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Triangle anomaly in Weyl semimetals
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Weyl semimetals possess massless chiral quasiparticles, and they are thus affected by the triangle anomalies. We
discuss the features of the chiral magnetic and chiral vortical effects specific to Weyl semimetals, and then propose
three phenomena caused by the triangle anomalies in this material: (i) anomaly cooling; (ii) charge transport by
soliton waves as described by Burgers’ equation, and (iii) the shift of the Berezinskii-Kosterlitz-Thouless phase
transition of superfluid vortices coupled to Weyl fermions. In addition, we establish the conditions under which
the chiral magnetic current exists in real materials.
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I. INTRODUCTION

The triangle anomaly is a quantum effect responsible for
the violation of chiral symmetry of charged massless fermions
in the presence of a P- and CP-odd configuration of the
background gauge field [1,2]. A massless Dirac fermion, such
as a (nearly) massless quark in QCD, possesses a left- or
right-handed chirality. These states are described by the left-
and right-handed Weyl spinors giving rise to the U (1)L and
U (1)R chiral symmetries. Fermions with different chiralities
contribute to the triangle anomaly with opposite signs. As
a result, the anomaly is absent for the vector current JV ≡
JL + JR , and the electric charge is conserved. On the other
hand, for the axial current JA ≡ −JL + JR it leads to

∂μJ
μ

A = e2

2π2
�E · �B, (1)

where e is the charge of the fermion; the sum over different
fermion species is implicit here. Note that this is the covariant
form of the anomaly. It will be useful for our purposes to view
the above equation in terms of two separate anomaly equations
for the left- and right-handed chiral currents:

∂μJ
μ

L,R = ∓ e2

4π2
�E · �B. (2)

The triangle anomaly plays an important role in the
chiral dynamics of low-energy QCD, explaining in particular
the π0 → γ γ decay. Recently, it has become clear that
the anomaly also affects the transport and hydrodynamic
macroscopic behavior; much of this work was motivated by the
applications to quark-gluon plasma in a magnetic field [3,4]
produced in heavy-ion collisions. The novel transport phenom-
ena induced by the anomaly include the chiral magnetic effect
(CME) [3–6], the chiral separation effect [7,8], and the chiral
vortical effect (CVE) [6,9–12].

The CME refers to the electric current along an external
magnetic field induced by the chirality imbalance. Because
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the electric current is a vector and the magnetic field is a
pseudovector, the CME is a parity-odd phenomenon. The CVE
is an analogous effect induced by the presence of vorticity and
chirality imbalance, at finite chemical potential. In the context
of condensed-matter physics, chirality emerges in the vicinity
of the band touching points where the quasiparticle dispersion
relation is linear and the quasiparticle is described by the Weyl
spinor. Closely related phenomena have been discussed in
the physics of neutrinos [9], conductors with mirror isomer
symmetry [13,14], primordial electroweak plasma [15], and
quantum wires [16]. Note that the axial anomaly and the
topology of the background gauge field are crucial for the
existence of the chiral magnetic current; without the anomaly,
this current has to vanish in thermal equilibrium. The possible
existence of the CME in Weyl semimetals has been discussed
previously in Refs. [17–21].

For systems that contain charged chiral fermions, the chiral
magnetic (separation) effects dictate the existence of vector
(axial) charge currents along the direction of an external
magnetic field in the presence of the axial (vector) chemical
potential. In the case of the chiral vortical effect, the role of the
magnetic field is played by the vorticity of the fluid. Due to the
topological nature of the triangle anomaly, these new transport
phenomena have been shown to be robust and not modified
by interactions even in the strong-coupling limit [23–25], with
the possible exception [26,27] of the temperature-dependent
∼T 2 term [28,29] in the chiral vortical conductivity.

The persistence of the anomalous charge transport at
strong coupling suggests the possibility of hydrodynamic
formulation, and such formulation was presented in Ref. [12];
see also [30–33]. The absence of contributions to the local
entropy production rate from the (T-even) anomalous terms
has been used to constrain the hydrodynamic formulation
[34]. In heavy-ion collisions, the chiral magnetic and chiral
vortical effects can potentially be separated by measuring
the electric charge and baryon number asymmetries [35,36].
The experimental evidence for the chiral magnetic effect in
heavy-ion collisions has been presented by RHIC [37–39] and
LHC [40–42] experiments.

