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We compare the flowlike correlations in high multiplicity proton-nucleus (p + A) and nucleus-nucleus (A + A)
collisions. At fixed multiplicity, the correlations in these two colliding systems are strikingly similar, although
the system size is smaller in p + A. Based on an independent cluster model and a simple conformal scaling
argument, where the ratio of the mean free path to the system size stays constant at fixed multiplicity, we argue
that flow in p + A emerges as a collective response to the fluctuations in the position of clusters, just like in
A + A collisions. With several physically motivated and parameter free rescalings of the recent LHC data, we
show that this simple model captures the essential physics of elliptic and triangular flow in p + A collisions.
We also explore the implications of the model for jet energy loss in p + A, and predict slightly larger transverse
momentum broadening in p + A than in A + A at the same multiplicity.
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I. INTRODUCTION

Recent measurements by the LHC [1–3] and RHIC [4] col-
laborations, have shown that particle production in high mul-
tiplicity proton-nucleus (p + A) collisions exhibits striking
long-range two-particle correlations. Indeed, the two-particle
correlator in these high multiplicity events is qualitatively
and even quantitatively similar to the corresponding correlator
in nucleus-nucleus (A + A) events. In the A + A events the
correlation function was successfully described with viscous
hydrodynamics, where the observed correlation arises from the
collective response to the initial geometry. The two-particle
angular correlation at large rapidity separation is decomposed
into Fourier coefficients,

dNpairs

d�φ
= Npairs

2π

[
1 + 2

∑
Vn� cos(n�φ)

]
, (1.1)

and the Fourier coefficients are expressed in terms of the flow
coefficients vn{2},

vn{2} ≡
√

Vn�. (1.2)

The flow coefficients are measured as a function of momentum,
particle type, and centrality and are compared to hydrodynamic
simulations of the nucleus-nucleus event (see Ref. [5] for
an overview of this ongoing experimental and theoretical
program).

A comparison of the flow coefficients in peripheral A + A
to high multiplicity p + A collisions, at the same overall
multiplicity, shows that the flow coefficients are similar in
magnitude and depend on momentum in similar ways. Indeed,
the two collision systems have the same integrated v3{2}
to within 5%. The striking similarity between the observed
correlations points to a common origin, and challenges the
hydrodynamic interpretation. Indeed, some features of these
correlations are reproduced by the color glass condensate
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(CGC) without reference to the fluctuating geometry [6,7].
However, hydrodynamic simulations of p + A events also
qualitatively predicted the correlations observed in the data
[8–10], suggesting that the origin of the flow in p + A is similar
to A + A. This has motivated several phenomenological
papers aiming to explain the observed correlations and to
differentiate these two approaches [11–18].

The purpose of the current paper is to give a concise
explanation for the striking similarity of the flow harmonics
in p + A and A + A. We start by pointing out in Sec. II that
if the multiplicity is held fixed, and the initial dynamics is
approximately conformal, then the mean free path to system
size is the same in the two colliding systems. The p + A system
is smaller than A + A, but hotter, and the resulting response
patterns in p + A are scale similar to the A + A response.
Thus, it is natural to expect that if a hydrodynamic response
is supported in A + A collisions then a similar response is
expected in high multiplicity p + A collisions. In A + A

collisions viscous corrections are somewhat large in these
peripheral bins, and we expect similarly large corrections in
p + A collisions.

In Sec. III we discuss elliptic and triangular flow. After
scaling out the average geometry of the A + A system
(which can be done in a model-independent way), we find
that the integrated v2{2} in the two systems are essentially
identical, as in the v3{2} case. We point out that this is
not surprising in any picture based on an independent clus-
ter model and approximately conformal dynamics. Because
the process of scaling out the average geometry assumes
that the observed v2{2} is a response to the geometry,
the remarkable similarity of the fluctuation-driven v2{2} in
the two systems strongly suggests that the response in the
p + A system is also a response to the geometry. The
momentum dependence of the elliptic and triangular flow
coefficients also supports the conformal scaling outlined in
Sec. II.

