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We calculate the Chern-Simons diffusion rate in a strongly coupledN ¼ 4 super Yang-Mills plasma in

the presence of a constant external Uð1ÞR magnetic flux via the holographic correspondence. Because of

the strong interactions between the charged fields and non-Abelian gauge fields, the external Abelian

magnetic field affects the thermal Yang-Mills dynamics and increases the diffusion rate, regardless of its

strength. We obtain the analytic results for the Chern-Simons diffusion rate both in the weak and strong

magnetic field limits. In the latter limit, we show that the diffusion rate scales as B� T2 and this can be

understood as a result of a dynamical dimensional reduction.
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I. INTRODUCTION

The non-Abelian gauge fields possess a rich topological
structure. The vacuum contains an infinite number of
energy-degenerate sectors characterized by an integer:
the Chern-Simons number NCS that is a topological quan-
tity determined by the global structure of the gauge fields.
At zero temperature, the different Chern-Simons sectors
are connected by quantum tunneling transitions (the in-
stantons [1,2]); this leads to the picture of ‘‘�- vacuum’’ of
non-Abelian gauge theories. At finite temperature, the
gauge configurations that change the Chern-Simons
number can also be activated thermally. We will, loosely
speaking, refer to these configurations as ‘‘sphalerons’’
both at weak and at strong coupling, even though this
term is usually reserved for describing the classical solu-
tions at weak coupling [3,4]. As opposed to the tunneling
processes (instantons), the sphaleron rate is not necessarily
exponentially suppressed [5,6].

The change of Chern-Simons number in such a process
is given in terms of the topological Pontryagin invariant

�NCS¼ g2

32�2

Z
d4xFa

��
~F
��
a ðxÞ¼ g2

8�2

Z
d4xtrE �B; (1)

where E and B are non-Abelian electric and magnetic
fields, and g is the Yang-Mills coupling. The rate of change
of Chern-Simons number is called the Chern-Simons dif-
fusion rate �CS. It is simply the probability of a Chern-
Simons number-changing process to occur per unit volume
and per unit time

�CS¼h�N2
CSi

Vt

¼
Z
d4x

�
g2

32�2
Fa
��

~F��
a ðxÞ g2

32�2
Fa
��

~F��
a ð0Þ

�
: (2)

The weak coupling result for the diffusion rate for SUð2Þ
gauge theory is given by [7]

�CS¼�0g10 logð1=g2ÞT4 ðSUð2Þ;weak couplingÞ; (3)

where �0 is a (numerically large) constant. This expression
can be understood as a result of the Langevin—type dy-
namics of the non-Abelian gauge fields [7,8]. Since the
sphaleron at the peak of the barrier separating Chern-
Simons sectors is a purely magnetic field configuration,
the factor ðg2TÞ3 in this expression can be understood as
the inverse magnetic screening length that determines the
characteristic inverse volume of the sphaleron, and
g4T logð1=gÞ—as the typical inverse time scale of the
process. Numerical calculations show that the constant
�0 � 10 [8,9] for SUð2Þ.
The holographic AdS/CFT correspondence [10–12]

makes it possible to compute the Chern-Simons diffusion
rate in N ¼ 4 super Yang-Mills plasma at N ! 1 in the
strong coupling regime [13]. The strong coupling result is
given by [13]

�CS¼ðg2NÞ2
256�3

T4 ðN ¼4SYM; strong coupling; largeNÞ
(4)

It is remarkable that compared to the weak coupling case,
at strong coupling the diffusion rate is substantially en-
hanced. This means that Chern-Simons diffusion is not
exclusively the property of semiclassical fields, as the
(Minkowski boundary) dynamics at strong coupling has
to be driven by quantum effects.
The Atiyah-Singer index theorem relates the change in

NCS to the chirality change in the fermionic sector—every
Chern-Simons number-changing transition is accompanied
by the flip of chirality. In thermal equilibrium, the sphaler-
ons thus lead to the decay of any excess chiral chargeN5 ¼
hJ05i present in the medium. A linear response relation for a

small chiral chemical potential leads to [8,9] the decay

dN5

dt
¼ �CN5

�CS

T3
; (5)
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where the constant C depends on the details of the fermi-
onic sector.

