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Four-dimensional asymptotically free large N gauge theories compactified on S3R × R have a weakly
coupled confining regime when R is small compared to the strong scale. We compute the vacuum energy of
a variety of confining large N nonsupersymmetric gauge theories in this calculable regime, where the
vacuum energy can be thought of as the S3 Casimir energy. The N ¼ ∞ renormalized vacuum energy turns
out to vanish in the class of theories we have examined. This matches an implication of a recently observed
temperature-reflection symmetry of such systems.

DOI: 10.1103/PhysRevLett.114.251604 PACS numbers: 11.15.Pg

Introduction.—In typical quantum field theories (QFTs)
with a mass gapM0 > 0, the massM of the heaviest particle
species sets the natural size of the vacuum energy V ∼M.
The standard model contains a variety of gapped sectors, and
the electron contribution to the vacuum energy density
Oðm4

eÞ ∼ 6 × 10−2 MeV4 is already much larger than the
value ∼1 × 10−36 MeV4 inferred from the accelerating
expansion of the Universe [1]. The apparent need to fine-
tune V against M is the cosmological constant problem.
In gapped QFTs the only known mechanism that

naturally gives V ¼ 0 is linearly realized supersymmetry
(SUSY). But if the standard model is the low energy limit
of a SUSY QFT, SUSY must be broken at some scale
μSUSY ≫ me (see, e.g., Ref. [2]), and the cosmological
constant problem remains severe. This strongly motivates a
search for other mechanisms that would force V to vanish.
If a QFT has a finite number of particle species, it seems

difficult to escape the conclusion that V ∼M, but what sets
the scale of V if there are an infinite number of species with
increasing masses [3]? This is the situation in weakly
coupled string theories and in confining large N gauge
theories, which are believed to have a dual string description
[5]. In this Letter we compute the vacuum energy of a variety
of nonsupersymmetric SUðNÞ gauge theories at N ¼ ∞,
including pure Yang-Mills theory. The calculations are done
using a compactification of spacetime to S3R × S1β, where
these theories develop an analytically tractable confining
regime [6] if the S3 radius R is much smaller than the strong
scale 1=Λ, and if the temperature T ¼ 1=β is below a critical
value. In this regime V is simply the Casimir energy EC of
the theory on S3 ×R. It was recently observed [7] that
temperature-reflection (T-reflection) symmetry predicts that
the vacuum energy associated with the N ¼ ∞ spectrum of
these confining theories should vanish.
Our calculations confirm this prediction. Since the result

holds in a variety of large N gauge theories, it seems

unlikely to be an accident. It is possible that confining
gauge theories have emergent symmetries in the large N
limit which force V to vanish.
T reflection.—For QFTs on S3R × S1β, the spectrum of

single-particle excitations is discrete, and in our cases
of interest, the partition function can be written as

− logZðβÞ ¼ −V0βV þ
X∞
�;n¼1

�
� β

2
d�n ω�

n

�

þ
X∞
�;n¼1

½�d�n logð1 ∓ e−βω
�
n Þ�; ð1Þ

where V0 is the bare vacuum energy, V is the spatial
volume, and ω�

n , d�n are the energies and degeneracies of
bosonic (þ) and fermionic (−) states. We study theories
where ω�

n depends only on the scale R. The sum in the
upper line is UV divergent and must be regulated and
renormalized to obtain a physical expression. The renor-
malized contribution explicitly depends on R and is the
Casimir energy. In Ref. [7] we noted that one can also
formally define the quantity Zð−βÞ by sending β → −β
in Eq. (1):

− logZð−βÞ ¼ V0βV þ logð−1Þ
X∞
n¼1

dþn

þ
X∞
�;n¼1

�
� β

2
d�n ω�

n

�

þ
X∞
�;n¼1

½�d�n logð1 ∓ e−βω
�
n Þ�: ð2Þ

Of course, Zð−βÞ also has UV divergences, and requires
the same type of regularization and renormalization as
ZðβÞ. With renormalized expressions for both ZðβÞ and
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Zð−βÞ in hand, it can be shown that there is a T-reflection
symmetry [7]

