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Abstract: The Nekrasov-Shatashvili limit for the low-energy behavior of N = 2 and

N = 2∗ supersymmetric SU(2) gauge theories is encoded in the spectrum of the Mathieu

and Lamé equations, respectively. This correspondence is usually expressed via an all-

orders Bohr-Sommerfeld relation, but this neglects non-perturbative effects, the nature of

which is very different in the electric, magnetic and dyonic regions. In the gauge theory

dyonic region the spectral expansions are divergent, and indeed are not Borel-summable, so

they are more properly described by resurgent trans-series in which perturbative and non-

perturbative effects are deeply entwined. In the gauge theory electric region the spectral

expansions are convergent, but nevertheless there are non-perturbative effects due to poles

in the expansion coefficients, and which we associate with worldline instantons. This

provides a concrete analog of a phenomenon found recently by Drukker, Mariño and Putrov

in the large N expansion of the ABJM matrix model, in which non-perturbative effects are

related to complex space-time instantons. In this paper we study how these very different

regimes arise from an exact WKB analysis, and join smoothly through the magnetic region.

This approach also leads to a simple proof of a resurgence relation found recently by Dunne

and Ünsal, showing that for these spectral systems all non-perturbative effects are subtly

encoded in perturbation theory, and identifies this with the Picard-Fuchs equation for the

quantized elliptic curve.
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1 Introduction

In this paper we revisit the vacuum structure of N = 2 supersymmetric SU(2) Yang-Mills

theories using the resurgence formalism that unifies perturbative and non-perturbative

physics1 [1–15]. The N = 2 supersymmetric SU(2) Yang-Mills theory possesses a rich

vacuum structure. The space of gauge inequivalent vacua, the moduli space, is a manifold

1Here, perturbative and non-perturbative refers to the expansion in the Nekrasov deformation parameter

of the gauge theory, not the gauge coupling.
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parametrized by the scalar condensate u = 〈Tr Φ2〉. In their seminal work, Seiberg and Wit-

ten showed that this manifold is precisely the moduli space of genus-one Riemann surfaces

(i.e. tori) and the dynamics of the low energy effective theory can be formulated in a geomet-

ric language in the terms of elliptic curves [16–23]. A further conceptual and computational

breakthrough came with the introduction of the Nekrasov partition function [24], and the

subsequent direct relation to integrable models and the Bethe ansatz [25–28]. Remarkably,

the prepotential in the Nekrasov-Shatashvili limit is encoded in the spectra of certain states

in certain simple Schrödinger systems through the monodromy and exact WKB properties

of differential equations [30–45]. The moduli parameter u is directly identified with the

eigenvalues of these Schrödinger systems, and the scalar (and dual scalar) field expectation

values are identified with actions and dual actions in an all-orders WKB analysis.

In this paper we extend this approach to show that there are additional non-

perturbative aspects of this relation that reflect the physics of the non-perturbatively small

gaps and bands in the Schrödinger spectra. These spectra have three distinct physical re-

gions, and these can be explicitly associated with the three physical regimes, electric,

dyonic and magnetic, of the supersymmetric (SUSY) gauge theory. The interplay of per-

turbation theory and non-perturbative physics is different in each region. The dyonic

region is characterized by divergent perturbative expansions described by resurgent trans-

series [11, 12, 46–48] that systematically unify perturbative and non-perturbative physics;

the electric region has convergent perturbative expansions but there are nevertheless non-

perturbative effects associated with poles of the expansion coefficients. (This provides a

concrete analog of a phenomenon found recently by Drukker, Mariño and Putrov [49, 50]

in the large N expansion of the ABJM matrix model, in which non-perturbative effects are

related to complex space-time instantons, and which were subsequently related to poles in

the ’t Hooft expansion coefficients [51, 52].) The magnetic region is a cross-over region in

which non-perturbative effects are large, and in fact the spectral bands and gaps are of equal

width. This correspondence between the Nekrasov-Shatashvili limit and monodromies of

spectral problems also provides a simple proof of a surprising resurgence relation found

by Dunne and Ünsal in the spectra of certain quantum systems, which shows that all

non-perturbative effects are subtly encoded in perturbation theory [11, 12].

An elementary but significant observation is that the energy eigenvalue, u, for the

Schrödinger systems should be viewed as a function of two variables, the coupling ~ and

also the eigenvalue level label N : u = u(N, ~). For a uniform analysis valid throughout

the entire spectrum, it is natural to define a “’t Hooft parameter”,2

λ ≡ N~ (1.1)

and consider different limits of the two parameters, including a double-scaling limit. The

usual analyses of divergent perturbative expansions [11, 12, 46, 47, 85], in the ~→ 0 limit,

and their associated resurgent trans-series representations, are implicitly restricted to a

2Note that our N is not Nc. In this paper we are discussing SU(2) gauge theory. The role of Nc (or the

N of the matrix model) is played in this context by the level number N . It is also possible to introduce yet

another parameter, Nc, from the SU(Nc) Toda system, as in [31, 32], but this is not done in the current

paper.
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particular non-uniform limit in which the eigenvalue level number N is small, N � 1
~ ,

corresponding to states with energy well below the energy barrier. More generally, the

perturbative expression for the N th energy eigenvalue has the form

u(N, ~) = u(N,λ) =
∞∑
n=0

N2−2nFn(λ) =
∞∑
n=0

~2n−2F̃n(λ) (1.2)

which is analogous to the genus expansion of the free energy for a matrix model or gauge

theory system [6]. We show that there are in fact non-perturbative corrections to this

expression, of the form e−N/λ for small λ, but of the form e−2N lnλ for large λ (see (2.30)).

Moreover, in this large λ regime the perturbative expansions are convergent, but the per-

turbative coefficients have poles that are responsible for the non-perturbative splittings.

This can be compared with recent results concerning non-perturbative contributions to

matrix models associated with the ABJM free energy [49–54], where in the large N limit

there are extra non-perturbative terms of the form e−N/
√
λ [λ is the ’t Hooft coupling], and

these extra terms are related to poles of the expansion coefficients [51–54].

We first review some basic facts from the SUSY gauge theory side [16–22] of the

correspondence and set our notation, in order to make the precise identification between the

gauge theory quantities and the corresponding spectral quantities. The vacuum expectation

values of the scalar field and its dual partner, a0(u) and aD0 (u), correspond to the two

independent cycles on the torus given as

a0(u) =

∮
γ1

µ ≡
√

2

π

∫ π

0

√
u− Λ2 cosφdφ (1.3)

aD0 (u) =

∮
γ2

µ ≡
√

2

π

∫ cos−1(u/Λ2)

0

√
u− Λ2 cosφdφ (1.4)

where Λ is the dynamically generated scale, and γ1, γ2 are integration cycles discussed in

detail below, in section 3. In this form a0(u) and aD0 correspond to lowest order WKB

cycles for the Mathieu system, hence the subscripts “0” [18]. The information about the

BPS states of the theory is also contained in these cycles, where the central charge and

mass of a BPS state are given as

Zqe,qm(u) = qea0(u) + qma
D
0 (u) , Mqe,qm =

√
2 |qea0(u) + qma

D
0 (u)| . (1.5)

Here qe and qm are integers that denote the electric and magnetic charge of the state.

There are three singular points in the moduli space where one or both of the cycles

acquire branch points. They are u → ∞, u = Λ2 and u = −Λ2. Around these points

on the moduli space the low energy theory is described by weakly coupled massive Z

bosons, almost massless magnetic monopoles and almost massless dyons, respectively. For

the rest of the paper we will refer to the local neighborhoods around these points as the

electric, magnetic and dyonic regions, respectively. In general, there are two separate

sectors in the moduli space with different particle spectra. In one sector, the spectrum

of the theory consists of Z bosons and an infinite tower of dyonic tower with charges

±(qe, 1). In the other, it consists of magnetic monopoles with charge ±(0, 1), and dyons

– 3 –
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with ±(1,±1). These two regions are separated by a closed curve, Im[aD0 /a0] = 0, called

the curve of marginal stability, where the BPS states with higher charges can decay into

monopoles and dyons. This curve is approximately an ellipse around u = 0 and contains

the points u = ±Λ2.

Another important object for the low energy effective theory is the prepotential, F0(a0),

which is a holomorphic function whose derivatives are

∂F0

∂a0
= aD0 ,

∂2F0

∂a2
0

=
θYM (a0)

2π
+ i

4π

g2
YM (a0)

. (1.6)

where θYM and gYM are the theta parameter and the coupling constant (at the scale a0) of

the gauge theory. In the electric region where a0 � Λ, the prepotential has the following

semiclassical expansion:

F0(a0) = Fclass.
0 (a0) + Fpert.

0 (a0) + F inst.
0 (a0)

=
1

2
τ0a

2
0 + i

a2
0

2π
log

(
a2

0

Λ2

)
+

a2
0

2πi

∞∑
k=1

c0,k

(
Λ

a0

)4k

(1.7)

The first two terms in this expansion are the classical and one-loop contributions, and

the last term is the sum over non-perturbative k-instanton corrections.3 The first few

terms of the instanton expansion calculated via standard field theory methods agree with

the extraction of the coefficients from the Seiberg- Witten solution. For example, for the

N = 2 SUSY SU(2) gauge theory, the instanton expansion in (1.7) is

F inst.
0 (a0) =

Λ4

8πia2
0

+
5Λ8

256πia6
0

+
3Λ12

256πia10
0

+
1469Λ16

231πia14
0

+ . . .

= =
a2

0

2πi

∞∑
k=1

c0,k

(
Λ

a0

)4k

. (1.8)

However beyond the two-instanton level, the direct quantum field theory methods become

computationally very difficult.

An alternative way to calculate the instanton sum is through localization [24–27]. In

this approach, a two-parameter generalization of the prepotential, F(a|ε1, ε2), is intro-

duced. The parameters characterize certain SUSY preserving space-time deformations.

The prepotential of the deformed theory is calculable via localization technique and one

obtains the Seiberg-Witten prepotential F0(a) in the limit

F0(a) = lim
ε1,ε2→0

F(a|ε1, ε2) . (1.9)

In this paper we will focus on the Nekrasov-Shatashvili limit [25–27], a particular one

parameter deformation of the gauge theory with ε1 ≡ ~, and ε2 = 0. We denote the

3A comment here concerning terminology: throughout the paper, we use the word “instanton” to describe

two different objects: (i) the BPST instantons that appear in the 4d gauge theory; (ii) the quantum

mechanical instantons that appear in the quantum mechanical description of the deformed gauge theory.

The distinction should be apparent within the context of the discussion, and for the bulk of the paper it

will mostly refer to (ii).
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prepotential in this limit as

FNS(a, ~) = lim
ε2→0

F(a|ε1 = ~, ε2)

= Fclass.(a, ~) + Fpert.(a, ~) + F inst.(a, ~)

=
∞∑
n=0

~2nFn(a) . (1.10)

Continuing the example (1.8) of N = 2 SUSY SU(2) gauge theory, the expansions for the

perturbative and instanton contributions are

F inst.(a, ~) = F inst.
0 (a) +

~2

2πi

(
Λ4

16a4
+

21Λ8

256a8
+ . . .

)
+

~4

2πi

(
Λ4

64a6
+

219Λ8

2048a10
+

1495Λ12

3072a14
. . .

)
+ . . .

Fclass.(a, ~) + Fpert.(a, ~) = (quadratic poly. in a)− a2

2πi
log

a2

Λ2

− ~2

48πi
log

a2

2Λ2
+ ~2

∞∑
n=1

d2n

(
~
a

)2n

(1.11)

In the Nekrasov-Shatashvili limit, there is a direct correspondence between the gauge

theory and integrable models [25–28], and also with 0+1 dimensional (i.e. quantum me-

chanical) Sine-Gordon theory for SU(2) N = 2 SUSY gauge theory, and Lamé theory for

SU(2) N = 2∗ SUSY gauge theory, a model with a massive hypermultiplet in the adjoint

representation [30–44]. In the limit where the mass of the hypermultiplet, m, is zero, the

N = 2∗ theory becomes N = 4 theory, while at large mass it reduces back to the N = 2

theory. In particular, the gauge theory moduli parameter, u, is encoded in the energy

eigenvalue of the quantum mechanical (QM) system described by the time independent

Schrödinger equation

N = 2 : −~2

2

d2ψ

dx2
+ cos(x)ψ = uψ (1.12)

N = 2∗ : −~2

2

d2ψ

dx2
+

1

8

(
m2 − ~2

4

)
P
(
x

2
+
iπK′

K
; τ

)
ψ = uψ (1.13)

where P is the Weierstrass elliptic function. Some minor rescaling is required [as discussed

in section 6.2] to have a smooth decoupling limit in which the N = 2∗ theory reduces to the

N = 2 theory, taking m2 → ∞ limit, combined with vanishing elliptic parameter k2 → 0,

such that m2k2 is finite.

Furthermore, at nonzero ~, the periods (1.3), (1.4) generalize to the Bohr-Sommerfeld

integrals of the QM system [31, 32]. They can be expressed formally as all orders

WKB expansions:

a(u, ~) =
∞∑
n=0

~2n an(u) , aD(u, ~) =
∞∑
n=0

~2n aDn (u) . (1.14)
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One recovers the Seiberg-Witten solution in the continuum limit obtained from ~ = 0,

the leading order WKB approximation to (1.14). However, this is only part of the story,

as these Bohr-Sommerfeld expressions (1.14) give only the locations of the bands or gaps.