These NCS-changing transitions violate locally P and
CP symmetries and lead to very interesting consequences
in a number of various physical settings. In weak interac-
tions, they are related to the violation of baryon plus lepton
(Bþ L) number1 and play a crucial role in electroweak
baryogenesis scenarios [5,6,14–19]. In strong interactions,
there exists a very strong constraint on the amount of
global P and CP violation; this constraint originates
mainly from the experimental upper bound for the neutron
dipole moment [20]. However on theoretical grounds, the
observed CP invariance is still lacking a conclusive expla-
nation (‘‘the strong CP problem’’). On the other hand, the
instantons and sphalerons provide explicit examples of the
local fluctuations of topological charge leading, through
the index theorem, to the local imbalance of chirality in
QCD plasma. In a medium with high enough temperature,
the fluctuations might lead to observable effects such as the
‘‘chiral magnetic effect’’ [21] which is an induction of an
electric current by an external magnetic field in the pres-
ence of Chern-Simons number-changing processes.

In this paper we address the effect that an external
Abelian magnetic field has on the topological fluctuations
in the plasma. This question has been addressed in the past
in several different contexts. The chiral magnetic effect is
seen in various lattice simulations [22–24]. The effects of
magnetic field on an instanton configuration is also studied
on the lattice [25,26]. In [27] the Dirac spectrum of an
instanton in the presence of magnetic field is analyzed and
it is argued that in strong magnetic field regime some of the
physical quantities such as the magnetic and electric dipole
moments are dominated by the (near-) zero modes. In [28],
it is shown that the diffusion rate due to an electroweak
sphaleron in the Higgs phase increases with a presence of
an external magnetic field.

Here we calculate the diffusion rate for strongly coupled
N ¼ 4 plasma in the presence of an external magnetic
field via holography. The dual gravity is characterized by a
full solution of asymptotically AdS5, five-dimensional
Einstein-Maxwell system with a constant magnetic flux.
Since the solution takes into account all of the back-
reaction of the magnetic field on the metric, this gravity
description allows one to work with arbitrarily strong
magnetic fields. This configuration was previously studied
in [29] and, together with its various extensions, was
pursued in a different context in [30].

The rest of the paper is organized as follows. In Sec. II, we
summarize the magnetic brane solution presented in [29]
which constitutes our dual metric. Then, in Sec. III, we
calculate the diffusion rate and present the exact numerical
result. Section IV, is devoted to the high-temperature and

low-temperature limits of this result, for whichwe obtain the
analytic expressions. At high temperature we calculate the
leading term to the zeromagnetic field result (4) analytically
by treating the magnetic field perturbatively. At low tem-
perature, we use the (2þ 1)-dimensional Bañados,
Teitelboim, Zanelli (BTZ) black hole solution to describe
the dimensionally reduced metric and express the rate also
analytically at this limit. We conclude the paper by arguing
that the effect is negligible for heavy ion collisions and
discuss a possible implication for a particular scenario of
electroweak baryogenesis.

II. THE DUAL GEOMETRY

Let us briefly review the magnetic brane solution studied
in [29] that constitutes the gravity dual of our problem. The
basic setup is the five-dimensional Einstein-Maxwell the-
ory with a negative cosmological constant. In the boundary
gauge theory, the Abelian Maxwell field is associated with
the Uð1ÞR symmetry which the gauginos, the chiral multi-
plet fermions and scalars are charged under. The action
also contains the five-dimensional Chern-Simons term that
accounts for the Uð1ÞR anomaly

S ¼ � 1

16�G5

Z
d5x

ffiffiffiffiffiffiffi�g
p �

Rþ FMNFMN � 12

l2

�

þ 1

6
ffiffiffi
3

p
�G5

Z
A ^ F ^ Fþ Sbdry: (6)

The last term in (6) is the boundary term that is determined
by imposing a sensible variational principle. The AdS
radius l will be set to unity for the rest of the paper. It is
also worthwhile to mention that the coefficient of the
variation of the Chern-Simons term is fixed by the Uð1ÞR
anomaly of the gauge theory. This relates the field strength
F in (6) to the physical field strength in the gauge theoryF
asF ¼ ffiffiffi

