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The second order hydrodynamical description of a homogeneous conformal plasma that undergoes a
boost-invariant expansion is given by a single nonlinear ordinary differential equation, whose resurgent
asymptotic properties we study, developing further the recent work of Heller and Spalinski [Phys. Rev. Lett.
115, 072501 (2015)]. Resurgence clearly identifies the nonhydrodynamic modes that are exponentially
suppressed at late times, analogous to the quasinormal modes in gravitational language, organizing these
modes in terms of a trans-series expansion. These modes are analogs of instantons in semiclassical
expansions, where the damping rate plays the role of the instanton action. We show that this system
displays the generic features of resurgence, with explicit quantitative relations between the fluctuations
about different orders of these nonhydrodynamic modes. The imaginary part of the trans-series parameter is
identified with the Stokes constant, and the real part with the freedom associated with initial conditions.
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I. INTRODUCTION

Resurgent asymptotics using trans-series is a powerful
way to extract physical information from asymptotic
expansions, systematically including exponentially small
contributions that are typically neglected in traditional
asymptotic analysis à la Poincaré [1]. This formalism is
well developed for ordinary differential equations, both
linear and nonlinear, and to a lesser extent some results are
known for partial differential equations. Physical applica-
tions have included problems in fluid dynamics [2], exact
WKB [3–5], matrix models and strings [6,7], and quantum
field theory [8–10]. There is also a well-developed liter-
ature concerning the Painlevé transcendents, which them-
selves have many physical applications, being the nonlinear
analogues of the familiar special functions of linear physics
[11]. A common thread is the goal to incorporate, in a
controlled numerical and analytic manner, exponentially
small corrections into asymptotic expansions, in such a way
that the trans-series encodes its proper analytic continuation
properties [12–14].
In this paper we discuss a new example in physics, in the

context of hydrodynamics. This is motivated by an inter-
esting recent paper by Heller and Spalinski concerning
resummation of the gradient expansion in conformal
hydrodynamics [15]. This example is relevant for hydro-
dynamic studies of heavy ion collisions [16,17], and also
addresses fundamental issues of the nature of the hydro-
dynamics expansion. High orders of the gradient expansion
of the linearized hydrodynamic equations have been

studied in [18,19]. Here we investigate the gradient
expansion in the full nonlinear system. Our choice of
conformal hydrodynamics, and the boost-invariant regime
thereof, allows us to reduce the hydrodynamic equations
from a set of coupled nonlinear partial differential equa-
tions to a single nonlinear ordinary differential equation.
We study in pedagogical detail the asymptotic properties of
this nonlinear equation, using resurgent trans-series. We
show that this equation displays resurgent trans-series
relations between different nonperturbative sectors, and
that the asymptotic hydrodynamic expansion encodes
detailed quantitative information about nonhydrodynamic
modes. The trans-series ansatz for this system was intro-
duced in [15], along with the leading order resurgent
relations. We extend this result by concretely studying
the relations between the late terms in the hydrodynamical
derivative expansion and the low order terms in the
fluctuations around nonhydrodynamical modes. We further
show that such relations exist among different nonhydro-
dynamical modes, and in fact all the hydrodynamical and
nonhydrodynamical expansions are entwined by precise
quantitative relations. This is the hallmark of the theory of
resurgence. We also study the Borel transforms of the
hydrodynamical and nonhydrodynamical fluctuations and
establish the relations between the cut structure in the Borel
plane and the asymptotic properties of the associated
derivative expansions. Moreover in the final section of
the paper, we present a method to rearrange the trans-series
in way that effectively resums the leading fluctuations
around all the nonhydrodynamical modes.
The ultimate goal is to extend these lessons from the

reduced one-dimensional system to the full hydrodynam-
ical system away from the boost-invariant and/or conformal
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limits, which are presumably nonintegrable, and also to the
corresponding nonlinear partial differential equations aris-
ing through the AdS=CFT correspondence [20–26].

II. NONLINEAR EQUATION FOR BJORKEN
FLOW IN CONFORMAL HYDRODYNAMICS

In this section we briefly recall the relevant notation for
describing second order hydrodynamics and the steps to
reduce it to a single nonlinear equation in the restricted case
of Bjorken flow in conformal hydrodynamics. The general
second order dissipative terms for relativistic, conformal
hydrodynamics have been derived in [27]. The equations of
hydrodynamics stem from the conservation of the energy-
momentum tensor,1 ∇μTμν ¼ 0. In order to describe the
energy-momentum flow we use as our hydrodynamic fields
the energy density in the local rest frame of the fluid, E, and
the fluid four-velocity, uμ, with uμuμ ¼ −1. The covariant
expression for the energy-momentum tensor in terms of
these hydrodynamic fields is

Tμν ¼ pðEÞgμν þ ðpðEÞ þ EÞuμuν þ Πμν ð1Þ

where pðEÞ is the pressure (related to the energy density by
the equation of state), and Πμν is the dissipative part that
includes the viscous corrections. Conformal symmetry
implies Tμ

μ ¼ 0, which determines the equation of state
to be pðEÞ ¼ E=ðd − 1Þ, for d space-time dimensions. The
dissipative part, Πμν, is symmetric, transverse (i.e.
uμΠμν ¼ 0), and for conformal fluids, traceless. In the
hydrodynamic limit where one considers only the long
wavelength, small momentum modes, the dissipative cor-
rections that constitute Πμν are given as an expansion in
space-time gradients of the hydrodynamic fields E and uμ

[27–29]. This derivative expansion contains all terms, at a
given order, which are allowed by the underlying sym-
metries of the fluid. At first order in the derivative
expansion, there is only one term allowed by Lorentz
and conformal symmetries, the shear viscosity ηðEÞ:

1 st order∶ Πμν ¼ −ησμν ≡ −2ηh∇μuνi ð2Þ

Here we use the standard notation [15,27,29] to denote the
symmetric, transverse projection of a tensor Aαβ

hAμνi ¼ 1

2
ΔμαΔνβðAαβ þ AβαÞ −

1

d − 1
ΔμνΔαβAαβ ð3Þ

where Δμν ¼ gμν þ uμuν is the transverse projection
operator.
At second order, there are five new transport coefficients

[27]. One characterizes the relaxation of the energy-
momentum tensor, one characterizes the coupling to
space-time curvature, and the other three describe nonlinear

couplings to the fluid velocity. Among these latter three,
two are related to couplings to vorticity. In this paper we
study homogeneous and boost-invariant flow, in which case
we can neglect the terms coupling to curvature and
vorticity, so only two of the five possible terms contribute:

2 nd order∶ Πμν

¼ −ησμν þ ητΠ

�
huλ∇λσ

μνi þ 1

d − 1
σμν∇λuλ

�

þ λ1σ
hμ
λ σ

νiλ þ… ð4Þ

The relevant second order transport coefficients are τΠ and
λ1. Using conformal invariance we can parametrize the
dimensionful quantities in units of local temperature TðxÞ.
For example, the energy density scales as E ∝ Td. For the
transport coefficients, we adopt the parametrization used
in [15]

η ¼ Cηs; τΠ ¼ Cτ

T
; λ1 ¼ Cλ

s
T

ð5Þ

where s ∝ Td−1 is the local entropy density, and Cτ, Cλ and
Cη are dimensionless numbers.