Finally, in Sec. IV we discuss the implications of the
conformal dynamics for jet energy loss in p + A, indicating a
direction for future research.
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II. CONFORMAL DYNAMICS

A. �mfp/L is the constant in p + A and A + A collisions
at fixed multiplicity

Working with a reasonable set of assumptions, we first note
that the mean free path to system size is constant between
high multiplicity p + A and A + A collisions, provided the
multiplicity dN/dy is kept fixed.

Specifically, motivated by the color glass condensate [19],
we will adopt the following model for particle production in
high multiplicity p + A and A + A collisions.

(1) First, we will assume a cluster model, where the number
of particles produced is proportional to the number of
clusters. The typical momentum scale of the produced
constituents in the initial state is set by the number of
clusters per transverse area:

Q2
s ∼ Nclust

πL2
, (2.1)

where L is the transverse size of the high multiplicity
events. We will assume that this is the only relevant
momentum scale. A similar assumption was used in
Ref. [14] to investigate the systematics of particle
spectra in high multiplicity p + A collisions.

(2) We will assume that the equilibration dynamics is
conformal, so that the typical relaxation time τR

is inversely proportional to Qs . Then, if QsL is a
sufficiently large number, the system will equilibrate
at a time τo with 1/Qs � τo � L, and the initial
temperature To will be proportional to Qs , To ∝ Qs .
If the shear viscosity is approximately conformal, η ∝
T 3, then viscous corrections from transverse gradients
will be proportional to 1/(QsL).

Indeed, in kinetic theory transverse viscous correc-
tions are determined by the ratio of the mean free path to
the transverse size of the system. In conformal kinetics
the initial mean free path is inversely proportional to
Qs , which is the only relevant momentum scale:

�mfp ∝ 1

Qs

. (2.2)

(3) Finally, we will also assume that the initial phase
space distribution in a high multiplicity p + A event
is not parametrically different from a minimum bias
event. For instance, an extremely high multiplicity
di-jet event has a parametrically different initial phase
space distribution.

With these assumptions, the multiplicity of a p + A or
A + A event is

dN

dy
∼ Q2

sL
2. (2.3)

Then mean free path to the transverse system size is constant,
provided dN/dy is kept fixed:

�mfp

L
∝ 1

QsL
∝ 1√

dN/dy
. (2.4)

This line of reasoning provides an extremely simple expla-
nation for why the collective response is similar in high
multiplicity p + A and peripheral A + A collisions. If the
multiplicity is held fixed, then the conditions for the subsequent
response in p + A and A + A are scale similar. The p + A
system is smaller, but hotter, and the initial temperature times
the system size is fixed. If the subsequent expansion dynamics
is approximately conformal, then the resulting collective
response at a time, τ Qs , in the p + A system will be equal
to the A + A response at the corresponding time. We will
adopt this conformal scaling in what follows and investigate
the attendant consequences.

The preceding estimate for �mfp/L in Eq. (2.4) applies at the
earliest moments while the system is expanding longitudinally.
Specifically, we are considering times of order τ ∼ τo with
Qs � τo � L. A more relevant time scale for the development
of elliptic flow is τ ∼ L. To estimate the size of �mfp/L for
τ ∼ L, we recall the Bjorken result for the decrease in the
initial temperature because of the longitudinal expansion [20],

T (τ ) = To

(τo

τ

)1/3
, (2.5)

where To and τo scale with the saturation momentum, To ∝ Qs

and τo ∝ Q−1
s . Thus, at a time τ ∼ L we have

�mfp

L
∝ 1

T (τ )L
∝ 1

(ToL)2/3
∝ 1

3
√

dN/dy
. (2.6)

This estimate shows that for an approximately conformal fluid,
viscous corrections to elliptic flow scale as (dN/dy)−1/3, and
are again independent of the transverse size provided the
multiplicity is held fixed. This is consistent with the findings
of more complete hydrodynamic simulations, where the
conformal assumptions of this section are only approximately
respected.