3
p

F. We refer the reader to [29] for further details.
Let us now introduce a constant magnetic flux in the x3

direction

F ¼ Bdx1 ^ dx2: (7)

The constant flux satisfies the Maxwell equations trivially.
For the Einstein equations

RMN ¼ 4gMN þ 1

3
FABFABgMN � 2FMAF

A
N (8)

we start with the general form of the five-dimensional
metric

ds2 ¼ �UðrÞdt2 þ dr2

UðrÞ þ e2VðrÞðdx21 þ dx22Þ þ e2WðrÞdx23;

(9)

and seek asymptotically AdS5 solutions with a horizon to
study the problem at nonzero temperature, in accordance
with the AdS/CFT correspondence. Unfortunately, there is
no known analytical solution to the Einstein equations

1We will refer to the violation of (Bþ L) simply as baryon
number violation from now on.
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satisfying these properties. However it is possible to solve
them numerically. Notice that the metric components U, V
and W are functions of a single variable r. Therefore the
Einstein Eqs. (8) are a set of coupled ordinary differential
equations in r. Following [29], we rescale the coordinates
such that the horizon is at r ¼ 1 (i.e Uð1Þ ¼ 0), and
U0ð1Þ ¼ 1, Vð1Þ ¼ Wð1Þ ¼ 0. The remaining two initial
conditions V 0ð1Þ and W 0ð1Þ are encoded in the Einstein
equations. Then, given the initial conditions, we integrate
the Einstein equations from the horizon r ¼ 1 to the
boundary r ! 1 numerically. The result is that the solu-
tions indeed are asymptotically AdS5

UðrÞ! r2; e2VðrÞ !vr2; e2WðrÞ !wr2 as r!1 (10)

Here v and w are the functions of the magnetic field
strength B. To get the correct AdS5 limit on the boundary,
we should rescale the x1, x2 and x3 coordinates

ds2¼�UðrÞdt2þ dr2

UðrÞþ
e2VðrÞ

v
ðdx21þdx22Þþ

e2WðrÞ

w
dx23

(11)

This rescaling also affects the form of the physical mag-
netic flux

F ¼ B

v
dx1 ^ dx2 (12)

It is also useful to define the physical magnetic field
strength in the gauge theory B:

B ¼ ffiffiffi
3

p B

v
: (13)

III. THE CHERN-SIMONS DIFFUSION RATE

The diffusion rate (2) is nothing but the zero-frequency
and wavelength limit of the symmetrized Wightman cor-
relator of the topological charge

Gsymð!; ~kÞ�1

2

Z
d4xe�ikx

��
1

4
Fa
��

~F��
a ðxÞ;1

4
Fa
��

~F��
a ð0Þ

��
:

(14)

The fluctuation-dissipation theorem relates the symme-
trized Wightman correlator to the imaginary part of the
Green’s function

Gsymð!; ~kÞ¼�coth

�
!

2T

�
Im½GRð!; ~kÞ�

��2T

!
Im½GRð!; ~kÞ�; (15)

where the retarded Green’s function is

GRð!; ~kÞ�� i
Z
d4xe�ikx�ðtÞ

��
1

4
Fa
��

~F
��
a ðxÞ;1

4
Fa
��

~F
��
a ð0Þ

	�
:

(16)

Hence, to extract the diffusion rate all we need to know
is the zero-momentum and small-frequency limit of the
retarded Green’s function

�CS ¼ �
�
g2

8�2

�
2
lim
!!0

2T

!
Im½GRð!; ~k ¼ 0Þ�: (17)

The imaginary part of the retarded Green’s function is
associated with the thermal dissipation and therefore is a
T-odd function. As a result the leading term in the small-
frequency expansion has to be linear in !, with the coef-
ficient that controls the diffusion rate (17).
We compute the retarded Green’s function GR of the

topological charge by using the AdS/CFT duality where
the gravity side is described by the metric (11). The duality
relates the operator 1