There is also important spectral information in the non-perturbative widths of bands and

gaps. This information is connected to the perturbative information in quite different ways

in different parts of the spectrum, corresponding to different semiclassical behavior for the

different regions of the ’t Hooft parameter λ. Using the direct correspondence, we can

associate this with different physical behavior in the corresponding SUSY gauge theory.

The relation between the Nekrasov-Shatashvili limit and exact quantization conditions

of quantum mechanical systems has also been discussed recently in [43, 44], from the per-

spective of holomorphic β-ensembles and the associated quantum geometry [55, 56]. Here

we follow a complementary approach, building our analysis on elementary WKB meth-

ods, treated uniformly across the entire spectrum. This relation has also been formulated

in terms of Whitham dynamics [45] applied to exact quantization conditions for complex

quantum mechanical systems. Another recent connection between monodromies and quan-

tum spectral problems arises in the study of the statistical mechanics of Coulomb gases [57].

Indeed, even in simple zero-dimensional models, monodromy and resurgence are important

for connecting strong and weak coupling [58].

In this paper we build a unified WKB analysis that spans all regions of the spectrum,

using all-orders exact WKB analysis [59–68]. In section 2 we review basic properties of the

Mathieu spectrum, and its relation to the Nekrasov partition function in the Nekrasov-

Shatashvili limit. Section 3 contains the uniform all-orders WKB analysis. In section 4

we describe a physical analog of the transition between different spectral regions, in terms

of the transition between tunneling and multi-photon pair production in the Schwinger

effect [69–75]. In section 5 we discuss a Picard-Fuchs interpretation that explains the

significance of resurgence, and also show that this SUSY gauge theory perspective in terms

of the Nekrasov-Shatashvili limit yields a simple proof of the recently found Dunne-Ünsal

relation that connects the fluctuations about the perturbative vacuum with the fluctuations

about the one-instanton sector, and with all higher multi-instanton sectors [11, 12]. The

Lamé system is discussed in section 6, by means of a complementary approach to the large

λ region, based on the Gelfand-Dikii expansion of the resolvent. We end with a summary

and comments about future work.

2 Mathieu equation and SU(2) N = 2 SUSY gauge theory

2.1 Mathieu equation: notation and basic spectral properties

In this section we review relevant facts about the spectrum of the Mathieu equation [76, 78–

80], translated into notation that makes explicit the relation to the Nekrasov partition

function. The standard textbook form of the Mathieu equation is (http://dlmf.nist.

gov/28):

ψ′′ + (A− 2Q cos(2z))ψ = 0 −→ −~2

2

d2ψ

dx2
+ Λ2 cos(x)ψ = uψ (2.1)

– 6 –
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Figure 1. The band spectrum of the Mathieu equation, expressing the eigenvalue u as a function of

the parameter ~, as in (2.1). This eigenvalue u will be identified with the scalar condensate moduli

parameter in the SUSY gauge theory. The bands are shaded in grey, with the lower edges of each

band shown as a solid (blue) line, and the top edge of each band as a dashed (red) line. At small

~, the bands are exponentially narrow, and the band location follows the linear behavior in (2.8).

At large ~ the gaps are exponentially narrow, and the gap location follows the quadratic behavior

in (2.23). The top and bottom of the potential, at u = ±1, are shown as dotted lines. Notice

the smooth transition between exponentially narrow bands (shaded) at small ~, and exponentially

narrow gaps (unshaded) at large ~. This transition occurs at the top of the potential, where u = 1,

shown as a straight line. Note that in the vicinity of the barrier top, the bands and gaps are of

equal width, and are not exponentially narrow, as discussed section 3.3.

(We use capital letters A and Q, rather than the conventional lower-case ones, as the

symbols a and q have special meaning in the gauge theory discussion). We thus make the

identifications:

Q =
4Λ2

~2
, A =

8u

~2
(2.2)

We will mostly set the scale Λ = 1 in what follows, re-introducing it where necessary by

simple dimensional scaling arguments.

We also make explicit comparison with the work of Zinn-Justin and Jentschura [46, 47]

(see also [11, 12]), who used a different scaling:(
−1

2

d2

dx2
+

1

8g
sin2(2

√
g x)

)
ψ = EZJJ ψ

−→
(
−(16g)2

2

d2

dx2
+ cos(x)

)
ψ = (16g EZJJ − 1)ψ (2.3)
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ℏ

2

4

6

8

E(ℏ)

Figure 2. Another view of the band spectrum of the Mathieu equation, expressed here in terms of

the rescaled eigenvalue E, as in (2.4), and with the scale Λ = 1. The rescaled eigenvalue E is to be

compared with the normalizations in [11, 12, 46, 47]. The transition region between exponentially

narrow bands (small ~) and exponentially narrow gaps (large ~) occurs at the top of the potential,

where E = 2/~, as shown as a dotted line. Note that in the vicinity of the barrier top, the bands

and gaps are of equal width, and are not exponentially small.

Thus, we identify (note: we flipped the sign of cos(x) by a simple half-period shift)

~ = 16 g , u = −1 + 16 g EZJJ = −1 + ~EZJJ (2.4)

Because of the direct identification of the rescaled eigenvalue u with the SUSY gauge theory

scalar condensate, we will describe the Mathieu spectrum in terms of this eigenvalue u,

with conversions to A or E made using the above re-scalings (2.2), (2.3), (2.4).

The exact Bloch spectral condition, or Floquet analysis [76, 78, 79], can be expressed

in terms of two independent solutions, ψ1(z;u, ~) and ψ2(z;u, ~), normalized at z = 0 as:[
ψ1(0;u, ~) ψ2(0;u, ~)

ψ′1(0;u, ~) ψ′2(0;u, ~)

]
=

[
1 0

0 1

]
. (2.5)

The Bloch boundary condition, ψ(z + π) = eiθ ψ(z), can then be written in compact form

in terms of ψ1(π;u, ~) evaluated one half period away from the normalization point:

cos (θ) = ψ1(π;u, ~) (2.6)

Equation (2.6) is the “exact quantization condition”, implicitly expressing the eigen-

value u in terms of ~ [and therefore E, or A, in terms of g, or Q, using the re-

scalings (2.2), (2.3), (2.4)], for each Bloch parameter θ. The band/gap edges correspond to

– 8 –
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Figure 3. Three different spectral regimes for the Mathieu equation: (i) far above the barrier,

where u � 1, and N~ � 1; (ii) barrier top region, where u ∼ 1, and N~ ∼ 1; (iii) deep inside the

wells, where u ∼ −1, and N~� 1. In gauge theory language, these are the “electric”, “magnetic”

and “dyonic” regions, respectively, as shown in the figure.

θ being an integer multiple of π. However the exact quantization condition (2.6) is of lim-

ited practical use unless we have an explicit expression for the normalized Mathieu function

ψ1. Concrete approximations for the eigenvalues can be obtained from the exact quantiza-

tion condition by making expansions of the Mathieu functions in terms of other functions,

such as trigonometric or Hermite functions [78–80]. Different expansions are suitable for

different regions in the spectrum, as is familiar from elementary solid state physics. Deep

inside the wells, we use the tight-binding approximation in terms of ‘atomic’ states bound

in the wells, while far above the barrier we use the ‘neary-free-electron model’ [81].

The spectrum of the Mathieu equation consists of an infinite sequence of bands and

gaps, as shown in figures 1 and 2. In figures 1 and 2, we see the transition from exponentially

narrow bands low in the spectrum, to exponentially narrow gaps higher in the spectrum.

The cross-over occurs near the top of the potential, where u ∼ 1. In fact, this transition

occurs when N~ ∼ 8
π , as discussed in section 3.3. In this transition region the bands and

gaps are of equal width, and neither is exponentially narrow. In figure 1 we see a transition

from narrow bands, with locations approximately linear in N and ~, to narrow gaps, with

locations approximately quadratic in N and ~. Figure 2 illustrates the same behavior, in

terms of the rescaled energy eigenvalue E = (u + 1)/~, which emphasizes the transition

from harmonic oscillator behavior at small ~, to particle-on-a-circle behavior at large ~.

There are clearly three interesting spectral regimes, which we identify with three in-

teresting physical regions of the gauge theory, as shown in figure 3:

• dyonic: deep inside potential wells: u ∼ −1, N~� 1, exponentially narrow bands

• magnetic: near the barrier top: u ∼ +1, N~ ∼ 1, bands and gaps of equal width

• electric: high above barrier top: u� 1, N~� 1, exponentially narrow gaps

– 9 –
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In terms of the “ ’t Hooft coupling” (1.1), λ ≡ N ~, we can consider the energy

eigenvalue as a function of N and ~, or N and λ:

u(N, ~) = u(N,λ) (2.7)

The semiclassical limit, ~ → 0, with λ fixed, requires N → ∞; but we still have three

different regions, where λ� 1, λ ∼ 1, or λ� 1. (In fact, we show later that the cross-over

region is at λ ∼ 8
π ). A uniform analysis, valid for all λ, therefore permits access to all

regions of the spectrum. For example, the small λ region can be interpreted as ~→ 0, with

N fixed, which therefore gives information about the weak-coupling expansion for low-lying

energy levels with N � 1
~ . On the other hand, the large λ region gives information about

the strong-coupling expansion for low-lying modes, with N fixed and ~� 1
N .

There is an interesting inversion of the meaning of strong and weak coupling. In gauge

theory language, the electric region is weakly coupled, while the dyonic region is strongly

coupled. On the other hand, in quantum mechanical language in the scaling (2.3) of [46, 47],

in terms of the coupling g, the situation is reversed.

2.2 Dyonic region: resurgent trans-series expansions, deep inside the wells

In this λ� 1 regime, which is weak-coupling in the QM sense but strongly-coupled in the

gauge theory sense, the perturbative expansions for the energy levels are divergent. The

formal perturbative expansion reads (http://dlmf.nist.gov/28.8.E1), translated into

our notation:

u(N, ~) ∼ −1 + ~
[
N +

1

2

]
− ~2

16

[(
N +

1

2

)2

+
1

4

]
− ~3

162

[(
N +

1

2

)3

+
3

4

(
N +

1

2

)]

− ~4

163

[
5

2

(
N +

1

2

)4

+
17

4

(
N +

1

2

)2

+
9

32

]

− ~5

164

[
33

4

(
N +

1

2

)5

+
205

8

(
N +

1

2

)3

+
405

64

(
N +

1

2

)]
− . . . (2.8)

This perturbative expression (2.8) can be derived in several ways. Straightforward

Rayleigh-Schrödinger perturbation theory about the bottom of each well leads to the char-

acteristic harmonic oscillator form, u(N, ~) ∼ −1 + ~
[
N + 1

2

]
+ . . . , plus perturbative

corrections. Alternatively, this perturbative expansion (2.8) can be derived from the inver-

sion of an all-orders-WKB Bohr-Sommerfeld relation [11, 12, 31, 32, 46, 47], as explained

in detail below in section 3.1: see eqs. (3.21)–(3.28).

For fixed level number N , with N � 1/~, the expansions for E ≡ u+1
~ are factorially

divergent and non-alternating, as series in ~ [11, 12, 46, 47]:

E(N, g) =

∞∑
n=0

cn(N)~n , cn(N) ∼ − 22N

π16n+2N+1

Γ(n+ 2N + 1)

(N !)2
(2.9)

These perturbative expansions are therefore non-Borel-summable, and so are incomplete

on their own, and should be extended to real, unambiguous trans-series expansions [11, 12,

– 10 –
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46, 47]:

u(N, ~) =
∞∑
n=0

∞∑
k=0

k−1∑
l=0

cnkl(N) ~n
[

exp
(
−8

~
)

~N−1/2

]k [
ln

(
−1

~

)]l
(2.10)

The trans-series is an expansion in terms of instanton factors, each multiplied by

fluctuations, and also by powers of logarithms due to quasi-zero modes coming from

instanton/anti-instanton interactions [82–84]. Note that these log terms first appear at

the 2-instanton level. The trans-series coefficients cnkl(N) are related to one another in

intricate ways, such that all imaginary parts cancel, leaving a real and unambiguous en-

ergy [11, 12, 46, 47]. Mathematically speaking, the advantage of the trans-series is that it

encodes all information about the function being computed, and is rigorously equivalent to

the function wherever the function exists [1, 2], in contrast to an asymptotic perturbative

expansion such as (2.8).

The resurgent trans-series incorporates non-perturbative contributions at all multi-

instanton orders, the lowest of which is the exponentially small band width:

∆uband
N ∼

√
2

π

24(N+1)

N !

(
2

~

)N−1/2

exp

[
−8

~

]
×

×

{
1− ~

32

[
3

(
N +

1

2

)2

+ 4

(
N +

1

2

)
+

3

4

]
+O(~2)

}
(2.11)

This band splitting is a single-instanton effect, and is real and unambiguous. The factor 8

in the exponent is the instanton action:
√

2
∫ π
−π
√

cos(x) + 1 dx = 8.

