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We present the detailed properties of a self-consistent crystalline chiral condensate in the massless

chiral Gross-Neveu model. We show that a suitable ansatz for the Gorkov resolvent reduces the functional

gap equation, for the inhomogeneous condensate, to a nonlinear Schrödinger equation, which is exactly

soluble. The general crystalline solution includes as special cases all previously known real and complex

condensate solutions to the gap equation. Furthermore, the associated Bogoliubov-de Gennes equation is

also soluble with this inhomogeneous chiral condensate, and the exact spectral properties are derived. We

find an all-orders expansion of the Ginzburg-Landau effective Lagrangian and show how the gap equation

is solved order by order.
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I. INTRODUCTION

In a recent paper [1], the authors found a new self-
consistent crystalline condensate solution to the gap equa-
tion of the massless chiral Gross-Neveu model [2]. For this
complex chiral condensate, the amplitude is periodic and
the phase winds by a certain angle over each period. Our
approach is based on the observation that a carefully
motivated ansatz for the associated Gorkov resolvent re-
duces the gap equation to a simple ordinary differential
equation, an explicitly soluble form of the nonlinear
Schrödinger equation (NLSE). In general, the gap equation
for an inhomogeneous condensate is a highly nontrivial
functional differential equation, so the reduction to the
NLSE represents a significant simplification. This resol-
vent approach is complementary to the inverse scattering
approach [3,4], which also dramatically simplifies the gap
equation, but which was not developed for periodic inho-
mogeneities. Our resolvent method is based on an exten-
sion, to complex and periodic condensates, of the work of
Feinberg and Zee [5,6]. The general solution to the non-
linear Schrödinger equation contains all previously known
self-consistent condensates of the massless Gross-Neveu
models [both chiral and nonchiral] as special cases: the
single real kink [3], the single complex kink [4], the real
kink crystal [7], and the complex chiral spiral [8], and also
yields a new complex kink crystal [1]. In the language of
condensed matter physics, this crystalline condensate is a
new solution of the Eilenberger equation (for the Gorkov
resolvent) [9], and we also present here the complete exact
solution of the associated Bogoliubov-de Gennes (BdG)
[10] equation H ¼ E for this system. The Eilenberger
and Bogoliubov-de Gennes equations are fundamental el-
ements of the treatment of a wide class of interacting
fermion systems, which are important in many branches
of physics, ranging from particle physics to solid state and
atomic physics [11–14]. Important paradigms include the
Peierls-Frohlich model of conduction [15], the Gorkov-
Bogoliubov-de Gennes approach to superconductivity

[10], and the Nambu–Jona-Lasinio (NJL) model of sym-
metry breaking in particle physics [16]. Here we study a
1þ 1-dimensional version of the NJL model, the NJL2

model (also known as the chiral Gross-Neveu model,
�GN2). This model has been widely studied as it exhibits
asymptotic freedom, dynamical mass generation, and chi-
ral symmetry breaking [2–5].
Our primary physical motivation for studying the gap

equation of the massless chiral Gross-Neveu model, the
NJL2 model, is to understand the ðT;�Þ phase diagram of
this system. Somewhat surprisingly, the phase diagram of
this system is not yet fully understood. A gap equation
analysis based on a homogeneous condensate suggests its
phase diagram is the same as its discrete-chiral cousin, the
original Gross-Neveu (GN2) model [2], while more recent
work finds an inhomogeneous Larkin-Ovchinnikov-Fulde-
Ferrell (LOFF [17]) helical complex condensate (‘‘chiral
spiral’’) below a critical temperature [8]. In [1], a
Ginzburg-Landau approach was used to show that in a
region of the phase diagram the free energy is lower for a
complex kink crystal, compared to a uniform condensate or
a chiral spiral condensate. In this paper we present the
details of the complex crystalline condensate of the NJL2

system, and also the exact spectral properties of fermions
in the presence of such a crystalline condensate. This
information will subsequently be used to study the free
energy exactly, without resorting to the Ginzburg-Landau
approximation.
This state of affairs should be compared and contrasted

with the case of the original Gross-Neveu model [2], to
which we refer as the GN2 model, which has a discrete
chiral symmetry rather than the continuous chiral symme-
try of the NJL2 model. In the GN2 model, the phase
diagram has only relatively recently been solved in the
particle physics literature, analytically and exactly by a
Hartree-Fock analysis [7], and numerically on the lattice
[18]. There is a crystalline phase at low temperature and
high density, and this phase is characterized by a periodi-
cally inhomogeneous (real) condensate that solves exactly
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the gap equation. This phase is not seen in the old phase
diagram which was based on a uniform condensate [19,20].
Interestingly, some hints of a problem with the homoge-
neous condensate assumption were found already in an
early lattice study [21]. This discrete-chiral GN2 model
(with vanishing bare fermion mass) turns out to be mathe-
matically equivalent to several models in condensed matter
physics [7]: the real periodic condensate may be identified
with a polaron crystal in conducting polymers [11,22,23],
with a periodic pair potential in quasi-1D superconductors
[24–26], and with the real order parameter for supercon-
ductors in a ferromagnetic field [27]. The Gross-Neveu
models also serve as paradigms of the phenomenon of
fermion number fractionalization [28–31].

Here, we consider the massless chiral Gross-Neveu, or
NJL2, model in 1þ 1 dimensions with the Lagrangian [2–
4]

L ¼ � i@6  þ g2

2
½ð �  Þ2 þ ð � i�5 Þ2�: (1.1)

This system has a continuous chiral symmetry under  !
ei�

5� . We have suppressed summation over N flavors,
which makes the semiclassical gap equation analysis exact
in the N ! 1 limit, a limit in which we can consistently
discuss chiral symmetry breaking in 2D [32,33]. The origi-
nal Gross-Neveu model, the GN2 model [2], without the
pseudoscalar interaction term ð � i�5 Þ2, has a discrete
chiral symmetry  ! �5 .

There are two equivalent ways to find self-consistent
static condensates. First, we introduce bosonic scalar and
pseudoscalar condensate fields, � and �, which we com-
bine into a complex condensate field, defined either
through its real and imaginary parts, or via its amplitude
and phase:

� � �� i� � Mei�: (1.2)

Integrating out the fermion fields we obtain an effective
action for the condensate � as

Seff ¼ � 1

2g2

Z
j�j2 � iN lndet

�
i@6 � 1

2
ð1� �5Þ�

� 1

2
ð1þ �5Þ��

�
: (1.3)

The corresponding (complex) gap equation is

�ðxÞ ¼ �2iNg2
�

��ðxÞ� lndet

�
i@6 � 1

2
ð1� �5Þ�ðxÞ

� 1

2
ð1þ �5Þ��ðxÞ

�
: (1.4)

If the condensate is constant, as is usually assumed, it is
straightforward to evaluate the determinant and solve the
gap equation [13,19,20]. When the condensate is inhomo-
geneous, this is a much more difficult problem. Dashen,
Hasslacher, and Neveu [3] used inverse scattering to find

kinklike static but spatially inhomogeneous condensates
for the gap equation of the GN2 model (where there is no
pseudoscalar condensate, so � is real). Shei [4] extended
this inverse scattering analysis to the chiral Gross-Neveu
model, the NJL2 model, and found a spatially inhomoge-
neous complex kink. A new approach to the inhomoge-
neous gap equation, based on the resolvent, was developed
by Feinberg and Zee [5] and applied to the kink solutions
of both the GN2 and NJL2 models. For the GN2 model,
Thies used a Hartree-Fock approach to find a periodic
extension of the real kink solution, motivated by analogous
inhomogeneous condensates in condensed matter systems
[7]. In [1], the present authors showed that the complex gap
equation (1.4) can be reduced in an elementary manner to a
soluble form of the nonlinear Schrödinger equation. The
general solution contains all previously known inhomoge-
neous condensates (real and complex), and yields a new
crystalline extension of Shei’s complex kink.
A second approach to finding a self-consistent conden-

sate is to solve the relativistic Hartree-Fock problemH ¼
E , with the single-particle Hamiltonian

H ¼ �i�5 d

dx
þ �0

�
1

2
ð1� �5Þ�ðxÞ þ 1

2
ð1þ �5Þ��ðxÞ

�
(1.5)

and subject to the consistency condition

h �  i � ih � i�5 i ¼ ��=g2: (1.6)

We choose Dirac matrices �0 ¼ �1, �
1 ¼ �i�2, �

5 ¼
�3, to emphasize the natural complex condensate combi-
nation in (1.2). Then the single-particle Hamiltonian is

H ¼ �i ddx �ðxÞ
��ðxÞ i ddx

 !
: (1.7)

This Hamiltonian is also known as the BdG
Hamiltonian, and we will refer to the associated spectral
equation

H ¼ E (1.8)

as the BdG equation.
In Sec. II we review the reduction of the functional gap

equation to the NLSE, and in Secs. III and IV we present
the real and complex condensates obtained from solving
the NLSE. In Sec. V we show that the associated
Bogoliubov-de Gennes equation can also be solved ex-
actly, and we derive the exact single-particle spectrum
and density of states. In Sec. VI we verify the consistency
of our solutions by solving the gap equation in the Hartree-
Fock approach. An all-orders Ginzburg-Landau expansion
of the free energy is presented in Sec. VII, and we show
that the inhomogeneous gap equation is satisfied order by
order in an interesting and nontrivial way. In a concluding
section we review our results and discuss implications for
the phase diagram of the chiral Gross-Neveu model.
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II. REDUCTION OF FUNCTIONAL GAP
EQUATION TO NONLINEAR SCHRÖDINGER

EQUATION

In this section we review the reduction [1] of the func-
tional gap equation (1.4) to the nonlinear Schrödinger
equation. The key quantity in our approach is the coinci-
dent limit of Gorkov Green’s function, or the ‘‘diagonal
resolvent’’:

Rðx;EÞ � hxj 1

H � E
jxi: (2.1)

The resolvent (2.1) is clearly a 2� 2 matrix. For a static
(but possibly spatially inhomogeneous) condensate, all
spectral information is encoded in the resolvent. Indeed,
the spectral function characterizing the single-particle
spectrum of fermions in the presence of the condensate
�ðxÞ is

�ðEÞ ¼ 1

�
ImTrD;x½Rðx;Eþ i	Þ�; (2.2)

where the trace is a Dirac trace as well as a spatial trace.
Our first, very simple, observation is that the form of the

BdG equation (1.8) places very strong constraints on the
possible form of Rðx;EÞ. For any static condensate �ðxÞ,
Rðx;EÞ must satisfy the following algebraic conditions
[these are explained in more detail in Appendix A]:

R ¼ Ry; (2.3)

tr DðRðx;EÞ�3Þ ¼ 0; (2.4)

detRðx;EÞ ¼ �1
4: (2.5)

Furthermore, Rðx;EÞ must satisfy the first-order differen-
tial equation

@

@x
Rðx;EÞ�3 ¼ i

�
E ��ðxÞ

��ðxÞ �E
� �

; Rðx;EÞ�3

�
: (2.6)

In superconductivity, (2.6) is known as the Eilenberger
equation [9,34], and in mathematical physics as the Dikii
equation [35]. These conditions (2.3), (2.4), and (2.5), and
the Eilenberger equation (2.6), all follow from the simple
fact [34–36] that for the one-dimensional BdG equation,
which involves derivatives with respect to the single vari-
able x, the Green’s function can be expressed as a product
of two independent solutions to (1.8):

Rðx;EÞ ¼ 1

2iW
ð 1 

T
2 þ  2 

T
1 Þ�1 (2.7)

where W is the Wronskian of two independent solutions
 1;2: W ¼ i T1�2 2.