4F
a
��

~F
��
a in N ¼ 4 super Yang-Mills

with the Ramond-Ramond scalar C0 which is the axion in
the 10-dimensional type IIB supergravity theory. In the
absence of the Uð1ÞR Maxwell field, the axion is nothing
but a free massless scalar in the consistent truncation to the
five-dimensional effective theory after Kaluza-Klein re-
duction of the S5. To the second-order in fluctuations in
the fields, it remains as a free scalar even with the presence
of a background Uð1ÞR flux. To see this let us analyze the
axion part of the 10-dimensional type IIB supergravity
action in the string frame

Saxion /
Z ffiffiffiffiffiffiffiffi�G

p ðjdC0j2 þ jC2 � C0 ^ dBj2Þ; (18)

where C0 is the axion, C2 and B are antisymmetric
Ramond-Ramond and NS-NS 2 forms, respectively. In
the gauge theory, the Uð1ÞR symmetry is realized as the
diagonal Uð1ÞR of the Cartan subgroup Uð1Þ3R of SUð4ÞR.
In the supergravity picture, this corresponds to wrapping
around the three angles of the S5 simultaneously by a
special choice of truncation parameters. The Kaluza-
Klein reduction can be written as [31,32]

ds2 ¼ gMNdx
MdxN þX3

i¼1

d�2
i þ�2

i

�
d�i þ 2ffiffiffi

3
p A�dx

�

�
2

(19)

where gMN is the five-dimensional AdS metric, �i’s are
two independent S5 parameters with the constraintP

3
i¼1 �

2
i ¼ 1 and �i’s are the remaining three angles of

S5. The Kaluza-Klein reduction of this metric is shown
[31,32] to be a consistent truncation that generates the
action (6). To see that the Maxwell sector does not affect
the axion sector it is sufficient to observe that the only
place where the Uð1ÞR field might show up in the action

(18) is the 10-dimensional metric determinant
ffiffiffiffiffiffiffiffi�G

p
.

However this is not possible because the gauge field can
be thought of as a reparametrization of the angles �i of S

5

under which G is invariant. From the gauge theory per-
spective, there cannot be any gauge-dependent term in the
action; thereforeG has to be independent of A�, which is in

fact true. Also the NS-NS 2 form B can be turned off
consistently in the compactification. As a result, the axion
field C0 is a massless scalar in the five-dimensional
Einstein-Maxwell theory.
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The associated Klein-Gordon equation for a generic
metric of the form (9) is not analytically soluble, since
we do not even know the metric explicitly. However it can
be expressed in terms of the functions U, V and W that
determine the metric at the linear order in frequency, which
is the limit we are interested in. The dissipative processes
that lead to an imaginary part in the retarded Green’s
function are associated with the in-falling boundary con-
ditions for the dual scalar field near the black brane hori-
zon. We shall study the Klein-Gordon equation in
Eddington-Finkelstein coordinates where the in-falling
boundary conditions near the horizon appear naturally.
Let us define

t� ¼ tþ
Z r

1
r0

Uðr0Þ ; (20)

the metric (9) with this coordinate transformation becomes

ds2¼�UðrÞdt2�þ2drdt�þe2VðrÞðdx21þdx22Þþe2WðrÞdx23
(21)

Note that the frequency remains unchanged: !� � i@t� ¼
i@t �!. Furthermore, the wave functions are of the form

e�i!t�þi ~k� ~x�!; ~kðrÞ. The mode function �!; ~kðrÞ should have
regular near horizon behavior. Near the horizon, t� � tþ

1
U0ðrhÞ lnjr� rhj up to a constant, where r ¼ rh is the hori-

zon. The Hawking temperature for a general UðrÞ is given
by the relation:U0ðrhÞ ¼ 4�T. Therefore the wave function

has the expected in-falling behavior e�i!tjr� rhj�ið!=4�TÞ
which arises naturally in the Eddington-Finkelstein
coordinates.

The Klein-Gordon equation @�ð ffiffiffiffiffiffiffi�g
p

g��@��Þ ¼ 0 with

the metric (21) reads

�00
!; ~k

þ ðfðrÞ þ lnUðrÞÞ0�0
!; ~k

� i!