Recently, it has been realized that the triangle anoma-
lies and the chiral magnetic effect can be realized also
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in a condensed-matter system—a (3+1)-dimensional Weyl
semimetal [17,43,44]. The existence of “substances interme-
diate between metals and dielectrics” with the point touchings
of the valence and conduction bands in the Brillouin zone was
anticipated long ago [45]. In the vicinity of the point touching,
the dispersion relation of the quasiparticles is approximately
linear, as described by the Hamiltonian H = ±vF �σ · �k, where
vF is the Fermi velocity of the quasiparticle, �k is the
momentum in the first Brillouin zone, and �σ are the Pauli
matrices. This Hamiltonian describes massless particles with
positive or negative (depending on the sign) chiralities, e.g.,
neutrinos, and the corresponding wave equation is known
as the Weyl equation, hence the name Weyl semimetal [43].
Weyl semimetals are closely related to two-dimensional (2D)
graphene [46],and 3D topological insulators [47,48], i.e.
materials with a gapped bulk with nonzero Berry fluxes and a
surface supporting gapless edge excitations. Specific realiza-
tions of Weyl semimetals have been proposed, including doped
silver chalcogenides Ag2+δSe and Ag2+δTe [49], pyrochlore
irridates A2Ir2O7 [43], and a multilayer heterostructure com-
posed of identical thin films of a magnetically doped 3D
topological insulator, separated by ordinary-insulator spacer
layers [44].

The triangle anomaly affects Weyl semimetals [48,50,51]
because the fermionic quasiparticles around the Weyl point
in momentum space behave like relativistic chiral fermions
with a velocity that plays the role of an effective speed of
light [17,43,44,52]. However, as observed in Refs. [48,51],
the crux of the triangle anomaly in Weyl semimetals is
the presence of a hedgehog, or a magnetic monopole, in
momentum space, which leads to the emergence of Berry’s
phase [53] (see also Ref. [54]). Berry’s phase, and the
anomaly, thus can affect the systems that are not truly
relativistic.

If the total flux of Berry’s phase is an integer k, it induces
a nonconservation of the charged fermion current through the
triangle anomaly:

∂μJμ = ke2

4π2
�E · �B, (3)

where e is the charge of the quasiparticles. The analogy to (2)
is clear; each Weyl point with a monopole charge k is similar
to a relativistic chiral species with chirality dependent on the
sign of k. The total number of electrons in the system should
be conserved, and the sum of monopole charges k over all
Weyl points must thus be zero.

As the newly discovered transport phenomena mentioned
above rely only on the triangle anomaly relation (3), they
should be present also in Weyl semimetals. This is important
as it would allow us to test the transport phenomena originating
from the triangle anomaly experimentally in a controlled
environment. Our purpose in this paper is to provide a few
examples that may have potential experimental or even practi-
cal importance; see Refs. [55,56] for previous suggestions and
Ref. [57] for a discussion of “chiral electronics” enabled by
Weyl semimetals.

The transport phenomena upon which we base the subse-
quent discussion can be summarized as follows. Each Weyl
point with k total flux of Berry’s phase contributes to the

electromagnetic current through the relation [4,9,12,28,29]

�J = ke2

4π2
μ �B + ke

4π2

(
μ2 + π2

3
T 2

)
�ω, (4)

where e is the electric charge of the fermionic quasiparticles of
the Weyl point, μ is the chemical potential of the Fermi surface
measured from the Weyl point, and T is the temperature. The
magnetic field �B and the vorticity �ω = 1

2
�∇ × �v of the velocity

field �v should be computed in the local rest frame. In addition, it
has been argued that the transport phenomena originating from
the triangle anomaly do not lead to entropy production; they
are nondissipative [34]. In Refs. [34,58,59], the nondissipative
nature of anomalous currents and the resulting time-reversal
invariance of anomalous conductivities have been exploited
to extend the first-order anomalous hydrodynamics [12] to
second order in derivatives and to higher-dimensional cases.
The entropy current originating from the anomaly is given
by [12]

�S = ke

(
1

8π2

μ2

T
+ T

24

)
�B + k

(
1

12π2

μ3

T
+ μT

12

)
�ω, (5)

where the �B and �ω should be computed in the local rest frame.

II. CHIRAL MAGNETIC AND CHIRAL VORTICAL
EFFECTS IN WEYL SEMIMETALS

A. CME and the conditions for its existence

Prior to discussing possible experimental consequences of
the anomaly-induced transport, let us make a few cautionary
remarks on the application of (4) to real Weyl semimetals
where the electron energy spectrum differs from that of free
relativistic chiral fermions.

At first glance it appears that one can have a net CME even
in global equilibrium if the energies of Weyl points are shifted
in an asymmetric way by introducing an inversion-symmetry-
breaking term. Since the energy of each Weyl point, say Ei , is
now shifted away from the Fermi energy εF , it seems naively
that each Weyl point has an effective chiral chemical potential
μi = εF − Ei measured from the origin (at zero temperature)
even in global equilibrium when the bands are filled up to the
Fermi energy εF ; see Fig. 1. If one naively applies (4) using
these chiral chemical potentials μi , a net chiral magnetic effect
would result.

