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General string-theoretic considerations suggest that four-dimensional large-N gauge theories should
have dual descriptions in terms of two-dimensional conformal field theories. However, for nonsupersym-
metric confining theories such as pure Yang-Mills theory, a long-standing challenge has been to explicitly
show that any such dual descriptions actually exist. In this paper, we consider the large-N limit of four-
dimensional pure Yang-Mills theory compactified on a three-sphere in the solvable limit where the sphere
radius is small compared to the strong length scale, and demonstrate that the confined-phase spectrum of
this gauge theory coincides with the spectrum of an irrational two-dimensional conformal field theory.
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I. INTRODUCTION

Confining gauge theories in the large-N limit are
believed to have dual descriptions as weakly-coupled string
theories [1]. Since string theories have 2D worldsheet
conformal field theory (CFT) descriptions, it is expected
that confining 4D gauge theories may have alternative
descriptions based on 2D CFTs. However, for nonsuper-
symmetric quantum field theories (QFTs) such as Yang-
Mills (YM) theory, no concrete relation between large-N
confining theories and 2D CFTs has ever been found.
In this paper we approach this problem by studying the

large-N limit of 4D pure SUðNÞ YM theory, formulated at
temperature T ¼ β−1 and compactified on a three-sphere S3

of radius R. One can thus view the theory as living on
S3R × S1β with Euclidean metric signature. The virtues of this
setting are two-fold. First, thanks to asymptotic freedom, if
we take ΛR ≪ 1where Λ is the YM strong scale, then the ’t
Hooft coupling λ≡ g2N becomes small—i.e., λð1=RÞ → 0.
As a result, the theory becomes solvable for any temper-
ature β ∼ N0. Second, it is known [2] that large-N YM
theory stays in the confined phase when β=R≳ 1, even
when λ → 0. In this context “confinement” means that the
system has an unbroken center symmetry and that its free
energy scales as N0. As sketched in Fig. 1, it is plausible
that the physics of YM theory is smooth as a function of
ΛR. Thus, the ΛR ≪ 1 regime of the large-N confined
phase represents a particularly tractable 4D starting point in
our search for a dual 2D description.
Rather than attempt a string-theory construction of a 2D

dual for large-N YM theory, we shall instead analyze the

confined-phase spectrum of YM theory in the solvable
ΛR ≪ 1 limit. We work to the leading nontrivial order in
the ΛR expansion, which turns out to be ðΛRÞ0. Although
this corresponds to λ ¼ 0, the fact that the λ ¼ 0 limit is
nontrivial is one of the virtues of working with an S3

compactification, as discussed above. Remarkably, at least
in the λ ¼ 0 limit, it turns out that a simple 2D CFT
description emerges. Thus, in this limit, we conclude that
the large-N confined-phase spectrum of 4D YM theory
coincides with the spectrum of a 2D CFT. In the con-
clusions we briefly comment on possible relations between
our result and string-theoretic expectations.
Specifically, recall that the complete spectrum of a QFT is

encoded in its grand-canonical thermal partition function.
We take 4D YM theory to be minimally coupled to the S3

metric, so that the Kaluza-Klein energies on the three-sphere

FIG. 1 (color online). A conjectured phase diagram for large-N
YM theory on S3 × S1. In the analytically tractable regime
ΛR ≪ 1, the deconfinement transition occurs at β ∼ R, while
for ΛR ≫ 1, lattice studies have shown that it occurs at β ∼ 1=Λ.
This sketch illustrates the natural conjecture that these two
limiting cases are smoothly connected. The results of this paper
apply in the ΛR → 0 region indicated by the blue line.
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are given by En ¼ n=R in the λ → 0 limit [2]. The partition
function then takes the form

ZYMðβ=RÞ ¼
X∞
n¼0

dne−βEn ¼
X∞
n¼0

dnqn ð1Þ

where q ¼ e−β=R and dn counts the number of states with
energy En. Our main result is the demonstration that the
grand-canonical partition function ZYM of Yang-Mills theory
coincides with a chiral partition function of a 2D CFT:

ZYMðτÞ ¼ Z2DðτÞ: ð2Þ
In writing Eq. (2), we have analytically continued q to e2πiτ

with τ ∈ H, the complex upper half-plane [3]. Thus
Imτ ¼ β=ð2πRÞ. On the 2D CFT side of the equivalence,
Reτ has the standard interpretation of a chemical potential
(in units of β) for rotations on the spatial circle of the torus
S12πR × S1β. Determining the physical interpretation of Reτ on
the 4D gauge-theory side of Eq. (2) is an important matter
for future work. We also emphasize that ZYMðτÞ is not a
modular-invariant function. Rather, our claim is that ZYM is
modular covariant, in the sense that it is built out of modular
forms. Indeed, it is this feature which enables a match to the
chiral-sector partition function of a 2D CFT, as in Eq. (2).
We shall discuss this further in the conclusions.