III. ELLIPTIC AND TRIANGULAR FLOW

A. Integrated flow coefficients

Because the mean free path to system size is the same in the
two colliding systems, we expect that the integrated response
vn/εn should remain constant as one changes from p + A to
A + A collisions.

We will adopt the independent cluster model to estimate
ε2{2} and ε3{2} in p + A and in A + A [21]. Very recently,
the independent cluster model was used (independently) to
estimate the fluctuations in εn in p + A events [12,18]. In A +
A, the independent cluster model quantitatively reproduces
the results of more sophisticated Glauber models [22]. In
the independent cluster model, Nclust independent pointlike
clusters are drawn from a smooth parent distribution, n̄(x).
As discussed in the previous section, the multiplicity of an
event is proportional to the number of the clusters, and the
fluctuations in the cluster density in the transverse plane,
n(x) = n̄(x) + δn(x), source the anisotropic collective flow.
These fluctuations are assumed to be random such that

〈δn(x)δn( y)〉 = n̄(x)δ(2)(x − y). (3.1)
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The angular brackets denote an average over events with a
fixed number clusters. We note that the current notation for the
independent cluster model follows Ref. [23].

1. Eccentricity and elliptic flow

The eccentricity is defined as

ε2e
i2
2 ≡{r2ei2φs }

{r2} , (3.2)

where {. . .} denotes an average over the transverse plane in a
single event. In A + A collisions, there are two contributions to
the eccentricity. The first contribution is the average ellipticity
of the overlap region in noncentral collisions. This contribution
is parametrized by the standard eccentricity εs , which is the
eccentricity of the smooth parent distribution. The second
contribution comes from the fluctuations in the cluster density,
which can be calculated using the statistics in Eq. (3.1). Using
Eq. (12) of Ref. [21] [see also Eq. (15) of Ref. [23]], the mean
squared eccentricity in A + A collisions is

(ε2{2})2
AA = ε2

s + 〈
δε2

2

〉 + O
(

ε2
s

Nclust

)
+ O

(
1

N2
clust

)
, (3.3)

where fluctuation-driven eccentricity is

〈
δε2

2

〉 = 〈r4〉
Nclust〈r2〉2

. (3.4)

Here the averages are over the radial profile of the parent
distribution, n̄(x). In p + A collisions εs is presumably zero,
and the squared eccentricity is determined only by fluctuations:

(ε2{2})2
pA = 〈

δε2
2

〉 + O
(

1

N2
clust

)
. (3.5)

The value of 〈δε2
2〉 can differ in p + A and A + A collisions

because the spatial distribution of clusters is not the same in
the two systems. However, we do not expect this difference to
be very important in determining v2{2}pPb/v2{2}PbPb because
the relevant parameter (at a fixed number of clusters) is the
square root of a geometric double ratio,√√√√〈

δε2
2

〉
pA〈

δε2
2

〉
AA

=
√

(〈r4〉/〈r2〉2)pA

(〈r4〉/〈r2〉2)AA

. (3.6)

This parameter will always be close to unity for any reasonable
shape. For example, comparing a hard sphere profile n̄(b) ∝√

1 − b2/R2
0 to a Gaussian, one finds√√√√〈

δε2
2

〉
hard−sphere〈

δε2
2

〉
Gaussian

≈ 0.85. (3.7)

Thus, even with somewhat different profiles, the difference in
the fluctuation-driven eccentricities

√〈δε2
2〉 is only 15%. More

importantly, demanding similar eccentricities to 5% accuracy
does not require a fine tuning. Because a Gaussian profile
for the p + A event would arise in any diffusive process,
this profile seems particularly important. In Fig. 1 we have
computed the ratio in Eq. (3.6) for a Gaussian profile and the
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FIG. 1. (Color online) The ratio of fluctuation-driven eccentric-
ities δε2 and δε3, for a Gaussian profile compared to the PHOBOS

Glauber model [25] as a function of Noffline
trk . The precise definition of

these quantities are given in Eqs. (3.6) and (3.12).