However, the existence of the chiral magnetic current in
global equilibrium (or “vacuum”) at zero temperature would
raise a conceptual issue. Suppose one applies a parallel electric
field in addition to the magnetic field; because of the chiral
magnetic current, there would be net energy input (or output),

dP

dt
= �J · �E ∼ �E · �B, (6)

where the sign can be made negative by choosing �E appro-
priately, that is, one could extract energy out of the system.
However, it should be impossible to extract energy from a
state in global equilibrium (“vacuum”) at zero temperature
since the state is already a minimal energy state by definition;
there is simply no energy available. This argument dictates
the absence of the chiral magnetic current in the equilibrium,
by which we mean the configuration where both left- and
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chiral magnetic current vanishes
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FIG. 1. (Color online) A schematic illustration of the energy dispersion relation of a Weyl semimetal considered in Ref. [17]. The existence
of the chiral magnetic current depends on how the levels are filled as denoted by the shaded regions. Part (a) corresponds to the absence of
the chiral chemical potential, and thus the absence of the chiral magnetic current. In contrast, (b) describes the situation with a nonzero chiral
chemical potential, in which the chiral magnetic current exists.

right-handed sectors are filled up to the same Fermi energy
as shown in Fig. 1(a). The same argument applies not only to
Weyl semimetals, but also to neutrinos in magnetic field [9],
and to conductors with mirror-isomeric structure [13]—in all
of these cases, the chiral magnetic current has been eventually
found to vanish in equilibrium [9,14].

On the contrary, if each chiral sector is filled up to a different
energy level, as shown in Fig. 1(b), then the chiral magnetic
current does not vanish. The magnitude of the chiral magnetic
current is proportional to the difference between the energies
up to which each sector is filled, i.e., the chiral chemical
potential. The existence of the CME current further requires
that the chiral chemical potential can evolve as a function
of time. The chiral magnetic effect discussed in Ref. [4] is
based on the assumption that the chiral chemical potential is
nonzero and is not fixed, i.e., the system is not in the minimal
energy state. The chiral magnetic current is thus powered by
the energy stored in the difference of the Fermi energies of the
left- and right-handed chiral fermions [60]. If this difference
is fixed, the chiral magnetic current cannot exist.

In this section, we will establish the conditions necessary
to realize the chiral magnetic effect in a Weyl semimetal. Our
results indicate that (4) is almost correct in realistic Weyl
semimetal systems, but with some subtle modifications that we
will discuss in detail. With these modifications, we find that
the system in Fig. 1(a) has no net chiral magnetic effect (CME)
in global equilibrium. However, the CME can nevertheless be
realized if each sector is filled up to a different energy, as
shown in Fig. 1(b). An example of the latter configuration
can be realized if the chiral chemical potential is generated
dynamically, e.g., by “chirally charging” the Weyl semimetal
in parallel electric and magnetic fields. Other realizations may
also be possible.

For our purposes, it will be sufficient to use a kinetic ap-
proach developed in Refs. [51,61–65]. In the kinetic approach,
one assumes that the quasiparticle phase-space distributions
are described classically by the Boltzmann equation, and the
collisions between the quasiparticles (Weyl fermions in our
case) are rare. The effect of the chiral anomaly, which is a
quantum phenomenon, is captured by an additional term in
the action of kinetic theory: the Berry phase. For free Weyl

fermions, the Berry phase has the form of a magnetic monopole
[53,66] in momentum space, which can be expressed as

SBerry = −
∫

dt a(p) · ṗ, (7)

where a(p) has the form of a gauge potential of a magnetic
monopole. Specifically, we will rely on the formulation of
Ref. [64]. Each ith Weyl point of Berry monopole charge
ki is assumed to be situated at the energy Ei and the
momentum �ki , so that the dispersion relation around that point
is approximately linear:

E( �p) = Ei ± vi | �p − �ki |. (8)

It is important to recognize that the states with positive energy
[upward from Ei , the branch with the positive sign in Eq. (8)]
feel the Berry phase of charge ki while the states with negative
energy (downward from Ei) feel the opposite charge, −ki .
[It is clear from the example of k = 1 with the Hamiltonian
H = Ei1 + vi �σ · ( �p − �ki).]