However, the non-Borel-summable perturbative series in (2.8) diverges at a rate as-

sociated with the two-instanton sector [more precisely, the instanton/anti-instanton part

thereof], and lateral Borel summation produces an ambiguous imaginary non-perturbative

term ∼ ±i exp [−16/~]. This ambiguous imaginary non-perturbative term is in fact can-

celled by an identical term coming from an instanton gas analysis of the instanton/anti-

instanton interaction [11, 12, 46, 47]. This leading cancellation, at the two-instanton level,

is just the tip of the iceberg: the cancellations between imaginary terms produced by lat-

eral Borel summation of perturbation theory, and those coming from the multi-instanton

sectors, occur at all orders, and these cancellations are encoded in relations between the

coefficients of the resurgent trans-series expansion.

For example [11, 12], for the lowest band, the large-order behavior of the perturbative

coefficients is:

cn(0) ∼ n!

(
1− 5

2
· 1

n
− 13

8
· 1

n(n− 1)
− . . .

)
(2.12)

while the fluctuations about the instanton/anti-instanton saddle are given by

ImE(0, ~) ∼ π e−16/~

(
1− 5

2
·
(

~
16

)2

− 13

8
·
(

~
16

)4

− . . .

)
(2.13)
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Note the precise correspondence of the coefficients in these two very different expansions.

Equation (2.12) is associated with the fluctuations about the perturbative vacuum sad-

dle point, while Equation (2.13) describes the fluctuations about the nonperturbative

instanton/anti-instanton saddle point, the smallest action saddle-point with the same vac-

uum quantum numbers. This is an explicit example of the relations between coefficients

that exist within the trans-series, and a direct manifestation of resurgence. In path integral

language, resurgence means that the fluctuations about various different saddle points in

the multi-instanton expansion are directly related to one another. Such resurgent relations

persist to all orders of the non-perturbative and quasi-zero-mode expansions [11, 12].

Zinn-Justin and Jentschura (ZJJ) [46, 47] have argued the remarkable result that the

entire trans-series can be generated from an exact quantization condition, together with just

two functions: BZJJ(E, g), which describes the perturbative series, and AZJJ(E, g), which

effectively describes the fluctuations around the single-instanton. In fact, the resurgent

trans-series structure follows naturally from a uniform WKB analysis, which shows it is an

expression of the analytic continuation properties of the parabolic cylinder functions [11,

12]. The ZJJ exact quantization condition is written as [46, 47] (we rewrite the following

expressions in terms of ~ ≡ 16g instead of g):

(
32

~

)−BZJJ e
1
2
AZJJ

Γ
(

1
2 −BZJJ

) +

(
−32

~

)−BZJJ e−
1
2
AZJJ

Γ
(

1
2 +BZJJ

) =
2 cos θ√

2π
(2.14)

where θ is the Bloch angle, and for the Mathieu potential, the two functions BZJJ(E, ~)

and AZJJ(E, ~) are given by:

BZJJ(E, ~) = E +
~
16

(
1

4
+ E2

)
+

(
~
16

)2(5E

4
+ 3E3

)
+

(
~
16

)3(17

32
+

35E2

4
+

25E4

2

)
+

(
~
16

)4(721E

64
+

525E3

8
+

245E5

4

)
+ . . . (2.15)

AZJJ(E, ~) =
16

~
+

~
16

(
3

4
+ 3E2

)
+

(
~
16

)2(23E

4
+ 11E3

)
+

(
~
16

)3(215

64
+

341E2

8
+

199E4

4

)
+

(
~
16

)4(4487E

64
+ 326E3 +

1021E5

4

)
+ . . . (2.16)

Inverting the expression for BZJJ(E, ~), we obtain [11, 12]:

EZJJ(B, ~) = B − ~
16

(
B2 +

1

4

)
−
(

~
16

)2(
B3 +

3B

4

)
−
(

~
16

)3(5B4

2
+

17B2

4
+

9

32

)
−
(

~
16

)4(33B5

4
+

205B3

8
+

405B

64

)
− . . . (2.17)
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which agrees with the perturbative expansion (2.8), with the definitions (2.4) and the

identification of B with the level number N :

B = N +
1

2
(2.18)

Thus, the function BZJJ(E, ~) is equivalent to conventional Rayleigh-Schrödinger pertur-

bation theory, about the perturbative vacuum. Using (2.17), the non-perturbative function

AZJJ(E, ~) in (2.16) can be re-expressed as a function of B:

AZJJ(B, ~) =
16

~
+

~
16

(
3B2 +

3

4

)
+

(
~
16

)2(
5B3 +

17B

4

)
+

(
~
16

)3(55B4

4
+

205B2

8
+

135

64

)
+

(
~
16

)4 9

64

(
336B5 + 1120B3 + 327B

)
+ . . . (2.19)

The function AZJJ(B, ~) encodes the fluctuations about the single-instanton [11, 12]. For

example, the single-instanton fluctuation factor is given by

∂EZJJ

∂B
e−

1
2
AZJJ ∼

(
1− ~

8
B − . . .

)(
1− ~

32

(
3B2 +

3

4

)
− . . .

)
= 1− ~

32

(
3B2 + 4B +

3

4

)
− . . . (2.20)

in agreement with the fluctuation factor in (2.11). In [11, 12], it was shown that this

correspondence is directly connected with a simple relation between the two functions

AZJJ(B, ~) and EZJJ(B, ~):

∂EZJJ

∂B
= − ~

16

(
2B + ~

∂AZJJ

∂~

)
(2.21)

This implies that the function AZJJ(B, ~), and hence also AZJJ(E, ~), can be deduced

immediately from knowledge of the perturbative energy EZJJ(B, ~). Thus, only one of

the two functions BZJJ(E, ~) and AZJJ(E, ~) is actually needed to generate the entire

trans-series. Therefore, the fluctuations about the single-instanton saddle, and all other

non-perturbative saddles, are precisely encoded in the fluctuations about the perturbative

vacuum. In other words, the full trans-series is encoded in the perturbative fluctuations

around the vacuum, EZJJ(B, ~). This surprising result is in fact consistent with the am-

bitious goal of resurgence, which claims that the expansion about one saddle contains, in

principle, information about the expansions around other saddles, provided one knows how

different saddles are connected. This connection is provided by the exact quantization

condition (2.6), which is itself a statement of the Bloch boundary condition [11, 12]. In

section 5 we discuss this further, and use the gauge theory perspective to give a simple

proof of this surprising result (2.21).
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2.3 Electric region: convergent continued-fraction expansions, high above the

barrier top

In the λ� 1 regime, which is strongly-coupled in the QM sense but weakly-coupled in the

gauge theory sense, the behavior is completely different. For small level label N , and large

~, the strong-coupling expansions for low-lying modes, converted to our notation and with

u
(±)
N denoting the top/bottom of the N th gap, are (http://dlmf.nist.gov/28.6.i):

u0 =
~2

8

(
0− 1

~2
+

7

4~6
− 58

9~10
+

68687

2304~14
+ . . .

)
u

(−)
1 =

~2

8

(
1− 4

~2
− 2

~4
+

1

~6
− 1

6~8
− 11

36~10
+

49

144~12
− 55

576~14
− 83

540~16
+ . . .

)
u

(+)
1 =

~2

8

(
1 +

4

~2
− 2

~4
− 1

~6
− 1

6~8
+

11

36~10
+

49

144~12
+

55

576~14
− 83

540~16
+ . . .

)
u

(−)
2 =

~2

8

(
4− 4

3~4
+

5

54~8
− 289

19440~12
+

21391

6998400~16
+ . . .

)
u

(+)
2 =

~2

8

(
4 +

20

3~4
− 763

54~8
+

1002401

19440~12
− 1669068401

6998400~16
+ . . .

)
u

(−)
3 =

~2

8

(
9 +

1

~4
− 1

~6
+

13

80~8
+

5

16~10
− 1961

5760~12
+

609

6400~14
+ . . .

)
u

(+)
3 =

~2

8

(
9 +

1

~4
+

1

~6
+

13

80~8
− 5

16~10
− 1961

5760~12
− 609

6400~14
+ . . .

)
u

(−)
4 =

~2

8

(
16 +

8

15~4
− 317

3375~8
+

80392

5315625~12
+ . . .

)
u

(+)
4 =

~2

8

(
16 +

8

15~4
+

433

3375~8
− 45608

5315625~12
+ . . .

)
(2.22)

These expressions follow from a straightforward strong-coupling expansion which governs

the “fully quantum” regime where the kinetic term dominates over the potential. They

are derived by perturbing around the (degenerate) free particle on a circle whose wave

function is ∼ exp
(
iθx
2π

)
, where the potential 2

~2 cos(x) is treated as a perturbation. Standard

degenerate perturbation theory for the gap edge states with even/odd wave-functions,

cos
(
Nx
2

)
and sin

(
Nx
2

)
, leads to the above expansions in 1/~2 [77]. These expansions are

in fact convergent, with a radius of convergence that increases quadratically with the level

index N . They are conventionally expressed as continued-fraction representations of the

eigenvalues, and these continued-fraction expressions are themselves convergent [76–78].

Nevertheless, despite these convergence properties, there are also non-perturbative effects,

associated with the exponentially small splittings of the spectral gaps in this region of the

spectrum, as are clearly seen in figures 1 and 2.

Instead of taking ~� 1 and N fixed, the high spectral region can also be probed with

large λ by taking ~→ 0 and N →∞, with N~� 1. Then for large level number N � 1/~,

the continued-fraction expressions for the energy eigenvalues give approximate expressions
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for the energy of the N th gap as (http://dlmf.nist.gov/28.6.E14):

u(N, ~) ∼ ~2

8

(
N2 +

1

2(N2 − 1)

(
2

~

)4

+
5N2 + 7

32(N2 − 1)3(N2 − 4)

(
2

~

)8

+
9N4 + 58N2 + 29

64(N2 − 1)5(N2 − 4)(N2 − 9)

(
2

~

)12

+ . . .

)
(2.23)

This expression is obtained by substituting a Fourier mode ansatz for the Mathieu function,

and equating coefficients [76–78]. This leads to a set of continued fraction relations that

generate the expansion, and the connection to our all-orders WKB approach is discussed

further below in section 3.4. Note that each coefficient has poles at integer values of N . In

particular, the denominator of the coefficient of ~2−4n is proportional to

n∏
k=1

(N2 − k2)2bnk c−1 (2.24)

where bnc denotes the greatest integer less than or equal to n. Because of the poles, the

expression (2.23) should be understood as an expansion about N = ∞: for any finite N ,

one can just use the strong-coupling expansion expressions in (2.22).

Now we demonstrate how the energy spectrum (2.23) is identified with the multi-

instanton expansion of the prepotential (1.11) in the Nekrasov-Shatashvili limit of the

N = 2 SU(2) SUSY gauge theory. First, rewrite (2.23) as:

u ∼ 1

2

(
N~
2

)2

+
1

4

(
2

N~

)2 1(
1− ~2

(N~)2

) +
5

64

(
2

N~

)6

(
1 + 7~2

5(N~)2

)
(

1− ~2
(N~)2

)3 (
1− 4~2

(N~)2

) + . . .

(2.25)

∼
[
a2

2
+

1

4 a2
+

5

64

1

a6
+

9

128

1

a10
+ . . .

]
+ ~2

[
1

16 a4
+

21

128

1

a8
+

55

128

1

a12
+ . . .

]
+ . . .

(2.26)

where we have defined the “action”

a ≡ N ~
2

(2.27)

which is half the “’t Hooft coupling” defined previously (1.1). We now compare this with

the instanton expansion in (1.11). In order to relate the prepotential to u we use Matone’s

relation [96–98],

u(a, ~) =
iπ

2
Λ
∂FNS

∂Λ
− ~2

48
. (2.28)

The second term on the right hand side is due to the perturbative part of the prepotential.

Plugging the expansion

FNS =

(
− a2

2πi
log

a2

Λ2
+

Λ4

8πia2
+

5Λ8

256πia6
+ . . .

)
− ~2

48πi
log

a2

Λ2
+

~2

2πi

(
Λ4

16a4
+

21Λ8

256a8
+ . . .

)
+ . . . (2.29)
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into (2.28) one sees that the expansion for u(a, ~) matches precisely with the expansion in

the second line of (2.26).

However, it is clear that (2.23), (2.26) is not the whole story. First, this gives the same

expression for both gap edges, u
(±)
N , whereas the expressions (2.22) clearly show that u

(±)
N

are different from one another. Second, the ~ dependence of the expansion (2.23) does not

match that of (2.22). Physically, this is simply the statement that the perturbation theory

Bohr-Sommerfeld expansion (2.23) is only approximate, giving the approximate location

of a narrow gap high in the spectrum (see figures 1 and 2) for N � 1/~, completely

neglecting the non-perturbative splitting for the width of the gap. In fact, for a given N ,

the splitting of the energy levels occurs at the order 1/~2N . As the level index N increases,

the splitting drifts to higher orders in perturbation theory and becomes exponentially small

(http://dlmf.nist.gov/28.6.E15):

∆ugap
N ∼ ~2

4

1

(2N−1(N − 1)!)2

(
2

~

)2N [
1 +O

((
2

~

)4)]
∼ N ~2

2π

(
e

N ~

)2N

, N � 1 (2.30)

Since the expansions (2.22) are convergent, the origin of this non-perturbative splitting is

quite different from the familiar weak-coupling analysis that associates non-perturbative

terms with divergent perturbative series [85–87]. It is clear from the continued-fraction

expansion (2.23) that the splitting is directly associated with the poles of the expansion

coefficients at integer values of N . Physically this indicates the appearance of degenerate

perturbation theory for both edges of the gap [77, 81]. As mentioned already in the

Introduction, this is a concrete analog of the results Drukker, Mariño and Putrov [49, 50]

concerning the large N expansion of the ABJM matrix model, in which non-perturbative

effects are related to complex space-time instantons, and which were subsequently related

to poles in the ’t Hooft expansion coefficients [51, 52]. We show in section 4 that in this

regime the gap splitting (2.30) also has a natural non-perturbative interpretation in terms

of semiclassical configurations.