The next step is to note that the gap equation provides
further information about the possible form of the resol-
vent, and this is enough to motivate a specific ansatz form
[1]. There are two ways of viewing the gap equation (1.4)

in terms of the resolvent. First, for a static condensate we
can write the log det term in the effective action (1.3) as
minus the grand canonical potential, in terms of the single-
particle spectral function �ðEÞ:

� 1




Z 1

�1
dE�ðEÞ lnð1þ e�
ðE��ÞÞ: (2.8)

All dependence on �ðxÞ resides in the spectral function
�ðEÞ, via (2.2). Therefore, inserting this into the gap equa-
tion (1.4), this relates �ðxÞ to the diagonal entries of
Rðx;EÞ. Further, as a consequence of the condition (2.4),
these diagonal entries are equal. So, the simplest natural
solution to the gap equation is for the diagonal entries of
Rðx;EÞ to be linear in j�ðxÞj2. A second way to view the
gap equation is to evaluate the functional derivative in
(1.4), which for a static condensate leads to

�ðxÞ ¼ �iNg2trD;E½�0ð1þ �5ÞRðx;EÞ�: (2.9)

The Dirac trace then relates the off-diagonal entries of
Rðx;EÞ to �ðxÞ. Since R is Hermitian, these off-diagonal
entries are complex conjugates of one another.
Summarizing, Rðx;EÞmust be a Hermitian 2� 2matrix

with equal diagonal entries, such that (after the spatial and
energy trace) the variation of the diagonal terms is propor-
tional to �ðxÞ, and with off-diagonal terms linear in �ðxÞ,
after the energy trace. This suggests taking the resolvent to
be of the form

Rðx;EÞ ¼ N ðEÞ aðEÞ þ j�ðxÞj2 bðEÞ�ðxÞ
bðEÞ��ðxÞ aðEÞ þ j�ðxÞj2

� �
(2.10)

where aðEÞ, bðEÞ, and N ðEÞ are functions of E, indepen-
dent of x, and are to be determined. However, this ansatz
cannot describe inhomogeneous condensates because the
only solution of this form consistent with (2.5) is a con-
densate with constant magnitude, independent of x. Indeed,
taking � to be constant (and by a global chiral rotation,
real), � ¼ M, the solution to (2.3), (2.4), (2.5), and (2.6) is
simply

Rðx;EÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 � E2

p E M
M E

� �
; (2.11)

as is familiar. This example also illustrates that the
Hermiticity condition (2.3) must of course be interpreted
with the appropriate i	 prescription for the energy.
To find inhomogeneous condensates, we suggested in

[1] to extend the ansatz (2.10) to include a first derivative
term in the off-diagonal entries:

Rðx;EÞ ¼ N ðEÞ

� aðEÞ þ j�ðxÞj2 bðEÞ�ðxÞ � i�0ðxÞ
bðEÞ��ðxÞ þ i�0�ðxÞ aðEÞ þ j�ðxÞj2

� �
:

(2.12)

This is the simplest extension of (2.10) that is consistent
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with the various algebraic constraints and with the
Eilenberger equation (2.6). Indeed, substituting the ansatz
(2.12) into the Eilenberger equation (2.6), we see that the
diagonal entry of this equation is identically satisfied,
while the off-diagonal entry implies that �ðxÞ must satisfy
the following NLSE [and its complex conjugate]:

�00 � 2j�j2�þ iðb� 2EÞ�0 � 2ða� EbÞ� ¼ 0:

(2.13)

Two comments are in order. First, it is not immediately
obvious that Rðx;EÞ in (2.12) can satisfy the normalization
condition (2.5) for an inhomogeneous condensate, since

detRðx;EÞ ¼ N 2fj�j4 � j�0j2 þ ð2a� b2Þj�j2
þ ibð�0�� � ���0Þ þ a2g: (2.14)

Remarkably, the NLSE (2.13) implies that ðdetRðx;EÞÞ is
constant:

d

dx

�
detRðx;EÞ

N 2

�
¼ ð2j�j2 þ 2a� b2Þðj�j2Þ0

� ð�00��0 þ �0��00Þ
þ ibð�00�� ���00�Þ ¼ 0 (2.15)

where we have used the fact that the NLSE (2.13) implies
that ð�00��0 þ �0��00Þ ¼ ð2j�j2 þ 2a� 2EbÞðj�j2Þ0, and
that ð�00�� ���00�Þ ¼ �iðb� 2EÞðj�j2Þ0. Since
detRðx;EÞ is constant, the normalization in (2.5) can be
achieved by a suitable choice of N ðEÞ. Second, while the
ansatz (2.12) automatically satisfies the x dependence of
the gap equation in its form coming from (2.8) (because the
trace of R is, by construction, linear in j�j2), it does not
satisfy the other form of the gap equation (2.9), until the
energy trace is performed. This is because of the �0ðxÞ
terms in the off-diagonal. In Sec. VI we show that this form
of the gap equation is indeed satisfied because the coeffi-
cient of the �0ðxÞ term vanishes due to the energy trace.

Thus, we have reduced the very difficult problem of
solving the functional gap equation (1.4) for a self-
consistent condensate �ðxÞ to the much simpler problem
of solving the NLSE for �ðxÞ. In fact, the NLSE (2.13) is
explicitly soluble, as is discussed in the following sections,
in which we describe first the real solutions (relevant for
the GN2 model), and then the complex solutions (relevant
for the NJL2 model).

III. REAL SOLUTIONS OF THE NLSE

In this section we recall the previously known real
solutions to the gap equation, and show how they fit in
with the NLSE (2.13) and the resolvent form in (2.12).

A. Homogeneous condensate

If the condensate is constant, then by a global chiral
rotation it can be taken to be real:

�ðxÞ ¼ m: (3.1)

This clearly satisfies the NLSE (2.13), and we find

aðEÞ¼2E2�m2; bðEÞ¼2E; N ðEÞ¼1

4

1

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�E2

p :

(3.2)

The spectrum of the associated BdG equation (1.8) is that
of a free fermion with mass m, with positive and negative
energy continua starting at E ¼ �m, the mass scale being
set by the amplitude of the condensate.

B. Single real kink condensate

Awell-known nontrivial solution to the gap equation is
the single (real) kink [3]:

�ðxÞ ¼ m tanhðmxÞ: (3.3)

This satisfies the NLSE

�00 � 2�3 þ 2m2� ¼ 0; (3.4)

and so we deduce the exact diagonal resolvent to be of the
form (2.12) with

aðEÞ¼2E2�m2; bðEÞ¼2E; N ðEÞ¼1

4

1

E
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2�E2

p :

(3.5)

The spectrum of the associated BdG equation (1.8) has
positive and negative energy continua starting at E ¼ �m,
together with a single bound state located at E ¼ 0, at the
center of the gap. This midgap zero mode has many
important consequences in a variety of branches of physics
[28,30].

C. Real kink crystal condensate

A periodic array of these real kinks also provides a
solution to the gap equation. This solution describes a
polaron crystal in polymer physics [22,23], a periodic
pair potential in inhomogeneous superconductors
[24,25,27], and the crystalline phase of the Gross-Neveu
model [7]. Define (the peculiar-looking scaling will be-
come clear below)

�ðxÞ ¼ ffiffiffi
�

p 2m

1þ ffiffiffi
�

p sn

�
2m

1þ ffiffiffi
�

p x;�

�
(3.6)

where sn is the Jacobi elliptic function [37–40] with the
real elliptic parameter 0 � � � 1. The sn function has a

period 2Kð�Þ, where Kð�Þ � R�=2
0 ð1� �sin2tÞ�1=2dt.

When � ¼ 1, (3.6) reduces to the single kink condensate
in (3.3). The periodic condensate (3.6) satisfies the NLSE

�00 � 2�3 þ ð1þ �Þ
�

2m

1þ ffiffiffi
�

p
�
2
� ¼ 0: (3.7)

Thus, we deduce the exact diagonal resolvent to be of the
form (2.12) with
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aðEÞ ¼ 2E2 � 2m2 1þ �

ð1þ ffiffiffi
�

p Þ2 ; (3.8)

bðEÞ ¼ 2E; (3.9)

N ðEÞ ¼ 1

4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � E2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 �m2ð1�

ffiffiffi
�

p
1þ ffiffiffi

�
p Þ2

q : (3.10)

This periodic condensate is plotted in Fig. 1. Note that over

the period x 2 ½�Kð�Þð1þ ffiffiffi
�

p Þ
2m ;Kð�Þð1þ ffiffiffi

�
p Þ

2m �, the condensate is
shaped like a single kink. This reflects the expansion of the
Jacobi sn function in terms of an array of periodically
displaced tanh functions:

sn ðx;�Þ ¼ �

2
ffiffiffi
�

p
K0

X1
n¼�1

ð�1Þn tanh
�
�

2K0 ðx� 2nKÞ
�

(3.11)

where we use the standard notation K0ð�Þ � Kð1� �Þ. In
the infinite period limit (�! 1), the interval

½�Kð�Þð1þ ffiffiffi
�

p Þ
2m ;Kð�Þð1þ ffiffiffi

�
p Þ

2m � maps to the whole real line, and

K0 ! �=2, so the kink crystal (3.6) reduces precisely to
the single kink condensate in (3.3).

It is worth noting that this periodic kink crystal (3.6) can
be written in an equivalent, but different-looking, form, by
use of a Landen transformation [37–40] of the Jacobi
functions. That is, by rescaling the elliptic parameter �
together with the argument mx, we can write

�ðxÞ¼m~�
snðmx; ~�Þcnðmx; ~�Þ

dnðmx; ~�Þ ; ~�¼ 4
ffiffiffi
�

p
ð1þ ffiffiffi

�
p Þ2 : (3.12)

This is the form in which this periodic kink solution is
presented in the work of Thies et al. [7] on the crystalline
phase of the Gross-Neveu model, while the form (3.6) was
used in the condensed matter literature in [22–27]. The

spectrum of the associated BdG equation (1.8) has positive
and negative energy continua starting at E ¼ �m, together
with a single bound band in the middle of the gap, with

band edges at E ¼ �ð1�
ffiffiffi
�

p
1þ ffiffiffi

�
p Þm. This band lies symmetri-

cally in the center of the gap. The spectrum is plotted in
Fig. 2 as a function of the elliptic parameter �. Notice that
there is just one bound band in the energy gap, and when
�! 1 (the infinite period limit), the bound band at the
center of the gap contracts smoothly to the single bound
zero mode of the kink condensate.