UðrÞ ð2�
0
!; ~k

þ f0ðrÞ�!; ~kÞ

� 1

UðrÞ ðe
�2VðrÞ ~k2? þ e�2WðrÞ ~k2kÞ�!; ~k ¼ 0: (22)

Here we defined efðrÞ � ffiffiffiffiffiffiffi�g
p ¼ e2VðrÞþWðrÞ and 0 is short

for @r. We now take ~k ¼ 0 and solve (22) for small fre-
quencies. To do this, we expand �!ðrÞ to linear order in !
for ! 	 12

�!; ~k¼0 ¼ �0ðrÞ þ i!�1ðrÞ þOð!2Þ: (23)

The Klein-Gordon equation is now expanded in the same
fashion as

�00
0 þðfþ lnUÞ0�0

0

� i!

�
2

U
�0

0þ
f0

U
�0��00

1 �ðfþ lnUÞ0�0
1

�
¼ 0; (24)

which should be solved order by order in !.
The Oð!0Þ order equation has the solution

�0ðrÞ ¼ c1 þ c2
Z r dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðr0Þp

Uðr0Þ : (25)

The second term is divergent near the horizon since
UðrhÞ ¼ 0. In order �0ðrÞ to be well-behaved near the
horizon, c2 must vanish. We also set c1 ¼ 1. This choice
translates into normalizing the homogeneous axion source
in the boundary theory to unity in the AdS/CFT dictionary.
After plugging �0ðrÞ ¼ 1 into (24), the Oð!1Þ equation

becomes

�00
1 þ ðfþ lnUÞ0�0

1 ¼
f0

U
; (26)

which can be solved as

�1ðrÞ¼
Z r

1
dr0

Uðr0Þð1�efðrhÞ�fðr0ÞÞ¼
Z r

1
dr0

Uðr0Þ
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðrhÞ
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðr0Þp

�
:

(27)

Here the constant
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðrhÞ

p
is chosen to assure the regu-

larity of the solution near the horizon. The other integration
constant is determined by setting the limit of the integral
such that �1 vanishes near the boundary and does not
effect the normalization of the source.
As a result the solution of the Klein-Gordon Eq. (22) in

the zero-momentum, small-frequency limit is:

�!; ~k¼0 ¼ 1þ i!
Z r

1
dr0

Uðr0Þ
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðrhÞ
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðr0Þp

�
þOð!2Þ

¼ 1þ i!
Z r

1
dr0

Uðr0Þ ð1� e2VðrhÞþWðrhÞ�2Vðr0Þ�Wðr0ÞÞ
þOð!2Þ: (28)

We now expand (28) near the boundary. Recall that our
metric converges to the AdS5 metric r�2dr2 þ r2dx�dx�
near the boundary r ! 1. Therefore

ffiffiffiffiffiffiffi�g
p ! r3,UðrÞ ! r2

and

�!; ~k¼0ðrÞ � 1� i!

r
þ i!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðrhÞ
p
4r4

þ . . . ; (29)

which reproduces the expected boundary behavior of a
massless scalar. The first term is the non-normalizable
mode that corresponds to the homogeneous axion source
	� normalized to unity. The coefficient of the r�4 term is:
	h14Fa

��
~F��
a i, that is the response of the system to the axion

source 	�. Putting back all the constants it is found as

	

�
1

4
Fa
��

~F��
a

�
¼ð2�F ~F�4Þ�i!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðrhÞ
p
4

¼ i�!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðrhÞ

q
:

(30)

2Here there is a slight abuse of notation. By writing ! 	 1 we
actually mean !