ZðβÞ ¼ eiγZð−βÞ; ð3Þ
where γ ¼ −π finite½Pn¼1d

þ
n � [8], provided that the

R-independent part of the vacuum energy from V0 is set
to zero. Hence, Eq. (3) holds only if the renormalized
vacuum energy V coincides with the Casimir energy EC ¼
1=2

P
�;nd

�
n ω

�
n . For instance (see, e.g., Ref. [9]), on

S3R × S1β, Eq. (3) holds for a real conformally coupled
scalar field when V ¼ 1=ð240RÞ and γ ¼ 0, while for
an Abelian vector field, T reflection holds with V ¼
11=ð120RÞ and γ ¼ π.
Non-Abelian gauge theories on S3R × S1β.—We analyze

SUðNÞ gauge theories with nF adjoint Majorana fermions
and nS real adjoint scalars on S3R × S1β. For moderate nF, nS,
these theories are asymptotically free with a strong scale Λ,
and are weakly coupled if ΛR ≪ 1. Indeed, in the ΛR → 0
limit where we will work, the ’t Hooft coupling λ goes to 0,
and these theories develop a conformal symmetry at the
microscopic level. However, no matter how small λ
becomes, the Gauss law constraint on the compact mani-
fold S3 only allows color-singlet operators to be part of the
space of finite-energy states, and these operators must
include one or more color traces.
As explained in detail in Ref. [6] (see also Refs. [10,11]),

in the large N limit such theories have at least two distinct
phases. In particular, there is a low temperature confining
phase, dominated by the dynamics of an infinite number of
stable single-trace hadronic states, and a mass gap of order
1=R. The confined phase has a free energy scaling as N0

and unbroken center symmetry.
In this Letter, we focus on the weakly coupled large N

confining phase, since we wish to compute the vacuum
energy of the theory on S3 ×R. The Casimir energy is
dictated by the energies and degeneracies of the states of
the theory, which are in turn encoded within the thermo-
dynamic partition function, ZðβÞ ¼ Tre−βH. We shall use
the spectrum of states in the N ¼ ∞ limit to compute the
Casimir energy. Before proceeding to the vacuum energy
computation, we review and expand on the remarks in
Ref. [7] concerning the T-reflection properties of ZðβÞ in
N ¼ ∞ confining gauge theories on S3 × S1.
In large N confining phases, the physical excitations are

created by single-trace operators which generate the physical
single-particle states. Hence, the thermodynamic partition
function associated with the spectrum of excitations on
S3 ×R is given byEq. (1)with the spectral dataω�

n , d�n taken
from the single-trace thermodynamic partition function [6],

−ZSTðβÞ ¼
X∞
k¼1

φðkÞ
k

log ½1 − zVðxkÞ − nSzSðxkÞ

þð−1ÞknFzFðxkÞ� ≕
X∞
n¼1

dnyn; ð4Þ

where φðkÞ is the Euler totient function, x ¼ e−β=R,
y ¼ x1=2, states with even (odd) labels n are bosons
(fermions), and

zSðxÞ ¼
x2 þ x
ð1 − xÞ3 ; zFðxÞ ¼

4x3=2

ð1 − xÞ3 ;

zVðxÞ ¼
6x2 − 2x3

ð1 − xÞ3

are the so-called single-letter partition functions for, respec-
tively, the conformally coupled real scalar, the Majorana
fermion, and Maxwell vector fields on S3.
To relate this to Eq. (1), which includes contributions

from multiparticle states, recall that for bosonic systems
with integer-spaced levels we can write

− logZð0ÞðβÞ ¼
X∞
n¼1

dn logð1 − xnÞ ¼
X∞
n¼1

X∞
k¼1

dn
k
xkn

¼
X∞
k¼1

ZSPðxkÞ
k

; ð5Þ

where ZSPðβÞ is the single-particle partition function, with
a similar final expression for a fermionic system. Zð0ÞðβÞ
is only a part of the expression (1) for ZðβÞ, since it leaves
out the Casimir vacuum energy. Hence, unless the
Casimir energy happens to be zero, Zð0ÞðβÞ will not enjoy
T-reflection symmetry. Indeed, for most QFTs, Zð0ÞðβÞ is
not T-reflection symmetric, and the Casimir energy must be
included in ZðβÞ to satisfy T reflection, as can be checked
for a free scalar field theory on S3R × S1β.
Nevertheless, consider the N ¼ ∞ confined-phase gauge

theory partition function without the vacuum energy
contribution [6]:

ZGðβÞ ≔ exp

�
−
X∞
k¼1

ZSTðxkÞ
k

�

¼
Y∞
n¼1

1

1 − zVðxkÞ − nSzSðxkÞ þ ð−1ÞknFzFðxkÞ
:

ð6Þ

Since zSð1=xÞ ¼ −zSðxÞ, zFð1=xÞ ¼ −zFðxÞ, and
1 − zVð1=xÞ ¼ −½1 − zVðxÞ�, we see that

ZGðβÞ ¼ eiπ=2ZGð−βÞ; ð7Þ

with the prefactor obtained from a zeta-function regulariza-

tion of ð−1Þ
P

∞
n¼1

1. So ZGðβÞ enjoys T-reflection symmetry.
This is consistent with the general argument for T-reflection
symmetry after Eq. (1) only if the renormalized Casimir
vacuum energy of the N ¼ ∞ theory vanishes.
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Vacuum energy.—To check the T-reflection prediction,
we calculate the Casimir vacuum energy EC:

EC ¼ 1

2

X∞
n¼1

dnωn; ð8Þ

with Rωn ¼ n=2 and dn are drawn from Eq. (4). The sum is
divergent, and must be regularized and renormalized to find
the physical value of EC. In many QFTs the simplest way to
do this [12] is to observe that EC is encoded in the behavior
of the physical single-particle partition function, see, e.g.,
Ref. [14], which for us is ZST, through

C½y� ¼
�
1

4R
y
d
dy

ZSTðy2Þ
�
¼ 1

2

X∞
n¼1

dnωnyn; ð9Þ

where y ¼ e−1=ðμRÞ, and μ is the UV cutoff. Normally, in the
simple class of theories we work with, which have no
microscopic mass terms, EC would be given by the finite
part of C½y → 1�; see, e.g., Ref. [15]. This amounts to
defining EC via a natural analytic continuation, in the sense
that it involves a regularization that does not break any of
the symmetries of the theory (apart from conformal
symmetry, which is broken by any regulator). Indeed,
Eq. (9) can be viewed as a spectral heat kernel regulari-
zation of EC, since it involves the damping factor e−ωn=μ,
with μ ¼ 1=β playing the role of the UV cutoff, and taking
the finite part of the expression amounts to using a spectral
zeta-function regularization and renormalization prescrip-
tion as discussed in, e.g., Ref. [15].
If we were dealing with a system where dn → qnp once

n ≫ 1 for some fixed p, q ∈ Rþ, then C½y� would be well
defined for any y ∈ ½0; 1Þ, and we would expect to find

C½y → 1� ¼ c4R3μ4 þ c2Rμ2 þ EC þOðμ1Þ; ð10Þ

with c4, c2 ≠ 0, and the leading power of μ is tied to the
spacetime dimension d ¼ 4. The μ4 divergence can be
canceled by a standard “vacuum energy” counterterm,
μ4

R
d4x

ffiffiffi
g

p
, since

R
S3 d

3x ∼ R3, while the μ2 divergence
can be canceled by a “gravitational constant” counterterm,
μ2

R
d4x

ffiffiffi
g

p
R, since the Ricci scalar curvature R ¼ 6=R2

for S3R; see, e.g., Ref. [15]. In our case, however, the
thermodynamic degeneracy factors dn from Eq. (4) are
associated with confining large N gauge theories, and it is
known that dn grows exponentially with n, dn ∼ pnqhn,
n ≫ 1, with p, q, h ∈ Rþ and h > 1. This is the famous
Hagedorn scaling of the density of states. Consequently, if
we keep μ ∈ Rþ, ZSTðμÞ is only well defined for μ < μH.
Physically, if the temperature is increased past TH, there is a
Hagedorn instability, and a consequent phase transition to a
deconfined phase. So at first glance it is not clear how to
use Eq. (9) to compute EC for confining large N theories.
To circumnavigate this roadblock, note that we do not

have to take the y → 1 limit of ZST along the real axis. We

can approach y ¼ 1 along any smooth path in the complex
plane that does not go through any singularities. The
singularities of ZST½y� are set by the roots of

p½y� ¼ 1 − zVðy2Þ � nFzFðy2Þ − nSzSðy2Þ: ð11Þ

If p½y� has a root yH ∈ ½0; 1�, then the logarithms in
Eq. (4) (which depend on p½yk�) become singular at y ¼
yH; y