A. Bjorken flow

We consider boost-invariant flow, also known as Bjorken
flow [30]. It describes a homogeneous fluid expanding
longitudinally along a fixed direction, say z. The original
motivation of Bjorken flow was to capture the essential
physics of the space-time evolution of the quark-gluon
plasma produced in heavy ion collisions, which is modeled
by a fluid expanding between the highly Lorentz contracted
“sheets” of nuclei, moving away from each other almost at
the speed of light, shortly after the collision. With boost-
invariant initial conditions the expansion is boost invariant;
in other words the system looks the same in all inertial
frames. It is convenient to work with proper time, τ, and
rapidity, ζ, as the space-time coordinates. They are related
with the usual Minkowski coordinates z and t as

t ¼ τ cosh ζ; z ¼ τ sinh ζ⇔ τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
;

ζ ¼ tanh−1ðt=zÞ: ð6Þ

The metric is ds2 ¼ −dτ2 þ τ2dζ2 þ dx2⊥ and the non-
vanishing Christoffel symbols are Γζ

τζ ¼ τ−1, and Γτ
ζζ ¼ τ.

In these coordinates the fluid velocity is constant, uτ ¼ 1,
uξ ¼ ux⊥ ¼ 0, and the conservation equation, ∇μTμν ¼ 0,
along with Eq. (1) and the conformal equation of state,
p ¼ E=ðd − 1Þ, reduce to

τ
dE
dτ

þ d
d − 1

E − Φ ¼ 0 ð7Þ1We assume the absence of other conserved charges.
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where Φ≡ −Πζ
ζ [27]. At leading order where the viscous

terms Φ are neglected, the energy density has the asymp-
totic large τ behavior

E ∼ τ−
d

d−1 þ…; ðE ∼ τ−4=3 þ…; d ¼ 4Þ: ð8Þ

Here the ellipses denote the viscous corrections.
Equation (8) is the leading order result that describes
how the system cools as it expands. The viscous
corrections can be calculated by inserting (4) into (7)
and solving as an expansion at large proper time τ. We
instead follow a Müller-Israel-Stewart-like approach and
promote the dissipative part of the energy-momentum
tensor Πμν to an independent hydrodynamic field.2 Using
the first order relation (2) we can rewrite (4), also to
second order, as

Πμν ¼ −ησμν − ητΠ

�
huλ∇λΠμνi þ 1

d − 1
Πμν∇λuλ

�

þ λ1Π
hμ
λ Πνiλ ð9Þ

and obtain a relaxation equation for Πμν, with relaxation
time τΠ. This procedure generates an all-orders derivative
expansion which agrees with the ordinary hydrodynamic
expansion up to third order, beyond which more transport
coefficients should be taken into account.
In the homogeneous, boost-invariant limit the

relaxation equation (9) further reduces to a nonlinear
equation

τΠ
dΦ
dτ

þ
�
1þ d

d − 1

τΠ
τ

�
Φþ

�
d − 3

d − 2

�
λ1
η2

Φ2

− 2

�
d − 2

d − 1

�
η

τ
¼ 0 ð10Þ

where the transport coefficients η, τΠ and λ1 are functions
of the energy density E. The technical problem now is to
solve the two coupled nonlinear equations (7) and (10).
To illustrate the ideas of resurgence in hydrodynamics,

we consider as our central object the all-orders expansion
generated by this Müller-Israel-Stewart-like treatment of
the second order, conformal, boost-invariant hydrody-
namics. In d ¼ 4 the resummation of this expansion is
studied by Heller and Spalinski in [15]. We show that the
usual derivative expansion encodes much more informa-
tion, such as the nonhydrodynamical modes, than one
might naively anticipate, a result which we argue has

implications for more complicated and phenomenologi-
cally relevant models as well, such as those relating
hydrodynamics to gravitational systems [21,22,24,26].

B. Scale invariance and the nonlinear
hydrodynamic equation

Using the parametrization of the transport coefficients
(5) dictated by conformal invariance, Eqs. (7) and (10)
combine into a single highly nonlinear equation for the
temperature TðτÞ:

Cτ
τ2T̈
T

þ ðd − 3Þðd − 1ÞCλ

ðd − 2ÞCη

τ3 _T2

T
þ ðd − 1ÞCτ

τ2 _T2

T2

þ ð3d − 1ÞCτ

d − 1

τ _T
T

þ
�
1þ 2ðd − 3ÞCλ

ðd − 2ÞCη

�
τ2 _T

þ 1

d − 1

�
1þ ðd − 3ÞCλ

ðd − 2ÞCη

�
τT þ dCτ − 2ðd − 2ÞCη

ðd − 1Þ2 ¼ 0

ð11Þ

where _T ≡ dT=dτ. As a consequence of the underlying
scale invariance of the system, Eq. (11) is invariant under
rescaling τ → ατ, T → α−1T. Therefore we can integrate
Eq. (11) to obtain a first order equation. Scale invariance
also suggests introducing a local proper-time variable, w,
measured in units of local temperature (in mathematical
terms, w is known as the “Écalle time”):

w≡ τTðτÞ ð12Þ

and an associated dimensionless characterization of the
temperature, through a function fðwÞ defined as3

f ≡ d logT
d log τ

: ð13Þ

With these definitions, Eq. (11) reduces to a single first
order nonlinear equation for the dimensionless variable
fðwÞ as a function of w, the proper time measured in the
units of local temperature:

CτwfðwÞf0ðwÞ þ Cτwf0ðwÞ þ
�
1þ 2ðd − 3ÞCλ

ðd − 2ÞCη

�
wfðwÞ

þ dCτf2ðwÞ þ
ðd − 3Þðd − 1ÞCλ

ðd − 2ÞCη
wf2ðwÞ

þ 1

d − 1

�
1þ ðd − 3ÞCλ

ðd − 2ÞCη

�
wþ 2dCτ

d − 1
fðwÞ

þ dCτ − 2ðd − 2ÞCη

ðd − 1Þ2 ¼ 0 ð14Þ
2The Müller-Israel-Stewart approach [31] was designed to

obtain a set of hyperbolic differential equations which have
causal solutions as opposed to the hydrodynamical equations
which are not hyperbolic and have acausal propagation of certain
modes. These modes are beyond hydrodynamics, but eliminating
them has advantages in numerical simulations. 3Note that our f differs from the f in [15] by fours ¼ ftheirs − 1.
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(Here we study this equation in d ¼ 4, but we note that
d ¼ 3 also has novel features.) For d ¼ 4, we reach the
central equation to be studied in this paper:

CτwfðwÞf0ðwÞ þ Cτwf0ðwÞ þ
�
1þ Cλ

Cη

�
wfðwÞ

þ 4Cτf2ðwÞ þ
3Cλ

2Cη
wf2ðwÞ þ 1

3

�
1þ Cλ

2Cη

�
w

þ 8Cτ

3
fðwÞ þ 4

9
ðCτ − CηÞ ¼ 0 ð15Þ

Up to the simple shift, fours ¼ ðftheirs − 1Þ noted above,
(15) is the equation analyzed in [15].
It is clear that after the rescaling w → Cτw, Eq. (15) only

depends on the ratios Cη=Cλ, and Cη=Cτ. Physically, this is
simply because Cτ characterizes the relaxation time, using
w now as the time variable, and so is naturally absorbed into
w. However, to facilitate direct comparison with previous
results [15], we will not adopt this rescaling. And in what
follows, for concrete numerical illustrations, we will also
use the parameters that are associated with N ¼ 4 super-
Yang-Mills theory [15,27,29]:

Cη ¼
1

4π
; Cτ ¼

2 − log 2
2π

; Cλ ¼
1

2π
: ð16Þ

III. FORMAL LATE TIME EXPANSIONS

In this section we analyze the hydrodynamic expansion
generated by the nonlinear equation Eq. (15). The hydro-
dynamic regime is identified with large proper time, or
equivalently large w. Mathematically speaking the large w
expansion is a formal series which is divergent, asymptotic
and non-Borel summable. Such asymptotic behavior is
characteristic of gradient expansions of effective actions
[32]. This is by no means a bad thing: the asymptotic nature
of the expansion actually encodes important physical
information.