Note that we have not introduced any notion of “holes”
or antiparticles; it is an important point that deviates from
the usual discussion of relativistic chiral fermions. In the
context of condensed-matter physics, it is clearly natural as
the fermions in the filled “Dirac sea” are physical electrons.
In the relativistic chiral fermion description, one could treat
the Dirac sea fermions as electrons with negative energy, but
the real difference lies in the fact that one should then subtract
the vacuum (all negative states are occupied) contribution.
This is because the only observable physical effect should
originate from a difference from the vacuum contribution. By
the identity

f (−|E|) = 1 − f̄ (|E|), (9)

where f (E) is the distribution of particles at all energy E ∈
(−∞,+∞) and f̄ (E),E > 0 is the antiparticle distribution,
one can show that this gives the equivalent results to the
antiparticle framework. In our condensed-matter situation, we
can no longer a priori know the results for the “vacuum” (it is
precisely this question that we are addressing now), so treating
both positive and negative branches as electrons will enable us
to avoid confusion.

035142-3
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For the positive branch, the quasielectrons are described by
the action [51,64]

I+ =
∫

dt [p · ẋ + A(x) · ẋ − Ei − vi |p − ki | − a(p) · ṗ],

(10)

where we have the Berry monopole

b ≡ ∇p × a = ki(p − ki)

2|p − ki |3 . (11)

Following the steps in Ref. [64], the equations of motion
become

√
G+ẋ = vi(p − ki)

|p − ki | + kivi

2

B
|p − ki |2 ,

(12)√
G+ṗ = vi

(p − ki) × B
|p − ki | .

Here
√

G+ = (1 + b · B) is the phase-space measure gener-
ated by the Berry phase and reflects the effect of the anomaly,
and the anomaly-induced current is

j+ =
∫

d3p

(2π )3
f (E)

√
Gẋ

= B
ki

4π2

∫
f (E)

vi

|p − ki |2 |p − ki |2d|p − ki |

= B
ki

4π2

∫
f (E)vid|p − ki | = B

ki

4π2

∫ ∞

Ei

f (E)dE, (13)

where in the last equality, we use E = Ei + vi |p − ki |. The
distribution function f (E) in global equilibrium is

f (E) = 1

1 + eβ(E−εF )
= − 1

β

∂

∂E
log(1 + e−β(E−εF )), (14)

but the above formula is applicable to more general out-of-
equilibrium situations as well [64]. In the E integration, the
upper limit in our situation is not infinite, and it has a physical
cutoff. However, this cutoff is not of significance at low enough
temperature as these high-energy states are rarely occupied,
f (E) � 1. The above result is a reproduction of previous
computations in Refs. [51,64]. We emphasize that although we
assume a specific linear dispersion relation to derive the result,
the final expression in Eq. (13) can be shown to be universal
and is not sensitive to the detailed shape of the dispersion
relation.

The small region around the origin where
√

G = (1 + b ·
B) � 0 is the quantum region [64] where the kinetic approach
breaks down. Its size scales linearly in B so it gives rise to a
small correction (if any) to (13) of higher orders in B in the
small-B limit that we assume.

The interesting part is the negative energy branch (note
again that we do not have antiparticles or holes). The action
describing these quasiparticles is

I− =
∫

dt [p · ẋ + A(x) · ẋ − Ei + vi |p − ki | + a(p) · ṗ],

(15)

where we have changed signs in two places compared to (10);
the momentum-dependent part of the energy according to the

negative branch and the Berry phase are reversed as discussed
before, with the same definition of b as in Eq. (11). Similar
steps lead to the equations of motion,

√
G−ẋ = −vi(p − ki)

|p − ki | + kivi

2

B
|p − ki |2 ,

(16)√
G−ṗ = −vi

(p − ki) × B
|p − ki | ,

where
√

G− = (1 − b · B). Note that the term in the first
equation that is linear in B which leads to the anomaly-induced
current has the same sign as in the positive branch. The
contribution to the current from the negative branch then
reads

j− =
∫

d3p

(2π )3
f (E)

√
G−ẋ

= B
ki

4π2

∫
f (E)

vi

|p − ki |2 |p − ki |2d|p − ki |

= B
ki

4π2

∫
f (E)vid|p − ki | = B

ki

4π2

∫ Ei

E0

f (E)dE, (17)

where in the last equation, we use E = Ei − vi |p − ki |,
and E0 is the physical cutoff of the bottom of the filled
“Dirac sea” that one can see in Fig. 1. At the energy E0,
it is intuitively clear that the states from the k = 1 Weyl
point meet the states from the other k = −1 Weyl point,
and become nonchiral “massive” Dirac states for which the
anomaly-induced transport disappears; see, e.g., [19]. The
cutoff is therefore physical. Since f (E) is order 1 around
E0, this cutoff is important. It is natural to assign the common
cutoff E0 to the two Weyl points of k = ±1. The distribution
f (E) in equilibrium is the same as that in Eq. (14) that applies
to all energies, irrespective of branches.