IV. COMPLEX SOLUTIONS OF THE NLSE

A. Single plane-wave condensate

The simplest complex solution to the NLSE is a single
plane wave:

� ¼ meiqx: (4.1)

This satisfies the NLSE (2.13) with

aðEÞ ¼ 2

�
E� q

2

�
2 �m2; bðEÞ ¼ 2E� 2q;

N ðEÞ ¼ 1

4

1

ðE� q=2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � ðE� q=2Þ2p :

(4.2)

This plane-wave condensate behaves just like a constant
one, but with the energy shifted by q=2, as can be seen by
making a local chiral rotation:

� ! e�iqx�;  ! e�iqx=2�5 : (4.3)

It is clear from the BdG equation (1.8) that such a trans-
formation has the effect of shifting the entire energy spec-
trum by q=2. This illustrates an important point: for
complex solutions �ðxÞ of the NLSE, one can always
multiply by an arbitrary plane-wave phase factor eiqx,
and this simply corresponds to shifting the entire energy

-20 -10 10 20
x

-1

1
∆

FIG. 1 (color online). The real kink crystal condensate (3.6)
plotted for the elliptic parameter � ¼ 0:99 (solid, red curve), and
for � ¼ 0:1 (dashed, blue curve). For small � the condensate has
the LOFF form of a small amplitude sinusoidal condensate,
while for �! 1 the condensate resembles an array of kinks
and antikinks.

10.2 0.4 0.6 0.8
ν

-1.5

-1

-0.5

0.5

1

1.5

E

FIG. 2 (color online). The band spectrum of the real kink
crystal, showing the positive and negative energy continua and
the bound band, as a function of the elliptic parameter �. The
energy is given in units of the scalem. The infinite period limit is
�! 1, where the bound band shrinks to a single bound level at
E ¼ 0, the familiar zero mode of the kink condensate.
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spectrum. In general, a local chiral rotation through angle
�ðxÞ leads to a local chemical potential [41,42], or local
electrostatic potential, A0ðxÞ ¼ 1

2�
0ðxÞ, and therefore a

local electric field EðxÞ ¼ � 1
2�

00ðxÞ. For the single

plane-wave condensate in (4.1), �ðxÞ is linear in x, and
so there is no associated electric field.

B. Single complex kink condensate

Shei [4] found a solution to the gap equation for the
NJL2 model, in which both the scalar and pseudoscalar
condensates have a kinklike form:

�ðxÞ ¼ m½cos2ð�=2Þ þ sin2ð�=2Þ tanhðm sinð�=2ÞxÞ�;
�ðxÞ ¼ �m

2
sinð�Þ½1� tanhðm sinð�=2ÞxÞ� (4.4)

where � 2 ½0; 2�� is a parameter. These kinks are plotted
in Fig. 3. This complex kink (4.4) has also been extensively
studied in the resolvent approach by Feinberg and Zee [5].
In our analysis it is more natural to combine these into the
complex condensate �ðxÞ ¼ �ðxÞ � i�ðxÞ [as in (1.2)]:

�ðxÞ ¼ m
coshðm sinð�=2Þx� i�=2Þ

coshðm sinð�=2ÞxÞ ei�=2: (4.5)

This complex form is plotted in Fig. 4. This illustrates the
role of the parameter � 2 ½0; 2�� as the net rotation angle
of the kink as x goes from �1 to þ1:

�ðx ¼ þ1Þ ¼ e�i��ðx ¼ �1Þ: (4.6)

Observe that when � ¼ �, the complex kink (4.5) is in fact
real, and reduces to the familiar real kink solution in (3.3);
this real kink changes its sign (i.e., rotates through �) in
passing from x ¼ �1 to x ¼ þ1. Another useful repre-
sentation of this kink is in terms of the magnitude and

phase �ðxÞ ¼ MðxÞei�ðxÞ:
M2ðxÞ ¼ m2½1� sin2ð�=2Þsech2ðm sinð�=2ÞxÞ�; (4.7)

�ðxÞ ¼ arctan

�
sin�

cos�þ e2mx sinð�=2Þ

�
: (4.8)

These are plotted in Fig. 5 for three different values of the
winding parameter �. The complex kink condensate (4.5)
satisfies the NLSE:

�00 � 2j�j2�� 2im cosð�=2Þ�0 þ 2m2� ¼ 0: (4.9)

From this NLSE, we deduce the exact diagonal resolvent to
be of the form (2.12) with

aðEÞ ¼ 2E2 � 2m cosð�=2ÞE�m2;

bðEÞ ¼ 2E�m cosð�=2Þ;

N ðEÞ ¼ 1

4ðE�m cosð�=2ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � E2

p :

(4.10)

The spectrum of the associated BdG equation (1.8) has
positive and negative energy continua starting at E ¼ �m,

together with a single bound state located at E ¼
m cosð�=2Þ. When � ¼ �, where this complex kink re-
duces to the standard real kink, the bound state is once
again a zero mode. But for other values of � the single
bound state lies asymmetrically inside the gap, as plotted in
Fig. 6. As � goes from 0 to 2�, one state moves from the
positive to the negative energy continuum. As is clear from

FIG. 3 (color online). Plots of the real and imaginary parts
�ðxÞ and �ðxÞ of the complex kink condensate in (4.4) for three
different values of the winding parameter �. The scalar conden-
sate �ðxÞ (solid, red curves) winds from m at x ¼ �1 to
m cosð�Þ at x ¼ þ1, while the pseudoscalar kink �ðxÞ (dashed,
blue curves) winds from �m sinð�Þ to 0 as x ranges from x ¼
�1 to x ¼ þ1. The plots are for � ¼ �=10, � ¼ �=2, and � ¼
9�=10, and � and � are plotted in units of m.
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the previous subsection, we can always multiply the com-
plex kink solution (4.5) by a plane-wave factor eiqx, which
has the net effect of displacing the fermion spectrum by
q=2, with the corresponding simple modifications to the
resolvent functions aðEÞ, bðEÞ, and N ðEÞ in (4.10).

At this stage we have shown that Shei’s complex kink
condensate (4.5) solves the NLSE, and we have found the
corresponding exact diagonal resolvent (2.12) with aðEÞ,
bðEÞ, and N ðEÞ given in (4.10). This agrees with the
spectral properties derived from inverse scattering [4].
Shei further showed [4] that this complex condensate
solves the gap equation provided a further restriction is
applied to the winding parameter �. This condition states
that �=ð2�Þ is equal to the filling fraction n

N (in the large

flavor limit) of the single bound state in the gap, by n
flavors, with n

N fixed as N ! 1 [4,5]:

�

2�
¼ n

N
: (4.11)

In Sec. VI we show that in our approach this same condi-
tion arises from demanding that the coefficient of the �0ðxÞ
term in (2.9) vanishes after the energy trace, a necessary
requirement to satisfy the gap equation.

C. Complex kink crystal condensate

A new complex condensate was presented in [1]. This
new solution is a periodic array of Shei’s complex kink
(4.5). Physically, it is associated with a crystalline phase of
theNJL2 system [1], just as the real kink crystal condensate
(3.6) is associated with a crystalline phase of the GN2

system [7]. Up to a plane-wave factor (as in Sec. IVA),
this complex crystalline condensate is the general solution
to the NLSE (2.13), and all other solutions (both real and
complex) can be obtained from it by suitable choices of
parameters. This solution can be written [43] in terms of

Weierstrass elliptic functions (or, alternatively but equiv-
alently, in terms of Jacobi theta functions),

�ðxÞ ¼ �A �ðAxþ iK0 � i�=2Þ
�ðAxþ iK0Þ�ði�=2Þ exp½iAxð�iði�=2Þ

þ insði�=2ÞÞ þ i��3=2�: (4.12)

FIG. 5 (color online). Plots of the amplitudeM and phase � of
the complex kink condensate (4.5), for three different values of
the winding parameter �. The condensate amplitudeMðxÞ (solid,
red curves) approaches m at x ¼ �1, and equals m cosð�=2Þ at
the kink center x ¼ 0. The phase �ðxÞ (dashed, blue curves)
winds from � to 0 as x ranges from x ¼ �1 to x ¼ þ1. The
plots are for � ¼ �=10, � ¼ �=2, and � ¼ 9�=10.

FIG. 4 (color online). Plot of the complex kink condensate
(4.5), for � ¼ 3�=2, illustrating how the kink winds around zero
without the amplitude vanishing. The kink is the solid (red) line,
and the surface is shown simply to illustrate that both the
amplitude and the phase are changing.
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The parameter A sets the scale of the condensate and its
length scale:

A ¼ Aðm; �; �Þ � �2imscði�=4Þndði�=4Þ (4.13)

where sc ¼ sn=cn and nd ¼ 1=dn are Jacobi elliptic func-
tions [37,38]. The functions � and  are the Weierstrass
sigma and zeta functions [37–40], some relevant properties
of which are given in Appendix B.We have chosen real and
imaginary half-periods: !1 ¼ Kð�Þ and !3 ¼ iK0 �
iKð1� �Þ. Both periods are therefore controlled by the
single (real) elliptic parameter 0 � � � 1. Also, �3 �
ðiK0Þ is purely imaginary. The parameter � 2
½0; 4K0ð�Þ� is related to the angle through which the con-
densate rotates in one period L ¼ 2K=A:

�ðxþ LÞ ¼ e2i’�ðxÞ (4.14)

where the angle ’ is a function of � and �,

’ ¼ K

�
�iði�=2Þ þ insði�=2Þ � ��

2K

�
: (4.15)

Here we used the quasiperiodicity property (B2) of the �
function. Note that ’ and � � ðKÞ are real, and when
�! 1, we have ’! ��=2. This crystalline complex kink
is plotted in Fig. 7, showing the winding of the kink over a
period.
It is also useful to visualize the condensate (4.12) in

terms of its amplitude and phase: � ¼ Mei�. The modulus
squared is a bounded periodic function, with period 2K=A:

M2 � j�ðxÞj2 ¼ A2ðP ðAxþ iK0Þ � P ði�=2ÞÞ: (4.16)

Here we used the quasiperiodicity property (B2) of the �
function, together with the product identity (B12) relating
the � and P functions. The phase � can be expressed as