II. THE 4D PARTITION FUNCTION

We begin by briefly explaining the computation of ZYM,
leaving a more leisurely exposition to Ref. [4]. To calculate
the 4D partition function ZYMðτÞ, we take the large-N limit
with Λ held fixed, which means taking the continuum limit
after the large-N limit. Wework on S3 × S1 and assume that
β and R are independent ofN. Likewise, we do not consider
states with energies ≳N because they lie beyond our UV
cutoff. As is typical in studies of large-N theories, we work
with theUðNÞ version of YM theory rather than the SUðNÞ
version [5]. When ΛR → 0, the microscopic degrees of
freedom of YM theory reduce to an infinite collection of
color-adjoint-valued harmonic oscillators. These oscillators
are counted by the massless-vector partition function,
which can be written as zvðτÞ ¼ ð6q2 − 2q3Þ=ð1 − qÞ3.
The physical states are then determined by imposing the
color Gauss law. In the λ ¼ 0 confined phase, the physical
single-particle states can be identified with single-trace
operators, and their energies are proportional to their
scaling dimensions. The counting problem for these states,
and also for the multiparticle states, has been solved [2,6],
and the resulting grand-canonical confined-phase partition
function is given by

ZYMðτÞ ¼
Y∞
n¼1

1

1 − zvðqnÞ
¼

Y∞
n¼1

ð1 − qnÞ3
1 − 3qn − 3q2n þ q3n

¼ 1þ 6q2 þ 16q3 þ 72q4 þ � � � ð3Þ

As expected in any confining large-N theory, we find
that the dn grow exponentially for large n. Thus, there are
Hagedorn singularities in ZYMðτÞ. In Eq. (3), we find dn ∼
eCn and En ∼ n for large n, with C≡ logð2þ ffiffiffi

3
p Þ ≈ 1.317.

This contrasts with the behaviors dn ∼ e
ffiffi
n

p
and En ∼

ffiffiffi
n

p
that would arise for a string theory with a flat target space.
Of course, we are not in flat space: the spacetime curvature
is ∼1=R, which is of the same scale as the effective string
tension α0 ∼ 1=R2 that follows from our spectrum. The
scaling properties of dn in Eq. (3) imply that the leading
Hagedorn singularity of ZYMðβÞ is at βH=R ¼ C, Reτ ¼ 0,
with subleading Hagedorn singularities accumulating along
the line Reτ ¼ 0 toward the point Imτ ¼ ∞. Consequently,
there will be a phase transition to a deconfined phase at βH so
long as Reτ ¼ 0. This is discussed in detail in Refs. [2,7].

III. MODULAR SYMMETRIES

We now observe that the denominator in Eq. (3) can be
factorized with roots that are inverses of each other:

1 − 3qn − 3q2n þ q3n ¼ ð1þ qnÞð1 − qnzÞð1 − qn=zÞ
ð4Þ

where z ¼ 2þ ffiffiffi
3

p
. This pivotal algebraic observation was

first made in Ref. [8] in the context of uncovering a subtle
“temperature-reflection” symmetry for ZYM. For our pur-
poses, however, the key point is that this factorization
allows ZYM to be written as

ZYM ¼
Y∞
n¼1

ð1 − qnÞ3
ð1þ qnÞð1 − qnzÞð1 − qnz−1Þ : ð5Þ

This observation is very important because the structure
of Eq. (5) matches the structure of the product representa-
tions of the Dedekind η-function and generalized Jacobi
ϑ-functions. (In the related context of adjoint QCD, this
was also noted in Ref. [9].) Specifically, the Dedekind
η-function has the product representation ηðτÞ ¼
q1=24

Q∞
n¼1ð1 − qnÞ, while the generalized ϑ-function

ϑ½αβ�ðτÞ≡
P

n∈Zq
ðnþαÞ2=2e2πinβ has a product representation

of the form

ϑ
hα
β

i
ðτÞ ¼ qα

2=2
Y∞
n¼1

½ð1 − qnÞ

× ð1þ qn−
1
2
þαe2iπβÞð1þ qn−

1
2
−αe−2iπβÞ�: ð6Þ

Under the S∶ τ → −1=τ and T∶ τ → τ þ 1 generators of
the modular group SLð2;ZÞ, we find ηð−1=τÞ ¼ ffiffiffiffiffiffiffi

−iτ
p

ηðτÞ
and ηðτ þ 1Þ ¼ eiπ=12ηðτÞ, while

S∶ ϑ
hα
β

i
ð−1=τÞ ¼

ffiffiffiffiffiffiffi
−iτ

p
e−2πiαβϑ

h−β
α

i
ðτÞ;

T∶ ϑ
hα
β

i
ðτ þ 1Þ ¼ eiπα

2

ϑ
h α
β þ αþ 1=2

i
ðτÞ: ð7Þ
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Given these definitions, the structure of Eq. (5) allows us
to rewrite the 4D partition function ZYM as a finite product
of Dedekind η-functions and Jacobi ϑ-functions:

ZYMðτÞ ¼ ηðτÞ3
�
−

ffiffiffi
2

p
e−iπbηðτÞ

ϑ½ 1=2
bþ1=2�ðτÞ

� ffiffiffiffiffiffiffiffiffiffiffi
2ηðτÞ
ϑ2ðτÞ

s
ð8Þ

where b ¼ i logðzÞ=2π ≈ 0.21i, where ϑ2ðτÞ≡ ϑ½1=2
0
�ðτÞ,

and where the identity 2ηð2τÞ2 ¼ ηðτÞϑ2ðτÞ has been used
in passing from Eq. (5) to Eq. (8). The fact that b is
imaginary implies that 1=ϑ½ 1=2

bþ1=2�ðτÞ has poles in the
interior of the upper half plane, and is the reason the
degeneracy factors dn in Eq. (3) grow as dn ∼ eCn.
The expression in Eq. (8)—and our interpretation of this
expression in terms of specific 2D CFTs, as discussed
below—are the key results of our paper, with many striking
consequences.