PHOBOS Glauber model as a function of Noffline
trk , and the result

is unity to a few percent accuracy. The relation between Noffline
trk

and Npart is from Ref. [24].
In the framework of linear response, elliptic flow is

understood as a collective response to the eccentricity of
the initial geometry such that v2 = k2ε2. The linear response
coefficient k2 depends only on the ratio of the mean free path
to the system size. Therefore, the conformal scaling of Sec. II
predicts that the k2 coefficient is the same in p + A and A + A
collisions at fixed multiplicity. To fairly compare the v2 in
p + A and A + A we should first remove dependence on
the average geometry, and isolate the fluctuation-driven v2

in A + A. This can be achieved by scaling the v2 in A + A by
the appropriate factor

√
ε2{2}2 − ε2

s /ε2{2}, so that√
ε2{2}2 − ε2

s

ε2{2} (v2{2})AA = k2

√〈
δε2

2

〉
AA

, (3.8)

(v2{2})pA = k2

√〈
δε2

2

〉
pA

. (3.9)

It is useful to define a rescaled v2{2} for A + A that isolates
the fluctuations,

(v2{2})PbPb,rscl ≡
√

1 − ε2
s

ε2{2}2
(v2{2})PbPb. (3.10)

We calculated the rescaling factor in Eq. (3.10) with the
PHOBOS Glauber model [25] using the relation between Noffline

trk
and centrality provided by the CMS collaboration [24]. It
should be stressed that this rescaling factor is a nontrivial
function of impact parameter and multiplicity, and that there
are no free parameters. This factor is completely determined
by the Glauber model simulation of the A + A event.

Similar rescalings have been used to explain the difference
between v2{2} and v2{4} as a function of centrality in A+A
collisions [21,26]. Indeed, as in the current analysis, this
difference primarily reflects the relative size of the average
and fluctuating eccentricities [21].

In Fig. 2 we compare the fluctuation-driven part of the
(v2{2})PbPb to (v2{2})pPb. The data are taken from the CMS
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blue circles: v2 2 PbPb, rscl

red triangles: v2 2 pPb
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FIG. 2. (Color online) The integrated v2{2} for PbPb and pPb vs multiplicity from [24]. (Left) Original values. (Right) The fluctuation-
dependent elliptic flow, (v2{2})PbPb,rscl = √

1 − ε2
s /ε2{2}2 (v2{2})PbPb, compared to (v2{2})pPb. The scaling factor is extracted using the PHOBOS

Glauber model [25] in A + A simulations, and is not a fit.

collaboration [24]. The striking agreement between these
curves after this geometric rescaling is a strong indication
that the elliptic flow in p + A stems from the same collective
physics that determines the elliptic flow in A + A. As this
rescaling was motivated by geometry, the response in the
p + A system should also be driven by the fluctuating
geometry. Furthermore, the assumption that the two systems
are related by a conformal rescaling, where the linear response
coefficients are the same at fixed multiplicity, provides a
concise explanation for the similar v2{2} in the two systems.

It is worth emphasizing that to calculate the eccentricity
correction factor,

√
1 − ε2

s /ε2{2}2, we are using the A + A
Glauber model and not the p + A Glauber model. There are
significant uncertainties even in the A + A Glauber model for
these peripheral bins. However, these uncertainties correct a
relatively modest correction factor, and are therefore small
in Fig. 2. The uncertainty in k2 = v2{2}/ε2{2} is larger (see
Fig. 6 of Ref. [27]), but the precise value of k2 is not needed
for this analysis.