1=2
H ; y1=3H ;…, and Eq. (4) ceases to be well defined for

y ≥ yH. Such roots are present for any integer nF, nS ≥ 0,
which is the origin of the Hagedorn instability. Figure 1
shows the location of the singularities of the Yang-Mills
theory (left) and Nf ¼ 1, Ns ¼ 2 (right) single-trace
partition functions as red dots, with the blue curve
illustrating an example of one of the many approach
trajectories to y ¼ 1 along which there are no singularities.
Armed with this observation, we can evaluate EC numeri-
cally or analytically.
Analytic computation.—The first step is to isolate the

part that diverges as y → 1 from the rest in ydZST=dy in
Eq. (9),

y
∂
∂y log ½1 − zVðy2mÞ þ nFð−1ÞmzFðy2mÞ − nSzSðy2mÞ�

¼ 2my2m½3y4m − 2ðnS þ 3Þy2m þ 6nFð−yÞm − nS − 3�
y6m − ð3þ nSÞy4m þ 4nFð−yÞ3m − ð3þ nSÞy2m þ 1

þ 6my2m

1 − y2m
¼ 3mþ 6my2m

1 − y2m
; ð12Þ

where in the last step we substituted y ¼ 1 in the finite
term. This substitution should be understood as a limit in
the complex plane that avoids any singularities along its
path, as described above. By using Eqs. (4), (9), and (12),
we obtain the formally divergent expression

C ¼ −
3

4R

�X∞
m¼1

φðmÞ þ 2lim
β→0

X∞
m¼1

φðmÞy2m
1 − y2m

�
: ð13Þ

After regulating the first term using a spectral zeta function
via the identity

P∞
m¼1 φðmÞm−s ¼ ζðs − 1Þ=ζðsÞ, and

regulating the second using the Lambert series,P∞
m¼1 φðmÞqm=ð1 − qmÞ ¼ q=ð1 − qÞ2, we obtain

C ¼ −
1

4R

�
3ζð−1Þ
ζð0Þ þ 6R2

β2
−
1

2

�
¼ −

3R
2β2

ð14Þ

up to Oðβ2Þ. The divergent contribution is canceled by aR
d4x

ffiffiffi
g

p
R counterterm. Absence of a finite term in

Eq. (14) means that the renormalized EC is zero. A similar
calculation gives γ ¼ −3π=2. At first glance, splitting terms
in Eq. (9) and regularizing them individually might seem
worrisome, but since we have used a spectral zeta function
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and the cutoff functions depend only on the spectrum
throughout, these manipulations are justified.
Numerical computation.—To compute EC numerically

we examine the ϵ → ∞ limit of ZST½e−e−iαϵ�, where ϵ ¼
ðμRÞ−1 with a cutoff kmax on the k sum in Eq. (4). One can
use any α for which singularities are avoided for large μ.
Our final result for EC, which turns out to be zero, is
independent of regularization parameters such as α.
Increasing kmax allows us to probe ZST at higher μ,
and the physical result for EC is obtained via an

extrapolation of finite kmax results to kmax → ∞. As
illustrated by Fig. 2, a plot of ϵ2j∂ϵZSTj reveals that as
ϵ → 0, ZST ≈ c1=ϵ2 þ ðfiniteÞ. This leads to the interesting
result that its leading divergence as μ → ∞ scales as μ2,
rather than μ4 as one might have expected from Eq. (10)
[16]. Hence, only a μ2

R
d4x

ffiffiffi
g

p
R counterterm is necessary

to renormalize the vacuum energy of the N ¼ ∞ theory, in
contrast to generic quantum field theories, which also
require μ4

R
d4x

ffiffiffi
g

p
counterterms.