To make a sharper analogy with the trans-series (multi-instanton) expansion (2.10)

near the bottom of the well, we can reorganize the large ~ expansion (2.22) as

u
(±)
N (~) =

~2N2

8

∞∑
k=0

αk(N)

~4k
± ~2

8

1

(2N−1(N − 1)!)2

(
2

~

)2N ∞∑
k=0

βk(N)

~4k
(2.31)

where the coefficients αk(N) are those given in the continued fraction expansion (2.23).

However this identification is valid only up to order k = (N − 1)/2, due to the poles in the

coefficients of the continued fraction expansion. The gap splitting, encoded in the βk(N)

terms, arises beyond this order, and has leading behavior given in (2.30). So, at finite N

the gap splitting terms are missed by the Bohr-Sommerfeld expansion. The gap splitting

is a one-instanton effect, proportional to 1
~2N , as shown explicitly in section 3.3, and we

see from (2.23) that the pole terms arise at the two-instanton level, proportional to 1
~4N ,

as expected from the resurgent structure.
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-2π
Cb

Cb
~

0 -2π

Cg
Cg
~

0

Figure 4. The integration contours for the all-orders WKB expressions. The first figure shows

the paths for the bands, when the energy is well below the barrier top. The contour Cb is used

to determine the location of the band, while C̃b is used to determine the width of the band. The

second figure shows the paths for the gaps, when the energy is well above the barrier top. The

contour Cg is used to determine the location of the gap, while C̃g is used to determine the width

of the gap. Note that in this case the relevant turning points are in the complex plane.

In the next section we show how we can actually obtain these non-perturbative gap

splittings from an exact all-orders WKB analysis. In section 4 we will further identify this

effect with worldline instantons, and make a direct physical analogy with multi-photon

ionization in monochromatic time-dependent laser pulses.

3 All-orders WKB analysis of the Mathieu equation: actions and dual

actions

The all-orders WKB expression for the location of bands and gaps can be expressed

as [59–68]:

∮
C
P =


2πN ~ (gap)

2π

(
N +

1

2

)
~ (band)

(3.1)

where P is the local momentum and the contours go around the appropriate turning points,

as shown in figure 4. Geometrically, for the Mathieu problem there are two independent

cycles and they correspond to the generators of the two cycles of the torus. More explicitly,

with u denoting the energy eigenvalue, we have [59, 60]

1

2π

∮
P =

√
2

2π

(∮
C

√
u− V dx− ~2

26

∮
C

(V ′)2

(u− V )5/2
dx

− ~4

213

∮
C

(
49(V ′)4

(u− V )11/2
− 16V ′V ′′′

(u− V )7/2

)
dx− . . .

)

=


N ~ (gap)(
N +

1

2

)
~ (band)

(3.2)

With proper analytic continuation, this quantization condition permits smooth transitions

and dualities between the various spectral regions, connecting weak and strong coupling,

and also the bottom and top of the wells. The distinction between the various regions
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Lgap

Lband

Figure 5. To determine the location of the bands or gaps, we integrate the WKB integrands along

the paths, Lband and Lgap, shown here. In the deep band case, the width of the band is determined

by integrating through the barrier. As the energy goes above the barrier top, the turning points

coalesce and move into the complex plane: in the high gap case, the width of the gap is determined

by integrating between these complex turning points.

is encoded in the location of the turning points in the complex plane, and the associated

Stokes lines [65–67]. For energies inside the wells there are real turning points. As the

energy approaches the barrier top, the turning points come together and coalesce, and

move apart again along the imaginary axis for energy above the barrier top. See figures 4

and 5 .

For example, the leading behavior in (2.8) and (2.23) can be found immediately as

follows. For the location of the center of a high gap:

N~ ≈ 2
√

2

π

∫ 1

−1

√
u− y
1− y2

dy ∼ 2
√

2u+O

(
1

u3/2

)
⇒ u(N, ~) ∼ N2~2

8
+ . . . (3.3)

For the location of the center of a deep band:(
N +

1

2

)
~ ≈ 2

√
2

π

∫ u

−1

√
u− y
1− y2

dy ∼ (1 + u) +O
(
(1 + u)2

)
⇒ u(N, ~) ∼ −1 + ~

(
N +

1

2

)
+ . . . (3.4)

The higher terms are discussed below, in the next subsections.

Perhaps less well-known is that there are corresponding expressions for the width of a

band deep in the spectrum and of a gap high in the spectrum [88, 89, 91–94]. At leading

order, the width of a band or a gap is expressed as the product of a density-of-states factor

and an exponential:

∆uN ∼
2

π

∂u

∂N
exp

[
−1

~
Im

∮
C̃
P

]
(3.5)

where now the contours are around the dual contours C̃b or C̃g shown in figure 4. Leading

order results for bands and gaps in the barrier region are discussed in [90–94], and in more

detail below in section 3.3.
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As discussed in the introduction, the WKB periods associated with the Mathieu and

Lamé equations correspond to the vacuum expectation value of the scalar field Φ and its

dual partner, and the energy eigenvalue u correspond to the gauge invariant observable

〈Tr Φ2〉. We set our normalization such that classically Φcl(a) = a
2σ

3, where σ3 is the 3rd

Pauli matrix, and therefore a =
√

2u+ . . . , fixing the normalization to

a(u) :=
1

4π

∮
γ1

P =

√
2

2π

(∫ π

−π

√
u− V dx− ~2

26

∫ π

−π

(V ′)2

(u− V )5/2
dx− . . .

)
(3.6)

aD(u) :=
1

4π

∮
γ2

P = −
√

2

2π

(∫ cos−1(u)

− cos−1(u)

√
u− V dx− ~2

26

∫ cos−1(u)

− cos−1(u)

(V ′)2

(u− V )5/2
dx− . . .

)
(3.7)

3.1 Dyonic region: resurgence from all-orders WKB

For energies below the barrier top, where −1 ≤ u ≤ 1, the leading WKB expression for

the band location is given by the usual Bohr-Sommerfeld expression that involves only the

real part of the action, while the dual action is associated with under-the-barrier, and so

is pure imaginary.4 In the interval −1 ≤ u ≤ 1, the choice of the contours for the two

independent actions a and aD given in (3.7) implies that a has support from both above

and below the barrier and is therefore complex valued, whereas aD has support from under

the barrier and is pure imaginary. Furthermore since aD is defined between the turning

points, Im[a] = −aD. The real action in this spectral region can therefore be expressed as

a linear combination:

Re[a(u)] = a(u) + aD(u) (3.8)

The exact quantization that identifies u with the center of the band is implemented

by requiring

Re [a(u, ~)] =
~
2

(
N +

1

2

)
. (3.9)

The leading order terms of the actions are expressed in terms of elliptic integrals

Re[a0(u)] =

√
2

π

∫ u

−1
dy

√
y − u
y2 − 1

=
4

π

(
E
(
u+ 1

2

)
− 1

2
(1− u)K

(
u+ 1

2

))
(3.10)

aD0 (u) = −
√

2

π

∫ 1

u
dy

√
y − u
y2 − 1

= −4i

π

(
E
(

1− u
2

)
− 1

2
(u+ 1)K

(
1− u

2

))
. (3.11)

These expressions are the original Seiberg-Witten solution, which in the quantum mechan-

ical language is identified with the leading order WKB expansion. Note that they satisfy

the Picard-Fuchs relation:

a0(u)
daD0 (u)

du
− aD0 (u)

da0(u)

du
=

2i

π
(3.12)

4Here, and for the rest of the paper, the notion of “real”/“pure imaginary” action refers to the particular

choice of cycles such that when −1 ≤ u <∞, and ~ ∈ R+, the associated action is real/pure imaginary. In

general, u and ~ can take complex values, and the analysis follows by analytic continuation.
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which follows from the Legendre relation [here K′ denotes K(1−k2), using the conventions

of [76]]:

EK′ + E′K−KK′ =
π

2
. (3.13)

The Picard-Fuchs equation (3.12) is invariant under SL(2,Z) transformations applied to

the pair (a0, a
D
0 ) which corresponds to changing the basis for the two cycles [95–98]. For

example, we can replace a0 by Re[a0] in (3.12) and the equation will still hold.

Remarkably, the higher-order WKB actions can be obtained by acting on these leading

WKB actions with differential operators with respect to the energy u [31, 32, 34–36]. This

follows from the fact that for V = cos(x), the numerators in (3.7), which are given by

the derivatives of V , can be re-expressed as polynomials of V . Therefore by differentiating√
u− V with respect to u taking appropriate combinations one can generate the integrands

in (3.7) up to total derivatives which vanish after integrating over turning points. For

example, at the next two orders:

a1(u) =
1

48

(
2u

d2

du2
+

d

du

)
a0(u) (3.14)

a2(u) =
1

2945

(
28u2 d

4

du4
+ 120u

d3

du3
+ 75

d2

du2

)
a0(u) (3.15)

and the same relations hold for aD(u) as well. The general form of the differential operators

that relates an to a0 is

an(u) =

n∑
k=0

κ
(n)
k uk

dn+ka0(u)

dun+k
. (3.16)

We have verified (3.16) to the order ~10. The coefficients κ
(n)
k up to this order are given in

appendix B. The first two next-to-leading order actions calculated from (3.15) are

Re[a1(u)] =
1

48π (1− u2)

(
(1− u)K

(
1 + u

2

)
+ 2uE

(
1 + u

2

))
(3.17)

aD1 (u) =
i

48π (1− u2)

(
(1 + u)K

(
1− u

2

)
− 2uE

(
1− u

2

))
(3.18)

Re[a2(u)] = − 1

46080π (1− u2)3

[
(1− u)(4u3 + 93u2 − 60u+ 75)K

(
1 + u

2

)
+2
(
4u4 − 153u2 − 75

)
E
(

1 + u

2

)]
(3.19)

aD2 (u) =
i

46080π (1− u2)3

[
(1 + u)(−4u3 + 93u2 + 60u+ 75)K

(
1− u

2

)
+2
(
4u4 − 153u2 − 75

)
E
(

1− u
2

)]
(3.20)
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The actions can be expanded about the bottom of the wells, u ∼ −1, as:

Re [a0(u)] ∼ u+ 1

2
+

(u+ 1)2

32
+

3(u+ 1)3

512
+

25(u+ 1)4

16384
+

245(u+ 1)5

524288
+ . . . (3.21)

Re [a1(u)] ∼ 1

128
+

5(u+ 1)

2048
+

35(u+ 1)2

32768
+

525(u+ 1)3

1048576
+

8085(u+ 1)4

33554432
+ . . . (3.22)

Re [a2(u)] ∼ 17

262144
+

721(u+ 1)

8388608
+

10941(u+ 1)2

134217728
+

141757(u+ 1)3

2147483648
+ . . . (3.23)

Recalling (2.4) that 1 + u ≡ ~E, we can re-write these expressions for Re[an(u)] as expan-

sions in powers of ~ and E:

Re
[

2

~
a0(u)

]
∼ E +

(
~
16

)
E2 +

(
~
16

)2

3E3 +

(
~
16

)3 25

2
E4

+

(
~
16

)4 245

4
E5 + . . . (3.24)

~2Re
[

2

~
a1(u)

]
∼ 1

4

(
~
16

)
+

(
~
16

)2 5

4
E +

(
~
16

)3 35

4
E2 +

(
~
16

)4 525

8
E3 + . . . (3.25)

~4Re
[

2

~
a2(u)

]
∼ 17

32

(
~
16

)3

+

(
~
16

)4 721

64
E + . . . (3.26)

Comparing with (2.15), we recognize these expansions as the highest powers of E, the

next-to-highest powers of E, and next-to-next-to-highest powers of E, respectively, for

each power of ~ in the function BZJJ(E, ~). Thus we have the following identification with

the results of Zinn-Justin and Jentschura [46, 47]:

BZJJ(E, ~) =
2

~

∞∑
n=0

~2nRe [an(−1 + ~E)] (3.27)

≡ 2

~
Re [a(−1 + ~E, ~)] (3.28)

Thus the “exact Bohr-Sommerfeld condition” (3.9) for the location of the energy bands

deep inside the wells expresses the perturbative expansion for the location of the N th

band. Inverting this Bohr-Sommerfeld condition, to express u = u(N, ~) as a function of

N and ~, we arrive at the perturbative expansion (2.8), or in the notation of ZJJ, the

expression (2.17) for the energy E(B, ~) as an expansion in ~ and B ≡ N + 1
2 . Recall that

this expansion (2.17) is non-Borel-summable.