A. Late time hydrodynamic expansions

The late proper-time hydrodynamic expansion4 of fðwÞ
is an expansion in inverse powers of w. Since w ∼ τ2=3 in
d ¼ 4, this expansion translates into a late proper-time
expansion for TðτÞ using (12), (13). We start with the
formal series ansatz

fð0ÞðwÞ ¼
X∞
k¼0

fð0Þk w−k: ð17Þ

The meaning of the superscript (0) will become clear in
Sec. IV, when we include the terms beyond hydrodynamics.
With this ansatz (17), the nonlinear equation (15) generates

a recursion relation for the coefficients fð0Þk :

− Cτ

Xk
k0¼0

ðk0 − 1Þfð0Þk−k0f
ð0Þ
k0−1 − Cτðk − 1Þfð0Þk−1

þ
�
1þ Cλ

Cη

�
fð0Þk þ 4Cτ

Xk−1
k0¼0

fð0Þk−k0−1f
ð0Þ
k0

þ 3Cλ

2Cη

Xk
k0¼0

fð0Þk−k0f
ð0Þ
k0 þ 1

3

�
1þ Cλ

2Cη

�
δk;0 þ

8Cτ

3
fð0Þk−1

þ 4

9
ðCτ − CηÞδk−1;0 ¼ 0 ð18Þ

These can be solved iteratively. The equation that deter-

mines fð0Þ0 is quadratic. Therefore there are actually two
solutions to the recursion relations, leading to two different
large w expansions:

fð0Þþ ðwÞ ∼ −
1

3
þ 4Cη

9

1

w
−
8CηðCλ − CτÞ

27

1

w2

þ 16Cηð2ðCλ − CτÞ2 − 3CηCτÞ
81

1

w3
þ… ð19Þ

fð0Þ− ðwÞ ∼ −
1

3

�
1þ 2Cη

Cλ

�
−
4Cη

9

�
1 −

4CηCτ

C2
λ

�
1

w
þ…

ð20Þ

In terms of physical quantities, such as the proper time τ
and the local temperature TðτÞ, it is the former expansion,

fð0Þþ , which leads to the familiar hydrodynamic expansion
TðτÞ ∼ τ−1=3 − 2Cη

3τ þ…. On the other hand, the latter

expansion fð0Þ− leads to TðτÞ ∼ τ−
1
3
ð1þ2Cη

Cλ
Þ þ…, which does

not connect to the ideal hydrodynamic result at late times.
Furthermore, the expansion fð0Þ− ðwÞ in (20) is unstable, in a
sense explained below, so we concentrate on the expansion

fð0Þþ from now on. With this understood, for notational
simplicity we drop the subscript “þ” and simply write
fð0ÞðwÞ for the function with late time expansion in (19).

B. Divergence, Borel ambiguities, and exponentially
suppressed terms

It is straightforward to show that the expansion (19) is
divergent. The late terms in the expansion grow factorially
fast, and their leading large-order growth can be charac-
terized as

4As terminology, we refer to the all-orders expansion (17)
generated by the Müller-Israel-Stewart-type analysis described in
Sec. II as the “hydrodynamic expansion.” We will see that a
consistent asymptotic analysis of the basic nonlinear equa-
tion (15) requires the addition of further terms, which go beyond
hydrodynamics.
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fð0Þk ∼
Γðkþ βÞ
Skþβ ; k → ∞ ð21Þ

for some real numbers S and β, whose physical meaning
will become clear shortly. Furthermore, with the N ¼ 4
parameters in (16), the parameter S turns out to be positive.
There are three important and interrelated points related to
this divergent behavior [1,33]. First, the hydrodynamic
expansion (17) is a typical asymptotic expansion: for a

fixed large value of w, the terms fð0Þk w−k at first decrease for
increasing low values of k, but eventually start growing
beyond some value of k, say k�. This transition happens

roughly when dðfð0Þk w−kÞ=dkjk� ¼ 0, or k� ≈ Sw. One can
obtain exponential precision by the procedure of “least-
term truncation,” truncating the series at k ∼ k�. The
associated inherent error is exponentially small:

fð0Þk� w
−k� ∼ wβe−Sw: ð22Þ

Second, one could try to apply Borel summation:

fð0ÞðwÞ ∼
X∞
n¼0

Γðnþ βÞ
Snþβwn ¼

X∞
n¼0

wβ

Z
∞

0

du
u
e−Swuunþβ

∼
Z

∞

0

du
u
e−Swu

uβ

1 − u
: ð23Þ

However, when S > 0, as is the case here, the Borel integral
has a pole at u ¼ 1, leading to an ambiguous imaginary part

Im½fð0ÞðwÞ� ∼∓iπwβe−Sw: ð24Þ

Notice that this is the same order of magnitude as the least-
term-truncation error in (22). The ambiguity (24) is due to
the ambiguity of deforming the integration contour around
the pole. The existence of such an ambiguous term is
problematic for several reasons: it has an undetermined
sign, and furthermore it is pure imaginary. However
the function fðwÞ should be real, since it is related to
the physical temperature. It is clear that in order to fix this
ambiguity we need to add to fð0ÞðwÞ an exponentially
suppressed term of the same order.
Third, one can consider linearized perturbations around

the solution fð0ÞðwÞ. This is achieved by an ansatz
fð0ÞðwÞ → fð0ÞðwÞ þ δfð0ÞðwÞ. Inserting this ansatz into
Eq. (15), keeping the first two terms in the w−1 expansion
of fð0ÞðwÞ in (19) and the linear terms in δfð0ÞðwÞ leads to
the equation

0 ¼ w

�
2Cτ

3

dðδfð0ÞÞ
dw

þ δfð0Þ
�
þ 4CηCτ

9

dðδfð0ÞÞ
dw

þ 4Cλ

3
δfð0Þ þOðw−1Þ ð25Þ

which has the solution5

δfð0ÞðwÞ ∼ wβ exp

�
−

3

2Cτ
w

�
; β ¼ Cη − 2Cλ

Cτ
: ð26Þ

Notice that the linearized perturbation in (26) has the same
functional form as the least-term-truncation error (22), and
the ambiguity (24) of naive Borel summation. This is not a
coincidence, as all three phenomena are manifestations of
the asymptotic character of the hydrodynamic expansion
(17). In fact, by general arguments [1,33] the constants S
and β appearing in the leading large order growth (21), and
hence also in the error (22) and the ambiguity (24), are
exactly the same constants that appear in the linearized
perturbation (26). Thus we deduce that

S ¼ 3

2Cτ
; β ¼ Cη − 2Cλ

Cτ
ð27Þ

which becomes now a numerical prediction for the leading
large-order growth (21) of the coefficients of the hydro-
dynamic expansion, which are generated from the recursion
relations (18). Numerically, for the N ¼ 4 SYM plasma
parameters in (16),

S ¼ 3π

2 − log 2
≈ 7.21181; β ¼ −

3

4 − 2 log 2
≈ −1.1478:

ð28Þ

In Sec. V we confirm the consistency of these arguments
with great precision.
The conclusion is that by itself the hydrodynamic series

expansion fð0ÞðwÞ in (17) is merely a formal expression. In
order to promote it to a well-defined function it is necessary
to enhance it by adding some exponential terms that go
beyond the hydrodynamic expansion. These terms are not
arbitrary: they are highly constrained. The linearized
perturbation is only the first element of an infinite set of
exponential corrections. These exponential terms are
required to render an unambiguous answer for the actual
solution, fðwÞ, of the differential equation. The full
expansion that contains all these exponential terms in
addition to the formal series expansion (17) is known as
a “trans-series” [1]. In the next section we demonstrate how
such a trans-series is constructed.