Expressions (17) with (13) have the same form and differ
only by the distribution function f (E). To see that this is a
correct result, let us check it for the case of relativistic chiral
fermions. The negative branch in that case is the “Dirac sea”
of negative energy which should be filled in the vacuum state.
Using the identity

f (−|E|) = 1 − f̄ (|E|), (18)

where f̄ is the antiparticle distribution, and subtracting 1 from
the above precisely corresponds to subtracting the vacuum
contribution since fvac(−|E|) = 1, the vacuum-subtracted
negative branch contribution reads

B
ki

4π2

∫ 0

−∞
[−f̄ (|E|)]dE = −B

ki

4π2

∫ ∞

0
f̄ (E)dE, (19)

which is the usual negative contribution from antiparticles.
In our condensed-matter case, there is nothing to subtract

since the “Dirac sea” is physical; the “vacuum” contribution
is very important to keep. Summing (17) and (13), the total
result simplifies as

j = j+ + j− = B
ki

4π2

∫ ∞

E0

f (E)dE, (20)

which is a single integral of f (E) from the bottom of the
filled sea to the high-energy cutoff. Note that there is no
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dependence left on the energy Ei of the Weyl point since
f (E) in equilibrium does not depend on it. Using (14), we can
evaluate the expression above in equilibrium as

ji = B
ki

4π2

1

β
log(1 + e−β(E0−εF )), (21)

with the zero-temperature limit

ji(T = 0) = B
ki

4π2
(εF − E0). (22)

To summarize this discussion, the chemical potential that
enters the formula (4) should be measured from the bottom of
the filled sea E0, not from the Weyl points. It is clear from the
above result that after summing over all Weyl points, the net
chiral magnetic current vanishes in global equilibrium where
each Weyl point is filled up to the same Fermi energy, since∑

i ki = 0. This is true at any temperature. The above formula
also indicates that the chiral magnetic conductivity depends
nontrivially on the temperature. This is understandable since
we have a physical cutoff (E0) for the bottom of the filled sea.

At this point, we would like to elaborate on the existence of
the chiral magnetic effect in more detail. In particular, there are
several studies that have found a nonvanishing chiral magnetic
current in Weyl semimetals. For example, in Refs. [17–19,22]
a nonzero chiral magnetic current arises in an effective theory
where there is an effective background axion field with a
nonzero gradient bμ, identified by the energy-momentum
separation of the Weyl points. In our kinetic theory approach,
the chiral magnetic current also exists, but only provided that
left- and right-handed sectors are filled up to different energies
as depicted in Fig. 1(b). In this case, each node contributes to
the current by an amount

ji = B
ki

4π2
(Ei − E0), (23)

leading to the net current

j = j+ + j− = B
4π2

(E2 − E1). (24)

B. Chiral vortical effect

We can repeat similar steps for the derivation of the chiral
vortical effect, following the suggestion in Ref. [64] that the
rotation can be included as a Coriolis force in the rotating
frame; the equation for ṗ becomes

ṗ = ±2vi |p − ki | �ω × ẋ = 2(E − Ei) �ω × ẋ, (25)

where ± is for positive and negative branches, respectively, and
the last equation is true irrespective of branches. We restrict
our attention to the case in which �ω and ki are parallel so that
Weyl points remain static in the rotating frame. The equation
above implies that the magnetic field B can be replaced by [64]

B → 2 �ω(E − Ei), (26)

which leads to the final result

ji = �ω ki

2π2

∫ ∞

E0

dE(E − Ei)f (E), (27)

with the zero-temperature limit

ji = �ω ki

4π2
(εF − E0)(εF + E0 − 2Ei). (28)

After summing over all Weyl points, the net current is

jtotal = −�ω
∑

i kiEi

2π2
(εF − E0), (29)

which may not be zero even in equilibrium. In this case, the
necessary energy when we apply a parallel electric field can
be provided by the external rotation, so the argument that we
gave at the beginning of the section does not apply.

III. ANOMALY COOLING OF WEYL SEMIMETAL

The quantum anomaly in Weyl semimetals leads to an
interesting phenomenon—it appears that one may use the
combination of rotation and external electric field to cool this
material. To see this, let us use the setup explained in Fig. 2.
We rotate the Weyl semimetal in a two-dimensional plane, say
(x1,x2), with angular velocity ω, so that �ω = ωx̂3. From (4),
this induces the current along the x3 direction as

J 3 = eω

4π2

∑
i

ki

(
μ2

i + π2

3
T 2

)
, (30)

where we sum over all Weyl points of the system labeled by
index i. We then apply an external electric field along the x3

direction �E = Ex̂3, and the total power the system absorbs

FIG. 2. (Color online) Anomaly cooling of Weyl semimetal by
rotation and electric field. The semimetal could be either cooled or
heated depending on the relative orientation of electric field and the
angular momentum.
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will be given by

dE
dt

= �J · �E = eωE

4π2

∑
i

ki

(
μ2

i + π2

3
T 2

)
, (31)

which can be either positive or negative depending on the sign
of ωE. If it is negative, the system will be cooled down.