Similarly, the dual actions can be expanded about the bottom of the wells, u ∼ −1, as:

−i aD0 (u) ∼ − 4

π
− (u+ 1)

2π

(
log

(
u+ 1

32

)
− 1

)
− (u+ 1)2

64π

(
2 log

(
u+ 1

32

)
+ 3

)
+ . . .

(3.29)

−i aD1 (u) ∼ 1

48π(u+ 1)
− 1

384π

(
3 log

(
u+ 1

32

)
+ 5

)
− (u+ 1)

12288π

(
30 log

(
u+ 1

32

)
+ 77

)
−(u+ 1)2

32768π

(
(35 log

(
u+ 1

32

)
+ 94

)
− . . . (3.30)

−i aD2 (u) ∼ − 7

5760π(u+ 1)3
− 1

10240π(u+ 1)2
− 53

491520π(u+ 1)
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− 1

23592960π

(
1530 log

(
u+ 1

32

)
+ 6227

)
− (u+ 1)

503316480π

(
43260 log

(
u+ 1

32

)
+ 152759

)
− . . . (3.31)

Notice that for n ≥ 1, the aDn (u) diverge as u→ −1.

The dual action aD(u, ~) is related to Zinn-Justin’s AZJJ(E, g) function as follows:

AZJJ(E, ~) = −4πi

~
aD(−1 + ~E)− 2 ln Γ

(
1

2
+B(E, ~)

)
+ ln(2π)− 2B(E, ~) ln

(
~
32

)
(3.32)

=
4π

~
Im
(
aD(−1 + ~E)

)
− 2 ln Γ

(
1

2
+B(E, ~)

)
+ ln(2π)− 2B(E, ~) ln

(
~
32

)
(3.33)

The comparison for A(E, ~) is non-trivial, as it requires using the large B asymptotics of

the ln Γ function. The subtraction of these terms corresponds to matching the perturbative

solution near the bottom of the well to the solution near the top of the barrier, coming

from the exact solution for an inverted harmonic well, which is how aD(u) looks near the

top of the barrier [91, 92].

3.2 Electric region: convergent expansions and the Nekrasov instanton ex-

pansion

In the electric region (i.e. u → ∞) the real period is identified with a(u) and the pure

imaginary period is still aD(u). The exact quantization that identifies u with the center of

the gap is

a(u) =
~
2
N (3.34)

The actions can be expanded for u� 1 as:

a0(u) ∼
√

2u

(
1− 1

16u2
− 15

1024u4
− 105

16384u6
− . . .

)
(3.35)

a1(u) ∼ − 1

16 (2u)5/2

(
1 +

35

32u2
+

1155

1024u4
+

75075

65536u6
+ . . .

)
(3.36)

a2(u) ∼ − 1

64 (2u)7/2

(
1 +

273

64u2
+

5005

512u4
+

2297295

131072u6
+ . . .

)
(3.37)

Combining these expansions we find

2

~
(
a0(u)+~2a1(u)+~4a2(u)+. . .

)
∼ 2
√

2u

~

[
1− 1

16u2
− 15

1024u4
− 105

16384u6
− . . .

]
− ~

8(2u)5/2

[
1 +

35

32u2
+

1155

1024u4
+

75075

65536u6
+ . . .

]
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− ~3

32(2u)7/2

[
1 +

273

64u2
+

5005

512u4
+

2297295

131072u6
+ . . .

]
− . . . (3.38)

Identifying the left-hand-side with N , and inverting, we obtain the expansion (2.26) of the

gap energy u(N, ~). Thus, the all-orders-WKB action a(u, ~) determines the (convergent)

expansion of the location of the gap high up in the spectrum.

The dual actions can be expanded for u� 1 as:

−iaD0 (u) ∼
√

2u

π

(
−2 + log(8u) +

1− log(8u)

16u2
+

47− 30 log(8u)

2048u4
+ . . .

)
(3.39)

−iaD1 (u) ∼ 1

24π
√

2u

(
1 +

13− 6 log(8u)

16u2
+

883− 420 log(8u)

1024u4
+ . . .

)
(3.40)

−iaD2 (u) ∼ 1

45 26 π(2u)3/2

(
−1 +

567− 180 log(8u)

16u2
+

127461− 49140 log(8u)

1024u4
+ . . .

)
(3.41)

These dual actions determine the exponentially narrow width of the gap, high up in the

spectrum, as discussed in the next subsection.

3.3 Magnetic region: duality and analytic continuation across the barrier

Across the magnetic region, there is a transition from the divergent perturbative behavior

characteristic of the dyonic region, and the convergent perturbative expansions character-

istic of the electric region. As is clear from the plots in figures 1 and 2, the transition is

smooth, but connecting the regions requires careful interpretation of the various expan-

sions. Of particular interest are the different mechanisms by which non-perturbative terms

arise in the different physical regions. For example, the general expression for the exponen-

tially narrow width of a band deep in the dyonic region, and of a gap high in the electric

region is [91–94]:

∆u ∼ 2

π

∂u

∂N
e−

2π
~ Im aD0 ∼ ~

π

∂u

∂Re[a0]
e−

2π
~ Im aD0 (3.42)

In the dyonic region,

u ∼ −1 + 2Re[a0(u)] + · · · = −1 + ~
(
N +

1

2

)
+ . . . (3.43)

π Im[aD0 ] ∼ 4 +
1 + u

2

(
ln

(
1 + u

32

)
− 1

)
+ . . . (3.44)

Therefore, from (3.42) we obtain the band width estimate (using Stirling’s formula in the

last step):

∆uband ∼ 2~
π

(
~
(
N + 1

2

)
32 e

)−(N+ 1
2

)

e−8/~

∼
√

2

π

24(N+1)

N !

(
2

~

)N− 1
2

e−8/~ (3.45)
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in agreement with (2.11). On the other hand, in the electric region,

u ∼ 1

2
a2

0 + · · · = ~2

8
N2 + . . . (3.46)

π Im[aD0 ] ∼
√

2u (ln(8u)− 2) + . . . (3.47)

Therefore, from (3.42) we obtain the gap width estimate:

∆ugap ∼ ~2N

2π

( e

~N

)2N
(3.48)

in agreement with (2.30). Thus, the formula (3.42) has the correct form in both extreme

limits, in one case referring to the width of a band, and in the other to the width of a gap.

The magnetic region near u ∼ 1 is more subtle. In this regime,

a0 ∼
4

π
+
u− 1

2π

[
ln

(
32

u− 1

)
+ 1

]
+ . . . (3.49)

−iaD0 ∼
1

2
(u− 1) + . . . (3.50)

The latter relation tells us that the exponential behavior becomes of order unity. The first

relation gives us the leading scaling between N and ~:

N ∼ 8

π ~
(3.51)

It is clear that the barrier top is in the vicinity of N ∼ 1/~, but the above fixes the non-

trivial coefficient to be 8/π. It is instructive to evaluate the energy eigenvalue u(N, ~) with

this scaling, in both the dyonic and electric regions, using (2.8) and (2.23) respectively:

udyonic ∼ −1 +
8

π

[
1− 1

16

8

π
− 1

28

(
8

π

)2

− 5

214

(
8

π

)3

− 33

218

(
8

π

)4

− . . .

]
+O(~)

= 1 +O(~) (3.52)

uelectric ∼
1

2

[(
4

π

)2

+
1

2

(
π

4

)2

+
5

32

(
π

4

)6

+
9

64

(
π

4

)10

+ . . .

]
+O(~)

= 1 +O(~) (3.53)

It is remarkable that these two very different expansions coincide at u ∼ 1.

In fact, we can refine further the estimate in (3.51). The edges of the bands/gaps when

u = 1 are given by [93, 94]

N ± 1

4
∼ 8

π~
(3.54)

as shown in figure 6. We also see that in the immediate vicinity of these points, the

dependence of u on Q(≡ 4
~2 ) is approximately linear, with a slope depending inversely

quadratically on N :

u
(±)
N ∼ 1− cN(

N ± 1
4

)2
(
Q− π2

16

(
N ± 1

4

)2
)

, cN ∼ O(1) (3.55)
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Figure 6. Plots of the bands (shaded) and gaps (unshaded) in the magnetic region, in the vicinity

of the barrier top where u = 1. The vertical lines mark the values Q = π2

16

(
N ± 1

4

)2
, where N is

the band label, and which coincide very accurately with the points at which the band/gap edges

intersect the line u = 1.

This implies that in the vicinity of the barrier top, where u ≈ 1, the bands and gaps are of

equal width, and are not exponentially narrow. This can be seen clearly in figure 6, where

from a given intersection point at u = 1, we observe equal widths of the band and gap

above and below that intersection point. In fact,

∆uband ∼ ∆ugap ∼ O(~) (3.56)

Another way to understand the smooth transition across the barrier top is to note that

in both the dyonic and electric region, we must avoid poles by analytically continuing ~
(or equivalently g) off the positive real axis, which effectively gives a small imaginary part

to u. This then avoids the divergences of an(u) in the region u ∼ 1, in a way that connects

smoothly. Since all the actions are expressed in terms of the elliptic functions E and K,

this relies on the analytic continuation properties of these functions. More precisely, the

analytical continuation properties connect different points in the moduli space as follows(
a0(−u)

aD0 (−u)

)
= −i

(
±1 0

1 ±1

)(
a0(u)

aD0 (u)

)
(3.57)

where ±1 denotes sign(Im[u]). This is the manifestation of the residual Z2 symmetry of

the broken U(1)R symmetry of the gauge theory [97]. For the subleading terms from (3.16)

we see that (
an(−u)

aDn (−u)

)
= −(−1)n i

(
±1 0

1 ±1

)(
an(u)

aDn (u)

)
. (3.58)
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In particular, for −1 ≤ u ≤ 1, this relation can be used to relate the magnetic regime

(u ∼ 1) to the dyonic regime (u ∼ −1). The appearance of sign(Im[u]) reflects the

necessity of analytic continuation mentioned above, and is ultimately related with the fact

that ~ ∈ R+ is a Stokes line for the small ~ expansion.

Also, the region with 0 ≤ u ≤ 1, can be related to the 1 ≤ u ≤ ∞ region by invoking

the inversion relations for the elliptic functions E and K. These elliptic functions have

non-trivial connection formulas, with ambiguous non-perturbative imaginary contributions

when evaluated on the real line. See, for example, http://dlmf.nist.gov/19.7.E3

K
(

1

k2

)
= k

(
K∓ iK′

)
(3.59)

E
(

1

k2

)
=

1

k

(
E± iE′ − k′2K∓ ik2 K′

)
(3.60)

where ± is determined by the sign of Im(k2).5 With the above connection formulas, the

transition across the barrier is smooth.

3.4 Connecting strong and weak coupling regimes

In this section we explain the connection between the large ~ and small ~ expansions.

These two expansions are very different in nature: the former is convergent and the latter

is divergent. Yet the exact WKB methods described in the previous section can be used

to relate one to the other. We present an explicit method for generating the small ~
expansion for the low lying modes (i.e. λ� 1), which governs the dyonic region, using the

knowledge acquired from the “continued fraction expansion” for λ� 1, which governs the

electric region.

In the electric region, the energy eigenvalue u for high lying states can be obtained

from the continued fraction expression

2Qu−N2 − Q2

2Qu− (N − 2)2 − Q2

2Qu−(N−4)2−...

=
Q2

(N + 2)2 − 2Qu− Q2

(N+4)2−2Qu−...

(3.61)

as an expansion in Q2 = 16/~4, by making a series ansatz for u and equating both sides

of (3.61). This expansion is valid for high lying levels with N � 1/~. The first few terms

of it are given in (2.23). Next, we substitute a for N by using the relation a = N~/2,

which is the exact quantization condition (3.34) in the electric region. In the electric re-

gion a = λ/2 � 1 and we reorganize u as a series in 1/a4 and ~, as written in (2.26).

Having obtained this double series, we invert it and obtain a as a double series in u and

~, i.e. a(u, ~) =
√

2u
∑

n,k cn,k~2nu−2k, which is valid for u � 1. So far, this is an alter-

native way of obtaining the large λ expansion (3.38), directly from the continued fraction

expression (3.61), complementary to the WKB derivation decribed earlier in this section.

5Note that these analytic continuation properties are incorrectly stated, without the ± signs, in many

books and tables [99].

– 26 –

http://dlmf.nist.gov/19.7.E3


J
H
E
P
0
2
(
2
0
1
5
)
1
6
0

However, from the general form of the WKB period a(u, ~) given in (3.16), we know

that each coefficient of ~2n is related to the lowest order coefficient [with n = 0] via a

differential operator, with expansion coefficients κ
(n)
k . Therefore, for any given order ~2n, by

applying the differential operator in (3.16) to the coefficient of ~0 of (3.38), and comparing

with the coefficient of ~2n, we can solve for κ
(n)
k s. Once we know these coefficients, κ

(n)
k ,

we can construct both aD(u) and a(u) from aD0 (u) and a0(u), for any u!

To obtain the small ~, small N (dyonic) expansion for u, we then expand a and aD

around u ∼ −1. In the dyonic region, the exact quantization condition is Re[a] = a+aD =

~/2(N + 1/2). Then we invert back to obtain u(Re[a], ~) which is the perturbative, small

~ expansion. The non-perturbative, instanton induced part of the trans-series can be

obtained from aD as described in section 3.1.