�ðxÞ ¼ Að�iði�=2Þ þ insði�=2ÞÞx

þ i

2
ln

�
�ðAxþ iK0 þ i�=2Þ
�ðAxþ iK0 � i�=2Þ

�
þ �3�

2
: (4.17)

The amplitude and phase are plotted in Fig. 8. Note that the
amplitude is periodic while the phase changes by 2’ over
each period.
The complex crystalline condensate in (4.12) satisfies

the NLSE:

�00 � 2j�j2�� ið2Ainsði�=2ÞÞ�0

� A2ð3P ði�=2Þ � ns2ði�=2ÞÞ� ¼ 0: (4.18)

Comparing this equation with the NLSE (2.13), we can
extract the functions aðEÞ, bðEÞ, and N ðEÞ appearing in
(2.12), thereby determining the exact diagonal resolvent.
To express these functions in a compact form, we define
some properties of the associated fermionic spectrum for
the BdG equation (1.8). This spectrum has positive and
negative energy continua starting at E ¼ �m, together
with a single bound band in the gap, as depicted in
Fig. 9. In contrast to the case for the real kink crystal in
Sec. III, here the bound band is not centered in the middle
of the gap, but is displaced from the center. The parameter
� characterizes this asymmetry in the spectrum. The band
edges are functions of both the winding angle � and the
elliptic parameter �:

E1 ¼ �m; E2 ¼ mð�1þ 2nc2ði�=4;�ÞÞ;
E3 ¼ mð�1þ 2nd2ði�=4;�ÞÞ; E4 ¼ þm: (4.19)

In the infinite period limit (�! 1), the band contracts to a
single bound state, with E2 ¼ E3 ¼ m cosð�=2Þ, and this is
precisely the bound state of the single complex kink, as
shown in Fig. 6. At a finite period, but when � ¼ 2K0ð�Þ,
we find E2 ¼ �E3 ¼ �ð1�

ffiffiffi
�

p
1þ ffiffiffi

�
p Þm, and the band is centered

symmetrically about 0; this is precisely the band spectrum
of the real kink array in Sec. III. Thus, we can roughly

FIG. 7 (color online). Plot of the complex kink crystal con-
densate (4.12), for � ¼ 0:8 and � ¼ 3Kð0:2Þ=2, illustrating how
the kink winds around zero each period, without the amplitude
vanishing. The kink is the solid (red) line, and the surface is
shown simply to illustrate that both the amplitude and the phase
are changing over each period.

π 2π
θ

m

m

E

FIG. 6 (color online). Plot of the fermion single-particle spec-
trum for the single complex kink (4.5), as a function of the
winding parameter �. Note that for � ¼ � (when the condensate
is real) the bound state is at 0, but for all other values of � the
bound state lies asymmetrically in the gap.
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think of the parameter � as setting the offset location of the
band inside the gap, while the parameter �, together with �,
plays the role of determining the period of the crystal, and
hence the width of the band. In terms of the band edges, the
resolvent functions aðEÞ, bðEÞ, and N ðEÞ that appear in
the resolvent (2.12) take the following simple form [44]:

aðEÞ ¼ 2E2 � ðE2 þ E3ÞE� ðE2 � E3Þ2
4

�m2;

bðEÞ ¼ 2E� ðE2 þ E3Þ;

N ðEÞ ¼ 1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm2 � E2ÞðE� E2ÞðE� E3Þ

p :

(4.20)

Here the normalization N ðEÞ is fixed by the property
detR ¼ � 1

4 .

1. Solution of NLSE by separation into amplitude and
phase

We now comment on two ways to derive this solution to
the NLSE (2.13). The first is to separate the NLSE into two
equations, one for the amplitude and one for the phase.

Writing �ðxÞ ¼ MðxÞei�ðxÞ, and considering ð���00 �
�00��Þ, we immediately find that the phase is related to

the amplitude by

�0ðxÞ ¼ � 1

2
ðb� 2EÞ þ C1

M2ðxÞ (4.21)

where C1 is a constant. Note that this is indeed true for all
the complex condensate solutions discussed above. For the
crystalline complex solution in (4.16) and (4.17), the rela-
tion (4.21) can be verified using the Weierstrass function
properties listed in Appendix B, in particular Eq. (B15).
Next, considering ð���00 þ�00��Þ, we find the follow-

ing nonlinear equation for M2:

ððM2Þ0Þ2 ¼ 4M6 þ 2ð4ða� EbÞ � 1
2ðb� 2EÞ2ÞM4

þ C2M
2 � 4C2

1 (4.22)

where C2 is another constant. From the form of this equa-
tion, comparing with the equation (B10) for the
Weierstrass P function [37–40], we recognize the solution

FIG. 9 (color online). Plots of the single-particle fermion
spectrum for the complex kink crystal condensate (4.12), for � ¼
0:1 (first plot) and � ¼ 0:9 (second plot), as a function of the
winding parameter �. Note that for � ¼ 2K0 (when the conden-
sate is real) the band is centered symmetrically about E ¼ 0, but
for all other values of � the band lies asymmetrically in the gap.
In the infinite period limit, �! 1, the bound band shrinks to a
single bound state, and its � dependence reduces to that depicted
in Fig. 6 for the single complex kink condensate.

FIG. 8 (color online). Plots of the amplitude MðxÞ and phase
�ðxÞ of the complex kink crystal condensate (4.12), for � ¼ 1:6
and � ¼ 0:95.
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to be of the form

M2 ¼ A2½P ðAxþ iK0Þ � P ðC3Þ�: (4.23)

The shift by iK0 ensures thatM2ðxÞ is bounded for x on the
real axis. This explains the result in (4.16), identifying
C3 ¼ i�=2. The constants C1 and C2 are related to C3 as

C1 ¼ � i

2
A3P 0ði�=2Þ; C2 ¼ 2A4P 00ði�=2Þ: (4.24)

Given this solution for the amplitude, the phase follows
from (4.21), using the integration formula [37]

1

A

Z P 0ðC3Þ
P ðAxþ iKÞ � P ðC3Þdx

¼ ln

�
�ðAxþ iK� C3Þ
�ðAxþ iKþ C3Þ

�
þ 2ðAxþ iKÞðC3Þ: (4.25)

Notice that the phase can always be shifted by qx, which
amounts to multiplying the solution by a plane-wave fac-
tor, as discussed in Sec. IVA. In our solution (4.12), the
plane-wave factor has been chosen so that the associated
fermion spectrum has the form shown in Fig. 9. An addi-
tional plane-wave factor in �ðxÞ displaces this entire spec-
trum by a constant.

2. Solution of NLSE as a periodic array of complex kinks

Another way to derive the general periodic complex
solution to the NLSE is to make an educated guess for a
periodic array of Shei’s complex kink solution (4.5), using
known properties of the Weierstrass functions. Shei’s com-
plex kink condensate (4.5) can be written as

�ðxÞ ¼ m
sinhðm sinð�=2Þxþ i�=2� i�=2Þ

sinhðm sinð�=2Þxþ i�=2Þ ei�=2:

(4.26)

This can be made quasiperiodic along the real x axis by
generalizing the hyperbolic sine function to its doubly
periodic form, which is the Weierstrass sigma function.
Thus, we are led to try the form

�ðxÞ ¼ Aei��3=2
�ðAxþ iK0 � i�=2Þ
�ðAxþ iK0Þ�ði�=2Þ e

i�x (4.27)

where we have included a possible plane-wave factor ei�x,

to be determined, and the normalization factors ei��3=2

�ði�=2Þ have
been chosen for convenience.

Given this form of �ðxÞ, since ðxÞ � d=dx ln�ðxÞ, we
find

�0 ¼ AfðAxþ iK0 � i�=2Þ � ðAxþ iK0Þ þ i�=Ag�;
(4.28)

and since P � � 0, we find

�00 ¼ A2f½�P ðAxþ iK0 � i�=2Þ þ P ðAxþ iK0Þ�
þ ½ðAxþ iK0 � i�=2Þ
� ðAxþ iK0Þ þ i�=A�2g�: (4.29)

Furthermore, using the quasiperiodicity properties of the
Weierstrass functions (B2) and the Weierstrass function
product formula (B12), it follows that

j�ðxÞj2 ¼ A2 �ðAxþ iK0 � i�=2Þ�ðAxþ iK0 þ i�=2Þ
�2ðAxþ iK0Þ�ði�=2Þ�ð�i�=2Þ

¼ A2½P ðAxþ iK0Þ � P ði�=2Þ�: (4.30)

Therefore,

�00 � 2j�j2� ¼ A2f�½P ðAxþ iK0 � i�=2Þ
þ P ðAxþ iK0Þ� þ ½ðAxþ iK0 � i�=2Þ
� ðAxþ iK0Þ þ i�=A�2 þ 2P ði�=2Þg�

(4.31)

where we note that the relative sign between the first P
functions has been flipped by the subtraction of 2j�j2�.
Now we use the remarkable identity (B14) that relates

the P function to squares of the  function, to find that

�00 � 2�2� ¼ A2½3P ði�=2Þ þ ð�=Aþ iði�=2ÞÞ2��
þ 2iA½�=Aþ iði�=2Þ��0: (4.32)

Thus, �ðxÞ of the form in (4.27) does indeed satisfy the
NLSE (2.13), and one simply needs to match the constants
algebraically in order to express aðEÞ, bðEÞ, and N ðEÞ in
terms of �. This determines � in (4.27) up to an additive
constant, which can be fixed by matching the fermion
spectrum to the form in (4.19).

D. Reduction of the general solution to special cases

To conclude this section describing our new complex
crystalline solution (4.12), we note that it incorporates all
previously known solutions as special cases.

1. Reduction to the real kink crystal condensate

When � ¼ 2K0, the scale factor A! 2m=ð1þ ffiffiffi
�

p Þ, and
the condensate reduces to the real kink crystal in (3.6):

� ! 2m
ffiffiffi
�

p
1þ ffiffiffi

�
p sn

�
2mx

1þ ffiffiffi
�

p ;�

�
¼ m~�

snðmx; ~�Þcnðmx; ~�Þ
dnðmx; ~�Þ ;

~� ¼ 4
ffiffiffi
�

p
ð1þ ffiffiffi

�
p Þ2 : (4.33)

In this limit, the amplitude vanishes at x ¼ 0, and one sees
that the kink ‘‘winds’’ through the angle 2’ ¼ �� by
passing through zero. For other values of �, the complex
kink crystal winds around zero, but without the amplitude
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actually vanishing. For � ¼ 2K0, the bound band becomes
symmetric about E ¼ 0, because the band edges (4.19)
reduce to

E2 ! �m
�
1� ffiffiffi

�
p

1þ ffiffiffi
�

p
�
; E3 ! m

�
1� ffiffiffi

�
p

1þ ffiffiffi
�

p
�
: (4.34)

Accordingly, the resolvent functions aðEÞ, bðEÞ, and
N ðEÞ in (4.20) reduce smoothly when � ¼ 2K0 to the
corresponding expressions for the real kink crystal in
(3.10).