IV. MODULARITY VERSUS DIMENSIONALITY

The first interesting implication of Eq. (8) becomes
apparent upon realizing that it is extremely unusual for the
partition function of a 4D theory to be expressible as a finite
product of modular forms, as in Eq. (8). (See, e.g., Ref. [10]
for an early discussion along these lines.) The large-jτj
behavior of a modular form is tied, through the S modular
transformation, to its behavior near jτj ¼ 0. For example,
the Dedekind η-function has the large-jτj expansion
ηðτÞ ¼ q1=24ð1 − qþ � � �Þ; the S transformation then
requires this function to behave at small jτj as ηðτÞ∼
exp½−iπ=ð12τÞ�= ffiffiffiffiffiffiffi

−iτ
p

. Similar statements can be made
for the ϑ-functions. Thus, if a partition function
can be written as a finite product of modular η-functions
and ϑ-functions, then it must have the leading behavior

lim
arg τ→π=2

½logZmodularðτÞjjτj→0� → σR=β ð9Þ

for a constant σ. This roughly amounts to the statement that
logZmodular ∼ T as T → ∞. This is indeed the expected
behavior for a 2D QFT. [In cases in which the order of limits
in Eq. (9) may be important, the thermal interpretation of
Eq. (9) is less straightforward.] However, the behavior
described in Eq. (9) is certainly not the expected behavior
for a 4D QFT, for which we generically expect [11]

logZ4D ∼ β−3 as β → 0: ð10Þ
For example, this is the behavior of a conformally coupled
free massless scalar field on S3R × S1β, for which

Zs ¼ q1=240
Y
n≥1

ð1 − qnÞ−n2 ð11Þ

and

logZs →
π4R3

45
β−3 as β → 0: ð12Þ

Similar results also emerge for free vector and fermion fields
on S3 × S1. Complexifying β and taking the small-jβj limit
as in the left side of Eq. (9) clearly cannot change these
behaviors from that in Eq. (10) to that in Eq. (9) in generic
free-field theories. Thus, in this sense, 4D QFTs whose
partition functions can be written in terms of modular forms
behave as if they were 2D QFTs, since they follow Eq. (9)
rather than Eq. (10).
If we were to reverse the order of limits on the left side of

Eq. (9) and take the jτj → 0 limit with arg τ ¼ π=2, pure
YM theory would follow the scaling in Eq. (10). Such a
limit cannot be studied from Eq. (3) due to the Hagedorn
singularities, and the physics is governed by the deconfined
phase [2]. For Yang-Mills theory, Eq. (9) is thus valid only
with the order of limits indicated. We note that in other
theories such as adjoint QCD with periodic boundary
conditions for fermions, the Hagedorn singularities do
not lie along arg τ ¼ π=2 [9]; the two limits then commute
and these theories exhibit 2D behavior in the sense of
Eq. (9) irrespective of the order of limits [4].

V. VACUUM ENERGY

Another major consequence of Eq. (8) is that the
modular properties of the η- and ϑ-functions fix the vacuum
energy EYM of our large-N YM theory to be zero.
To see this, we first recall that if we write the q-series

expansion of a modular function fðτÞ in the form
f ¼ qΔ

P∞
n¼0 anq

n, then Δ can be thought of as the 2D
vacuum energy. Its value is fixed by the modular properties
of f and tied to the values of an. Were one to arbitrarily shift
Δ → Δþ c, the modular properties of fðτÞ would be
ruined because the S-transformation would map qc ¼
eð2πiτÞc to eð−2πi=τÞc, thereby preventing qcfðτÞ from trans-
forming as a modular form.
Next, we observe that the vacuum energy associated to

the η-function is 1=24, while ϑ½ab� has vacuum energy a2=2.
Summing the vacuum energies of the individual modular
form in Eq. (8), we obtain a striking result:

EYM ¼ 0: ð13Þ

Indeed, this is the only value consistent with the
q-expansion for ZYM given in Eq. (3), provided that
EYM is calculated in a renormalization scheme which is
consistent with the modular properties of ZYM made
evident in Eq. (8). This value, EYM ¼ 0, also coincides
with the result implied by T-reflection symmetry [8], and
furthermore agrees with a direct evaluation of the sum over
the confined-phase spectrum of finite-temperature large-N
YM theory compactified on S3, as performed in Ref. [12].
To understand this result within the framework of the

existing literature, it is important to recall that the starting
point for the analysis in this paper concerns the ’t Hooft
large-N limit, where N is sent to infinity with λðμuvÞ and all
other parameters held fixed, including the UV regularization
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scale μuv. This is the most natural thing to do in asymp-
totically free QFTs because it results in Λ being held fixed as
N → ∞, as one can see from the one-loop relation between
the strong scaleΛ and the ’t Hooft coupling λðμuvÞ at the UV
regularization scaleΛ ¼ μuve