2. Triangularity and triangular flow

Similar observations hold for v3{2}. Because the triangu-
larity is produced by the fluctuations in the cluster density and
not the average geometry, the comparison is more direct. We
define the triangularity,

ε3e
i3
3 ≡ {r3ei3φs }

{r2}3/2
, (3.11)

and compute the squared fluctuations of ε3 in p + A and A + A
in the independent cluster model [22,23],

〈
δε2

3

〉 = 〈r6〉
Nclust〈r2〉3

. (3.12)

We have used an r3 weight to define the triangularity. If an r2

weight is used, all fluctuation-driven eccentricities are equal

[23], i.e.,

〈
δε2

2

〉 = 〈
δε2

3

〉 = 〈r4〉
Nclust〈r2〉2

(r2 weight) . (3.13)

The optimal radial weight should be chosen to maximize
the correlation between the flow response and the geometric
predictor [28]. With either weight, the relevant parameter for
determining the ratio of v3 in the two colliding systems is√√√√〈

δε2
3

〉
pA〈

δε2
3

〉
AA

. (3.14)

This will be close to unity for reasonable profiles, though
the deviation from unity is potentially larger when the r3

weight is used. For a Gaussian profile p + A profile (which
seems particularly well motivated), we compare 〈δε2

3 〉gaus to the
nuclear profile in Fig. 1 and the result is unity to within 5%.

Enforcing conformal dynamics on the linear response,
we are led to the conclusion that the triangular flow in
p + A and A + A collisions at a given multiplicity should
be approximately the same,

(v3{2})pA = k3

√〈
δε2

3

〉
pA

, (3.15)

(v3{2})AA = k3

√〈
δε2

3

〉
AA

. (3.16)

Again, the linear response coefficient k3 is constant at fixed
multiplicity. In Fig. 3 we compare the CMS measurements
of v3 for pPb and PbPb collisions [24]. As in the el-
liptic case, the agreement between the v3 measurements
is remarkable. Empirically the ratio of triangular flows is
(v3{2})pPb/(v3{2})PbPb ≈ 0.96. The deviation from unity could
be the result of corrections to the conformal scaling, or to the
difference in the geometries of the colliding systems.

B. Momentum dependence of the flow coefficients

Having provided a simple explanation for the integrated
flow coefficients, which captures the essential physics, we
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FIG. 3. (Color online) The integrated v3{2} for PbPb and pPb vs
multiplicity from [24]. An approximately conformal response leads
to (v3{2})pPb 
 (v3{2})PbPb at fixed multiplicity.

now study the momentum dependence. The conformal scaling
that we discussed in Sec. II, suggests that each dimensionful
observable can be written as the initial temperature Ti ∝ Qs to
the appropriate power, times a dimensionless function of TiL.
TiL is constant at fixed multiplicity and is thus independent
of the colliding system. In particular, we expect the mean

transverse momentum at fixed multiplicity to be larger in
p + A than in A + A, because the p + A system has a smaller
transverse size. The expected increase in p + A of the mean
〈pT 〉 and radial flow was also pointed out in [13], and was
confirmed by the ALICE collaboration [29,30]. In addition,
a dimensional analysis along these lines was recently used to
analyze particle spectra in high multiplicity p + A events [14].

In the small momentum regime pT ∼ 〈pT 〉, the flow coef-
ficients grow linearly with momentum. Using the conformal
scaling, we expect that

vn

εn

= ξn

pT

〈pT 〉 , (3.17)

where the dimensionless slopes ξn depend only on the ratio of
mean free path to system size, and are the same for p + A and
A + A at fixed multiplicity. Starting from the observation that
〈pT 〉 in pPb is roughly 1.25 times higher than in PbPb [29,30],
we will rescale the pT axes of the momentum dependent flow
coefficients (v2{2}(pT ))PbPb,rscl and (v3{2}(pT ))PbPb with the
factor,