4�T 	 1. But it is always possible to work with
dimensionless frequency by rescaling t� and r which we are
doing by setting U0ð1Þ ¼ 1 (i.e., 4�T ¼ 1).
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Here �F ~F ¼ 4 is the scaling dimension of the topological
charge operator. We can easily calculate the retarded
Green’s function in the zero-momentum, small-frequency
limit through the linear response relation (Kubo’s formula)

	

�
1

4
Fa
��

~F
��
a ð!Þ

�
¼ GRð!Þ	�: (31)

Thus we obtain GR in the leading linear frequency limit

GRð!; ~k¼ 0Þ¼	h14Fa
��

~F
��
a ð!Þi

	�
¼ i�!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðrhÞ

q
þOð!2Þ:

(32)

Using the properly scaled metric (11) it reduces to

GRð!; ~k ¼ 0Þ ¼ i!�

v
ffiffiffiffi
w

p þOð!2Þ: (33)

Recall that the diffusion rate is related to the retarded
Green’s function as

�CS ¼ �
�
g2

8�2

�
2
lim
!!0

2T

!
Im½GRð!; ~k ¼ 0Þ�

¼
�
g2

8�2

�
2 N2

8�2

2T

v
ffiffiffiffi
w

p : (34)

In the last step we have used the holographic relation

between the gravitational and gauge couplings: � ¼
� 1

16�G5
¼ � N2

8�2 where G5 is the five-dimensional Einstein

constant. Recall that the functions v and w are obtained in
the unitsUð1Þ ¼ 0,U0ð1Þ ¼ 1. In these unitsT ¼ 1=4� and
due to conformal symmetry we can choose our physical
parameter to be the dimensionless magnetic field strength
B=T2. We then express the diffusion rate in terms of this
dimensionless ratio as follows:

�̂ðB=T2Þ ¼ �ðB; TÞ
�0

¼ 26

v
ffiffiffiffi
w

p �0 ¼ ðg2NÞ2
256�3

T4: (35)

This quantity measures the ratio of the diffusion rate in a
mediumwith amagnetic flux to the one in amediumwithout
a magnetic flux, �0. From the plot (Fig. 1), we see that

�̂ðB=T2Þ is a monotonously increasing function of the
magnetic field strength. We now investigate the high- and
low-temperature limits of the diffusion rate.

IV. HIGH- AND LOW-TEMPERATURE LIMITS

A. Weak magnetic field (high-T) limit

In the limit where B<<T2, the magnetic field can be
treated as a perturbation to the T4 scaling of the diffusion
rate. Because of the R-charge symmetry of the gauge
theory, we expect the perturbation series to start at the
order B2. Also we can argue that we do not expect the
result to depend on the direction of the magnetic field at
the leading order and the analyticity of the perturbation
series dictates the B2 dependence. It is also clear from the
gravity side that the perturbative corrections to the Einstein
Eqs. (8) will be at the order B2 since the magnetic field
enters the equations in a gauge invariant way. Let us
perturb the Einstein Eqs. (8) around the AdS5 black brane
solution

UðrÞ ¼ r2 � r4H
r2

þB2u1ðrÞ VðrÞ ¼ logðrÞ þB2v1ðrÞ
WðrÞ ¼ logðrÞ þB2w1ðrÞ; (36)

where rH ¼ �T. To extract the diffusion rate, we only need
to know

ffiffiffiffiffiffiffi�g
p

at the perturbed horizon. Let us call the

perturbed horizon rP, such that UðrPÞ ¼ 0. By expanding
to first order in B2 we getffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðrPÞ

q
¼ e2VðrÞþWðrÞ ¼ r3Pð1þB2ð2v1ðrpÞ þ w1ðrpÞÞ:

(37)

From the linearized (in B2) Einstein equations we obtain
the following relations:

u1ðrÞ ¼ � 2

9r2
ð1þ 3 logðr=rpÞÞ 2v0

1ðrÞ þ w0
1ðrÞ ¼ 0

(38)

These corrections should vanish as r ! 1 since we should
have asymptotically AdS5 behavior. This condition sets the
constant 2v1ðrÞ þ w1ðrÞ ¼ 0 leading to

ffiffiffiffiffiffiffiffiffiffiffi
gðrpÞ

q
¼ r3H

�
1þ 1

6

B2

r4H

�
¼ �3T3

�
1þ 1

6�4

B2

T4

�
: (39)