IV. TRANS-SERIES EXPANSIONS

The leading exponential correction to the perturbative
series, δfð0ÞðwÞ, is only the tip of the iceberg. Just like the

5The same argument for the other expansion fð0Þ− , in Eq. (20),

leads to δfð0Þ− ðwÞ∼wβ exp ½− 3Cλ
2CτðCη−CλÞw� with β ¼ 2C3

λ−CηC2
λ−4C

2
ηCτ

CτðCη−CλÞ2 .

Notice that for the N ¼ 4 parameters (16), the exponent is
positive, which is related to the unstable nature of the expansion
in (20).
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hydrodynamic series fð0ÞðwÞ itself, the first exponential
correction is also an asymptotic series: the factor wβe−Sw is
multiplied by another formal series in w−1, which we
denote as fð1ÞðwÞ, and which is also divergent, and with the
same leading rate of growth (21) as in the hydrodynamic
series. By the same arguments, we conclude that there must
be a correction of the form w2βe−2Sw. Furthermore, this
second exponential term is also multiplied by another
asymptotic series, denoted by fð2ÞðwÞ, which requires the
existence of corrections of the form w3βe−3Sw. This pattern
continues ad infinitum. (This is also clear generically from
the nonlinearity of the underlying differential equation.) In
order to obtain an unambiguous answer, all these expo-
nential terms, and their fluctuations, must be included in the
answer. The resulting combined object is known as a
“trans-series.”6 More importantly, the theory of resurgence
predicts that these various asymptotic series, which make
up the full trans-series, are related to one another in
extremely intricate ways. These inter-relations will be
demonstrated explicitly in Sec. V.
We are led to the following trans-series ansatz gener-

alization of the formal hydrodynamic expansion (17):

fðwÞ ∼ fð0ÞðwÞ þ σwβe−Swfð1ÞðwÞ
þ σ2w2βe−2Swfð2ÞðwÞ þ… ð29Þ

∼
X∞
n¼0

fðnÞðwÞσnζnðwÞ: ð30Þ

This is a sum over powers of an exponential factor
(the analog of the “instanton fugacity” in semiclassical

expansions in quantum mechanics or quantum field theory,
with S being the instanton action)

ζðwÞ≡ wβe−Sw ð31Þ

each multiplied by a formal large w series (the analog
of the perturbative fluctuations about the nth instanton
sector):

fðnÞðwÞ ∼ fðnÞ0 þ 1

w
fðnÞ1 þ 1

w2
fðnÞ2 þ 1

w3
fðnÞ3 þ… ð32Þ

In the trans-series expansion (29), (30), σ is the trans-series
expansion parameter, which is in general a complex
number. As discussed below, its imaginary part will be
fixed by resurgent cancellations associated with the reality
of the trans-series, while its real part is a free parameter
related to the initial conditions of the ordinary differential
equation (ODE). At this stage, it simply counts the “non-
perturbative” order of the trans-series expansion.
Inserting the trans-series ansatz (29) into the nonlinear

ODE (15), we obtain a set of recursion relations by
equating to zero the coefficient of each wnβ−ke−nSw, for
all k ≥ 0 and n ≥ 0. Setting n ¼ 0 leads to the recursion
relations (18) that generate the hydrodynamic series (19)
studied in the previous section. Setting n ¼ 1, we obtain the
recursion relations that generate the asymptotic series
fð1ÞðwÞ that multiplies the first exponentially suppressed
term, or the first nonhydrodynamic series [we refer to the
asymptotic series fðnÞðwÞ as the “nth nonhydrodynamic
series”]:

− Cτ

Xk
k0¼0

½fð1Þk−k0f
ð0Þ
k0−1ðk0 − 1Þ þ fð0Þk−k0 ðSfð1Þk0 þ ðk0 − β − 1Þfð1Þk0−1Þ� þ

�
1þ Cλ

Cη

�
fð1Þk

− CτðSfð1Þk þ ðk − β − 1Þfð1Þk−1Þ þ 4Cτ

Xk−1
k0¼0

½fð1Þk−k0−1f
ð0Þ
k0 þ fð0Þk−k0−1f

ð1Þ
k0 �

þ 3Cλ

2Cη

Xk
k0¼0

½fð1Þk−k0f
ð0Þ
k0 þ fð0Þk−k0f

ð1Þ
k0 � þ

8Cτ

3
fð1Þk−1 ¼ 0: ð33Þ

The first two terms, k ¼ 0 and k ¼ 1, in these recursion
relations determine the constants S and β to be as in (26).

The leading coefficient fð1Þ0 is a free parameter, and the

remaining coefficients, fð1Þk (k ≥ 1), are determined by

Eq. (33), and are all proportional to fð1Þ0 . Therefore, without

loss of generality we can normalize fð1Þ0 ¼ 1, and character-
ize the freedom in terms of the constant σ. This normali-

zation fixes all the other coefficients fð1Þk uniquely. The
leading nonhydrodynamic series is

fð1ÞðwÞ ∼ 1þ 2ðC2
η − CηðCλ − 6CτÞ þ 2CλðCτ − CλÞÞ

3Cτw

þ… ð34Þ
6More general trans-series also include powers of logarithms,

and possibly iterations of powers, exponentials and logarithms
[1,13,14].
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The higher hydrodynamic series are determined by similar recursion relations. For completeness we give the full
recursion relation for arbitrary n and k:

− Cτ

Xn
n0¼0

Xk
k0¼0

fðn−n
0Þ

k−k0 ðn0Sfðn0Þk0 þ ðk0 − n0β − 1Þfðn0Þk0−1Þ − CτðnSfðnÞk þ ðk − nβ − 1ÞfðnÞk−1Þ

þ
�
1þ Cλ

Cη

�
fðnÞk þ 4Cτ

Xn
n0¼0

Xk−1
k0¼0

fðn−n
0Þ

k−k0−1f
ðn0Þ
k0 þ 3Cλ

2Cη

Xn
n0¼0

Xk
k0¼0

fðn−n
0Þ

k−k0 fðn
0Þ

k0 þ 8Cτ

3
fðnÞk−1

þ 1

3

�
1þ Cλ

2Cη

�
δk;0δn;0 þ

4

9
ðCτ − CηÞδk−1;0δn;0 ¼ 0: ð35Þ

Once the free parameter fð1Þ0 , or σ, is fixed there is no more freedom, and all the coefficients fðnÞk are determined completely
by the recursion relations (35). This is perhaps surprising, but it is generic [1]. The dependence of the trans-series on σ is
exactly as written in Eq. (30); i.e. σ enters the trans-series as σnfðnÞðwÞ. For example, the second nonhydrodynamic
expansion is