2. Reduction to the single complex kink condensate

For general �, when �! 1, the complex crystalline
condensate in (4.12) reduces to Shei’s complex kink solu-
tion (4.5). To see this, first observe that in this limit,
Aðm; �; �Þ ! m sinð�=2Þ, and K diverges, while K0 !
�=2. Thus the period 2K=A diverges. Also, the band edges
contract as E2 ! E3 ¼ m cosð�=2Þ, so the band shrinks to
a single bound state, whose � dependence matches that of
the bound state for Shei’s complex kink condensate.
Furthermore, as �! 1, the Weierstrass functions simplify:

�ðxÞ ! sinhðxÞe�x2=6; ðxÞ ! � x

3
þ cothðxÞ;

P ðxÞ ! 1

3
þ 1

sinh2ðxÞ : (4.35)

These relations show that on the interval ½�K=A;K=A�, in
the limit �! 1, the complex crystalline condensate (4.12)
reduces to Shei’s single complex kink condensate (4.5) up
to an unimportant constant phase factor.

3. Reduction to the single plane-wave condensate

In the opposite limit, as �! 0, the period remains finite
because K ! �=2 and A! 2 tanhð�=4Þ. As �! 0, the

Weierstrass functions simplify:

�ðxÞ ! sinðxÞex2=6; ðxÞ ! x

3
þ cotðxÞ;

P ðxÞ ! � 1

3
þ 1

sin2ðxÞ :
(4.36)

Thus, the complex crystalline condensate (4.12) reduces to
a single plane-wave (chiral spiral) form:

� ! msech2ð�=4Þe�2imtanh2ð�=4Þx: (4.37)

V. SOLUTIONS TO THE BOGOLIUBOV/
DE GENNES EQUATION

A. Spinor solutions

Remarkably, not only is it possible to solve the NLSE
(2.13) exactly, we can also solve exactly the associated
BdG equation [45]. In the previous sections we described
the spectrum; here we present the explicit spinor solutions
and express the spectral information in a more compact and
useful form. We write the BdG equation (1.8) as

�i ddx �ðxÞ
��ðxÞ i ddx

 !
 ¼ E : (5.1)

The solutions for the real condensates in Sec. III are well
known [3,6]. For the complex plane wave, �ðxÞ ¼ Aeiqx,
the solutions are simply chiral rotations of free spinors, and
are discussed, for example, in [46]. For Shei’s complex
kink condensate (4.5), the spinor solutions are given in
[4,47]. For the complex kink crystal (4.12), the two inde-
pendent spinor solutions can be written as

 � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A

2jdk=d�j

s
e�i�3�

�ðAxþiK0þi��i�=4Þ
�ðAxþiK0Þ�ði��i�=4Þ e

ðiAx=2Þ½�iði�=2Þþinsði�=2Þ�þi��3=4þi�=4
�ðAxþiK0þi�þi�=4Þ
�ðAxþiK0Þ�ði�þi�=4Þ e

�ðiAx=2Þ½�iði�=2Þþinsði�=2Þ��i��3=4�i�=4

0
@

1
AeðiAx=2Þ½iði�þi�=4Þþiði��i�=4Þ�;

 þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A

2jdk=d�j

s
ei�3�

�ðAxþiK0�i��i�=4Þ
�ðAxþiK0Þ�ði�þi�=4Þ e

ðiAx=2Þ½�iði�=2Þþinsði�=2Þ�þi��3=4þi�=4
�ðAxþiK0�i�þi�=4Þ
�ðAxþiK0Þ�ði��i�=4Þ e

�ðiAx=2Þ½�iði�=2Þþinsði�=2Þ��i��3=4�i�=4

0
@

1
Ae�ðiAx=2Þ½iði�þi�=4Þþiði��i�=4Þ�:

(5.2)

Here, � is a spectral parameter that characterizes the
energy and momentum of these solutions, and k is the
momentum, defined below in (5.7). Notice that  � differ
from one another by the sign of �.

To relate the energy eigenvalue E to the spectral pa-
rameter �, we substitute these forms into the BdG equa-
tion (5.1), and make use of the Weierstrass function
identity (B13). This identity immediately shows that these
are indeed solutions, and determines the energy to be

Eð�Þ ¼ A

2
½iði�� i�=4Þ � iði�þ i�=4Þ

þ iði�=2Þ þ insði�=2Þ�

¼ �mþ 2m

�
P ði�=4Þ � P ðiK0Þ
P ði�=4Þ � P ði�Þ

�
(5.3)

where A is given by (4.13). The spectral parameter �
is defined on the vertical edges, 0 � i� � iK0ð�Þ,
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Kð�Þ � i� � Kð�Þ þ iK0ð�Þ, of the fundamental rect-
angle shown in Fig. 10. Only on these edges of the funda-
mental rectangle are the spinor wave functions in (5.2)
bounded, and is the energy Eð�Þ real. The vertices of the
rectangle correspond to the band edges [compare with
Eq. (4.19)]:

E1 ¼ Eði� ¼ 0Þ ¼ �m;
E2 ¼ Eði� ¼ KÞ ¼ mð�1þ 2nc2ði�=4ÞÞ;
E3 ¼ Eði� ¼ Kþ iK0Þ ¼ mð�1þ 2nd2ði�=4ÞÞ;
E4 ¼ Eði� ¼ iK0Þ ¼ þm:

(5.4)

The right-hand boundary of the fundamental rectangle
corresponds to the bound band, while the left-hand bound-
ary corresponds to the positive and negative energy con-
tinua. The point � ¼ �=4 is associated with the point at
infinity; the bottom of the Dirac sea is approached as �!
�=4 from below, and the top of the positive energy con-
tinuum as�! �=4 from above. This is depicted in Fig. 11.

To identify the momentum associated with these solu-
tions, we recall that the quasiperiodic winding (4.14) of the
condensate in (4.12) implies that the BdG Hamiltonian
(1.7) is invariant under a period shift, up to a global chiral
rotation through the winding angle ’:

Hðxþ LÞ ¼ ei�5’HðxÞe�i�5’: (5.5)

Using the quasiperiodicity properties of the Weierstrass
functions (B2), we see that under a period shift, the spinors
in (5.2) acquire a chiral rotation and a Bloch phase:

 �ðxþ LÞ ¼ e�ikLei’�5 �ðxÞ (5.6)

where ’ is the winding angle defined in (4.15). The Bloch
momentum k is expressed in terms of the spectral parame-
ter � as

kð�Þ ¼ �A

2
½iði�þ i�=4Þ þ iði�� i�=4Þ þ 2��=K�:

(5.7)

This is the relativistic version of Bloch’s theorem. The
momentum is real for � taking values on the vertical edges
of the fundamental rectangle, and is plotted in Fig. 12.
Since kð�Þ is odd in �, we see that  � in (5.2) are positive
and negative momentum solutions.

B. Density of states

In this section we present an efficient characterization of
the density of states, and show how this relates to the
resolvent in (2.12). In the previous section, both the energy
E and the momentum k were expressed in terms of the
spectral parameter �. Now consider the derivatives of the
energy and momentum with respect to the spectral parame-

FIG. 11 (color online). Energy Eð�Þ from (5.3) as a function of
the spectral parameter �, for two different values of �. The solid
(red) curves show the continuum energies, while the dashed
(blue) curves show the energy in the bound band. The horizontal
dashed lines denote the band edge energies E1, E2, E3, and E4

from (5.4), and the vertical (red) line gives the asymptote to E ¼
�1 at � ¼ �=4, as discussed in the text. These curves are for
the elliptic parameter � ¼ 0:05. The first plot is for � ¼ 2K0 ¼
5:82, so that the band is symmetric about the origin. The second
plot is for � ¼ K0 ¼ 2:91, so the band is asymmetrically offset
from the origin.

FIG. 10 (color online). The fundamental rectangle for the
spectral parameter i� appearing in the spinor solutions (5.2) to
the BdG equation. The bound band is characterized by Kð�Þ �
i� � Kð�Þ þ iK0ð�Þ, while the positive and negative energy
continua are characterized by 0 � i� � iK0ð�Þ. The point � ¼
�=4 represents E ¼ �1, depending on the side of approach.
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ter �. From (5.3) and (5.7) we see that

dE

d�
¼ �A

2
½P ði�þ i�=4Þ � P ði�� i�=4Þ�;

dk

d�
¼ �A

2
½P ði�þ i�=4Þ þ P ði�� i�=4Þ þ 2�=K�:

(5.8)

The significance of these expressions becomes clearer once
we write the resolvent functions aðEÞ, bðEÞ, and N ðEÞ in
(4.20) as functions of � (instead of E):

að�Þ ¼ A2

2
½2P ði�=2Þ � P ði�þ i�=4Þ � P ði�� i�=4Þ�;

(5.9)

bð�Þ ¼ A½iði�� i�=4Þ � iði�þ i�=4Þ
þ iði�=2Þ � insði�=2Þ�; (5.10)

N ð�Þ ¼ �i
A2½P ði�þ i�=4Þ � P ði�� i�=4Þ� : (5.11)

Here the upper sign in N is for the continuum states, and

the lower sign is for the band. Thus, we recognize dE=d�
as

dE

d�
¼ � 2

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 �m2ÞðE� E2ÞðE� E3Þ

q
: (5.12)

And dk=d� can be written as

dk

d�
¼ �A½P ði�=2Þ � að�Þ=A2 þ �=K�; (5.13)

which is negative in the continuum and positive in the band
(see Fig. 12). Consequently, the density of states can be
expressed as

dk

dE
¼ dk

d�

�
dE

d�
¼ � ½aðEÞ � A2P ði�=2Þ � A2�=K�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE2 �m2ÞðE� E2ÞðE� E3Þ

p :

(5.14)

When � ¼ 2K0, which is the GN2 limit (i.e., with a real
condensate), this density of states reduces to

dk

dE
¼ � E2 �m2 Eð~�Þ

Kð~�ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE2 �m2ÞðE2 �m2ð1� ~�ÞÞp ;

~� � 4
ffiffiffi
�

p
ð1þ ffiffiffi

�
p Þ2

(5.15)

where E and K are the complete elliptic integrals [37,38].
This density of states (5.15) is precisely that found for the
single-band finite-gap Schrödinger system of the GN2

model [7]. The result in (5.14) generalizes this density of
states to the general complex crystalline condensate (4.12).
The density of states (5.14) has been derived from the

energy and momentum of the spinor solutions in (5.2). For
consistency, we compare this with the trace of the resolvent
(2.12) over one period:

1

L

Z
L
trDRðx;EÞdx¼ A

2K

Z þK=A

�K=A
2N ðEÞðaðEÞþj�ðxÞj2Þdx

¼AN ðEÞ
K

Z þK=A

�K=A
dx½aðEÞ

þA2ðP ðAxþ iK0Þ�P ði�=2ÞÞ�

¼½aðEÞ�A2P ði�=2Þ�A2�=K�
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm2�E2ÞðE�E2ÞðE�E3Þ

p ; (5.16)

where we have used the integral

Z þK=A

�K=A
P ðAxþ iK0Þdx ¼ � 2�

A
: (5.17)

This illustrates the consistency of our resolvent ansatz
(2.12) with the spectral properties of the associated BdG
equation.