More intuitively, we can understand the cooling in terms
of the entropy current (5). We will now show that there exists
an entropy flow directed radially outward from the system
�S = Sr r̂ , and since no net entropy is generated by the anomaly-
induced transport, the entropy of any bounded region around
the center should decrease and the system should indeed cool
down. For a finite-sized system with radius R, the entropy
extracted from the cooled central region will accumulate
around the boundary r = R, causing a temperature gradient
between the center and the boundary, and a compensating
heat flow will develop. The system will eventually reach
equilibrium with a stationary temperature gradient along the
radial direction.

Having a constant �ω = ωx̂3 means that the fluid at a position
(x1,x2) = rr̂ has a tangential velocity (counterclockwise)
�v = rωt̂ , where r̂ and t̂ are radial and tangential unit vectors,
respectively. In the local rest frame of that fluid cell, the fluid
experiences a radial magnetic field,

�B = �E × �v = −ωErr̂, (32)

via Lorentz transformation of field strengths. By (5) this gives
a radial entropy flow,

�S = e
∑

i

ki

(
1

8π2

μ2
i

T
+ T

24

)

�B = −eωEr
∑

i

ki

(
1

8π2

μ2
i

T
+ T

24

)
r̂ , (33)

with divergence given by

�∇ · �S = 1

r
∂r (rSr ) = −2eωE

∑
i

ki

(
1

8π2

μ2
i

T
+ T

24

)

= − eωE

4π2T

∑
i

ki

(
μ2

i + π2

3
T 2

)
. (34)

Since no net entropy should be produced, we have dS
dt

+ �∇ ·
�S = 0, where S is the entropy density of the fluid; this tells us
that the local entropy density changes as

dS

dt
= −�∇ · �S = eωE

4π2T

∑
i

ki

(
μ2

i + π2

3
T 2

)
. (35)

The relation dE = T dS precisely reproduces the previous
power formula (31) from the above.

Using the fact that
∑

i ki = 0 for Weyl semimetals, the
T 2 term in the cooling rate drops in the final result, and one
needs an asymmetric distribution of μi’s to get a nonvanishing
effect. This can be achieved by shifting the energy of Weyl
points, as discussed previously. Note also that applying the
electric field would induce the ordinary current σ �E, where σ

is the conductivity, which leads to a dissipative heating of the

system,

dE
dt

= σE2, (36)

which is quadratic in E. For the anomaly cooling, which is
linear in E, to dominate over this dissipative heating, one
therefore needs a smaller E and a larger ω.

IV. CHARGE TRANSPORT IN ROTATING “HOT” WEYL
SEMIMETAL AND BURGERS’ EQUATION

Let us consider the long-wavelength collective charge
transport in a rotating Weyl semimetal as shown in Fig. 3.
Our starting point is again (4) with a fixed angular momentum
�ω = ωx̂3,

J 3 = ke

4π2

(
μ2 + π2

3
T 2

)
ω. (37)

Although the total current is the sum over all Weyl points, one
can treat contributions from each Weyl point independently,
to a good approximation; anomaly-induced collective charge
transports from each Weyl point behave independently of other
Weyl points. In more explicit terms, one can introduce U (1)i
charge symmetry for each ith Weyl point separately, and these
U (1)i’s are approximately conserved. Each U (1)i has its own
triangle anomaly with coefficient ki , and its anomaly-induced
current �Ji is given by (4) with k → ki and μ → μi . Note
that this is a nontrivial statement because ordinarily the
quasiparticles from different Weyl points interact with each
other, and this interaction affects their normal (nonanoma-
lous) transport properties. What protects the independence of

FIG. 3. (Color online) Anomaly-induced solitary wave of charge
governed by Burgers’ equation.
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anomaly-induced transports between different Weyl points is
the triangle anomaly of U (1)iU (1)jU (1)k , which is not zero
only if i = j = k.

An analogy to a massless quark in QCD may be helpful:
there we have two Weyl points, one left-handed (k = −1)
and the other right-handed (k = 1). The left-handed fermions
interact strongly with the right-handed fermions in general,
and their normal transport properties are not independent at
all. Yet, their anomaly-induced transports are independent:

�JL,R = ∓ e

4π2
μL,R

�B ∓ 1

4π2

(
μ2

L,R + π2

3
T 2

)
�ω. (38)

This feature is dictated by the two separate triangle anomalies
of U (1)3

L and U (1)3
R without crossing. This independency of

collective charge transports of two chiralities is the essence
of chiral magnetic waves proposed in Refs. [67,68]. Weak
residual interactions between these two chiral collective
transports (analogs of sphalerons in the case of QCD) lead
to diffusive chiral magnetic waves.