fð2ÞðwÞ ∼ 3ðCλ − CηÞ
2Cη

þ −2C3
η þ C2

ηð4Cλ − 11CτÞ þ 2CηðC2
λ þ 4CλCτ þ 2C2

τÞ þ 2C2
λðCτ − 2CλÞ

CηCτw
þ… ð36Þ

and the third nonhydrodynamic series is

fð3ÞðwÞ ∼ 9ð3Cη − 2CλÞðCη − CλÞ
8C2

η
þ 1

4C2
ηCτw

½Cτð48C3
η − 67C2

ηCλ þ 16CηC2
λ þ 4C3

λÞ

þ 4CηC2
τð4Cλ − 5CηÞ þ 3ðCη − CλÞðCη þ CλÞðCη − 2CλÞð3Cη − 2CλÞ� þ… ð37Þ

The remaining coefficients can be generated in a straight-
forward fashion, but are rather cumbersome to write.
More physically, these nonhydrodynamical series cor-

respond to exponentially damped modes multiplied by a
gradient expansion due to viscous terms. Recallingw∼τ2=3,
these modes contribute to expansions of physical quantities
such as the local temperature, or energy density as

ζnðwÞ ∼ τ
2nβ
3 e−n

3
2Cτ

τ2=3 ∼ τ
2nβ
3 e−n

3
2T0

τ
τΠ : ð38Þ

Note that for the N ¼ 4 parameters (16) these modes
introduce a transcendental power (i.e. β) of τ in the gradient
expansion. It is illustrative to compare the nonhydrody-
namic modes to instanton contributions in quantum
mechanics and quantum field theory. The coefficient S
that controls the damping is analogous to the two-instanton
action in the dilute instanton gas picture, where the
ambiguities that arise from the divergence of perturbation
theory are cured by nonperturbative corrections from
higher (multi-)instanton sectors [4,5,9]. Here the nonhy-
drodynamic modes play the role of instantons.

V. LARGE ORDER BEHAVIOR, STOKES
CONSTANTS AND BOREL ANALYSIS

The reality condition on the trans-series fðwÞ in (29),
(30) means that cancellations must occur of imaginary

terms generated by Borel summation of the different
fðnÞðwÞ expansions. As described in the comprehensive
analysis of real trans-series by Aniceto and Schiappa [13],
this leads to an infinite hierarchy of relations between the

expansion coefficients fðnÞk of different n sectors. In this
section we analyze these relations numerically, and confirm
that these resurgence relations do indeed hold. This also
allows us to deduce the Borel plane structure of the
associated Borel transforms, which reveals some interesting
branch-cut structure.

A. Hydrodynamic derivative expansion: f ð0ÞðwÞ
Resurgence predicts [13] that the leading large-order

growth of the expansion coefficients fð0Þk in (21) receives
subleading corrections of the form

fð0Þk ∼ S1
Γðkþ βÞ
2πiSkþβ

�
fð1Þ0 þ S

kþ β − 1
fð1Þ1

þ S2

ðkþ β − 1Þðkþ β − 2Þ f
ð1Þ
2 þ…

�
þ… ð39Þ

This is an example of the resurgent relations between two
sectors of the trans-series, namely between the hydro-
dynamic fð0ÞðwÞ and the first nonhydrodynamic series
fð1ÞðwÞ. Recall that the constants S and β appearing in
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(39) are known, being given by (27). The subleading terms
are also known, as they are completely determined by the

low order coefficients, fð1Þ0 ; fð1Þ1 ; fð1Þ2 ;…, of the first non-
hydrodynamic series fð1ÞðwÞ in (34). It is therefore possible
to determine numerically the overall constant S1, a “Stokes

constant,”7 by generating many coefficients fð0Þk from the
recursion relations (18). It is simple to generate many
thousands of these coefficients, which provide great
precision.
In Fig. 1 we plot the ratio of the large order expression

(39) to the actual coefficients. This clearly demonstrates the
remarkable precision of the resurgence relation (39).
Indeed, as shown in the second plot, when all three terms
on the right-hand side of (39) are included, the agreement
with the prediction of the large-order growth is at the 1%
level already by the 10th term in the expansion. From direct
comparison of the large order expression (39) with the
exact coefficients fð0Þk we deduce the numerical value of the
Stokes constant S1:

S1 ≈ −0.040883i; for N ¼ 4 parameters: ð40Þ

Note that S1 is pure imaginary.
The form of the large order growth is intimately con-

nected with the Borel transform of the asymptotic series
fð0ÞðwÞ. The Borel transform is defined as

f̂ð0ÞðsÞ≡X∞
k¼0

fð0Þkþ1

k!
sk: ð41Þ

For factorially divergent series such as fð0ÞðwÞ, this new
function f̂ð0ÞðsÞ has a finite radius of convergence. The
Borel summation of fð0ÞðwÞ is then formally defined as

Sθfð0ÞðwÞ ¼ fð0Þ0 þ
Z

eiθ∞

0

e−wsf̂ð0ÞðsÞds: ð42Þ

The angle θ determines the contour of integration in the
complex s-plane, usually called the “Borel plane,” and is
correlated with the phase of the original expansion param-
eter w. For our original problem we are interested in θ ¼ 0,
since w is a real parameter. However f̂ð0ÞðsÞ has singular-
ities along the real axis, where θ ¼ 0. A quick way to see
this is to use the large order expression (39) in (41):

f̂ð0ÞðsÞ ∼ S1
2πi

Γðβ þ 1ÞðS − sÞ−β−1

×

�
fð1Þ0 þ S − s

β
fð1Þ0 þ ðS − sÞ2

βðβ − 1Þ f
ð1Þ
0 þ…

�
þ…

ð43Þ
It is clear that there is a branch point at s ¼ S. In order to
avoid the branch cut we deform the contour infinitesimally
as θ ¼ 0�, but depending on the direction, one encounters
a discontinuity. Let us consider θ ¼ 0þ. The discontinuity
is pure imaginary, and is of the order Im½fð0ÞðwÞ� ∝
S1f

ð1Þ
0 wβe−Sw. Requiring that the trans-series be real, this

ambiguous contribution to fð0ÞðwÞ that arises from the
singularity in the Borel transform must be canceled by
fð1ÞðwÞ. This cancellation fixes the imaginary part of σ in
the trans-series (30) to be [12,13]

Im½σ� ¼ −
1

2
Im½S1�: ð44Þ

With N ¼ 4 parameters, ImðS1Þ ≈ −0.04. For a detailed
analysis of the reality of trans-series, and the associated
cancellations of imaginary ambiguities we refer the reader
to [13].
The branch-cut singularity of the Borel transform f̂ð0ÞðsÞ

can also be seen in another way. By generating many

coefficients fð0Þk , using the recursion relations (18), we

FIG. 1 (color online). Left plot shows the ratio of the large order expression (39) to the exact coefficients fð0Þk , as a function of k. The
blue, green and red points refer to the inclusion of the zeroth, first, and second subleading terms in (39). Right plot shows a close-up view
of the ratio using the expression with the first three terms in (39). This clearly demonstrates the remarkable precision of the resurgence
relation (39): the agreement is better than the 1% level already by k ≈ 10.