Before closing this section, we also would like to point out that the continued fraction

expansion of u(a, ~) given in (2.23) can alternatively be obtained from the conformal block

expansion obtained from the AGT correspondence [29, 30] in the ε2 → 0 limit. The

instanton part of the Nekrasov partition function6 has a rather simple group theoretical

expansion given as [31, 32, 100]

Z inst.
Nek.(a; ε1, ε2) = exp

(
− 4πi

ε1ε2
F(a; ε1, ε2)

)
=

∞∑
n=0

(
Λ2

ε1ε2

)2n

Q−1
∆ ([1n], [1n]) (3.62)

where Q∆(Y, Y ′) = 〈∆|LY L−Y ′ |∆〉 is the Shapovalov matrix associated with a conformal

primary |∆〉 with Young tableaux Y and Y ′ satisfying |Y | = |Y ′|, and [1n] is a shorthand

notation for Y = {1, 1, . . . , 1} with |Y | = n. The first couple of relevant entries of the

inverse of Q∆ are

Q−1
∆ ([1], [1]) =

1

2∆
, Q−1

∆ ([11], [11]) =
8∆ + c

4∆(16∆2 + 2c∆− 10∆ + c)
, . . . (3.63)

The higher order terms can be computed in a straightforward way. The AGT cor-

respondence maps the conformal dimension, ∆, and central charge, c, to the gauge

theory variables:

∆ =
1

ε1ε2

(
a2 − (ε1 + ε2)2

4

)
, c = 1− 6(ε1 + ε2)2

ε1ε2
. (3.64)

In the ε2 → 0 limit, the prepotential stays finite:

F inst.
NS (a; ε1) = − ε1

4πi
lim
ε2→0

ε2 log
(
Z inst.
Nek.(a, ε1, ε2)

)
(3.65)

Using Matone’s relation (2.28) and switching from a to N using the exact quantization

we get

iπ

2
Λ
∂F inst.

NS

∂Λ
= − ε1

16
lim
ε2→0

ε2
∂

∂ log Λ
log

( ∞∑
n=0

(
Λ2

ε1ε2

)2n

Q−1
∆ ([1n], [1n])

)

=
~2

8

(
8Λ4

(N2 − 1) ~4
+

8Λ8
(
5N2 + 7

)
(N2 − 4) (N2 − 1)3 ~8

+ . . .

)
(3.66)

6Note that our overall normalization of F differs from some of the literature on the subject.
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which exactly coincides with the expansion (2.23) we obtained from the continued frac-

tion (3.61). The leading term, N2, comes from the perturbative part of the Nekrasov ex-

pansion.

4 Worldline instantons and multi-photon vacuum pair production

As discussed in section 3, despite the fact that the perturbative expansions in the electric

region are convergent, there are still non-perturbative instanton effects, leading to narrow

gap splittings high in the spectrum. These splittings (3.48) have a very different form from

those (3.45) low in the spectrum. This is analogous to the results of Drukker, Mariño

and Putrov [49, 50] for the large N expansion of the ABJM matrix model, in which non-

perturbative effects are related to complex space-time instantons (for other examples of

the significance of complex instantons for non-perturbative effects see [3, 101, 102, 105,

106]). Here we give an analogous physical identification with worldline instantons [103,

104], for this effect in the Mathieu spectrum. Furthermore, we present a simple physical

interpretation of the transition between different spectral regions, in terms of the transition

from tunneling pair production to multi-photon pair production. This analogy gives a

physical example in which a non-perturbative quantity, the pair production probability,

turns smoothly into a multi-photon expression of a very different form.

Recall the semiclassical result of Brézin and Itzykson [73], and Popov [74, 75], (gener-

alizing Keldysh’s work in atomic ionization [69]), that for a monochromatic time dependent

electric field, E(t) = E cos(ω t), the usual Schwinger formula [70–72] for the vacuum pair

production probability in a background electric field becomes

probability ∼ exp

[
−m

2 π

E
g(γ)

]
(4.1)

Here the dimensionless “Keldysh adiabaticity parameter” is defined as

γ ≡ mω

E
(4.2)

For this monochromatic time-dependent field E(t) = E cos(ω t), one finds for the function

g(γ) in (4.1) the expression [72–75, 103, 104]:

g(γ) =
4

π

√
1 + γ2

γ2

[
K
(

γ2

1 + γ2

)
− E

(
γ2

1 + γ2

)]
(4.3)

∼


1− 1

8
γ2 + . . . , γ � 1

4

π γ
ln(4γ) + . . . , γ � 1

(4.4)

In the static limit, γ → 0, we recover the familiar Heisenberg-Schwinger result,

probability ∼ exp

[
−m

2 π

E

]
(4.5)

which is obviously non-perturbative in the strength of the applied field, and has a well-

known interpretation in terms of tunneling from the Dirac sea through the barrier created

– 28 –



J
H
E
P
0
2
(
2
0
1
5
)
1
6
0

by the constant electric field. In the opposite limit of a high frequency field, where γ � 1,

the logarithmic beahvior of g(γ), shown in (4.4), implies that the semiclassical result (4.1)

in fact produces a perturbative result:

probability ∼ exp

[
−m

2 π

E
g(γ)

]
→
(
E

4mω

)4m/ω

(4.6)

The physical interpretation of (4.6) is that 2m/ω is the multi-photon number, the number

of photons of energy ω required to excite the virtual pair over the “binding energy” 2mc2,

by a multi-photon process, rather than by tunneling [69, 73–75]. It’s a probability, so the

power is twice this multi-photon number. The final answer is perturbative, as it is a power

of the applied electric field, but it is a very high power in the relevant semiclassical limit

where ω � m. Thus we see that the semiclassical expression (4.1) has two very different

limits, and we show below that this is analogous to the transition from exponentially narrow

bands (3.45) low in the Mathieu spectrum, to power-law narrow gaps (3.48) high in the

Mathieu spectrum.

First, recall that the above pair production results have a natural interpretation in

terms of worldline instantons [103, 104], which are finite action periodic solutions to the

classical Euclidean equations of motion for the world line of a charged particle in the

background electric field:

ẍµ = Fµν(x)ẋν (4.7)

For such worldline instanton solutions, a semiclassical approximation to the Feynman’s

world line path integral representation of the QED effective action gives the leading ex-

pression for the pair production probability

probability ∼ exp [−S[xinstanton]] , S[x] =

∫ (
1

2
ẋ2 +Aµẋµ

)
dτ (4.8)

For the cosine electric field, E(t) = E cos(ω t), the classical trajectories are known, and the

associated worldline instanton action indeed equals the exponent in (4.1), (4.3) [103, 104].

The relation to the Mathieu equation is the following. The pair production probability

can alternatively be computed via a Bogoliubov transformation as a quantum mechanical

reflection coefficient in the Klein-Gordon equation (we take zero electron/positron momen-

tum, to get the leading effect, and treat scalar QED instead of spinor QED, since this also

gives the same exponential behavior) [73–75]:

−φ̈−

(
m2 +

(
E
ω

sin(ω t)

)2
)
φ = 0

→ φ′′ +

[(
m

ω

)2

+
1

2

(
E
ω2

)2
]
φ− 1

2

(
E
ω2

)2

cos(2x)φ = 0 (4.9)

written now in Mathieu form. So we identify the Mathieu equation parameters:

A =

[(
m

ω

)2

+
1

2

(
E
ω2

)2
]

, Q =

(
E

2ω2

)2

(4.10)
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Therefore, we further identify [using the scalings in (2.2) and (2.4)]

~ ≡ 2√
Q

=
4ω2

E
, u ≡ A

2Q
= 1 + 2γ2 (4.11)

Further, note that the leading dual action aD0 in (3.11) can be re-expressed as

aD0 (u) = −2i

π

(
E
(

1− u
2

)
− 1

2
(u+ 1)K

(
1− u

2

))
(4.12)

= 2i
√

2
√
u+ 1

(
K
(
u− 1

u+ 1

)
− E

(
u− 1

u+ 1

))
(4.13)

Therefore,

2

(
2π

~
Im
[
aD0 (u)

])
←→ m2π

E
g(γ) (4.14)

This implies that7

(gap width)2 ∼ exp

[
−2

(
2π

~
Im
[
aD0 (u)

])]
←→ probability ∼ exp

[
−m

2π

E
g(γ)

]
(4.15)

To see how this works in the various limits, recall that in the semiclassical approach to

vacuum pair production, the electron mass sets the dominant scale, so we require E � m2

and ω � m. But this still permits arbitrary values of the adiabaticity parameter γ ≡ mω/E .

In the static limit, γ � 1, this implies u ∼ 1, and

4π

~
Im
[
aD0 (u)

]
∼ 2π

~
(u− 1) ∼ 4πγ2

~
=
πm2

E
(4.16)

which leads to the standard Schwinger formula for pair production in a static electric field.

On the other hand, in the multi-photon limit, γ � 1, we have

m

ω
� E

ω2
(4.17)

so we can consistently consider the hierarchy of scales

E � ω2 � mω � m2 (4.18)

Then defining N ≡ m
ω , we see that it corresponds to the gap label index N in the Mathieu

spectral problem. Indeed, in this limit

N ≡ m

ω
� E

ω2
≡ 4

~
(4.19)

7Note that the pair production probability is related to a bounce, which is a closed-path instanton/anti-

instanton configuration, referred to as a “worldline instanton”; while the Mathieu band or gap splitting is a

single-instanton effect. For time-dependent electric fields associated with more realistic laser pulses, there

are important quantum interference effects and these are captured by complex instanton trajectories [105,

106].
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in Mathieu language. Thus, from the Mathieu equation gap splitting formula (2.30) for

large N [using Stirling’s formula], the identification (4.11) leads to

(gap width)2 ∼
(

e

N ~

)4N

∼
(

e E
4mω

)4m/ω

(4.20)

which, up to a multiplicative pre-factor, is the Brézin/Itzykson/Popov multi-photon ex-

pression (4.6).

5 A simple proof of the Dunne-Ünsal relation and its geometric inter-

pretation

In this section we present a proof of the Dunne-Ünsal relation (2.21) from the gauge

theory point of view. In terms of quantum mechanics, this relation remarkably links the

perturbative fluctuations around the vacuum to the non-perturbative fluctuations around

instantons [11, 12], as mentioned in section 2.3. In addition to the SUSY inspired proof,

we also show that the Dunne-Ünsal relation can be identified as the generalization of the

Picard-Fuchs equation for the quantized elliptic curve with nonzero ~. Physically this

identification is an explicit example of the connection between the resurgent trans-series

expansion and the geometry of compact Riemann surfaces.

Our starting point of the proof is the generalization of Matone’s relation for ~ 6= 0,

u(a, ~) =
iπ

2
Λ
∂FNS(a, ~)

∂Λ
− ~2

48
. (5.1)

where as mentioned in section 2.3, the instanton part of the original relation [96] is un-

changed and the shift in u is due to the perturbative contribution to FNS(a, ~) [45]. The

next step is to observe that the the prepotential can be expressed as follows

FNS(a, ~) := Λ2F̂NS

(
a

Λ
,
~
Λ

)
:= Λ2F̂NS

(
â, ~̂
)

(5.2)

where the we use the symbol ˆ to denote dimensionless quantities.8 This follows from

rescaling the Schrödinger equation (1.13) and the corresponding periods (3.7). After the

rescaling, it follows that

Λ
∂FNS(a, ~)

∂Λ
= 2Λ2F̂NS − Λ2â

∂F̂NS(â, ~̂)

∂â
− Λ2~̂

∂F̂NS(â, ~̂)

∂~̂
(5.3)

= 2FNS(a, ~)− a∂FNS(a, ~)

∂a
− ~

∂FNS(a, ~)

∂~
. (5.4)

Then, by differentiating (5.1) with respect to a and using (5.4) we obtain

2i

π

∂u(a, ~)

∂a
+ aD(a, ~)− a ∂a

D(a, ~)

∂a
− ~

∂aD(a, ~)

∂~
= 0 , (5.5)

8Note that ~ has mass dimension 1 in the gauge theory/QM correspondence. This can easily be seen

from the Schrödinger equation (1.13).
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where we used the fact that ∂F/∂a = aD. The final step in order to arrive at the form

which relates the instanton expansion to perturbative expansion is to switch to the variables

AZJJ(B, ~) (which encodes the fluctuations around instantons) and EZJJ(B, ~) (which

encodes the perturbation expansion) where EZJJ = (u − 1)/~, B = 2a/~, and AZJJ is

defined as in (3.33). In these variables, (5.5) becomes

∂EZJJ

∂B
= − ~

16

(
2B + ~

∂AZJJ

∂~

)
(5.6)

It is also illuminating to switch the independent variables from (a, ~) to (u, ~). With

this change of variables, the terms in (5.5) transform as follows:

∂u

∂a
=

(
∂a

∂u

)−1

,
∂aD

∂a
=

(
∂a

∂u

)−1 ∂aD

∂u
,

∂aD

∂~
=

(
∂a

∂u

)−1(∂aD
∂~

∂a

∂u
− ∂a

∂~
∂aD

∂u

)
(5.7)

where the independent variables on the left-hand side are (a, ~) and on the right-hand

side are (u, ~). Then, the Dunne -Ünsal relation takes the form of Picard-Fuchs equation,

extended to nonzero ~:(
a− ~

∂a

∂~

)
∂aD

∂u
−
(
aD − ~

∂aD

∂~

)
∂a

∂u
=

2i

π
. (5.8)

Note that (5.8) is invariant under the SL(2,Z) transformations that act on the pair (a, aD)

as expected. It is further useful to express (5.8) in terms of the expansions (1.14):

a0
daD0
du
− aD0

da0

du
=

2i

π
(5.9)

n∑
k=0

(1− 2k)

(
ak
daDn−k
du

− aDk
dan−k
du

)
= 0, n ≥ 1 . (5.10)

The second line of this equation shows that all the higher order terms contribute as zero to

the Picard-Fuchs equation, and the constant 2i/π on the right hand side does not get any

corrections at nonzero ~. In other words, by using the Riemann bilinear identities on (5.10)

and (5.10) we deduce that only the zeroth order periods a0, aD0 contribute to the “total

flux” on the torus, whereas the higher order terms do not. However, the cancellation of

the flux from higher order terms is a result of rather intricate cancellations that involve

contributions from different orders as seen in (5.10).

