x� playing the role of the order pa-
rameter [6]. We have chosen Dirac matrices �0 � �1,
�1 � �i�2, and �5 � �3, to emphasize the natural com-
plex combination � � S� iP. The key object in our
analysis is the Gork’ov Green’s function, and, in particular,
its coincident-point limit, the ‘‘diagonal resolvent’’:

 R�x;E� � hxj
1

H � E
jxi: (5)

This is a 2
 2 matrix, and the spectral function is ��E� �
1
� Im TrD;xR�x;E� i��, where the trace is both a Dirac and
spatial trace. Approximation methods, such as the gradient
and semiclassical expansions, of R�x;E� have been widely
studied [27]. In one spatial dimension, R�x;E� can be
written in terms of two independent solutions  1;2 to the
Dirac or BdG equation H � E . That is, R�x;E� �
� 1 T2 �  2 T1 ��1=�2W�, with Wronskian W �
�i T1�2 2. It follows immediately that R�x;E� satisfies
the following first order equation:

 R0�5 � i��5�E� �0Me�i�
5��; R�5�: (6)

In superconductivity, (6) is known as the Eilenberger equa-
tion [25], and in mathematical physics as the Dik’ii equa-
tion [28]. It is also straightforward to show that R � Ry,
detR � 1=4, and tr�R�5� � 0.

Our main observation is that the gap Eq. (3) motivates a
self-consistent ansatz form of the 2
 2 matrix R�x;E�, and
when this is combined with the identity (6), the exact self-
consistent condensate and associated resolvent are com-
pletely determined. To see this, note that the gap Eq. (3)
can be viewed in two ways. First, write the log det term as

 

Z 1
�1

dE��E�
1

	
ln�1� e�	�E�
�� (7)

All dependence on ��x� resides in the spectral function
��E�, via TrR, and so the simplest solution to the gap
Eq. (3) is for diagonal entries of the 2
 2 matrix R [recall
they are equal since tr�R�5� � 0] to be linear in j�j2. On
the other hand, we can also express the gap equation, by
performing the functional derivatives, as

 ��x� � iNg2trD;E���
0 � �1�R�x;E��: (8)

This suggests that the off-diagonal entries of R be propor-
tional to � and �	. In fact, consistency between (6) and (8)
introduces derivative terms, leading to

 R�x;E� �N �E�
a�E� � j�j2 b�E��� i�0

b�E��	 � i�0	 a�E� � j�j2

� �
: (9)

The gap equation is satisfied since we find trEN �E� � 0.
With this ansatz, the diagonal entries of (6) are identically

satisfied, while the off-diagonal entries imply that the
condensate � satisfy the equation

 �00 � 2j�j2�� i�b� 2E��0 � 2�a� Eb�� � 0: (10)

This nonlinear Schrödinger equation (NLSE) is analyti-
cally soluble, and all previously known examples of self-
consistent condensates in GN2 and NJL2 are special cases.
Furthermore, the corresponding Dirac or BdG equation
H � E is also exactly soluble and has a spectrum
consisting of a single band in the gap [29]. This provides
an elementary explanation of the result from inverse scat-
tering [9–11] that self-consistent ground state condensates
are reflectionless (or finite-gap) with a single state (or
band). For example, if we specialize to a real condensate,
as is relevant for the [discrete-chiral] GN2 model, the
[rescaled] self-consistent solution is ��x� �

���
�
p

sn�x;��,
which satisfies �00 � 2�3 � ��1� ���, where sn is a
Jacobi elliptic function, with elliptic parameter 0 � � �
1 [16–20]. The fermion spectrum has a single band in the
gap, centered on E � 0, reflecting the charge-conjugation
symmetry of the GN2 system. As �! 1, the period be-
comes infinite, and we obtain the famous kink, ��x� �
tanh�x�, with a single bound state at E � 0. This mid-
gap zero mode has many interesting physical consequen-
ces in polymer systems, and is the paradigm of the frac-
tional fermion number phenomenon [21]. It is also worth
noting that for the [discrete-chiral] GN2 model with a
bare fermion mass, the NLSE (10) acquires an inhomo-
geneous term, in which case the general solution is writ-
ten as ��x� � ���� � ��x� � ��x� ��, where � is the
Weierstrass zeta function, and this represents a kink-
antikink crystal (or bipolaron crystal in the polymer lan-
guage [30]), which is a periodic generalization [13] of the
Dashen-Hasslacher-Neveu (DHN) kink-antikink solution
[9]: ��x� � coth�b� � tanh�x� � tanh�x� b�.