κ ≡ 〈pT 〉pPb

〈pT 〉PbPb
≈ 1.25, (3.18)

to compare the dimensionless slopes in the two colliding
systems. Thus, for v2 we expect the following scaling relation

blue circles: v2 2 pT PbPb

red triangles: v2 2 pT pPb
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blue circles: v2 2 pT κ PbPb, rscl

red triangles: v2 2 pT pPb
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FIG. 4. (Color online) A comparison of the momentum dependent v2{2} in pPb and PbPb collisions. (Upper) Original data. (Lower) The
PbPb data is rescaled to isolate the fluctuation-driven part of the elliptic flow as defined in Eq. (3.10). The momentum axis is also scaled by
the conformal scaling factor κ ≈ 1.25, Eq. (3.18). This is a parameter free rescaling. The agreement in the low pT region suggests that elliptic
flow in p + A results from a linear response to the fluctuations of the initial geometry which is conformally related to the A + A response. The
data are from Ref. [24].
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between the pPb and PbPb systems:

(v2{2}(pT ))pPb =
√

1 − ε2
s

ε2{2}2
(v2{2} (pT /κ))PbPb . (3.19)

The original data for v2 and v3 together with this complete
(and parameter free) rescaling is shown in Figs. 4 and 5,
respectively. From the lower panels in Figs. 4 and 5, we see
that the agreement between the dimensionless slopes in the low
pT region is remarkable, and seems to affirm the conformal
rescaling. At higher pT , the v2{2} start to systematically differ.
This difference seems to become larger for lower multiplicities
where nonflow could become significant.

An immediate consequence of the conformal scaling in
Eq. (3.17) is that the breakdown of the linear regime, where
the flow coefficients peak and start to decrease for larger pT ,
should happen at a larger pT for p + A compared to A + A.
By comparing the pPb and PbPb measurements in the upper
panels in Figs. 4 and 5 we can see that the maximum for both
v2{2} and v3{2} is systematically at larger pT in pPb. Rescaling
the pT axis by κ as motivated by the conformal scaling brings
these maxima into alignment.

It would be interesting to extend this analysis to different
particle species. We are assuming that the fully inclusive
v2(pT ) best reflects the conformal dynamics of the initial
state. At freeze-out, the dynamics cannot be strictly conformal
[31], and the presence of additional scales means that different
particle species can receive different viscous corrections [32].

IV. A QUALITATIVE ENERGY LOSS ANALYSIS FOR p + A

In this section we will qualitatively sketch the implications
of the conformal scaling discussed in Sec. II for parton energy
loss. For reviews of energy loss see [33–35]. A hard parton
of energy E, traveling in the medium experiences energy
loss from mainly two sources: collisions in the medium and
medium induced radiation. The collisional energy loss can
be parametrized by the drag coefficient ê, where dE/dt =
−ê. To estimate the medium induced radiation, we will
adopt the Baier-Dokshitzer-Mueller-Peigne-Schiff (BDMPS)
framework [36,37], giving a heuristic review before discussing
the implications for p + A collisions [34].

The underlying physics can be understood as the interplay
among the different scales in the problem: the formation length
�form ∼ ω/k2

⊥, the mean free path �mfp, and the system size
L. The accumulation of transverse momentum squared 〈k2

⊥〉
of the radiated gluons as the parton traverses the medium
is modeled by a random walk in momentum space with
diffusion coefficient q̂, where q̂ = d〈k2

⊥〉/dt . The medium
induced radiation spectrum has several regimes, depending
on the frequency ω of the radiated gluon:

(i) In the Bethe-Heitler regime where ω < q̂ �2
mfp and

�form < �mfp, the radiation spectrum is of order,

ω
dNg

dω dz
∼ αs

�mfp

(
ω < q̂ �2

mfp

)
. (Bethe-Heitler)

The radiation in this soft frequency range can be
neglected in simulations of parton energy loss.