As a result, to leading order in B2 we get

�CS ¼ ðg2NÞ2
256�3

T4

�
1þ 1

6�4

B2

T4
þO

�
B4

T8

��
: (40)

5 10 15 20

1.1

1.2

1.3

1.4

1.5

1.6

FIG. 1 (color online). The Chern-Simons diffusion rate �̂ ¼
�ðB; TÞ=�0ðTÞ, normalized by the zero magnetic flux value
�0 ¼ 
2

256�3 T
4 as a function of the dimensionless magnetic

field B=T2. The diffusion rate is monotonously increasing
with the magnetic field strength and has the asymptotic behavior
��BT2 for B 
 T2.
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Comparing with the exact numerical result (35) we have
found that this approximation differs from the exact result
only by 2.5% for B� 10T2. This suggests that a proper
expansion parameter is probably B2=ð�TÞ4.

B. Strong magnetic field (low-T) limit and
BTZ black hole

For strong magnetic field B 
 T2, v and w have the
limits

lim
B!1

1

v
ffiffiffiffi
w

p ¼ B

6vð4�TÞ2 ¼
B

96
ffiffiffi
3

p
�2T2

: (41)

In the last step we plugged in the physical magnetic field

strengthB ¼ ffiffiffi
3

p
B=v. Therefore in the presence of a strong

magnetic field the diffusion rate is

�ðB; TÞ ¼ ðg2NÞ2
384

ffiffiffi
3

p
�5

BT2; B 
 T2: (42)

It is possible to obtain the same result in a way where the
physics is more transparent. In [29], it was shown that there
is another solution to Einstein-Maxwell configuration
which is a product of a (2þ 1)-dimensional BTZ black
hole in the ðr; t; x3Þ directions and a flat surface in the
transverse plane

ds2 ¼ �3ðr2 � r2hÞdt2 þ
dr2

3ðr2 � r2hÞ
þ 3r2dx23

þ Bffiffiffi
3

p ðdx21 þ dx22Þ: (43)

The Hawking temperature is T ¼ 3rh=2�. This is an ap-
propriate description of the dual gauge theory in the strong

magnetic field limit. When
ffiffiffiffi
B

p 
 T, the fields occupy the
lowest Landau levels and transitions to higher Landau orbits

are suppressed by the factor e�
ffiffiffi
B

p
=T . As a result the motion

in the transverse plane is frozen and the only remaining
degree of freedom is along the longitudinal direction x3
where the motion is not affected by the magnetic field. The
overall factor of B in front of the transverse plane corre-
sponds to the density of the lowest Landau levels in the
gauge theory. The geometry (43) is therefore merely the
holographic manifestation of the dimensional reduction of
the system in the presence of a strong magnetic field. Usingffiffiffiffiffiffiffi�g
p ¼ rhB and the expression (32) for the retarded

Green’s function we obtain

GRð!; ~k ¼ 0Þ ¼ i!�Brh ¼ i!�
2�TB

3
ffiffiffi
3

p þOð!2Þ: (44)

Note that the expression (32) is valid only for metrics
that are asymptotically AdS5 since the retarded Green’s
function is read off from the coefficient of r�4 in the
expansion of � near the boundary. Here in the dimension-
ally reduced calculation, we assume that the magnetic field
strength is very close to UV scale of the gauge theory so
that the transition from BTZ to AdS5 occurs close to the
UV boundary and far away from the horizon in the dual

picture. Therefore, the BTZ approximation is good near the

horizon and we can use the BTZ metric for
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�gðrhÞ

p
.

Plugging this result for GR into the expression for the
diffusion rate [first line of (35)] leads to the correct strong
magnetic field result (42). This result can be interpreted as
follows: �CS is a transport coefficient and its dynamics are
governed by the IR sector of the theory. In the R-charged
sector, the IR dynamics is dominated by the lowest Landau
level fermions. The contribution of scalars to IR is sup-
pressed exponentially since they have no zero modes as
opposed to fermions. The holographic dimensional reduc-
tion mechanism explained above suggests that the strong
interactions between the dimensionally reduced R-charged
sector and R-neutral non-Abelian gauge sector effectively
induces a dimensional reduction for the gauge field in the
IR, even though it does not see the magnetic field at the
level of Lagrangian. Therefore the Chern-Simons number-
changing transitions occur in one spatial dimension which
brings a factor of T2 to the rate on dimensional grounds.
This should be multiplied by the density of lowest Landau
levels in transverse plane which scales as B=�.