All these are real condensates, and are well known. The
only previously known complex condensates are (i) the
simple ‘‘chiral spiral’’ or LOFF solution ��x� � Aeiqx; and
(ii) Shei’s ‘‘twisted kink’’ solution [10], which we can
express in complex form

 ��x� � ei=2
cosh�x sin2� i


2�

cosh�x sin2�
: (11)

 is the angle through which the phase of the condensate
rotates as x goes from �1 to �1. The single-particle
fermion spectrum has a single bound state within the gap,
located at E � cos�2�, as shown by the dashed line in
Fig. 1. Consistency with the gap equation requires vanish-
ing of the coefficient of �0, which places conditions on
parameters of the solution. For example, for Shei’s solution
the condition is that =�2�� is equal to the filling fraction
of the bound level [10,11].

We point out a simple physical interpretation of this
condition in terms of conserved currents (see also [31]).
Both NJL2 and GN2 models have a conserved current j
 �
� �
 . Since hj
�x�i � �iNtrD;E��0�
R�x��, we see that,
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for a static condensate, current conservation follows trivi-
ally since hj1�x�i � 0; this is the physical origin of the
identity trD��5R� � 0. The NJL2 model also has a con-
served axial current, j
5 � � �
�5 , and the Eilenberger
equation (6) implies

 @
hj


5 i � �iNtr�R0� � 2S�x�h � i�5 i � 2P�x�h �  i:

(12)

Axial current conservation then follows from the gap equa-
tion, using precisely the same condition on the coefficient
of �0.

We have found a nontrivial crystalline solution to (10)

 ��x� � A
��iAx� =2�K�
��iAx�K���=2�

expfiAx����=2�

� cs�=2�� � �=2� iam�=2�g: (13)

Here, � and � are Weierstrass sigma and zeta functions,
A�� � 2sd�=4�cn�=4� and � � ��K�, with K��� the
elliptic half-period. For this condensate, both the amplitude
and the phase are x-dependent, as shown in Figs. 2 and 3.
The essential parameters of the solution (13) are: (i) the
parameter which [via (15) below] characterizes the chiral
twist of ��x� over one period; and (ii) the elliptic parameter
� which, together with , determines the crystal period.
The spinor solutions of the Dirac or BdG equation can also
be expressed explicitly in terms of elliptic functions, and
one can perform the Hartree-Fock analysis, as in the GN2

system, to prove self-consistency of the crystalline con-
densate [29]. The spectrum is that of a Dirac particle
with a single band in the gap, as shown in Fig. 1.
However, unlike the real case where the band lies symmet-
rically in the center of the gap, here the band is offset.
Indeed, the band edges are given by: E1 � �1, E2 �
�1� 2cn2�=4;��, E3 � �1� 2cd2�=4;��, E4 � �1,
as shown in Fig. 1. This spectrum is a band version of
the Shei spectrum, reducing to the Shei solution in the
infinite period limit. It is also a deformation of the kink

crystal spectrum of the [discrete-chiral] GN2 system, re-
ducing to that case when  � 2K. We find the exact
diagonal resolvent (9) with

 N �E� �
1

4

1�������������������������������������������������������
�E2 � 1��E� E2��E� E3�

p ; (14)

b�E� � 2E� �E2 � E3�, and a�E� � 2�E� 1�

�E� 1� �E2 � E3�=2� � 1� �E2 � E3� � �E2 � E3�

2=4.
Under a shift through one period L � 2K0=A of the

crystal, the BdG Hamiltonian is invariant up to a global
chiral rotation through an angle ’:
 