FIG. 12 (color online). Momentum as a function of the spectral
parameter �, in the positive and negative continua (first plot) and
in the bound band (second plot). Note that dk=d� is negative in
the continuum and positive in the bound band. These plots are
for � ¼ 0:05 and � ¼ K0, as in the second panel in Fig. 11. The
vertical (red) line in the first plot gives the asymptote to k ¼ �1
at � ¼ �=4, as discussed in the text.
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VI. HARTREE-FOCK APPROACH AND THE GAP
EQUATION

So far we have shown that the gap equation (1.4) can be
reduced to the NLSE (2.13), and we have found the general
solution to the NLSE. We now show the self-consistency of
this approach by verifying that the gap equation in the form
(2.9) is indeed satisfied. Inserting our ansatz form (2.12) for
the resolvent, the gap equation in this form reads

�ðxÞ ¼ �2iNg2trE½N ðEÞðbðEÞ�ðxÞ � i�0ðxÞÞ�: (6.1)

To verify (6.1), we require information about the single-
particle fermionic spectrum of the BdG Hamiltonian for
the condensate �ðxÞ that we have found. This provides a
complementary approach to finding a self-consistent con-
densate, by solving the associated relativistic Hartree-Fock
problem.

A. Solving the gap equation from the resolvent

We first need to show that the coefficient of �0ðxÞ on the
right-hand side of (6.1) vanishes once the energy trace is
taken:

tr E½N ðEÞ� ¼ 0: (6.2)

This computation is greatly simplified by converting it into
an integral over the spectral parameter �. Recalling (5.12)
and the normalization factor in (4.20), we have

N ðEÞ ¼ � i

2A

d�

dE
: (6.3)

We assume that the negative energy continuum is fully
occupied, and that the band inside the gap is partially
occupied, by a fraction �. Then we can express (6.2) as

0 ¼ i

2�A

�Z �=4

0
d��

Z �iKþ�K0

�iK
d�

�

¼ i

2�A
ð�=4� �K0Þ: (6.4)

Thus, � must satisfy the condition

�

4K0 ¼ � ¼ filling fraction: (6.5)

This filling fraction condition is depicted in Fig. 13.
To appreciate this condition, we consider some special

limiting cases. In the real (GN2) limit, where � ¼ 2K0, this
corresponds to filling the band halfway. Since the band is
symmetrically placed about zero energy, this corresponds
precisely to filling all the negative energy states, as in the
conventional GN2 model analysis [2,3]. For the single
kink, which is obtained in the infinite period limit, the
bound state is half occupied [28,30].
For general �, in the infinite period limit, where K0 !

�=2, we recover Shei’s condition (4.11) that �=2� is the
fractional filling of the bound state in the gap. Note that in
this case, the fractional filling of this state is conventionally
interpreted [4,5] in terms of the filling of the level by a
fixed fraction n

N of the fermion flavors, with this fraction

kept fixed in the infinite N limit. At a finite period, it is
thermodynamically more natural to consider a fraction of
the band being occupied by all flavors, as above. As the
band contracts to a single bound state in the infinite period
limit, we smoothly tend to the situation of having the level
partially filled, while maintaining consistency with the gap
equation for any period.
The other condition required for the gap equation (6.1)

to be satisfied is that

� 2iNg2trE½N ðEÞbðEÞ� ¼ 1: (6.6)

This is the standard vacuum gap equation for the renor-
malization of the coupling [2–5].

B. Solving the gap equation from the spinor solutions

Given the spinor solutions of the BdG equation, we can
reconstruct the expectation values h � ðxÞ ðxÞi and
�h � ðxÞi�5 ðxÞi, to verify that they correspond to the real
and imaginary parts of the condensate�ðxÞ. From (5.2), we
find

� kðxÞ kðxÞ� i � kðxÞi�5 kðxÞ¼ y
k ðxÞð�0þ�1Þ kðxÞ

¼ iA

jdk=d�je
�2i�3�eiAx½�iði�=2Þþinsði�=2Þ�

�ðAxþ iK0 þ i�� i�=4Þ�ðAx� iK0 � i�� i�=4Þ
�ðAxþ iK0Þ�ð�i�� i�=4Þ�ði�� i�=4Þ�ðAx� iK0Þ

¼ i

jdk=d�j½ðAxþ iK
0Þþði�� i�=4Þ�ðAxþ iK0 � i�=2Þ�ði�þ i�=4Þ��ðxÞ

¼ 1

jdk=d�j
1

A
½bðEÞ�ðxÞ� i�0ðxÞ� (6.7)

where the subscript k on  emphasizes that these are spinor
solutions of a given momentum k. In deriving (6.7) we have
used the product identity (B13) for the Weierstrass sigma
function.

Thus, for a given momentum k, � kðxÞ kðxÞ �
i � kðxÞi�5 kðxÞ has the same x dependence as the upper
off-diagonal entry of the resolvent, which appears in the
gap equation (6.1). To compute the expectation value we
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trace over the N flavors and integrate over momentum:

h � ðxÞ ðxÞi � ih � ðxÞi�5 ðxÞi ¼ N
Z dk

2�
½ � kðxÞ kðxÞ

� i � kðxÞi�5 kðxÞ�

¼ N

2�A

Z
d�sgn

�
dk

d�

�
�½bð�Þ�ðxÞ � i�0ðxÞ�:

(6.8)

Thus we have precisely the same integrals as were eval-
uated in the previous section to show that the gap equation
is satisfied. The vanishing of the coefficient of �0ðxÞ leads
to the same relation (6.5) between the filling fraction and �,
while the coefficient of �ðxÞ is again the vacuum gap
equation (6.6) expressing the renormalization of the cou-
pling constant g.

It is interesting to note that while the condensate �ðxÞ is
spatially inhomogeneous, the expectation value of the
charge density is spatially uniform. From the explicit
spinor solutions in (5.2), we find

 y
k ðxÞ kðxÞ ¼

1

jdk=d�j
1

A
ðj�ðxÞj2 þ að�ÞÞ: (6.9)

For a given single-particle state of momentum k, the charge

density  y
k ðxÞ kðxÞ is spatially inhomogeneous, but this

inhomogeneity is washed out by integrating over k, so that
the expectation value is uniform:

d

dx
h yðxÞ ðxÞi ¼ 0: (6.10)

Indeed, for a given k, the charge density  y
k ðxÞ kðxÞ has

spatial inhomogeneity determined by j�ðxÞj2, the magni-
tude squared of the condensate. But the coefficient of this
x-dependent term in (6.9) is precisely the same as the
coefficient of the �0ðxÞ term in (6.7). We just saw above
that this term vanishes (when the energy trace is taken), in
order to satisfy the gap equation. Thus, the very same
condition (6.5) that ensures that the gap equation is satis-
fied also shows that h yðxÞ ðxÞi is uniform.

There is another, more physical way to understand this
fact [48]. It expresses the conservation of axial charge in

the NJL2 model. Recall that the NJL2 system has two
conserved currents: the first is the charge current j� ¼
� �� , and the second is the axial current j�5 ¼
� ���5 . In 1þ 1 dimensions these are related by j

�
5 ¼

	��j�. For static but spatially inhomogeneous condensates,
the charge current conservation is automatically satisfied.
Axial current conservation is more interesting. For a static
condensate,

@

@x�
hj�5 ðxÞi ¼

d

dx
h yðxÞ ðxÞi (6.11)

so axial charge conservation requires a uniform charge
expectation value, as was found above in (6.10) from the
single-particle spectral properties. Another way to see this
is to observe that we can express the expectation value of
the axial current in terms of the resolvent

hj�5 i ¼ trE;Dð�0���5Rðx;EÞÞ: (6.12)

Taking the spatial derivative and using the Eilenberger
equation (2.6), we find

d

dx
hj15i ¼ trE;Dð@xRðx;EÞÞ

¼ 2�ðxÞh � ðxÞi�5 ðxÞi � 2�ðxÞh � ðxÞ ðxÞi:
(6.13)

Thus, once again, the gap equation ensures that axial
current conservation is satisfied. Interestingly, it is encoded
into the Eilenberger equation (2.6).
On the other hand, in the GN2 model, which has just a

discrete chiral symmetry, there is no axial current conser-
vation and �ðxÞ ¼ 0. Then the Eilenberger equation (2.6)
again expresses the correct relation

@�hj�5 i ¼ 2�ðxÞh � ðxÞi�5 ðxÞi; (6.14)

and h � ðxÞ ðxÞi, �ðxÞ, and h � ðxÞi�5 ðxÞi are all
inhomogeneous.

VII. ALL-ORDERS GINZBURG-LANDAU
EXPANSION

In this section we present another perspective on our
solution, in order to illustrate what aspects might possibly

FIG. 13 (color online). The occupation of single-particle fermionic states for two different values of �. In general, to satisfy the gap
equation the condition (6.5) relates the condensate parameter � to the filling fraction of the bound band. In the special case � ¼ 2K0,
this filling fraction is 1=2, and this corresponds to the real condensate of the discrete-chiral GN2 model, for which the spectrum is
symmetric about 0. Thus, in this case, all the negative energy states are filled.
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be extended to higher dimensional inhomogeneities. While
a direct application of the resolvent approach, or the in-
verse scattering approach, to higher dimensions is prob-
lematic, one approach that can be straightforwardly
generalized to higher dimensions consists of the
Ginzburg-Landau expansion of the effective action. In
this approach, one expands the free energy corresponding
to the effective action (1.3) in powers of the static conden-
sate � (i.e., the order parameter) and its spatial derivatives.
Using the relation (2.2) between the spectral function �ðEÞ
and the trace of the resolvent, we write the free energy
density (per flavor) as

EfreeðxÞ ¼ 1

�


Z 1

�1
dEIm½trDRðx;Eþ i	Þ�

� lnð1þ e�
ðE��ÞÞ: (7.1)

Thus, knowing the resolvent means we know the free
energy. Usually, it is impossible to evaluate this local
density of states exactly. However, an asymptotic expan-
sion of Rðx;EÞ can always be obtained from a Laplace
transform of the heat kernel expansion, leading to

Rðx;EÞ ¼ 1

2

X1
n¼0

rnðxÞ
En

: (7.2)

We stress that such an expansion can be derived in any
dimension, not just in 1þ 1 dimensions. This is because
the heat kernel expansion is known in any dimension.
However, in 1þ 1 dimensions we now have the luxury
of having found an exact solution. In this section we
compare this exact solution with the Ginzburg-Landau
expansion, and show in explicit detail how the gap equation
for the inhomogeneous condensate is solved order by order
in this Ginzburg-Landau expansion. The way this works is
surprisingly simple and elegant, as shown below.