V. CONCLUSION AND DISCUSSIONS

In the strongly coupled N ¼ 4 theory, the existence of
an external Uð1ÞR magnetic field increases the Chern-
Simons diffusion rate in comparison to the zero magnetic
field case. This modification is due to the strong interac-
tions between the R-charged sector of the theory and the
R-neutral Yang-Mills fields that are realized through the
alteration of the dual gravity by the magnetic field.
Furthermore in the strong magnetic field limit the Chern-
Simons number transitions occur in the dimensionally
reduced system and the rate thus scales as B� T2. The
absence of the interaction between the Uð1ÞR and Yang-
Mills fields makes the Uð1ÞR magnetic field a reasonable
proxy for a ’’real’’ Uð1Þ magnetic field. We thus expect a
similar behavior in a strongly coupled, non-SUSY gauge
theory with a Uð1Þ magnetic field.
We would like to point out an interesting analogy be-

tween the electroweak sphaleron in a magnetic field and
our result. The electroweak sphaleron in the Higgs phase
(Klinkhamer-Manton sphaleron) [4] is spherically sym-
metric for zero Weinberg angle. However a nonzero
Weinberg angle reduces the symmetry into an axial one
[33,34]. Furthermore, the deformed sphaleron develops a
magnetic moment. Because of this dipole moment, an
external magnetic field decreases the energy of the spha-
leron which lowers the barrier between the topologically
inequivalent vacua [28,35]. This puts some constraints on
the electroweak baryogenesis scenario with a primordial
magnetic field since a lower barrier means topological
transitions are more frequent and they wash out any initial
baryon number asymmetry.
Our result suggests that an external magnetic field raises

the rate of topological transitions also in strongly coupled
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regime. In this case the energy of the sphaleron is altered
by the magnetic field due to strong interactions.
Furthermore, the spherical symmetry is reduced to axial
symmetry through dimensional reduction since there is a
residual Oð2Þ symmetry in the transverse plane. These
effects of the magnetic field are, of course, due to a differ-
ent mechanism than the Kinkhamer-Manton sphaleron
case above. However, it is noteworthy that even though
the mechanisms are quite different, it seems a coupling to
an extra Uð1Þ field affects the non-Abelian sector in a
similar fashion for both cases.

There are electroweak baryogenesis scenarios where
there exist CP-violating processes in the scalar (Higgs)
sector [14–17]. These processes can be described by an
effective inhomogeneous axion field where chiral quarks
are created locally on these inhomogeneities. These inho-
mogeneities correspond to the walls of the bubbles of
broken phase nucleated inside the symmetric phase. As
the created net chirality propagates into the symmetric
phase it triggers the electroweak sphaleron transitions in
the symmetric phase which ultimately creates the baryon
number. However, the strong sphaleron transitions damp
the net chirality and therefore reduce the baryon number
creation [9,18]. Taking into account the existence of a
primordial magnetic field, based on our result we can
conclude that it would further decrease the rate of baryon

number generation if the relevant strong interactions are in
the strongly coupled regime. Therefore, it seems that an
existence of a primordial magnetic field works against the
baryon number generation.
Finally, let us pass from the big bang to the little bang:

the heavy ion collisions. The background magnetic field

created in these collisions is typically of the order T �ffiffiffiffi
B

p �m� [21,36]. Our result suggests that a magnetic field
of this strength has a negligible effect on the topological
charge diffusion. To be more precise

�ðB; TÞ � �ðB; 0Þ
�ðB; 0Þ � 1

6�4
� 0:0017 (45)

for B ¼ T2. Therefore the magnetic field changes the rate
only by 0.17%. This means that the quantitative estimates
of the chiral magnetic effect in heavy ion collisions can be
safely done by using the sphaleron rate in the absence of
magnetic flux.
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