Let us therefore restrict ourselves to a single Weyl point,
omitting i, where the anomaly-induced current at fixed ω is

J 3 = ke

4π2

(
μ2 + π2

3
T 2

)
ω − D∂3ρ + O(∂2), (39)

where we include the usual diffusion term in the derivative
expansion up to first order with diffusion coefficient D. We
focus on the regime μ

T
� 1 of a “hot” Weyl semimetal. In this

case, μ is approximately proportional to the charge density ρ

by

μ ≈ χ−1ρ + O(ρ3), (40)

with susceptibility χ , so that the (39) becomes

J 3 = ke

4π2

(
χ−2ρ2 + π2

3
T 2

)
ω − D∂3ρ + O(∂2,ρ3). (41)

Using this in the charge conservation equation ∂tρ + ∂3J
3 = 0

leads to

∂tρ + Cρ∂xρ − D∂2
xρ = 0, x ≡ x3, (42)

with C = keω
2π2χ2 . This is Burgers’ equation, a prototypical

integrable partial differential equation in 1 + 1 dimensions.
It is completely soluble given the initial data, and many
analytic solutions are known. Shock-wave-type solutions are
not acceptable in our problem because of our small-amplitude
approximation (40), but solitary traveling waves with finite
amplitudes are relevant. One can tune the constant C by
varying ω.

The total electromagnetic current is given by the sum over
each Weyl point contribution

∑
i

�Ji . In practice, one may
perturb the system by injecting a net electromagnetic charge,
and it may be hard to excite charge fluctuations of each U (1)i
individually; one generally excites a superposition of all ith
charges. Since each ith fluctuation is propagating indepen-
dently, one would observe a splitting of charge transport. This
is very interesting as it would allow us to study the properties
of each Weyl point separately; charge transport is a prism for
probing different Weyl points in a Weyl semimetal.

V. QUANTIZED VORTICES IN A WEYL SUPERFLUID

Let us now move to a slightly different topic and consider
a superfluid system which couples to Weyl fermions as in
Refs. [69,70]. This type of configuration was studied in
Refs. [71,72] as a phenomenological description of quark
matter at finite isospin chemical potential. Furthermore, it was
recently observed that Weyl fermion excitations can be realized
in ultracold fermionic gases in the presence of a Zeeman field
and Rashba spin-orbit coupling [73,74].

We start with the following Lagrangian:

L = ψ̄iγ μ(Dμ + i∂μφ)ψ + 1
2 |Dμχ |2. (43)

Here χ = |χ |eiφ is the bosonic field which condenses and
forms the superfluid, and Dμ = ∂μ − ieAμ. The phase φ is
related with the superfluid velocity as follows:

uμ = 1

m
∂μφ. (44)

Here m is the scale that fixes the magnitude of uμ. The
superfluid has vortex line configurations which are of the form

χ = f (x⊥)
x1 + ix2

r
, (45)

where �x⊥ = (x1,x2) denotes the transverse plane where the
fluid rotates and r =

√
x2

1 + x2
2 . The vortex is centered at

the origin x1 = x2 = 0 and is elongated along a line in the
x3 direction. The function f (r) is constant at large values
of r , f (∞) ≡ √

ρ(T )/m, and vanishes at the center r = 0.
The constant value is associated with the superfluid density
ρ(T ) which decreases with temperature and vanishes above
the critical temperature Tc. The distance r0 in which f (r)
changes from 0 to its constant value is the radius of the core
of the vortex. We will assume that r0 is smaller than any
macroscopic scale in our problem.

The identification (44) leads to the Onsager-Feynman
quantization

∫
( �∇⊥φ) · d�l = 2πn, n = 0,±1,±2, . . . . (46)

The integer n is the winding number of the vortex and is thus
a topological invariant. From now on we will focus on a single
vortex with unit vorticity n = 1 since a vortex with a multiple
winding number is unstable against decaying into multiple
vortices with unit winding.