The identification of the Dunne-Ünsal relation with the Picard-Fuchs equation provides

an explicit geometric interpretation of the connection between perturbative series and in-

stanton expansion. The perturbative corrections to the energy eigenvalue are characterized

by the quantization of the real period, while the exponentially suppressed instanton cor-

rections are characterized by the dual pure imaginary period. The Picard-Fuchs relation

connects these two independent periods. Furthermore, even though the perturbative and

non-perturbative expansions take very different forms in different regions of the energy

spectrum, this connection holds throughout the spectrum.

It is interesting to note that similar connection formulas between perturbative and

non-perturbative physics exist for other QM potentials, such as the double-well and SUSY
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double-well [11, 12]. In fact, in general a relation like (2.21) exists whenever the spectrum

is such that the associated Riemann surface is described by just the two dual actions, a and

aD. For more general cases, where the Riemann surface is of higher genus, the relation will

generalize to include multiple pairs of actions whose number is equal to the genus [107].

6 Lamé equation and SU(2) N = 2∗ SUSY gauge theory

As discussed in section 3 for the Mathieu equation, a formal expansion of the action may

be obtained by an all-orders WKB analysis. This can then be expanded in the high or

low energy region. Instead of repeating these steps for the Lamé system, we summarize

the novel features that arise in the dyonic region in section 6.1, and then use a completely

different technique to study the electric region, using the relation between WKB and the

KdV hierarchy: see section 6.2.

6.1 Resurgent analysis in the dyonic region

The dyonic gauge region of the N = 2∗ theory corresponds to the λ� 1 spectral region of

the Lamé system. Previous analyses [34–36] have not taken into account the fact that in this

region the spectral expansions are divergent and non-Borel-summable, as for the Mathieu

system, and so should be described by a resurgent trans-series. In fact, the associated

resurgent structure is even richer than for the Mathieu system, due to the existence of

both real and complex instantons [48]. This is ultimately due to the fact that the Lamé

potential is doubly-periodic in the complex plane, and even though the quantum mechanical

path integral is a sum over real path configurations, the existence of complex saddle paths

has a direct influence on the divergent structure of perturbation theory [48].

The Jacobian form of the Lamé equation is conventionally written http://dlmf.nist.

gov/29.2.i:

d2ψ

dz2 + (H − ν(ν + 1)k2sn2
(
z, k2

)
)ψ = 0 (6.1)

The Jacobi elliptic function sn2 is related to the Weierstrass P-function as:9

P
(
x+ iK′;K, iK′

)
= −1

3

(
k2 + 1

)
+ k2 sn2(x; k2) (6.2)

where K′ ≡ K(1−k2). The Lamé equation (6.1) reduces to the Mathieu system in a special

scaling limit: since sn2(z; 0) = sin2(z), we must combine the k2 → 0 limit with the ν →∞
limit, in such a way that the combination κ2 ≡ ν(ν + 1) k2 remains finite. This then leads

to the natural identifications:

~↔ 4√
ν(ν + 1)k2

, u↔ −1 +
~2

8
H (6.3)

9We use the standard period conventions of [76]; other papers sometimes use differing conventions [34–

36, 39, 40, 118–120].
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With these identifications, we can express the standard perturbative expansions of the

Lamé eigenvalues (http://dlmf.nist.gov/29.7.E1) as:

u(N, ~) = −1 + ~
(
N +

1

2

)
− ~2

16
(k2 + 1)

[(
N +

1

2

)2

+
1

4

]
(6.4)

−~3

28

[
(1 + k2)2

((
N +

1

2

)3

+
3

4

(
N +

1

2

))

−4k2

((
N +

1

2

)3

+
5

4

(
N +

1

2

))]
− . . .

Notice that we recover the Mathieu expression (2.8) in the limit k2 → 0.

For a given N � 1/~ and k2, these expansions are divergent, with factorially growing

coefficients. But the large order behavior can be alternating or non-alternating, depending

on k2. This more intricate structure is due to the existence of both real and complex instan-

tons, and is discussed in detail in [48].10 In particular, it means that the leading large-order

growth of the perturbative coefficients is not solely governed by the real instanton/anti-

instanton action, but also by the complex (‘ghost’) instanton/anti-instanton action.

Associated with this resurgent divergent structure of the perturbative expansions is the

existence of non-perturbative band splittings, for any k2. Approximate expressions for these

band splittings are given in (http://dlmf.nist.gov/29.7.E5); for details see [108, 109].

Translating these results to our notation (6.3), the splitting of the N th band is

∆uband
N ∼ 2~

N !

√
2

π

(
32

~(1− k2)

)N+ 1
2

((
1− k
1 + k

) 1
k

) 4
~

×

×

[
1− ~

32
(1 + k2)

(
3

(
N +

1

2

)2

+ 4

(
N +

1

2

)
+

3

4

)
− . . .

]

This band-splitting is a one-instanton effect, as the instanton action for the Lamé potential

is [110, 111]

1

~
Sinst =

4

~ k
ln

(
1 + k

1− k

)
(6.5)

Note that this reduces to the Mathieu expression (2.11) as k2 → 0, recalling that (1 −
k)1/k → 1/e in this limit.

6.2 WKB, Gelfand-Dikii expansion, and KdV, in the electric region

As discussed in section 3 for the Mathieu equation, the electric region of the Lamé spec-

trum can be studied by using a large u expansion of the all-orders WKB actions a(u, ~)

and aD(u, ~). Here we describe a different, complementary, technique to analyze the elec-

tric region, using the work of Gelfand and Dikii concerning the high-energy asymptotic

10The paper [48] uses another form of the elliptic potential, sd2(z, k2), which has a manifest symmetry

under k2 → 1− k2. This potential is related to the sn2(z, k2) by a simple Landen transformation.
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expansion of the resolvent [112, 113]. The coefficients of this expansion are expressed di-

rectly in terms of the KdV integrals, evaluated on the QM potential. This observation is

particularly interesting for the Lamé equation because the expansion coefficients are sim-

ple polynomials, with interesting combinatorial properties, in the scaling parameter that

multiplies the elliptic potential [114]. This is described below.

For the Schrödinger equation with a periodic potential V (x) of period L,

− d2

dx2
ψ + V (x)ψ = E ψ (6.6)

the Gelfand-Dikii expansion [112, 113] relates the level number N to the high energy

asymptotics as

πN

L
∼
√
E − 1

L

∞∑
j=0

Ij+1[V ]

(4E)j+1/2
, E → +∞ (6.7)

where Ij+1[V ] are functionals of the potential V (x) given by the KdV conserved quantities.

These can be generated by simple recursion relations, and the first few are:

I1[V ] =

∫ L

0
V dx (6.8)

I2[V ] =

∫ L

0
V 2 dx (6.9)

I3[V ] =

∫ L

0

(
(V ′)2 + 2V 3

)
dx (6.10)

I4[V ] =

∫ L

0

((
V ′′
)2

+ 10V
(
V ′
)2

+ 5V 4
)
dx , . . . (6.11)

It is an instructive exercise to compute these KdV integrals for a constant potential, and

also for the Mathieu potential, to confirm the all-orders WKB analysis in section 3. For

example, for a constant potential, V = V0,

Nπ

L
∼
√
E − V0√

4E
− V 2

0

(4E)3/2
− 2V 3

0

(4E)5/2
− 5V 4

0

(4E)7/2
− . . . (6.12)

which is the E → +∞ expansion of the exact result
√
E − V0. For the Mathieu system,

to compare the Mathieu equation (2.1) with the Gelfand-Dikii form (6.6), we identify

V ↔ 2
~2 cosx, E ↔ 2

~2 u, and L↔ 2π. The KdV integrals are simple to evaluate:

I1

[
2

~2
cosx

]
= 0 , I2

[
2

~2
cosx

]
= π

(
2

~2

)2

, I3

[
2

~2
cosx

]
= π

(
2

~2

)2

I4

[
2

~2
cosx

]
= π

(
2

~2

)4
(

15

4
+

(
~2

2

)2
)

, . . . (6.13)

which leads to the expansion:

N~
2
∼
√

2u− 1

4

1

(2u)3/2
− 1

16

1

(2u)5/2
~2 − 1

64

1

(2u)7/2

(
~4 + 15

)
− . . . (6.14)
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Note that the coefficients of the inverse powers of u1/2 are polynomials in ~2, of increas-

ing order. This expansion (6.14) is a re-arrangement of the all-orders WKB expansion

in (3.38). So, inverting (6.14) to express u as a function of ~ and a ≡ N~/2, we recover

the expansion (2.26) for u in the electric regime where a� 1.

Turning now to the Lamé system, Grosset and Veselov [114] considered the potential

V = 2µP, where P is the Weierstrass P-function (6.2), and µ is a multiplicative scaling

parameter to be specified below. Grosset and Veselov showed that the KdV integrals

Ij+1[V ] reduce to simple polynomials in µ, with coefficients expressed in terms of the

Weierstrass invariants g2 and g3, and η1/K, where η1 ≡ ζ(K) [114]:

Ij+1[2µP] ≡ Fj+1(µ) (6.15)

These polynomials, Fj+1(µ),11 have interesting combinatorial properties, and were named

the elliptic Faulhaber polynomials [114].12 Thus, for this Weierstrassian form of the Lamé

equation, (6.6) with V (x) = P (x+ iK′;K, iK′), the high-energy Gelfand-Dikii expan-

sion (6.7) can be written

πN

2K
∼
√
E − 1

2K

∞∑
j=0

Fj+1(µ)

(4E)j+1/2
, E → +∞ (6.16)

In order to facilitate the comparison with results in the physics literature concerning the

Nekrasov prepotential in N = 2∗ theories [39, 40, 118–120], we rewrite the coefficients of

the elliptic Fauhaber polynomials in terms of the Eisenstein series

E2(τ) = − 2πi

ζ(2)

∂

∂τ
log(η(τ)) , Ek(τ) =

1

2ζ(k)

∑
(n,m)∈Z2\(0,0)

1

(n+ τ m)k
, (k > 2).(6.17)

where η(τ) is the Dedekind eta function, and E2, E4 and E6 can also be written as:

E2 = 3

(
2K
π

)2 η1

K
, E4 =

3

4

(
2K
π

)2

g2 , E6 =
27

8

(
2K
π

)2

g3 (6.18)

Thus, all coefficients of the elliptic Faulhaber polynomials are expressed in terms of just

the first few Eisenstein series E2, E4 and E6. In our conventions for the periods of the

Weierstrass function, the modular parameter τ is identified as

τ ≡ iK′

K
. (6.19)

For notational simplicity, we suppress the τ (therefore k2) dependence of the Eisenstein

series in the following equations.

11Not to be confused with the prepotential which we denote with the calligraphic letter F .
12The name derives from a remarkable connection between the classical Faulhaber polynomials of Number

Theory and the KdV integrals for soliton-like potentials [115], generalized to elliptic functions associated

with periodic arrays of solitons [114]. In this sense, the polynomials in (6.13) could be referred to as

trigonometric Faulhaber polynomials.
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Then the first few elliptic Faulhaber polynomials Fj+1(µ) are

1

2K
F1(µ) = −

( π

2K

)2 1

3
[E2] (2µ) (6.20)

1

2K
F2(µ) =

( π

2K

)4 1

9
[E4] (2µ)2 (6.21)

1

2K
F3(µ) =

( π

2K

)6 2

135

(
[4E6 − 9E2E4] (2µ)3 − 12 [E6 − E2E4] (2µ)2

)
(6.22)

1

2K
F4(µ) =

( π

2K

)8 1

189

(
5

3

[
15E2

4 − 8E2E6

]
(2µ)4 (6.23)

−80
[
E2

4 − E2E6

]
(2µ)3 + 96

[
E2

4 − E2E6

]
(2µ)2

)
Further properties of these elliptic Faulhaber polynomials Fj+1(µ) are discussed in [114].