− 8π2

β0λðμuvÞ, where β0 ¼ 11=3 is the
one-loop beta-function coefficient. It is only within this
understanding of the large-N limit that our expression for
ZYM in Eq. (3) is correct. Thus, when the confining-phase
spectral data encoded in (3) is used to compute the vacuum
energy—either by direct methods, as in Ref. [12], or by
using the modular symmetries, as done here—the result of
Eq. (13) is valid in the limit discussed above. In the literature
there are other calculations of the Casimir energy for adjoint-
matter gauge theories, both in the λ ¼ 0 limit (as in, e.g.,
Ref. [2]) and using gauge-gravity duality for N ¼ 4 super-
YM theory (as in Ref. [13]). These latter calculations yield
the result E0 ∼ N2 ≠ 0. However these calculations assume
an ordering for the large-μ and large-N limits which is
opposite ours. There is thus no conflict with our results.

VI. CFT INTERPRETATION

The striking modular structure of Eq. (8) suggests that
the spectrum of our 4D YM theory coincides with that of a
chiral (e.g., left- or right-moving) 2D CFT. This motivates
the central question we shall now explore for the rest of this
paper: what is the 2D CFTwhich gives rise to Eq. (8), and
thus gives a 2D description of 4D YM theory in the large-
N limit?
Unfortunately, we will not be able to give a complete

answer to this question. The reason ultimately has to do
with the fact that many distinct CFTs can have coincident
spectra without being equivalent. They may differ, for
example, in their correlation functions. In general, the most
important aspects of a given 2D CFT are governed by its
central charge (conformal anomaly) c and its spectrum of
operator conformal dimensions hi; i ¼ 1;…; n, where n is
the number of so-called “primary” fields in the CFT. Along
with the explicit traces over states, knowledge of c and the
hi’s goes a long way in nailing down relevant aspects
of the CFT such as its selection rules and correlation
functions. But partition functions are only sensitive to the
combinations hðeffÞi ≡ hi − c=24, rather than the values of
c and hi individually. Consequently, without additional
assumptions about the CFT in question (such as the
assumption of unitarity, which would additionally tell us
that minfhig ¼ 0), this represents a fundamental limitation
on our ability to specify a unique CFT.
We will therefore answer a different but related question:

do there exist any 2D CFTs to which our large-N YM
theory is isospectral? Remarkably, we shall show that at
least one such 2D CFT indeed exists. To see this, we first
recall that a free c ¼ 1 scalar CFT has a chiral spectrum
whose trace is given by 1=ηðτÞ, while theZ2 orbifold of this
CFT has a chiral sector whose trace is ð2ηðτÞ=ϑ2ðτÞÞ1=2.

Furthermore, the direct product of two copies of the
c ¼ −26 bc ghost CFT has a chiral spectrum whose trace
is given by ηðτÞ4. Perhaps the most challenging to interpret
is the remaining factor in Eq. (8), specifically

−
ffiffiffi
2

p
e−iπbηðτÞ

ϑ½ 1=2
bþ1=2�ðτÞ

: ð14Þ

However, this can be identified as the trace of the chiral
(e.g., left-moving) states in the vacuum sector of the c ¼ 2
bosonic βγ ghost CFT recently explored in Ref. [14]. This
is a logarithmic CFT [15], and it has a Uð1Þ conserved
charge. Thus the vacuum-sector chiral partition function of
the c ¼ 2 βγ CFT depends on the choice of a complex
fugacity z ¼ eþμβ. To match with our expressions for YM
theory, we set μβ ¼ 2πib ¼ − logð2þ ffiffiffi

3
p Þ.

Putting this together, we therefore conclude that the
expression in Eq. (8) can be viewed as the trace over the
chiral spectrum of a theory which is the direct product of
five known CFTs, one of which is irrational. This then
justifies the central claim of this paper in Eq. (2): there is
indeed an irrational 2D CFT which is isospectral to the
finite-temperature large-N 4D YM compactified on S3 in
the ΛR → 0 limit.
Aside from explaining our observations concerning

EYM and the small-jτj behavior of ZYM, the equivalence
in Eq. (2) has an intriguing further implication. Two-
dimensional CFTs have infinite-dimensional symmetries
which always include the Virasoro symmetry. The result in
Eq. (2) then strongly suggests that the spectrum-generating
algebra of large-N YM theory includes a Virasoro algebra
in the λ ¼ 0 limit. It would be very interesting to find the
explicit realization of this Virasoro symmetry algebra
within YM theory.