H�x�L��ei�
5’H�x�e�i�

5’;

’�K0����=2��cs�=2�� i��iK0�=�2K0��:

(15)

The solutions to H � E acquire a chiral rotation
and a Bloch phase under a period shift,  �x� L� �
eikLei’�

5
 �x�. The [relativistic] Bloch momentum k is

related to the spectral function by ��E� � dk=dE.
To conclude, we discuss briefly the implications of this

self-consistent solution to the gap equation for the (T, 
)
phase diagram of the NJL2 model. Recall that the corre-
sponding real condensate characterizes the inhomogeneous
crystalline phase of the GN2 system [13]. For the NJL2

model, the Ginzburg-Landau (GL) approach shows that the
‘‘chiral spiral’’ phase identified in [12] has a richer struc-

FIG. 3 (color online). Crystalline complex kink (13) plotted as
a function of x over one period. The cross section denotes
��x� � S�x� � iP�x�, and indicates a net rotation through the
twist parameter 2’ over one period.

χ x Dashed

M x Solid

x

FIG. 2. The amplitude M�x� [solid line] and phase ��x�
[dashed line] of � � Mei� in (13), over several periods. The
amplitude is periodic while the phase rotates by an angle 2’
each period.

2K 4K

-1

1

E

2K 4K
θ

-1

1

E

FIG. 1 (color online). Band spectrum of the BdG Hamiltonian
(4) for the complex crystal condensate (13), as a function of the
twist parameter . The dashed line denotes the infinite period
limit [in this case �! 0], which is Shei’s solution (11). At  �
2K, we recover the symmetric spectrum of the real kink crystal,
relevant to the GN2 system.
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ture, characterized by a crystalline complex condensate of
the form (13). Near the tricritical point of the massless
NJL2 system, the GL effective Lagrangian is

 

LGL � c0 � c2j�j
2 � c3Im����0�	� � c4�j�j

4 � j�0j2�

� c5Im���00 � 3j�j2����0�	� � c6f2j�j
6

� 8j�j2j�0j2 � 2Re���0�2��	�2� � j�00j2g: (16)

Here, the coefficients cn are known functions of T and 

[32]. (This GL approach has been used previously in [32]
to describe the phase diagram of the massive and massless
NJL2 models, in the vicinity of the tricritical point. For the
massive NJL2 model no (complex) exact solution to the
gap equation is known, so [32] is the current state-of-the-
art for the massive model.) In the GN2 model, which has a
real condensate, there is a tricritical point at T � 0:3183,

 � 0:6082, given by the point c2 � c4 � 0. In the [chi-
ral] NJL2 model, which has a complex condensate, there is
a tricritical point at T � 0:5669, 
 � 0; given by c2 �
c3 � 0. To search for possible crystalline phases near the
tricritical point, we keep terms up to c4 and study the
effective equation of motion

 c4�00 � ic3�0 � �c2 � 2c4j�j
2�� � 0: (17)

Note that this has precisely the same form as the NLSE
(10) found from the gap equation and the Eilenberger
equation. Thus, we can use our solution (13) as a varia-
tional ansatz and compute the free energy. We have found
that the resulting free energy is lower than that of the
LOFF-form ‘‘chiral spiral’’ variational ansatz ��x� �
Aeiqx, for T < Tc. Noting that our ansatz reduces to the
chiral spiral in the perturbative limit ( just as the GN2 self-
consistent crystal condensate reduces to the LOFF form
��x� � A sin�qx� in this limit [13]), we are led to the phase
diagram shown in Fig. 4. For a detailed discussion of the

phase diagram, based on the full free energy (beyond the
GL approximation), using our exact spectral data, see [29].
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FIG. 4 (color online). Phase diagram of the chiral NJL2 model,
from a Ginzburg-Landau analysis based on a crystalline con-
densate of the form in (13). Along the T axis (below Tc) the
condensate is of the form of Shei’s twisted kink (11), while on
the T � Tc line, the condensate reduces to the form of the LOFF
chiral spiral [12]. The condensate is depicted as in Fig. 3.
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