In 1þ 1 dimensions, including the Hartree-Fock
double-counting correction, and renormalizing, leads to
the standard Ginzburg-Landau expansion of the effective
Lagrangian, the low order terms of which are

LGL ¼ �0 þ �2j�j2 þ �3Im½�ð�0Þ��
þ �4½j�j4 þ j�0j2� þ �5Im½ð�00 � 3j�j2�Þð�0Þ��
þ �6½2j�j6 þ 8j�j2j�0j2 þ 2Reðð�0Þ2ð��Þ2Þ
þ j�00j2� þ . . . : (7.3)

The low order terms are relatively simple, but high order
terms rapidly become cumbersome. The coefficients
�nðT;�Þ are known functions of temperature and chemical
potential. For example, in 1þ 1 dimensions [47,49]

�0 ¼ ��2T

6
� �2

2�
;

�2 ¼ 1

2�

�
lnð4�TÞ þ Re 

�
1

2
þ i


�

2�

��
;

�3 ¼ � 1

23�2T
Im ð1Þ

�
1

2
þ i


�

2�

�
;

�4 ¼ � 1

26�3T2
Re ð2Þ

�
1

2
þ i


�

2�

�
;

�5 ¼ 1

28�43T3
Im ð3Þ

�
1

2
þ i


�

2�

�
;

�6 ¼ 1

212�53T4
Re ð4Þ

�
1

2
þ i


�

2�

�
:

(7.4)

Here  ðkÞ denotes the kth derivative of the Euler digamma
function  ðzÞ ¼ d ln�ðzÞ=dz.
In higher dimensions, an analogous Ginzburg-Landau

expansion can be derived. The form of the �nðT;�Þ is
different, but known, and the form of the spatial terms rnðxÞ
is different, but computable. In this section we consider
how the NJL2 model gap equation for inhomogeneous
condensates looks in terms of the Ginzburg-Landau expan-
sion. We first present a simple recursive way to generate
the expansion to all orders, and then we show how the gap
equation is solved order by order. A closely related expan-
sion, the derivative (or gradient) expansion, which is an
expansion just in powers of derivatives, but including all
orders in powers of the condensate, is considered in [34].

A. Ginzburg-Landau expansion in 1þ 1 dimensions

The Ginzburg-Landau expansion of the effective action
follows, by (2.2) and (2.8), from an asymptotic expansion
(7.2) of the resolvent Rðx;EÞ. The Eilenberger equa-
tion (2.6) generates such an expansion recursively. It is
more convenient to define (as in [34])

gðx;EÞ � Rðx;EÞ�3: (7.5)

In terms of g, the Eilenberger equation (2.6) reads

g0 ¼ iE½�3; g� � i½J; g�; J � 0 ��
�� 0

� �
: (7.6)

We now define an asymptotic expansion for g,

gðx;EÞ ¼ � i

2

X1
n¼0

gnðxÞ
En

;

gnðxÞ � cnðxÞ �dnðxÞ
d�nðxÞ �cnðxÞ

� �
:

(7.7)

The factor�i comes from the large E expansion ofN ðEÞ,
as is already clear from the constant� case in (2.11), which
also tells us that g0 ¼ �3. The Eilenberger equation im-
plies the simple recursion formula for the gnðxÞ:

g0nðxÞ ¼ i½�3; gnþ1ðxÞ� � i½JðxÞ; gnðxÞ�: (7.8)

GÖKÇE BAŞAR AND GERALD V. DUNNE PHYSICAL REVIEW D 78, 065022 (2008)

065022-16



The determinant condition detg ¼ 1
4 fixes the cn in terms of the dn:

c0 ¼ 1; c1 ¼ 0; c2 ¼ 1
2jd1j2; c3 ¼ 1

2ðd2d�1 þ d1d
�
2Þ; c4 ¼ �1

8jd1j4 þ 1
2jd2j2 þ 1

2ðd3d�1 þ d1d
�
3Þ;

c5 ¼ �1
4jd1j2ðd2d�1 þ d1d

�
2Þ þ 1

2ðd2d�3 þ d3d
�
2Þ þ 1

2ðd4d�1 þ d1d
�
4Þ; . . .

(7.9)

So, given g0 ¼ �3, we learn from (7.9) that c1 ¼ 0. Then the Eilenberger recursion equation (7.8) determines d1 ¼ �, so
that g1ðxÞ ¼ JðxÞ. Next, knowing d1, we learn from (7.9) that c2 ¼ 1

2 j�j2, and from the Eilenberger recursion equa-

tion (7.8), we find that d2 ¼ � i
2 �

0. Iterating this procedure we find

g1ðxÞ ¼ JðxÞ; g2ðxÞ ¼ 1

2

j�j2 i�0
i�0� �j�j2

� �
; g3ðxÞ ¼ � 1

4

ið�0�� ��0��Þ �ð�00 � 2j�j2�Þ
ð�00� � 2j�j2��Þ �ið�0�� � �0��Þ

� �
;

g4ðxÞ ¼ 1

8

3j�j4 þ 3j�0j2 � ðj�j2Þ00 �ið�000 � 6j�j2�0Þ
�ið��000 � 6j�j2��0Þ �3j�j4 � 3j�0j2 þ ðj�j2Þ00

� �
; . . .

(7.10)

The spectral function is expressed in terms of the trace of
the resolvent:

trRðx;EÞ ¼ �iX1
n¼0

cnðxÞ
En

: (7.11)

Then the Ginzburg-Landau expansion (7.3) is obtained by
inserting (7.11) into (7.1) and performing the energy inte-
grals. Renormalization affects the first two terms, and the
others follow from the integrals (n > 2) [50]:

1


�

Z 1

�1
dEIm

� �i
ðEþ i	Þn

�
logð1þ e�
ðE��ÞÞ

¼
8><
>:

ð�1Þðn�2Þ=2
n�2

ð2�Þn�1ðn�1Þ! Re ðn�2Þð12 þ i 
�2�Þ n even;

ð�1Þðn�1Þ=2
n�2

ð2�Þn�1ðn�1Þ! Im 
ðn�2Þð12 þ i 
�2�Þ n odd:

(7.12)

B. Gap equation to all orders in Ginzburg-Landau
expansion

We now show how the gap equation (1.4) is solved order
by order, to all orders in the Ginzburg-Landau expansion
(7.12). There are two ways to see this. First, even though
the cnðxÞ at high order n become extremely complicated
combinations of powers and derivatives of � and��, when
we evaluate cnðxÞ on a solution of the NLSE (2.13), they
dramatically simplify and, for each n, reduce to something
linear in j�ðxÞj2:

½cnðxÞ�NLSE ¼ 
nj�ðxÞj2 þ �n; (7.13)

for some constants 
n and �n. For example, for c2ðxÞ ¼
j�ðxÞj2 it is obvious, and for c3ðxÞ it follows immediately
from (4.21):

c3ðxÞ ¼ � i

4
ð�0�� � �0��Þ

¼ � 1

4
ðb� 2EÞj�j2 � constant: (7.14)

For c4, we note that the NLSE (2.13) implies that ðj�j2Þ00 ¼
4j�j4 þ 2j�0j2 þ 4ða� b2=4� E2Þj�j2 þ constant, so
that

c4ðxÞ � 3
8ðj�j4 þ j�0j2 � 1

3ðj�j2Þ00Þ
¼ 1

8ð�j�j4 þ j�0j2 � 4ða� b2=4� E2Þ
� j�j2 þ constantÞ: (7.15)

This expression is linear in j�j2 because we recall from
(2.14) and (4.21) that ð�j�j4 þ j�0j2Þ is linear in j�j2; this
ensures that detRðx;EÞ ¼ � 1

4 is satisfied, and shows that

c4ðxÞ reduces to the form in (7.13). Indeed, (7.13) holds to
all orders in the Ginzburg-Landau expansion—the diago-
nal component of the Eilenberger equation (2.6) is the
generator of this infinite sequence of relations.
Another related fact is that when we seek stationary

points of the Ginzburg-Landau effective action with re-
spect to variation of the condensate, we generate a se-
quence of equations for the condensate. At higher order
n, these equations become more and more complicated,
involving higher derivatives and nonlinearities. But, when
evaluated on a solution to the NLSE, these variations take a
much simpler form, for all n:

�

���ðxÞ
Z
dxcnðxÞ ¼ �n�ðxÞ þ 	n�

0ðxÞ (7.16)

for some constants �n and 	n. It is straightforward but
instructive to verify this remarkable property for low or-
ders. To all orders, this infinite sequence of identities is
generated by the off-diagonal entries of the Eilenberger
equation (2.6), so the off-diagonal entry of Rðx;EÞ in (2.12)
explains why (7.16) holds at any order. To solve the gap
equation, the parameters of the solution (i.e., the parameter
�) must be adjusted so that the coefficient of �0ðxÞ van-
ishes, as explained in Sec. VI.
These observations may be a useful guide to seeking

solutions to the gap equation in higher dimensions, where
neither inverse scattering nor the resolvent approach is
directly applicable for periodic condensates, but where
the Ginzburg-Landau expansion approach is available.
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VIII. CONCLUSIONS

To conclude, we have solved the inhomogeneous gap
equation (1.4) in the NJL2 model, to obtain a self-
consistent condensate (4.12) that is crystalline in form. It
is inherently complex, unlike the condensate in the
discrete-chiral GN2 model where the condensate is real.
The complex crystal has a periodic amplitude, while its
phase rotates through a certain angle over each period. This
complex crystalline condensate contains all other previ-
ously known solutions to the gap equation as special cases.
In addition to finding the exact condensate, we have pre-
sented the exact solution to the associated Bogoliubov-
de Gennes equation (1.8) which gives the spectrum of
fermions quantized in the presence of such a condensate.
The spinor wave functions and single-particle energy spec-
trum are found in closed form, and we confirmed the
consistency of the results by also solving the gap equation
by Hartree-Fock. The key technical idea in our approach is
to use the form of the gap equation to motivate an ansatz
(2.12) for the Gorkov resolvent. For any condensate, the
resolvent must satisfy the Eilenberger-Dikii equation (2.6),
and so this reduces the problem to solving the nonlinear
Schrödinger equation (2.13). Given this solution, and, in
particular, the exact density of states (5.14), we are now in
a position to study exactly the phase diagram of the NJL2

model, extending the Ginzburg-Landau analysis in [1]. For
example, once the free energy is minimized on our exact
gap equation solution, the filling factor is then determined
as a function of T and �. This will be addressed in future
work.

