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Monte Carlo studies involving real time dynamics are severely restricted by the sign problem that
emerges from a highly oscillatory phase of the path integral. In this Letter, we present a new method to
compute real time quantities on the lattice using the Schwinger-Keldysh formalism via Monte Carlo
simulations. The key idea is to deform the path integration domain to a complex manifold where the phase
oscillations are mild and the sign problem is manageable. We use the previously introduced “contraction
algorithm” to create a Markov chain on this alternative manifold. We substantiate our approach by
analyzing the quantum mechanical anharmonic oscillator. Our results are in agreement with the exact ones
obtained by diagonalization of the Hamiltonian. The method we introduce is generic and, in principle,
applicable to quantum field theory albeit very slow. We discuss some possible improvements that should
speed up the algorithm.
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Introduction.—Except for weakly coupled systems and
isolated soluble examples, field theoretical or many-body
systems are intractable by analytical means. In those cases
numerical Monte Carlo (MC) integration is the method of
choice. The computation of equilibrium thermodynamic
properties, including equal time correlators, can be recast as
the computation of certain well-behaved path integrals,
well suited for MC integration, where the integrand decays
quickly at a large value of the field and is positive
everywhere. Some other properties like energy eigenvalues
and matrix elements of low lying states can also be recast as
well behaved path integrals by analytically continuing time
to the imaginary direction, effectively using a Euclidean
space instead of the original Minkowski space formalism.
The success of MC methods in lattice field theory is based
on this approach. There are, however, a number of
observables that cannot be formulated in this way. They
include, for instance, viscosity, conductivity, and other
transport coefficients [1]. They are pervasive in many
subfields of physics such as heavy ion collisions, neutron
star physics, condensed matter, and mesoscopic physics
and cold atom traps. These observables have in common
the fact that they are defined through the thermal equilib-
rium value of real time (Heisenberg picture) operators of
the form

hO1ðtÞO2ðt0Þiβ ¼ Tr½e−βHO1ðtÞO2ðt0Þ�: ð1Þ

In thermal equilibrium these correlators depend only on the
time difference t − t0. Giving the obvious importance of
these observables, several attempts have been made in the
past to compute them with MC techniques. For instance,
the complex Langevin method was used in field theoretical
models and in quantum mechanics [2–5]. Despite some

early success it seems that the complex Langevin method
does not converge when the maximum time difference
between operators (t − t0) is larger than the inverse temper-
ature β ¼ 1=kBT. Other attempts have also been made in
quantum chemistry [6–9].
Real time correlators of the form shown in Eq. (1) can be

expressed as a path integral using the Schwinger-Keldysh
formalism [10,11]. The path integral version of this
formalism is summarized in the equations

hO1ðtÞO2ðt0Þiβ ¼ Tr½O1ðtÞO2ðt0Þe−βH�
¼ Tr½O1ð0Þe−iHðt−t0ÞO2ð0ÞeiHðt−t0þiβÞ�

¼ 1

Z

Z
DxeiSSK ½x�O1ðtÞO2ðt0Þ; ð2Þ

where SSK ¼ R
C dtL½x� is obtained from the original action

S by analytically continuing the time t to values on the
contour show in Fig. 1 [12].
We will describe our method using the example of a

single nonrelativistic particle of mass m moving in one
dimension under the influence of a potential VðxÞ.
The discretized version of the Schwinger-Keldysh action
becomes

FIG. 1. The Schwinger-Keldysh contour (left) and its discre-
tized form (right) in the complex time plane. Δtn refers to either
�a or −ia depending on the location of n on the contour.
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SSK ¼
XN
n¼0

Δtn
�
1

2

�
xnþ1 − xn

Δtn

�
2

−
Vðxnþ1Þ þ Vðxn−1Þ

2

�
;

ð3Þ
where N ¼ 2ðn1 þ n2Þ (see Fig. 1) and Δtn equals either a,
−a, or −ia depending whether tn lies on the positive
direction on the real axis, the negative direction on the real
axis, or on the segments in the imaginary direction,
respectively.
The path integral in the Schwinger-Keldysh formalism

poses a tremendous problem for a MC integration since the
integrand is very oscillatory, leading to subtle cancellations
that are hard for the MC method to capture. This difficulty,
present whenever the integrand is not positive definite, is
known as the “sign problem.” The most straightforward
approach is to use the reweighting method where
S ¼ SR þ iSI ¼ −iSSK is split into its real and imaginary
parts and field configurations distributed according to
the (positive) probability distribution ∼e−SR are used to
estimate the observable:

hO1ðtÞO2ðt0Þiβ ¼
R
Dxe−SRe−iSIO1ðtÞO2ðt0ÞR

Dxe−SRe−iSI

¼
R
Dxe−SRe−iSIO1ðtÞO2ðt0ÞR

Dxe−SR

R
Dxe−SRR

Dxe−SRe−iSI

¼hO1ðtÞO2ðt0Þe−iSIiSR

he−iSIiSR

≈
PN

a¼1O(xaðtÞ)O(xaðt0Þ)e−iSIðxaÞPN
a¼1 e

−iSIðxaÞ ; ð4Þ

where xaðtÞ are a family of N number of configurations
distributed according to the probability distribution p½x� ∼
e−S½xa� and h� � �iSR