7The factor 2πi in the denominator is conventional, being
convenient for the associated Borel analysis.
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automatically generate many terms in the Taylor series for
f̂ð0ÞðsÞ, from (41). The location of the nearest singularity
may be deduced by a root test or ratio test, but to see the
branch cut it is better to use a Padé approximant [33]. The
Padé approximant to f̂ð0ÞðsÞ approximates it as a ratio of
two polynomials:

f̂ð0ÞðsÞ ≈ pð0ÞðsÞ
qð0ÞðsÞ : ð45Þ

The branch cuts of the actual Borel transform function
manifest themselves as an accumulation of poles in the
Padé approximant. Of course the further away a branch point
is from the origin, the greater precision and number of terms it
would require to reproduce the associated branch cut. We
computed the symmetric Padé approximant of order 300;
namely pð0ÞðsÞ and qð0ÞðsÞ are taken to be polynomials of
order 150. We used precision of 800 significant figures. The
result is shown inFig. 2. It is clear that there is a branch cut that
starts at s ¼ S ¼ 3

2Cτ
, along the positive real axis, consistent

with the resurgent behavior in (43) and the large-order
behavior in (39). The fact that the location of the singularity
in theBorel plane coincideswith the “instanton action” (31) in
the trans-series is a generic feature of resurgence.
Due to the nonlinear nature of the original differential

equation (15), there are in fact infinitely many exponen-
tially suppressed terms in the trans-series, each of which is
associated with an action nS. This fact translates into the
existence of branch points located at s ¼ nS for all n ≥ 1.
The ambiguities that arise from each of these branch points
are cured by the existence of the nth nonhydrodynamic
series. In terms of the large order growth this means that the
late terms of the hydrodynamic series actually contain
information about all the nonhydrodynamic series. More
precisely, the expression (39) can be further refined as [13]

fð0Þk ∼ S1
Γðkþ βÞ
2πiSkþβ

�
fð1Þ0 þ S

kþ β − 1
fð1Þ1 þ S2

ðkþ β − 1Þðkþ β − 2Þ f
ð1Þ
2 þ…

�

þ S21
Γðkþ 2βÞ
2πið2SÞkþβ

�
fð2Þ0 þ 2S

kþ 2β − 1
fð2Þ1 þ ð2SÞ2

ðkþ 2β − 1Þðkþ 2β − 2Þ f
ð2Þ
2 þ…

�

þ S31
Γðkþ 3βÞ
2πið3SÞkþβ

�
fð3Þ0 þ 3S

kþ 3β − 1
fð3Þ1 þ ð3SÞ2

ðkþ 3β − 1Þðkþ 3β − 2Þ f
ð3Þ
2 þ…

�
þ… ð46Þ

Note that the expression in each line involves low order
coefficients of nonhydrodynamic series of different orders,
and that there is only one constant, the Stokes constant S1,
that needs to be determined numerically.

B. First (leading) nonhydrodynamic expansion: f ð1ÞðwÞ
We can repeat the analysis of the previous section

for the fluctuations fð1ÞðwÞ about the first nonhydrody-
namic term in the trans-series. Once again, general argu-
ments for a real trans-series predict the large order growth
[13]:

fð1Þk ∼ 2S1
Γðkþ βÞ
2πiSkþβ

�
fð2Þ0 þ S

kþ β − 1
fð2Þ1

þ S2

ðkþ β − 1Þðkþ β − 2Þ f
ð2Þ
2 þ…

�
þ… ð47Þ

The coefficients fð2Þk on the right-hand side are the low
order terms of the second nonhydrodynamic series fð2ÞðwÞ
in (36). Note that in (47) all constants on the right-hand side
are known: the overall normalization constant is fixed to be
twice the very same Stokes constant S1 found in the large-
order behavior (39) of the hydrodynamic series. In this
sense (47) is an even stronger prediction than (39). In Fig. 3
we plot the ratio of the large order expression (47) to the
exact coefficients generated from the recursion relations
(33). Again, the agreement is excellent.
The Borel plane structure can be deduced by the same

Borel-Padé analysis, and as shown in Fig. 4 we see once
again a cut along the positive real axis, starting at the
branch point S. The Borel plane structure is almost identical
to that of the hydrodynamic series; namely there are
infinitely many branch cuts located at s ¼ nS and accord-
ingly, the large order growth (47) can be refined similar to
(46). In other words, late terms of fð1ÞðwÞ contain the low

FIG. 2 (color online). The poles in the Borel complex s-plane of
the Padé approximant to the Borel transform of the hydrodynamic
expansion, f̂ð0ÞðsÞ. The poles accumulate into a branch cut that
starts at S ¼ 3

2Cτ
, which is the analog of the instanton action.

HYDRODYNAMICS, RESURGENCE, AND TRANSASYMPTOTICS PHYSICAL REVIEW D 92, 125011 (2015)

125011-9



order terms of all the higher nonhydrodynamic series
fðnÞðwÞ with n ≥ 2.

C. Second (next-to-leading) nonhydrodynamic
expansion: f ð2ÞðwÞ

At the next order, studying the large order growth of
the coefficients of the second nonhydrodynamic series

fð2ÞðwÞ, we observe a new phenomenon, the possibility
of which was pointed out by Aniceto and Schiappa in their
exhaustive analysis of the resurgent structure of real trans-

series [13]. The large order growth of the fð2Þk coefficients is

determined not only by the low order coefficients of

fð3ÞðwÞ, but also by the low order coefficients of fð1ÞðwÞ:

fð2Þk ∼ S−1
Γðk − βÞ

2πið−SÞk−β
�
fð1Þ0 þ −S

k − β − 1
fð1Þ1 þ ð−SÞ2

ðk − β − 1Þðk − β − 2Þ f
ð1Þ
2 þ…

�

þ 3S1
Γðkþ βÞ
2πiSkþβ

�
fð3Þ0 þ S

kþ β − 1
fð3Þ1 þ S2

ðkþ β − 1Þðkþ β − 2Þ f
ð3Þ
2 þ…

�
þ… ð48Þ

Here S−1 is a new Stokes constant whose value we
determine numerically to be S−1 ≈ −57.922þ 115.651i.
Note that in the first line the phase of S−1 is canceled by the

factor ið−1Þ−β in the denominator, as the coefficients fð2Þk
are real.

In Fig. 5 we plot the ratio of the expression (48) to the
exact coefficients fð2Þk generated from the recursion rela-
tions in (35). As in the previous cases, the agreement is
excellent. Note that if we do not include the effect of the

fð1Þk coefficients, the agreement is terrible. In fact, for the
particular choice of N ¼ 4 parameters that we study,
because β < 0, the contribution of the first nonhydrody-
namic sector [i.e. the first line in (48)] is more dominant
compared to the third nonhydrodynamic sector [the second
line in (48)]. Related with this fact, the coefficients of the
series fð2ÞðwÞ are actually sign-alternating, as opposed to
the hydrodynamic series fð0ÞðwÞ and the first nonhydrody-
namic series fð1ÞðwÞ, for which the expansion coefficients
are nonalternating. But this sign-alternating behavior does
not necessarily mean that fð2ÞðwÞ is Borel summable. To
explore this, we use the Borel-Padé method to study the
singularity structure of the Borel transform f̂ð2ÞðsÞ. In
the complex-s Borel plane (see Fig. 6), in addition to
the infinitely many branch points along the positive real
axis s ¼ nS, associated with the higher (3rd, 4th, 5th, etc.)
nonhydrodynamic series, there is an additional branch cut

FIG. 4 (color online). The poles in the Borel complex s-plane of
the Padé approximant to the Borel transform of the first non-
hydrodynamic expansion, f̂ð1ÞðsÞ. The poles accumulate into a
branch cut that starts at S ¼ 3

2Cτ
.