VII. PRIMARY OPERATOR SPECTRUM

We now collect information concerning the spectrum of
conformal dimensions hðeffÞi corresponding to the primary
fields of this tensor-product CFT. Our approach proceeds
by determining the diagonal modular-invariant associated
with the expression in Eq. (8), and then computing the

eigenvalues of the modular T operator to extract hðeffÞi .
We begin by defining the quantities

Tm;n ≡ −
ffiffiffi
2

p
e−iπbnηðτÞ4

ϑ½mbþ1=2
nbþ1=2�ðτÞ

�
2ηðτÞ

ϑ½PðmÞ=2
PðnÞ=2�ðτÞ

�
1=2

; ð15Þ

where fm; ng are relatively prime integers (a relationship
which we shall henceforth denote m⊥n), and PðkÞ≡
1
2
ð1þ ð−1ÞkÞ, k ∈ Z. Thus PðkÞ ¼ 0, 1 for odd or even

k, respectively. The set fTm;ng is a basis for a vector space
over the field C with two key properties: it contains the
“seed term” in Eq. (8), and it is the minimal set which is
closed under the action of the SLð2;ZÞ modular group.
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The first property follows by noting that T0;1ðτÞ coin-
cides with Eq. (8). The verification of the second property
proceeds in two steps. First, it can be shown that, up to
overall phases and extraneous factors of

ffiffiffiffiffiffiffi
−iτ

p
, the S and T

modular transformations map Tm;n to T−n;m and Tm;nþm,
respectively. Second, we observe that if fm; ng are rela-
tively prime, then f−n;mg and fm; nþmg are also
relatively prime. Since all modular transformations can
be generated by sequences of S and T, it then follows that
the full modular “orbit” of our seed term T0;1 is contained
within the set of coprime integers fm; ng. Indeed, it is also
possible to demonstrate [4] that the modular orbit actually
covers all coprimes.
As a result, the minimal “diagonal” modular-invariant

generated from Eq. (8) is given by

Zdiagonal ¼ ðImτÞ3=2
X
m⊥n

jTm;nj2: ð16Þ

The appearance of the factor of ðImτÞ3=2 is standard when
combining holomorphic and antiholomorphic components,
such as our Tm;n factors, each of which has modular weight
k ¼ 3=2. It also ensures that Zdiagonal is fully modular
invariant. Moreover, it can be verified numerically that the
infinite sum in Eq. (16) converges except for an isolated
set of points corresponding to the Hagedorn singularities.
The numerical values of Zdiagonal on the interior of the unit-
q disk are shown in Fig. 2.
In order to extract the spectrum of effective conformal

dimensions hðeffÞi , we now rewrite Zdiagonal in a basis of
eigenfunctions of the modular T∶ τ → τ þ 1 operator.
We do this because such eigenfunctions χðτÞ will have

eigenvalues exp½2πihðeffÞi � under T, allowing us to read off

the values of hðeffÞi (mod 1). Fortunately, constructing
eigenfunctions of the T-operator from linear combinations
of the Tm;n’s in Eq. (15) is relatively straightforward. Since

Tm;nðτ þ 1Þ ¼ eπif½1−PðmÞ�=8þm2jbj2gTm;nþmðτÞ; ð17Þ

we see that any linear combination which includes Tm;n must
also include Tm;nþm, Tm;nþ2m, and indeed all Tm;nþkm where
k ∈ Z. Our T-invariant linear combinations can therefore
be indexed by an arbitrary integer m and a second integer
l⊥m obeying 0 ≤ l < jmj. Hence T-eigenfunctions can be
constructed analogously to Bloch eigenfunctions, by sum-
ming over all components Tm;lþkm with k ∈ Z with a Bloch
phase α ∈ ½0; 1Þ ⊂ R:

χm;l;α ¼
X
k∈Z

e2πiαkTm;lþmk: ð18Þ

It then follows that

χm;l;αðτ þ 1Þ ¼ e2πih
ðeffÞ
m;l;αχm;l;αðτÞ; ð19Þ

where

hðeffÞm;l;α ¼
1

2

�
1 − PðmÞ

8
þm2jbj2

�
− α: ð20Þ

One might wonder whether fχm;l;αg is the complete set
of T-eigenfunctions. However, we have verified this by
checking that summing over χm;l;α reproduces Eq. (16):

Zdiagonal ¼ ðImτÞ3=2
X
m∈Z

X
0≤l<jmj
l⊥m

Z
1

0

dαjχm;l;αj2: ð21Þ

This confirms that Eq. (20) is the desired set of effective
conformal dimensions (mod 1) of the primary operators in
our CFT. The fact that these dimensions depend on α—a
continuous real variable—confirms that we are dealing
with an irrational CFT [16]. Our observations are also
consistent with the 2D logarithmic CFT interpretation
discussed above, since it is known that logarithmic CFTs
typically have a continuously infinite number of primary
operators [17].