(ii) In the LPM regime where q̂ �2
mfp < ω < q̂ L2 and

�mfp < �form < L, the radiation is depleted by destruc-
tive interference between several subsequent scatter-
ings. Effectively N = �form/�mfp scatterings act like
one scattering center for the induced radiation. This is
the Landau-Pomeranchuk-Migdal (LPM) effect, and
the formation time in this regime should be calculated
self-consistently to take into account the destructive
interference. Because the average k2

⊥ after N collisions
is q̂ �form, we obtain the relation �form ∼ ω/q̂ �form.
Thus, the gluon spectrum in the LPM regime is of
order,

ω
dNg

dωdz
∼ αs

�mfp

1

N
∼ αs

√
q̂

ω(
with q̂ �2

mfp < ω < q̂ L2
)
. (LPM)

(iii) Finally in the deep LPM regime where ω > q̂ L2, the
formation length of the radiation exceeds the size of
the medium �form > L, and the medium acts as a single
scattering center. In this regime the medium induced
radiation spectrum is of order,

ω
d(�Ng)

dω
∼ αs

(
L

�form

)2

∼ αs
(q̂L2)2

ω2

(with ω > q̂ L2), (deep-LPM)

where �Ng = Ng − Nvac
g is the number of gluons

emitted in excess of the vacuum shower.

The relation between the average energy loss �E and the
system size depends on the initial energy of the parton. For
example, for E < q̂ L2 the parton never experiences the deep
LPM regime. In this case, the average energy loss is found by
integrating the appropriate radiation spectrum (LPM) over the
path length and frequency from ω = 0 . . . E:

�E ∼ αs

√
Eq̂ L (for E < q̂ L2). (4.1)

A more energetic parton, with E > q̂ L2, experiences the deep
LPM suppression, and integrating the corresponding radiation
spectrum (deep-LPM) from ω = q̂L2 . . . ∞ yields [34,36,37]

�E ∼ αs q̂L2 (for E > q̂ L2). (4.2)

We can now discuss the implications of the conformal
scaling framework for jet energy loss. Let us denote the
critical energy that separates these two regimes as Ecr = q̂ L2.
The conformal scaling from A + A to p + A predicts that
Ecr,pA = q̂pA L2

pA = κ q̂AA L2
AA where κ = LAA/LpA is the

scaling factor. This scaling of Ecr from p + A to A + A
follows from q̂ ∼ T 3 and the prediction of the conformal
dynamics where TpA = κTAA. Because Ecr,pA > Ecr,AA, the
deep LPM regime (which is associated with small systems)
is achieved later as a function of increasing total parton
energy E for the p + A collisions. This counterintuitive result
occurs because, in addition to the decrease in the system
size, the conformal scaling leads to an increase in q̂. The
increase in q̂ translates into a decrease in the typical formation
length, requiring more energy to reach the transitional point
where the formation length exceeds the system size. The same
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FIG. 5. (Color online) The comparison of the momentum-dependent v3{2} in pPb and PbPb collisions. (Upper) Original data. (Lower) The
momentum axis is scaled by the conformal scaling factor κ ≈ 1.25, Eq. (3.18). This is a parameter free rescaling. The agreement in the low pT

region suggests that the triangular flow in p + A results from a linear response to the fluctuations in the initial geometry which is conformally
related to the A + A response. The data are from Ref. [24].

reasoning also predicts somewhat larger transverse momentum
broadening for jets produced in p + A collisions.

A more quantitative analysis of jet energy loss in p +
A is left for future work. We hope that qualitative (and
counterintuitive) features of the conformal scaling outlined
in this section can survive in a more complete treatment of
parton energy loss.

V. SUMMARY AND DISCUSSION

By analyzing the flow measurements of pPb and PbPb
collisions at the LHC with several physically motivated
rescalings, we provide evidence for a collective response to
the geometry in high multiplicity pPb collisions.