100

FIG. 3 (color online). Left plot shows the ratio of the large order expression (47) to the exact coefficients fð1Þk , as a function of k. The
blue, green and red points refer to the inclusion of the zeroth, first, and second subleading terms in (47). Right plot shows a close-up view
of the ratio using the expression with the first three terms in (47). This clearly demonstrates the remarkable precision of the resurgence
relation (47): the agreement is at the 1% level already by k ≈ 10.
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along the negative real axis that starts at the branch point
s ¼ −S. This branch cut is associated with the first non-
hydrodynamic series, and the corresponding Stokes con-
stant S−1 is related to the Stokes discontinuity at θ ¼ π. It is
clear from the existence of the branch cuts on the positive
real axis that fð2ÞðwÞ is not Borel summable along the
positive real axis, even though it is an alternating series. A
better way to conceptualize this is to view fð2ÞðwÞ as being

composed of different subseries, each of which is related
to different nonhydrodynamic sectors [each line in (48)].
The subseries related to the first nonhydrodynamic series is
alternating, Borel summable along the positive real axis,
and is the dominant contribution to the late term coef-

ficients fð2Þk . Therefore the whole series fð2ÞðwÞ is alter-
nating. However, all the subseries associated with
nonhydrodynamic series with n ≥ 3 lead to nonalternating
subseries which are not Borel summable along the positive
real axis. This phenomenon is reminiscent of the quantum
mechanical example discussed in [34], where there are
complex instantons with negative actions, dubbed “ghost
instantons,” which contribute to the large-order behavior
of perturbation theory; the structure is very similar to
the way in which the first nonhydrodynamic series con-

tributes to the large order growth of the fð2Þk expansion
coefficients.

D. Third and higher nonhydrodynamic expansions:
f ðnÞðwÞ with n ≥ 3

The large-order behavior found in the second nonhy-
drodynamic sector in the previous section persists at third
order and beyond. For example, at third order we find the
large-order growth of the expansion coefficients:

fð3Þk ∼ 2S−1
Γðk − βÞ

2πið−SÞk−β
�
fð2Þ0 þ −S

k − β − 1
fð2Þ1 þ ð−SÞ2

ðk − β − 1Þðk − β − 2Þ f
ð2Þ
2 þ…

�
þ…

× 4S1
Γðkþ βÞ
2πiSkþβ

�
fð4Þ0 þ S

kþ β − 1
fð4Þ1 þ S2

ðkþ β − 1Þðkþ β − 2Þ f
ð4Þ
2 þ…

�
þ… ð49Þ

with the same S−1 parameter. The agreement of (49) with
the exact coefficients generated from the recursion relations
(35) is again excellent, as shown in Fig. 7. We stress that
there are no free parameters in this comparison. All
constants on the right-hand side of (49) are determined.

The Borel plane structure of the Borel transform f̂ð3ÞðsÞ is
shown in Fig. 8, showing the same two branches, starting at

s ¼ � 3
2Cτ

. We expect that this Borel plane structure persists

to all orders.

FIG. 6 (color online). The poles in the Borel complex s-plane of
the Padé approximant to the Borel transform of the second
nonhydrodynamic expansion, f̂ð2ÞðsÞ. The poles accumulate into
two branch cuts, which start at S ¼ 3

2Cτ
, and at S ¼ − 3

2Cτ
.

FIG. 5 (color online). Left plot shows the ratio of the large order expression (48) to the exact coefficients fð2Þk , as a function of k. The
blue, green and red points refer to the inclusion of the zeroth, first, and second subleading terms in (48). Right plot shows a close-up view
of the ratio using the expression with the first three terms in (48). This clearly demonstrates the remarkable precision of the resurgence
relation (48): the agreement is at the 1% level already by k ≈ 10.
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For completeness, we note that there are further even
smaller corrections to (49), involving fð1Þ, and also fðnÞ

with n ≥ 5. The fð1Þ part introduces a new Stokes constant
S−2 which can be determined numerically. The general
pattern for the large order growth of the Nth hydrodynam-
ical series fðNÞðwÞ is as follows. There is a set of alternating
subseries related to the sectors n ¼ 1; 2;…; N − 1, each of
which has an associated Stokes constant S−ðN−nÞ. They
generate branch points in the Borel plane along the negative
real axis: s ¼ −S;−2S;…;−ðN − 1ÞS. As mentioned
before, there is another set of subseries related to the
sectors n ¼ N þ 1; N þ 2;… all of which are nonalternat-
ing. They generate branch cuts at s ¼ S; 2S;…. In other
words the location of the branch cut in the Borel plane of
f̂ðNÞðsÞ due to the nonhydrodynamic sector n ≠ N is given
by the “relative action” sbranch ¼ ðn − NÞS. This is an
illustration of the general behavior of real trans-series
and has also been observed in resurgent analysis of
topological string theory [7,13].

VI. TRANSASYMPTOTIC REARRANGEMENT
AND INITIAL CONDITIONS

At earlier proper time (i.e. smaller w), the terms in the
trans-series expansion (29) become disordered, as expo-
nentials compete in size with inverse powers of w. In such a
situation, there is a systematic way to rearrange the terms of
the trans-series as one approaches the edge of its domain of
numerical usefulness [1,35]. This is the first step in
“transasymptotic matching” [35]. This procedure effec-
tively resums all the exponentially small nonhydrodynamic
modes for a given power of 1=w, and rearranges the trans-
series (30) into the form

fðwÞ ∼
X∞
k¼0

FkðσζÞ
wk : ð50Þ

This means that we have identified FkðσζÞ with the formal
expansion

FkðσζÞ ¼
X∞
n¼0

fðnÞk ðwÞσnζn ð51Þ

but we will see that we can in fact obtain closed-form
expressions for the FkðσζÞ.
In (50), ζ ¼ ζðwÞ is the same “instanton fugacity,”

ζðwÞ≡ wβe−Sw, introduced in (31). Inserting this reorgan-
ized ansatz for fðwÞ into the original differential equa-
tion (15) leads to a sequence of ordinary differential
equations, one for each FkðζÞ, with ζ now being regarded
as the independent variable. Note that the argument of Fk
involves also an arbitrary numerical factor multiplying ζ.
As in the expansion (30), there is just one such undeter-
mined constant, and by comparison we identify it with the
trans-series parameter σ in (30). The tower of differential
equations for FkðζÞ can be solved recursively: the first
equation of the tower involves only F0ðζÞ, the second only
involves F0ðζÞ and F1ðζÞ, and so on. (For notational

FIG. 8 (color online). The poles in the Borel complex-s plane of
the Padé approximant to the Borel transform of the third non-
hydrodynamic expansion, f̂ð3ÞðsÞ. The poles accumulate into two
branch cuts that start at s ¼ 3

2Cτ
and s ¼ − 3

2Cτ
. The two poles that

do not lie on the real axis are artifacts of the finite order (150) of
our Padé approximation.