More precisely, our numerical results imply that at small
ϵ, ZSTðϵÞ approaches the form ZSTðϵÞ ¼ c1=ϵþ c2 þ c3ϵþ
Oðϵ2Þ. For instance, the kmax ¼ 102 data in Table I, using
α ¼ π=4, results from a least-squares fit on the range
ϵ ∈ ½0.06; 0.15�, with step size 10−3, and has a root-
mean-square error for the real and imaginary parts of
ZST½e−e−iαϵ� of 5 × 10−7 and 1 × 10−7, respectively.
Comparison to the earlier sections reveals that
c2 ¼ −γ=π, while c3 ¼ −2ECR. Working at small ϵ, we
performed numerical least-squares fits of ZSTðϵÞ to this
asymptotic form, with smaller ϵ values becoming acces-
sible for larger kmax. Table I summarizes our extracted

FIG. 2 (color online). Visualization of Eq. (9) for pure N ¼ ∞
Yang-Mills theory as a function of the UV cutoff ϵ ¼ ðμRÞ−1
such that y ¼ e−e

−iαϵ, for kmax ¼ 500 (solid red curve) and kmax ¼
100 (dashed blue curve), with fixed α ¼ π=4. The finiteness of
ϵ2∂ϵZST as ϵ → 0 implies that in the N ¼ ∞ theory the leading
divergence in the vacuum energy density calculation is μ2, rather
than the μ4 familiar from generic 4D QFTs. The deviation from
linearity at very large μ is due to the finiteness of kmax.

TABLE I. Fit results for EC and γ for pure Yang-Mills theory.

kmax γ=π − ð−3=2Þ ECR

102 ð2.22 − 0.34iÞ × 10−2 ð−5.14þ 0.56iÞ × 10−2

103 ð1.37þ 0.59iÞ × 10−4 ð−1.46 − 0.69iÞ × 10−3

104 ð−2.90 − 4.09iÞ × 10−6 ð0.86þ 1.49iÞ × 10−4

5 × 105 ð1.00 − 2.08iÞ × 10−7 ð0.75þ 3.81iÞ × 10−5

FIG. 1 (color online). Structure of singularities (red dots) coming from the first 45 terms in Eq. (4) in the large N confining-phase
partition functions of gauge theories with adjoint matter on S3 × S1, in the complex plane for y ¼ e−β=ð2RÞ. The blue curve is an example
of a path from y ¼ 0 to y ¼ 1 that does not pass through any singularities. Left: Yang Mills theory (nF ¼ 0; nS ¼ 0). Right: Gauge
theory with nF ¼ 1, nS ¼ 2.
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values of γ and EC for the example of pure Yang-Mills
theory, with α ¼ π=4 held fixed. These results are con-
sistent with our analytic calculations.
We have checked that the analytic results for EC and γ

are also reproduced numerically for theories with Nf ¼ 0,
Ns ≥ 0. We have not succeeded in getting stable numerical
results for EC once Nf ≥ 1, so for this subclass of theories
our conclusions rely on our two analytic arguments.
Conclusions.—The confining-phase Casimir vacuum

energy in nonsupersymmetric large N gauge theories with
adjoint matter turns out to be zero. This result cannot be
attributed to cancellations between bosons and fermions,
since it holds even in Yang-Mills theory, which has a purely
bosonic spectrum. Since we find a zero vacuum energy in a
variety of examples, it is unlikely to be an accident. It
appears that there is a mechanism other than SUSY that can
make vacuum energies vanish, at least in a class of N ¼ ∞
gauge theories, and consequently also in their string duals.
Obviously, the most pressing task suggested by our

results is to understand them in terms of some symmetry
principle. This may involve some novel emergent large N
symmetry of confined phases of gauge theories, or some
previously unrecognized N ¼ ∞ consequence of an
already known symmetry, such as center symmetry. It will
be valuable to gather further clues by generalizing the
analysis and to explicitly compute 1=N corrections to the
vacuum energy. Depending on how broadly the results
generalize, it is possible that they may find phenomeno-
logical applications. It is important to see whether the
vacuum energy continues to vanish if additional scales are
introduced into the problem, for instance, by working with
a squashed S3, and to understand the consequences of
including contributions from other matter field representa-
tions. Finally, we note that there may be some relations
between our results and the recent observation that the S3 ×
S1 Casimir energy vanishes in noninteracting conformal
higher-spin theories [14].
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