First, we note that once the average ellipticity is scaled
out of the PbPb elliptic flow, the fluctuation-driven integrated
v2{2} in PbPb is the same as in pPb at fixed multiplicity
(Fig. 2). The integrated triangular flows in these two colliding
systems are already equal. It seems to us phenomenologically
untenable to ascribe different physics to the p + A and
A + A flow measurements. Because the rescaling in PbPb
was entirely motivated by linear response and geometry, we
conclude that both the elliptic and triangular flow in pPb
should also be understood as a linear response to initial
geometric fluctuations. Sections II and III A 1 offer a direct
explanation for why the response coefficients and fluctuation-
driven eccentricities in these two systems are similar at fixed
multiplicity.

First, a simple estimate based on approximate conformal
symmetry at high energies shows that the mean free path to
system size in the two systems is constant at fixed multiplicity
(see Sec. II). Thus, the dynamical response of the p + A and
A + A systems are related by a simple conformal rescaling of
the initial temperature and the system size such that �mfp/L ∝
1/(TiL) = constant. The pPb system is smaller, but also hotter,
leading to the same response at fixed multiplicity.

Next we used the independent cluster model to estimate the
eccentricities in both systems. (In PbPb the independent cluster
model reproduces the results of more sophisticated Glauber
models [22].) Assuming that the multiplicity is proportional
to the number of clusters, we find that the ratio of fluctuation-
driven eccentricities in the two colliding systems is determined
by a square root of a geometric double ratio, e.g.,√√√√〈

δε2
2

〉
pA〈

δε2
2

〉
AA

=
√

(〈r4〉/〈r2〉2)pA

(〈r4〉/〈r2〉2)AA

. (5.1)

The importance of this and related formulas is that even
quite different p + A profiles lead to approximately the same√

〈δε2
2〉 and

√
〈δε2

3〉. Without fine tuning the profile it is
reasonable to expect that the fluctuation-driven eccentricities
in the two systems are equal to ∼5% accuracy. For a Gaussian
p + A profile, which arises in any diffusive process and seems
particularly apropos, this double ratio is shown in Fig. 1 and
is close to unity for both the second and third eccentricities.
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The pT dependence of the elliptic and triangular flow
gives additional evidence supporting the conformal scaling
described above. The 〈pT 〉 and the slope of both v2{2}(pT ),
v3{2}(pT ) scale in the same way between pPb and PbPb as
expected from the conformal scaling of Sec. II. Indeed, the
rescalings in Figs. 4 and 5 are essentially parameter free, given
the measured 〈pT 〉 in both colliding systems. The agreement
between the dimensionless slopes in the low pT region in these
figures corroborates the conformal scaling outlined in Sec. II.

Finally, we have outlined several qualitative expectations of
conformal scaling for energy loss. In particular, the finite size
transition in energy loss, from a linear (�E ∝ L) to a quadratic
(�E ∝ L2) length dependence, requires higher energy for
the initial parton in the p + A system. While a quantitative
discussion and simulation of energy loss is left for future
work, the conformal scaling arguments of Sec. IV suggest
that the energy loss and transverse momentum broadening of
jets should be somewhat larger in p + A than in A + A at
the same multiplicity. Because the energy loss in A + A is
fairly mild in these peripheral bins,1 and because preliminary

1See, for example, the 50%–60% centrality bin in Fig. 6 of Ref. [38].

measurements of jet energy loss in p + A are at somewhat low
multiplicity [39], this prediction does not seem in contradiction
with current measurements, which do not indicate energy loss.

In summary, we have provided a concise explanation for
why the angular correlations in pPb and PbPb collisions are
similar—these correlations are the result of an approximately
conformal response to fluctuation-driven eccentricities. It is
important to emphasize that any conformal response to the
geometry will yield similar correlations in the two colliding
systems. However, it is equally important to emphasize
that any conformal dynamics will asymptote to conformal
hydrodynamics in the limit of high multiplicity.
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