VIII. OUTLOOK

We have presented evidence that the confined phase of
finite-temperature 4D nonsupersymmetric large-N pure
Yang-Mills theory compactified on a three-sphere of radius
R has a remarkable modular structure, as exposed by Eq. (8).
This has many interesting consequences, such as the fact
that this 4D gauge theory is isospectral to an irrational
2D CFT in the ΛR → 0 limit, as summarized in Eq. (2).
Moreover, as we shall demonstrate in a separate paper [4],
modularity in the sense of Eq. (8) and isospectrality to

FIG. 2 (color online). The numerical values of Eq. (16) with
jmj, jnj ≤ 10, plotted within the unit-q disk.
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2D irrational CFTs as in Eq. (2) turn out to be generic
properties of large-N confined-phase gauge theories with
adjoint massless matter in the λ → 0 limit. In Ref. [4] we
shall also show that this structure is present in the large-N
limit of the N ¼ 4 superconformal index.
As briefly mentioned above, ZYM is not a modular-

invariant function. This is clear from the fact that ZYM
[or equivalently T0;1ðτÞ] is but the seed for a modular orbit; if
ZYM had been truly modular invariant, no such extended
orbit would have arisen. This can also be understood in terms
of the thermodynamics of these YM theories. If ZYM had
been truly modular invariant, the thermodynamic behaviors
for high and low temperatures would have been essentially
identical. However, this is impossible for many reasons, not
the least of which is the existence of a deconfinement
transition and associated Hagedorn singularities.
Rather, as we have seen, ZYM is modular covariant, in

the sense that it is built out of modular forms. This is what
enables a match between ZYM and the chiral-sector
partition function of a 2D CFT. As will be discussed in
detail in Ref. [4], the fact that confined-phase large-N
partition functions are modular covariant but not modular
invariant appears to be generic in the λ → 0 limit, and holds
even in situations lacking a deconfinement phase transition
or Hagedorn singularities. Indeed, such situations arise in
certain theories with adjoint fermions with periodic boundary
conditions [4,9,18] where the partition function has a ð−1ÞF
twist. These twisted partition functions have a modular
structure which is completely analogous to what we observe
for YM theory, but because of the lack of Hagedorn
instabilities, the modular structure has direct implications
for the twisted thermodynamics for such theories.
But the implications of modular structure go way beyond

constraints on possible thermodynamics—modular struc-
ture also greatly constrains the spectrum of the correspond-
ing quantum field theory. For example, we have shown in
this paper that the YM partition function is modular
covariant, and specifically has the structure of a meromor-
phic modular form of weight k ¼ 3=2. This then amounts
to a powerful statement about the symmetries governing the
spectrum of YM theory. In particular, we have seen that the
behavior of ZYM at small jτj is typical of a 2D rather than
4D theory. We have also seen that the large-jτj behavior of
ZYM is that of a theory with a vanishing vacuum energy.
Both of these highly unusual features are a result of the
constraints on the spectrum following from the modular
covariance of ZYM. Perhaps most dramatically, the modular
structure allowed us to exhibit a spectral equivalence
between 4D YM theory at large N in the ΛR → 0 limit,
and the chiral sector of a particular irrational 2D CFT, as
summarized in Eq. (2). Indeed, as demonstrated in Ref. [4],
relations such as this will continue to hold even for theories
with matter.
Since the spectrum-generating algebras of 2D CFTs

always contain at least the Virasoro algebra, these

observations imply that the spectrum of confining large-
N theories is organized by a hidden Virasoro algebra in the
ΛR → 0 limit. Of course, the ΛR → 0 limit is a free limit,
and it is well known that free theories always have infinite-
dimensional symmetries. However the striking point—at
least for confining four-dimensional large-N gauge theories
in the free limit—is that these (spectrum-generating)
symmetries turn out to be of a two-dimensional nature.
Coupled with our expectation that large-N Yang-Mills
theory has conserved higher-spin currents in the λ ¼ 0
limit [19], these observations suggest that the 2D CFT
will have a W-symmetry [20]. As discussed in Ref. [4],
examination of the behavior of the characters of our 2D
CFTs indeed provides some hints that these 2D CFTs have
enhanced symmetries at the special points in their param-
eter space where their chiral-sector spectra coincide with
4D gauge theories.
It is not clear how easily the 4D-2D relation that we

found, as summarized through Eq. (2), fits with standard
string-theoretic expectations. From a string-theoretic per-
spective one might have expected that it would be the
single-trace partition function—which can be thought of as
representing the fluctuations of a single string—that would
have a simple 2D CFT description, assuming one is
possible. It is less clear why the grand-canonical partition
function ZYM, which takes into account all multitrace states
and hence represents the fluctuations of an ensemble of
many strings, should have a 2D CFT description. From this
perspective, our result in Eq. (2)—and the analogous
relations that we shall find in Ref. [4] for other, adjoint-
matter gauge theories—are even more remarkable.
Our results suggest a large number of interesting topics

for future research. Obviously, it would be very interesting
to understand whether Eq. (2) has an explanation within
string theory, perhaps by making contact with the ideas in,
e.g., Refs. [21]. It is also important to understand whether
our large-N 4D-2D spectral equivalence extends to corre-
lation functions, and to explore how it is related to other
known 4D-2D relations, such as those discussed in
Refs. [22]. Note that unlike the 4D-2D relations discussed
in the context of supersymmetric indices (which by con-
struction focus on a subset of states of the 4D theory), our
4D-2D relation in Eq. (2) involves the full thermal partition
function and hence concerns the entire finite-energy spec-
trum of the large-N 4D theory.
Another interesting direction would be to develop an