FIG. 7 (color online). Left plot shows the ratio of the large order expression (49) to the exact coefficients fð3Þk , as a function of k. The
blue, green and red points refer to the inclusion of the zeroth, first, and second subleading terms in (49). Right plot shows a close-up view
of the ratio using the expression with the first three terms in (49). This clearly demonstrates the remarkable precision of the resurgence
relation (49): the agreement is at the few-percent level already by k ≈ 10.
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convenience we scale σ ¼ 1 here, and reintroduce it again
later.) Moreover, while the equation for F0ðζÞ is nonlinear,
all subsequent equations for FkðζÞ are linear. Furthermore,
when expanded as series in ζ, each function FkðζÞ is

convergent, even though the full trans-series expression
(50) is of course still divergent [35].
It is straightforward to show that the ansatz (50) leads to

the following equations for FkðζÞ:

Cτ

Xk
k0¼0

�
−Sζ

dFk0

dζ
þ βζ

dFk0−1

dζ
− ðk0 − 1ÞFk0−1ðζÞ

�
Fk−k0 ðζÞ þ

3Cλ

2Cη

Xk
k0¼0

Fk0 ðζÞFk−k0 ðζÞ

þ Cτ

�
−Sζ

dFk

dζ
þ βζ

dFk−1

dζ
− ðk − 1ÞFk−1ðζÞ

�
þ 8

3
CτFk−1ðζÞ þ 4Cτ

Xk−1
k0¼0

Fk−k0−1ðζÞFk0 ðζÞ

þ
�
1þ Cλ

Cη

�
FkðζÞ þ

4

9
ðCτ − CηÞδk−1;0 þ

2

3

�
1þ Cλ

2Cη

�
δk;0 ¼ 0: ð52Þ

We focus on the class of parameters with Cλ ¼ 2Cη, which
includes the particular case of N ¼ 4 parameters that we
have been using for numerical purposes. Then the first
equation

−
3

2
ζF0ðζÞ

dF0ðζÞ
dζ

−
3

2
ζF0ðζÞ þ 3ðF0ðζÞÞ2

þ 3F0ðζÞ þ
2

3
¼ 0 ð53Þ

determines F0ðζÞ to be

F0ðζÞ ¼
1

6
ð−2þ c2ζ2 � cζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ c2ζ2

p
Þ ≈ −

1

3
� c
3
ζ þ…

ð54Þ

where c is an integration constant. Matching with the trans-
series expansion (29) fixes c ¼ 3 and selects the upper sign:

F0ðζÞ ¼ −
1

3
þ 3

2
ζ2 þ ζ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9

4
ζ2

r
: ð55Þ

From the small ζ expansion of F0ðζÞ one can read off the
leading (i.e. w0) coefficient of the nth nonhydrodynamic
series. To see this explicitly, compare

F0ðζÞ ¼ −
1

3
þ ζ þ 3

2
ζ2 þ 9

8
ζ3 þ…

≡ fð0Þ0 þ fð1Þ0 ζ þ fð2Þ0 ζ2 þ fð3Þ0 ζ3 þ… ð56Þ

with the leading coefficients given in Eqs. (19), (34), (36)
and (37), with Cλ ¼ 2Cη.
The next equation in the tower (52) determines F1ðζÞ:

−
3

2
ζðF0 þ 1Þ dF1

dζ
þ 3ð2F0 þ 1ÞF1 − 3CηζðF0 þ 1Þ

×
dF0

dζ
þ 4CτF2

0 þ
8

3
CτF2

0 þ
4

9
ðCτ − CηÞ ¼ 0. ð57Þ

Note that this equation is linear in F1ðζÞ. After choosing
the integration constant to match the 1=w term of the first
nonhydrodynamical expansion (34), we obtain

F1ðζÞ ¼
ð3ζ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 9ζ2

p
Þ2

18Cτ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 9ζ2

p

×

�
54CηðCτ − CηÞζ þ Cτð9ðCτ − CηÞζ2 þ 2CηÞ

× ð−3ζ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 9ζ2

p
Þ

þ6Cτð2Cτ − 3CηÞζsinh−1
�
3ζ

2

��
ð58Þ

Similarly to (56), the small ζ expansion of F1ðζÞ generates
all the fðnÞ1 coefficients in the trans-series:

F1ðζÞ ¼
4Cη

9
þ 2Cη

3

�
10 −

9Cη

Cτ

�
ζ

þ
�
13Cη −

18C2
η

Cτ
þ 4Cτ

�
ζ2

þ
�
15Cη

2
−
81C2

η

4Cτ
þ 9Cτ

�
ζ3 þ…

¼ fð0Þ1 þ fð1Þ1 ζ þ fð2Þ1 ζ2 þ fð3Þ1 ζ3 þ… ð59Þ

which can be checked from Eqs. (19), (34), (36) and (37),
with Cλ ¼ 2Cη. This procedure can be continued to
determine all the FkðζÞ’s, as all the equations are linear
for k ≥ 1.
The advantage of this procedure can be seen when we

reintroduce the trans-series parameter σ factor in the
argument of Fk, writing again FkðσζÞ. The condition of
reality of fðwÞ fixes the imaginary part of σ in terms of the
(numerically determined) Stokes parameter S1 in Eqs. (40),
(44), but the real part of σ is arbitrary [13,35]. This
remaining real constant parametrizes the entire family of
trans-series solutions to the differential equation, each
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member of which connects to the hydrodynamical expan-
sion at large w, but which have different behaviors once w
becomes small enough that the exponential factors become
comparable with powers of w. Thus, this real part of the
trans-series parameter characterizes the various different
possible “initial conditions,” at early times (i.e. small w),
each of which eventually tends to the hydrodynamical
expansion as w → ∞. In [15] this phenomenon was
referred to as an “attractor.” This is in fact a generic feature
of the large class of nonlinear differential equations whose
solutions can be expressed in trans-series form [1,35]. This
behavior is illustrated in Fig. 9, in which we vary the real
part of σ, and see that this corresponds to different possible
choices of initial conditions. This simple observation
resolves the apparent inconsistency between the fact that
the formal hydrodynamic series expansion (19) has no
undetermined parameter, while the exact (numerical) sol-
ution to the first order nonlinear equation (15) clearly
depends on one initial condition: this is why there is a

family of trans-series solutions, parametrized by the trans-
series parameter σ, more precisely by its real part if fðwÞ
is real.

VII. CONCLUSIONS

We have shown that the nonlinear ordinary differential
equation describing boost-invariant Bjorken flow in con-
formal hydrodynamics exhibits characteristic signs of
resurgence. The formal late-time Taylor expansion of the
hydrodynamic derivative expansion is asymptotic, and can
be systematically extended to a trans-series expansion, for
which we have characterized the Borel plane structure. This
analysis reveals precise relations between the fluctuations
about different “nonperturbative sectors,” associated with
modes beyond hydrodynamics. These modes are exponen-
tially damped and the damping rate, or the inverse
relaxation time, plays the role of an instanton action in
the language of semiclassical physics. The factorial large
order growth of the fluctuation coefficients in one sector is
precisely determined by low orders of expansions about
neighboring sectors. This means, in particular, that the
asymptotic hydrodynamic expansion encodes physical
information about nonhydrodynamic modes. For example,
the trans-series expansion of the energy density EðτÞ at late
proper time includes also exponentially small terms
∼τα exp ½−cτ2=3�, and these nonhydrodynamic modes have
an interpretation in terms of quasinormal modes in the
gravitational picture. Resurgent asymptotic analysis sug-
gests that these general features should extend to the partial
differential equations in more general hydrodynamical
problems with gravity duals, in which the metric coefficient
functions are expanded in terms of both proper time and
distance from the horizon.
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