An important possible extension of this work would be
to the massive NJL2 model, in which a bare fermion mass
is included in the original Lagrangian (1.1). This mass term
explicitly breaks the continuous chiral symmetry, and ap-
proximate methods have found a rich structure in the
associated phase diagram [47,51]. The resolvent approach
presented here is easily extended to the massive case
(yielding the real kink-antikink crystal condensate of the
massive GN2 system) only when the condensate is real.
This is deeply related to the integrability properties of the
classical equations of motion of these systems [52]. More
work is needed to understand analytically the situation
relevant for the massive NJL2 system, where the conden-
sate is complex. To date, no exact self-consistent inhomo-
geneous condensate solving the gap equation has been
found for the massive NJL2 model, except for simple
embeddings of the real solutions [53]. Another possible
extension is to study other 1þ 1-dimensional models, such
as the Schwinger model [54,55].

The most interesting extension would be to try to extend
some of these ideas to higher dimensions, for example for
higher dimensional Gross-Neveu or Nambu–Jona-Lasinio
models [56], or more ambitiously, to search for crystalline
condensates in QCD or QCD models [57–61]. Here, the
resolvent approach is not directly applicable, but the les-

sons from the way in which the Ginzburg-Landau expan-
sion works (discussed in Sec. VII) may be useful. A
numerical approach currently being developed [62], that
does not rely on special features of 1þ 1 dimensions, is a
numerical evaluation of the free energy, using the world-
line Monte Carlo approach of Gies and Langfeld [63].
Other new lattice methods have been developed recently
[64,65] to study four-fermion interactions, and it would be
interesting to extend these to higher dimensions.
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APPENDIX A: RESOLVENT OFA DIRAC SYSTEM,
AND THE EILENBERGER EQUATION

In this appendix we summarize the derivation of the
Dikii-Eilenberger equation (2.6) for the diagonal resolvent
of a Dirac system. The interested reader is urged to consult
also Refs. [35,36], and Appendix B of the first paper in
[34]. Here we sketch the key features of the argument, for
the sake of being more self-contained.
The important idea is simple. Recall that in one dimen-

sion, for a Schrödinger-like Sturm-Liouville operator, it is
well known that the Green’s function can be written in
terms of a product of two independent solutions, normal-
ized by their Wronskian [38]. An analogous construction
exists for a one-dimensional Dirac operator [34–36].
Furthermore, in the Sturm-Liouville case, the coincident-
point limit Rðx; x;EÞ satisfies a differential equation,
known as the Gel’fand-Dikii equation (for an excellent
review, see [6]), just by virtue of being written as a product
of solutions to the original differential equation [38].
Likewise, for a Dirac system, the coincident-point limit
Rðx; x;EÞ also satisfies an equation, just by virtue of being
expressed in terms of solutions to the original differential
equation. This equation is the Dikii-Eilenberger equa-
tion (2.6). The technical difference from the Gel’fand-
Dikii equation arises because the Dirac operator is first
order in derivatives and because it is a 2� 2 matrix
operator.
So, consider two independent spinor solutions  1;2 of the

BdG equation H ¼ E in (1.8), where H is the 2� 2
matrix first-order differential operator in (1.7). Then we
can write the resolvent (also a 2� 2 matrix) as

Rðx; y;EÞ ¼
�
 1ðxÞRðyÞ x < y;
 2ðxÞLðyÞ x > y:

(A1)

The row-vector functions RðyÞ and LðyÞ are determined by
demanding that Rðx; y;EÞ satisfy

ðH � EÞRðx; y;EÞ ¼ �ðx� yÞ: (A2)
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Integrating this first-order differential equation across the
point x ¼ y, we learn that

Rðx; y;EÞ ¼
� 1
iW  1ðxÞ T2 ðyÞ�1 x < y;
1
iW  2ðxÞ T1 ðyÞ�1 x > y;

(A3)

where the WronskianW is the scalar functionWð 1;  2Þ ¼
i T1�2 2. The coincident-point limit x ¼ y is given by an
averaged limit as [see (2.7)]

Rðx;EÞ ¼ 1

2iW
ð 1ðxÞ T2 ðxÞ þ  2ðxÞ T1 ðxÞÞ�1: (A4)

Now, express the BdG equation (1.8) as

 0 ¼ i
E ��
�� �E

� �
 ;  0T ¼ i T

E ��
�� �E

� �
:

(A5)

Then, differentiating (A4) once with respect to x, using the
fact that each of  1 and  2 satisfies the BdG equation (1.8)
in the form (A5), we arrive immediately at the Dikii-
Eilenberger equation (2.6). Furthermore, if we write  1 ¼
ðu1; v1ÞT and  2 ¼ ðu2; v2ÞT , then (A4) says that

Rðx;EÞ ¼ 1

2iðu1v2 � u2v1Þ
� u1v2 þ u2v1 2u1u2

2v1v2 u1v2 þ u2v1

� �
: (A6)

Thus, the algebraic conditions (2.4) and (2.5) follow. The
Hermiticity condition (2.3) is less immediately obvious,
because this depends on E andW. However, it is clear from
the definition of the resolvent that Rðx;EÞ ¼ hxj1=ðH �
EÞjxi is Hermitian for real E. The appropriate Hermiticity
properties are studied in more detail in [34–36], and can
also be seen from the result for the constant � case (2.11),
and the i	 condition used to define the spectral function
(2.2).

APPENDIX B: SOME USEFUL PROPERTIES OF
ELLIPTIC FUNCTIONS

In this appendix we collect some basic facts and non-
trivial identities for Weierstrass elliptic functions that are
used repeatedly in this paper, in order to make the paper
more self-contained. These functions play a special role
because the self-consistent condensate �ðxÞ and the spinor
solutions  ðxÞ to the Bogoliubov-de Gennes equation are
all expressed in terms of these functions. There are many
good books on elliptic functions. Excellent classical refer-
ences are [37,38]. We also found [39,40] to be particularly
useful. Very roughly speaking, the Weierstrass elliptic
functions are doubly periodic extensions of standard trigo-
nometric functions:

sinðzÞ $ �ðzÞ;

cotðzÞ ¼ d

dz
lnsinðzÞ $ ðzÞ ¼ d

dz
ln�ðzÞ;

1

sin2ðzÞ ¼ � d

dz
cotðzÞ $ P ðzÞ ¼ � d

dz
ðzÞ:

(B1)

The trigonometric functions have periodicity properties
along the real z axis, but the Weierstrass functions are
doubly (quasi)periodic. They are specified by the real and
imaginary (half-)periods, !1 and !3. It is standard to
define also !2 by !1 þ!2 þ!3 ¼ 0. Then the
Weierstrass sigma function is quasiperiodic under shifts
by 2!i:

�ðzþ 2!iÞ ¼ �e2�iðzþ!iÞ�ðzÞ; i ¼ 1; 2; 3: (B2)

Here �i � ð!iÞ. In general, !1 and !3 define a funda-
mental parallelogram characterizing the doubly periodic
nature of the Weierstrass functions. We choose a funda-
mental rectangle, with !1 ¼ Kð�Þ and !3 ¼ iK0 �
iKð1� �Þ. The periods are then parametrized by the el-
liptic parameter � that takes values in [0, 1]. At the limits
� ¼ 0 and � ¼ 1, the Jacobi elliptic functions reduce to
trigonometric and hyperbolic functions, respectively.
Physically, they interpolate between kinklike solutions
and sinusoidal ones.
The Weierstrass functions are then related to the Jacobi

elliptic functions as follows. We define

�iðzÞ ¼ e��iz
�ðzþ!iÞ
�ð!iÞ ; (B3)

and Jacobi’s elliptic functions can be constructed from
their ratios,

sn ðzÞ ¼ �ðzÞ
�3ðzÞ ; cnðzÞ ¼ �1ðzÞ

�3ðzÞ ; dnðzÞ ¼ �2ðzÞ
�3ðzÞ
(B4)

where the Jacobi functions have the elliptic parameter �
and the Weierstrass functions have periods!1 ¼ Kð�Þ and
!3 ¼ iK0ð�Þ.
Weierstrass’s zeta function is defined as the logarithmic

derivative of the sigma function:

ðzÞ ¼ d

dz
lnð�ðzÞÞ ¼ �0ðzÞ

�ðzÞ : (B5)

From (B2) it is clear that  is also quasiperiodic,

ðzþ 2!iÞ ¼ 2�i þ ðzÞ; i ¼ 1; 2; 3: (B6)

Here �i is given by the zeta function evaluated on the
periods z ¼ !i:

ð!iÞ ¼ �i: (B7)

Finally, the Weierstrass P function is defined as
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P ðzÞ ¼ �dðzÞ
dz

: (B8)

P is doubly periodic, with periods 2!1, 2!3:

P ðzþ 2!iÞ ¼ P ðzÞ; i ¼ 1; 2; 3: (B9)

Another important property of P is that it satisfies the
differential equation

P 02ðzÞ ¼ 4P 3ðzÞ � g2PðzÞ � g3

� 4ðP ðzÞ � e1ÞðP ðzÞ � e2ÞðP ðzÞ � e3Þ: (B10)

This equation is the one (4.22) satisfied by the amplitude
squared of the condensate, following from the nonlinear
Schrödinger equation. The constants g2 and g3 in (B10) are
known as the invariants, and they are parameters depend-
ing on the periods, and similarly for the ei, with e1 þ e2 þ
e3 ¼ 0, and g2 ¼ �4ðe1e2 þ e2e3 þ e1e3Þ and g3 ¼
4e1e2e3. With our choice of periods, these can be related
to the Jacobi elliptic parameter � as

e1 ¼ 1
3ð2� �Þ; e2 ¼ 1

3ð2�� 1Þ; e1 ¼ �1
3ð1þ �Þ:

(B11)

Just as the trigonometric and hyperbolic functions sat-
isfy addition and product formulas, so too do the elliptic
functions. Indeed, these elliptic identities generate all
others as special cases. Here we list some of the important
addition formulas for �,  , and P that we have used
throughout the paper. References [39,40] are particularly
good concerning these identities.

�ðuþ vÞ�ðu� vÞ
�2ðuÞ�2ðvÞ ¼ �P ðuÞ þ P ðvÞ; (B12)

�ðuþ vÞ�ðu� vÞ�ð2xÞ
�ðuþ xÞ�ðu� xÞ�ðvþ xÞ�ðv� xÞ
¼ ðuþ xÞ � ðu� xÞ � ðvþ xÞ þ ðv� xÞ;

(B13)

½ðuþ vÞ � ðuÞ � ðvÞ�2 ¼ P ðuþ vÞ þ P ðuÞ þ P ðvÞ;
(B14)

ðuþ vÞ � ðu� vÞ � 2ðvÞ ¼ P 0ðvÞ
P ðvÞ � P ðuÞ : (B15)
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