Assuming that the distance between the two vortices is
much larger than the core radius (r12 � r0) and neglecting the
contribution from the cores, the interaction energy between
the two vortices with the same vorticity is given by

EK = 2Lρ

∫
d2x⊥ �u1.�u2 ≈ L

2πρ

m2
ln(r12/r0), (47)

where L is the size of the sample along the vortex line. The
chemical potential for fermions can be realized as a shift in
the superfluid phase,

φ → φ + μt. (48)
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In Ref. [69] it was shown that the existence of a chemical po-
tential induces a charge current through the triangle anomaly,

J 3 = μ

2π
. (49)

Note that we are considering Weyl fermions, and therefore
there is no distinction between the axial current and the charge
current since there is only a single anomalous U(1) symmetry
in our problem. This current is localized inside the vortex
core, which can be treated as pointlike in the x1x2 plane. The
existence of the anomalous current will modify the interaction
between the vortices since the two currents repel each other.
The energy of this current-current interaction has the same
form as the vortex-vortex interaction

Ecc = L
J 3

1 J 3
2

2π
ln

(
r12

r0

)
= μ2

8π3
ln(r12/r0). (50)

As a result, the total interaction energy between the two
vortices is modified as

E

L
=

(
2πρ

m2
+ μ2

8π3

)
ln

(
r12

r0

)
. (51)

This anomalous contribution to the vortex dynamics has
interesting consequences. For example, consider a very thin
sample, such as a thin film that can be treated effectively as two-
dimensional. In this case, above a certain temperature TBKT, the
creation of vortices becomes energetically favorable. This is
the famous Berezinskii-Kosterlitz-Thouless (BKT) transition
[75]. We now show that the existence of the anomalous
current modifies the BKT transition. Following the standard
argument, let us calculate the free energy of a single vortex
configuration

F = E − T S, (52)

where S is the entropy. If we assume that the vortices are
distributed in the two-dimensional plane of the thin film
of area R2 much larger than the vortex size, we can have
R2/r2

0 possible configurations and the entropy is simply
S = ln(R2/r2

0 ). The energy E has two terms, namely the
kinetic term due to the velocity field and the magnetic energy
induced by the anomalous current:

E = 1

2
L

∫
d2x⊥(�u2 + �B2) = πL

∫ R

r0

r dr

(
ρ

r2m2
+ μ2

4π2r2

)

≈
(

Lπρ

m2
+ Lμ2

4π3

)
ln(R/r0). (53)

We again neglected the contribution of the core which is valid
in the thermodynamic limit R � r0. The free energy in this
limit is

F =
(

Lπρ

m2
+ Lμ2

4π3
− 2T

)
ln(R/r0). (54)

The phase transition occurs when the free energy changes
sign, and when it is negative it is preferable to create vortices.
The phase transition temperature is

TBKT = Lπ

2m2
ρ(TBKT) + Lμ2

8π3
. (55)

The first term is the well known expression for the temperature
of the BKT phase transition, whereas the second term is the
modification due to the anomaly. It is possible to consider
the full dynamics by taking into account the screening
of the vortices and solving the gap equation as in Ref. [75].
In the thermodynamic limit, the vortex interaction (51) will
be made stronger by the additional anomalous term with the
same spatial dependence, therefore the effect of the anomaly
can be included in a straightforward way.

VI. SUMMARY

Let us briefly summarize our results as follows:
(i) The existence of the chiral magnetic effect (CME) in

Weyl semimetals depends on how the left- and right-handed
sectors are filled. We found that if each sector is filled up
to the same Fermi energy, the CME vanishes. However, if
each sector is filled up to a different energy, and the resulting
chiral chemical potential can evolve in time, the current
exists; see Fig. 1. The latter configuration can be realized,
for example, when the initial chiral chemical potential is
induced dynamically, e.g., by parallel electric and magnetic
fields. Furthermore, the current also exists in the presence of
time-dependent magnetic fields, in agreement with [22]. The
chiral magnetic current is given by (21) and by (22) for the
case of zero temperature.

(ii) Contrary to the chiral magnetic effect, the chiral vortical
effect in Weyl semimetals can exist even in equilibrium,
with time-independent chiral chemical potentials. The chiral
vortical current is given by (27) and by (29) for the case of
zero temperature.

(iii) The chiral vortical effect in a rotating Weyl semimetal
leads to a very interesting phenomenon, namely “anomaly
cooling,” when the temperature of the material with a nonzero
chiral chemical potential can be reduced as a result of rotation.
The local entropy density changes according to (35).

(iv) The anomaly-induced transport of charge in rotating
“hot” (with chemical potential much smaller than temperature)
Weyl semimetals is described by the integrable Burgers’
equation (42) that admits solitary wave solutions.

(v) The anomaly induces a new term in the interaction
energy of quantized vortices in a superfluid coupled to Weyl
fermions. This shifts the energy of the BKT phase transition
according to (55).

Quantum anomalies are among the most subtle and beauti-
ful effects in relativistic field theory. Weyl semimetals open an
intriguing possibility to study the effects of quantum anomalies
experimentally, in a controlled setting. Such studies are of
fundamental interest and may lead to practical applications as
well.
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