understanding of the modular structure of expressions like
Eq. (8) directly from a 4D point of view, perhaps by making
use of ideas from, e.g., Refs. [23]. Given recent progress in
the understanding of the bulk duals of 2D CFTs (see, e.g.,
Ref. [24]), it is tempting to wonder whether our results may
help to uncover the bulk dual of YM theory and of other
nonsupersymmetric 4D adjoint-matter theories. It would
also be interesting to understand the extent to which the
continuous spectrum of primary operators in the 2D theory
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suggested by our analysis has an interpretation in 4D YM
theory.
Finally, it is natural to wonder what may happen to the

modular properties we have found when we consider
corrections away from the free limit in Yang-Mills theory.
To explore this question directly from the 4DQFT side, one
would want analytic expressions for the thermal partition
function away from the λ ¼ 0 limit. This is a challenge
even in the most favorable case of N ¼ 4 supersymmetric
Yang-Mills theory, but perhaps it can be handled using
integrability techniques. Alternatively, if one could estab-
lish that the equivalence of the λ ¼ 0 theory extends to the
generating functional of correlation functions, then it might
be possible to approach this question from the 2D side of
the relation by identifying the ’t Hooft-coupling deforma-
tion of the 4D theory with a classically marginal deforma-
tion of the 2D CFT.

ACKNOWLEDGMENTS

We are grateful to O. Aharony, C. Beem, D. Berenstein,
S. Caron-Huot, S. Cremonesi, N. Dorey, G. Dunne,

D. Hofman, J. Kaplan, Z. Komargodski, P. Koroteev, A.
Maloney, J. McGreevy, D. O’Connor, E. Poppitz, L.
Rastelli, S. J. Rey, D. Ridout, A. Shapere, D. Tong, M.
Ünsal, S. Wood, and M. Yamazaki for helpful discussions
at various stages during the gestation of this work. We are
especially grateful to Z. Komargodski for helpful com-
ments on an earlier version of this paper. A. C. thanks the
Instituto de Fisica Teoretica of UAM and DAMTP of
Cambridge University for hospitality, and D. A. M. thanks
the Institute for Advanced Study, the Niels Bohr
International Academy, and both the the Kavli IPMU
and the JSPS, for hospitality and support during the
completion of this work. G. B. and A. C. thank the
Department of Energy for support under Grants No. DE-
FG02-93ER-40762 and No. DE-FG02-94ER40823,
respectively. The research of K. R. D. was supported in
part by the Department of Energy under Grant No. DE-
FG02-13ER-41976 and by the National Science
Foundation through its employee IR/D program. The
opinions and conclusions expressed herein are those of
the authors, and do not represent any funding agencies.

[1] G. ’t Hooft, Nucl. Phys. B72, 461 (1974); E. Witten, Nucl.
Phys. B160, 57 (1979).

[2] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas,
and M. Van Raamsdonk, Adv. Theor. Math. Phys. 8, 603
(2004).

[3] Reference [25] contains an early discussion of the analytic
continuation of large-N confined phase partition functions
in β.

[4] G. Basar, A. Cherman, K. R. Dienes, and D. A. McGady
(work in progress).

[5] In YM theory the overall Uð1Þ in UðNÞ decouples, so its
contribution to the partition function factorizes.

[6] B. Sundborg, Nucl. Phys. B573, 349 (2000); A. M.
Polyakov, Int. J. Mod. Phys. A 17, 119 (2002).

[7] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, and
M. Van Raamsdonk, Phys. Rev. D 71, 125018 (2005).

[8] G. Basar, A. Cherman, D. A. McGady, and M. Yamazaki,
Phys. Rev. D 91, 106004 (2015).

[9] G. Basar, A. Cherman, and D. A. McGady, J. High Energy
Phys. 07 (2015) 016.

[10] J. L. Cardy, Nucl. Phys. B366, 403 (1991).
[11] Supersymmetric theories on S3 × S1 are an exception: the

coefficient of the β−3 term in logZ4D vanishes at any N if
the compactification does not break supersymmetry, as
recently discussed in e.g. [26].

[12] G. Basar, A. Cherman, D. A. McGady, and M. Yamazaki,
Phys. Rev. Lett. 114, 251604 (2015).

[13] V. Balasubramanian and P. Kraus, Commun. Math. Phys.
208, 413 (1999).

[14] D. Ridout and S. Wood, Lett. Math. Phys. 105, 279 (2015).
[15] V. Gurarie, Nucl. Phys. B410, 535 (1993).
[16] G. Anderson and G.W. Moore, Commun. Math. Phys. 117,

441 (1988); C. Vafa, Phys. Lett. B 206, 421 (1988).
[17] T. Creutzig and D. Ridout, J. Phys. A 46, 494006 (2013).
[18] G. Basar, A. Cherman, D. Dorigoni, and M. Unsal, Phys.