The Gelfand-Dikii expansion (6.16) can be viewed as a high-energy expansion of an

all-orders Bohr-Sommerfeld relation, which can be inverted13 to yield

E ∼
( π

2K

)2

N2 +

∞∑
j=0

Gj+1(µ)

N2j

 (6.24)

where the polynomials Gj+1(µ) are simple combinations of the elliptic Faulhaber polyno-

mials Fj+1(µ):

G1(µ) = −1

3
[E2] (2µ) (6.25)

G2(µ) =
1

36

[
E4 − E2

2

]
(2µ)2 (6.26)

G3(µ) =
1

540

([
2E6 + 3E2E4 − 5E3

2

]
(2µ)3 − 6 [E6 − E2E4] (2µ)2

)
(6.27)

G4(µ) =
1

9072

([
−35E4

2 + 7E2
2E4 + 10E2

4 + 18E2E6

]
(2µ)4

+12
[
−5E2

4 − 2E2E6 + 7E2
2E4

]
(2µ)3

+72
[
−E2E6 + E2

4

]
(2µ)2

)
(6.28)

It is convenient to define the rescaled and shifted eigenvalue, absorbing the j = 0 term

from the sum:

ũ ≡ 1

2

(
~
2

)2
((

2K
π

)2

E +
E2

3
(2µ)

)
(6.29)

Then in terms of the action variable a = ~N/2, (6.24) becomes

ũ ∼ 1

2
a2 +

1

2

∞∑
j=1

(
~
2

)2j+2 Gj+1(µ)

a2j
(6.30)

13It is interesting to note that the Lagrange inversion of series can be naturally expressed in terms of

Young tableaux [28, 121].
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It is a non-trivial check that with the scaling of (6.3) and (6.2), we identify 2µ ↔ 16
~2 k2 ,

and in the k2 → 0 limit we find that (6.30) does indeed reduce to the Mathieu large period

expansion in (2.26).

We can now compare the Bohr-Sommerfeld energy expansion (6.30) with the expansion

of the Nekrasov-Shatashvili prepotential for the SU(2) N = 2∗ theory [39, 40, 116–120]:14

FN=2∗
NS (a, ~,m) ∼ 1

2
τ a2 − H0

2πi
log(η(τ))− 1

4πi

∞∑
j=1

Hj
2j+1 j a2j

(6.31)

where H0 is expressed in terms of the scalar mass, m, and the Nekrasov deformation

parameter in the Nekrasov-Shatashvili limit ~ = ε1 as

H0 ≡ m2 − ~2

4
(6.32)

The higher coefficients Hj are polynomials in H0:

H1(H0) =
1

12
[E2]H2

0 (6.33)

H2(H0) =
1

360

([
5E2

2 + E4

]
H3

0 − 3 [E4]H2
0 ~2

)
(6.34)

H3(H0) =
1

60480

( [
175E3

2 + 84E2E4 + 11E6

]
H4

0

−36 [7E2E4 + 3E6]H3
0~2 + 180[E6]H2

0~4
)

(6.35)

Using the differentiation properties of the Eisenstein series

1

2πi

d

dτ
E2 =

1

12

[
E2

2 − E4

]
,

1

2πi

d

dτ
E4 =

1

3
[E2E4 − E6] ,

1

2πi

d

dτ
E6 =

1

2

[
E2E6 − E2

4

]
(6.36)

and the identification

2µ↔ H0

~2
≡ m2

~2
− 1

4
(6.37)

we observe the remarkable fact that the expansion coefficients Hj are directly related to

the polynomials Gj+1:

1

2πi

∂

∂τ
Hj = − j

2j+1
~2j+2 Gj+1 (µ) , with 2µ↔ H0

~2
(6.38)

We thus arrive at the Matone relation for the N = 2∗ theory:

ũ =
∂

∂τ
FN=2∗

NS +
E2

24

(
m2 − ~2

4

)
(6.39)

The shift in ũ is just the shift in (6.29), required to have a smooth reduction to the Mathieu

eigenvalue, as the N = 2∗ theory reduces to the N = 2 theory in the m2 →∞ limit, which

is combined with k2 → 0 with m2k2 finite.15

14Note that our normalization of F differs from the normalization in [39, 40] as Fhere = − 1
4πi
Fthere.

15Effectively, we are subtracting the average value of the Weierstrass potential over one period, so that

the first KdV integral, I1[V ], vanishes, as it does for the Mathieu potential.
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It is interesting to note that when the scalar mass m is related to the Nekrasov defor-

mation parameter ε1 ≡ ~ as

m =

(
j +

1

2

)
~ ⇒ 2µ = j(j + 1) (6.40)

then if j is an integer the Lamé system becomes finite gap [122], with the number of gaps

equal to j. In this case, much more explicit descriptions of the spectral information can be

given [114, 122], and there is also a precise strong/weak band/gap duality symmetry [111].

Notably for integer values of j, the associated density of states ρ(E)dE has an algebraic

geometric meaning: it is an abelian differential of the second kind over a genus-j Riemann

surface. Therefore the quantization condition πN ∼
∫
ρ(E)dE carries a clear geometric

interpretation.

Thus, in the large action spectral region of the Lamé equation we identify the all-orders

WKB Bohr-Sommerfeld expansion with the Gelfand-Dikii expansion, and the eigenvalue is

identified with the scalar condensate moduli parameter of the N = 2∗ gauge theory. But,

as in the Mathieu equation, this Bohr-Sommerfeld expression (6.30) for the energy is only

part of the story. Identifying the action a with N~/2, the Bohr-Sommerfeld expression

gives a (convergent) perturbative expression for the location of the N th gap high in the

spectrum. However, physically it is clear that there are also non-perturbatively small gaps

in the spectrum, and these are related to instantons. As in the Mathieu case discussed

in section 3, these gaps arise due to poles in the expansion coefficients: see the continued

fraction expressions at http://dlmf.nist.gov/29.3.iii. Since the structure is quite

similar, we do not repeat all the steps here. Further discussion of the Lamé system is

deferred to a future publication.

7 Conclusions

In this paper we have applied resurgence and all-orders exact WKB to provide a complete

description of the different spectral regions of the Mathieu and Lamé systems, stressing

their close connection with the low energy behavior of N = 2 SUSY SU(2) gauge theories.

Defining a ’t Hooft parameter, λ = N ~, where N is the spectral level number, we asso-

ciate the large λ regime with the gauge electric regime, the small λ regime with the gauge

dyonic regime, and the λ ∼ 1 regime with the gauge magnetic regime. We have shown that

exact WKB provides a complete description of all regimes, including all non-perturbative

effects, and permits direct mappings between these sectors. Previous analyses based on all-

orders Bohr-Sommerfeld relations described only part of the information, neglecting non-

perturbative band or gap splittings. This analysis also shows that the relation between per-

turbative and non-perturbative contributions is radically different in the different regimes.

The familiar relation between divergent perturbative expansions and non-perturbative ef-

fects must be generalized to accommodate the large λ regime where perturbative expansions

are convergent, and non-perturbative effects are associated with poles of expansion coeffi-

cients. This generalizes the resurgent trans-series analysis of [11, 12, 46, 47] to large λ. We

provide a physical analogy of this change of non-perturbative behavior, in the transition
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from tunneling pair production to multi-photon pair production in the Schwinger effect

in a time-dependent electric field, as the adiabaticity of the field changes. This physics is

naturally described by worldline instantons. Since the Nekrasov deformation parameters

have the physical interpretation of constant graviphoton fields, the SUSY gauge theory

significance of these worldline instantons, and their associated non-perturbative effects,

should be further understood.

The reinterpretation of the spectral problem in the language of the Nekrasov partition

function leads naturally to a simple proof of a quantum mechanical resurgence relation [11,

12] that shows that all non-perturbative information of the trans-series eigenvalues is subtly

encoded within perturbation theory, which is an extreme form of resurgence behavior. We

also give a geometrical interpretation of this fact in terms of the Riemann bilinear identity

and the Picard-Fuchs equation, complementary to work on quantum geometry [31, 32, 39,

40, 43, 44] and Whitham dynamics [45]. We demonstrate a direct relation between the

all-orders Bohr-Sommerfeld relation and the Gelfand-Dikii expansion, based on the KdV

invariants, and show explicitly how the N = 2∗ theory reduces to the N = 2 system.

Future work will develop these ideas further [107].
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A Simple analog of uniform asymptotic behavior

As discussed in [9, 10, 123], certain features of the divergence of the perturbative expansion

for the ground state energy of the Mathieu system are captured by the zero-dimensional

partition function

Z(g) ≡ 1

2π

∫ π

−π
dx e

− 1
g

cosx
= I0

(
1

g

)
∼ 1√

2π/g
e

1
g

∞∑
n=0

Γ
(
n+ 1

2

)2
π 2nn!

gn , g → 0+ (A.1)

The relation to the quantum mechanical spectral problem arises because this zero-

dimensional partition function gives the resummed leading derivative expansion contri-

bution to the heat kernel expansion tr e−Ht, from which the resolvent and spectrum can

be extracted. The perturbative expansion in (A.1) is asymptotic, with non-alternating

factorial large order behavior of the expansion coefficients, cn ∼ (n − 1)!/π. The series is
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non-Borel-summable and should instead be represented by a trans-series, which has just

two exponential terms since Z(g) satisfies a second order differential equation [2]:16

Z(g) ∼ 1√
2π/g

e
1
g

∞∑
n=0

Γ
(
n+ 1

2

)2
π 2nn!

gn ± i√
2π/g

e
− 1
g

∞∑
n=0

(−1)n
Γ
(
n+ 1

2

)2
π 2nn!

gn (A.2)

where −π
2 +δ ≤ ∓ph g ≤ 3

2π−δ. This trans-series expression contains all information about

the function, including the Stokes phenomenon. In particular, the second sub-dominant

part is required in order to be consistent with the analytic continuation connection formula

for the Bessel functions:

K0(e±iπz) = K0(z)∓ i π I0(z) (A.3)

Note that in the large g limit this function has a convergent “strong-coupling” expansion:

Z(g) ∼
∞∑
k=0

1

(2k k!)
2

1

g2k
, g → +∞ (A.4)

The dependence on the level number N can be modeled by considering instead

ZN (g) ≡ IN
(

1

g

)
∼ 1√

2π/g
e

1
g

∞∑
n=0

cn(N) gn , g → 0+ (N fixed) (A.5)

where the series is again divergent and non-Borel-summable, with cn(N) ∼ (−1)N (n−1)!
π ,

at large perturbative order n, as in (A.1). But we can also consider the large N limit with

g fixed:

ZN (g) ∼ 1√
2πN

(
e

2N g

)N
, N → +∞ (g fixed) (A.6)

which has the same form as the gap splitting (2.30) high in the spectrum where N � 1/g.

On the other hand, there is also a uniform expansion where N →∞ and g → 0 such that

Ng is kept fixed. The uniform expansion valid for all values of the ’t Hooft parameter

λ ≡ N g is:

ZN

(
1

g

)
= IN

(
N

1

Ng

)

∼ 1√
2π

exp
[√

N2 + 1
g2

]
(
N2 + 1

g2

)1/4

 1
N g

1 +
√

1 + 1
(N g)2

N
∞∑
n=0

1

Nn
Un

 1√
1 + 1

(N g)2


, N → +∞ (0 < N g <∞) (A.7)

where Un is a (known) polynomial of degree 3n [http://dlmf.nist.gov/10.41.E3]. This

uniform expression interpolates smoothly between the two extreme limits and describes

the function in the intermediate region, the analog of the “magnetic region”.

16For the Lamé potential, Z(g) satisfies a third-order differential equation, and this fact is reflected in

the appearance of three different exponential terms, which can be identified with the perturbative vacuum

and both real and complex (’ghost’) instantons [48].
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B WKB coefficients

In this appendix we list the first five set of coefficients κ
(n)
k , that enter into the relation

an(u) =

n∑
k=0

κ
(n)
k uk

dn+ka0(u)

dun+k
. (B.1)

that connects the higher order WKB cycles to the leading order one. n denotes the co-

efficient of ~2n in the WKB expansion. The method for calculating them is explained in

section 3.4.

n ↓ /k → 0 1 2 3 4 5

1 1/48 1/24

2 5/1536 1/192 7/5760

3 41/57344 153/143360 79/215040 31/967680

4 15229
70778880

9539
30965760

517
4128768

13
716800

127
154828800

5 484249
5813305344

5049503
43599790080

8430053
163499212800

780341
81749606400

61729
81749606400

73
3503554560
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[73] E. Brézin and C. Itzykson, Pair production in vacuum by an alternating field, Phys. Rev. D

2 (1970) 1191 [INSPIRE].

[74] V.S. Popov, Pair production in a variable external field (quasiclassical approximation), Sov.

Phys. JETP 34 (1972) 709.

[75] M.S. Marinov and V.S. Popov, Electron-positron pair creation from vacuum induced by

variable electric field, Fortsch. Phys. 25 (1977) 373 [INSPIRE].

[76] NIST digital library of mathematical functions, http://dlmf.nist.gov/.

[77] E.T. Whittaker and G.N. Watson, A course of modern analysis, Cambridge University

Press, Cambridge U.K. (1902).

[78] J. Meixner and F. W. Schäfke, Mathieusche Funktionen und Sphäroidfunktionen,
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[109] H.J.W. Müller, On asymptotic expansions of ellipsoidal wave functions, Math. Nachrichten

32 (1966) 157.
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