Rev. Lett. 111, 121601 (2013).
[19] E. Witten, Spacetime reconstruction (2001), http://theory

.caltech.edu/jhs60/witten/1.html; B. Sundborg, Nucl. Phys.
B, Proc. Suppl. 102, 113 (2001).

[20] P. Bouwknegt and K. Schoutens, Phys. Rep. 223, 183
(1993).

[21] R. Gopakumar, Phys. Rev. D 70, 025009 (2004); 70, 025010
(2004); N. Itzhaki and J. McGreevy, Phys. Rev. D 71, 025003
(2005); S. S. Razamat, J. High Energy Phys. 10 (2012) 191;
C. Cordova and S.-H. Shao, arXiv:1506.00265.

[22] L. F. Alday, D. Gaiotto, and Y. Tachikawa, Lett. Math. Phys.
91, 167 (2010); C. Beem, M. Lemos, P. Liendo, W. Peelaers,
L. Rastelli et al., Commun. Math. Phys. 336, 1359 (2015).

[23] C. Closset, T. T. Dumitrescu, G. Festuccia, and Z.
Komargodski, J. High Energy Phys. 01 (2014) 124; F.
Nieri and S. Pasquetti, arXiv:1507.00261.

[24] M. R. Gaberdiel and R. Gopakumar, J. Phys. A 46, 214002
(2013).

[25] J. Polchinski, Phys. Rev. Lett. 68, 1267 (1992).
[26] L. Di Pietro and Z. Komargodski, J. High Energy Phys. 12

(2014) 031; B. Assel, D. Cassani, L. Di Pietro, Z.
Komargodski, J. Lorenzen, and D. Martelli, J. High Energy
Phys. 07 (2015) 043.

4D-2D EQUIVALENCE FOR LARGE-N YANG-MILLS … PHYSICAL REVIEW D 92, 105029 (2015)

105029-7

http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://dx.doi.org/10.1016/0550-3213(79)90232-3
http://dx.doi.org/10.1016/0550-3213(79)90232-3
http://dx.doi.org/10.4310/ATMP.2004.v8.n4.a1
http://dx.doi.org/10.4310/ATMP.2004.v8.n4.a1
http://dx.doi.org/10.1016/S0550-3213(00)00044-4
http://dx.doi.org/10.1142/S0217751X02013071
http://dx.doi.org/10.1103/PhysRevD.71.125018
http://dx.doi.org/10.1103/PhysRevD.91.106004
http://dx.doi.org/10.1007/JHEP07(2015)016
http://dx.doi.org/10.1007/JHEP07(2015)016
http://dx.doi.org/10.1016/0550-3213(91)90024-R
http://dx.doi.org/10.1103/PhysRevLett.114.251604
http://dx.doi.org/10.1007/s002200050764
http://dx.doi.org/10.1007/s002200050764
http://dx.doi.org/10.1007/s11005-014-0740-z
http://dx.doi.org/10.1016/0550-3213(93)90528-W
http://dx.doi.org/10.1007/BF01223375
http://dx.doi.org/10.1007/BF01223375
http://dx.doi.org/10.1016/0370-2693(88)91603-6
http://dx.doi.org/10.1088/1751-8113/46/49/494006
http://dx.doi.org/10.1103/PhysRevLett.111.121601
http://dx.doi.org/10.1103/PhysRevLett.111.121601
http://theory.caltech.edu/jhs60/witten/1.html
http://theory.caltech.edu/jhs60/witten/1.html
http://theory.caltech.edu/jhs60/witten/1.html
http://theory.caltech.edu/jhs60/witten/1.html
http://dx.doi.org/10.1016/S0920-5632(01)01545-6
http://dx.doi.org/10.1016/S0920-5632(01)01545-6
http://dx.doi.org/10.1016/0370-1573(93)90111-P
http://dx.doi.org/10.1016/0370-1573(93)90111-P
http://dx.doi.org/10.1103/PhysRevD.70.025009
http://dx.doi.org/10.1103/PhysRevD.70.025010
http://dx.doi.org/10.1103/PhysRevD.70.025010
http://dx.doi.org/10.1103/PhysRevD.71.025003
http://dx.doi.org/10.1103/PhysRevD.71.025003
http://dx.doi.org/10.1007/JHEP10(2012)191
http://arXiv.org/abs/1506.00265
http://dx.doi.org/10.1007/s11005-010-0369-5
http://dx.doi.org/10.1007/s11005-010-0369-5
http://dx.doi.org/10.1007/s00220-014-2272-x
http://dx.doi.org/10.1007/JHEP01(2014)124
http://arXiv.org/abs/1507.00261
http://dx.doi.org/10.1088/1751-8113/46/21/214002
http://dx.doi.org/10.1088/1751-8113/46/21/214002
http://dx.doi.org/10.1103/PhysRevLett.68.1267
http://dx.doi.org/10.1007/JHEP12(2014)031
http://dx.doi.org/10.1007/JHEP12(2014)031
http://dx.doi.org/10.1007/JHEP07(2015)043
http://dx.doi.org/10.1007/JHEP07(2015)043