denotes the average computed with the
real part of S only. The reweigthing method is useful if
the average phase he−iSIiSR

is not too small; otherwise,
cancellations between the MC estimates of the numerator
and denominator lead to large statistical errors. The value of
the average phase is actually used as a measure of how hard
the sign problem is. Notice, however, that while SR does
not depend on the value of xðtnÞ for tn belonging to the real
part of the contour, SI does depend on xðtnÞ. Consequently,
the value of xðtnÞ (and SI) is unconstrained when sampling
according to the measure p ∼ e−SR and the average phase
vanishes identically. Thus, contrary to the usual case where
the reweighting method always converges to the correct
result, perhaps requiring an exponentially large number of
samples, this method cannot be used in the Schwinger-
Keldysh formalism even when infinite statistics is
available.
Holomorphic gradient flow.—We attack the sign prob-

lem by complexifying the field variables xi. The goal is to
replace the original path integration domain RN with an N

(real) dimensional manifold embedded into CN ∼ R2N such
that the variation of SI on this alternative domain (hence the
sign problem) is milder compared to the one on RN and
reweighting can be safely employed. Since the integrands
we consider are free of singularities, a multidimensional
generalization of Cauchy’s theorem guarantees that the
domain of integration can be changed without altering the
value of the integral. The only possible impediment to a
deformation of the integration region is the behavior of the
integrand at infinity. There are directions in CN such that
SRðzÞ → ∞ as jzj → ∞. The integral over a domain that
asymptotes along these directions is convergent. These
“good” regions are separated by “bad” regions along
which SR → −∞ and the integral diverges. Changes in the
integration region do not alter the value of the integral as
long as the asymptotic behavior is fixed in one of these
good regions at all intermediate steps [13].
We consider a class of manifolds that are generated by

the so-called holomorphic gradient flow equation,

dzi
dτ

¼
¯∂S

∂zi ; ð5Þ

(the bar denotes complex conjugation) which “flows” a
given point along a curve parametrized by τ, where SR
increases the most and SI remains constant. It is straight-
forward to show that (i) dSR=dτ ≥ 0, where the equality
only holds if zi is a critical point [i.e., dS=dzðziÞ ¼ 0], and
(ii) dSI=dτ ¼ 0. Consider the manifold Γ obtained by
flowing every point xi ∈ RN by a fixed amount Tflow. The
monotonicity property (i) implies that the integral over the
manifold Γ is the same as overRN. This is because domains
that belong to inequivalent domains of integration are
separated by regions where the integral is ill defined.
However, for any Tflow, e−SR½ziðTflowÞ� ≤ e−SR½xi� and the
integral is never ill defined. It is worth mentioning that
the same property also ensures the absence of the so-called
runaway configurations with arbitrarily large negative
actions [17].
Because of property (i), the flow increases SR and the

only regions with significant statistical weight (∼e−SR )
originate out of very small regions in RN . In those small
regions SI varies little and, therefore, the sign problem is
alleviated in Γ. In fact, in the limit Tflow → ∞, Γ becomes
the appropriate sum of Lefschetz thimbles (multidimen-
sional stationary phase contours) equivalent to RN over
which SI is constant. In other words, the flow zooms in on
the regions where SI varies slowly, which was exactly the
goal that we aimed for to mitigate the sign problem.
However, there is a price to pay: the flow might generate
multiple regions with nearly constant SI, separated by large
action barriers which would cause a multimodal distribu-
tion hard to sample. The problem then reduces to finding an
appropriate value of Tflow such that, on Γ, SI varies mildly
enough to allow reweighting, yet the potential barriers are
not too high so that the configuration space is accurately
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sampled. This problem depends on the particular model and
the parameters involved.
Contraction algorithm.—As we established the domain

of integration Γ that is obtained by flowing RN by a fixed
Tflow the next step is to generate a Markov chain on Γ
sampling it according to the distribution ∼e−SR . What
makes this task challenging is that Γ is curved and it is
not obvious how to make a proposal lying on Γ as there is
no local way of characterizing Γ. To overcome this problem
in the context of Lefschetz thimbles, the so-called con-
traction algorithm was introduced in Ref. [18] and was
generalized to manifolds beyond thimbles in Ref. [19]. We
will use the same algorithm in our analysis. Let us begin by
reviewing it.
We use the fact that the flow Eq. (5) defines a one-to-one

map between each point zi ∈ Γ and xi ∈ RN , where zi ≔
ziðTflowÞ is the solution of Eq. (5) with the initial condition
zið0Þ ¼ xi, and use xi to parametrize zi. Using this para-
metrization we can write

Z
Γ
Dze−S½z�O½z� ¼

Z
RN

dNx det Je−S½zðxÞ�O½zðxÞ�; ð6Þ

where Jij ¼ ð∂zi=∂xjÞ is the Jacobian associated with the
change of variables from zi to xi and O represents any
observable as, for instance, O1ðtÞO2ðt0Þ. det J is a complex
number and accounts for the change in the volume element
as well as the orientation of the tangent plane of Γ in
complex space. The evolution of the Jacobian matrix Jij
with the flow is determined by

dJij
dτ

¼
¯∂2S½z�

∂zi∂zk Jkj; Jð0Þ ¼ 1; ð7Þ

with ziðτÞ satisfying Eq. (5). We can then write

hOi ¼
R
dNxe− ~S½zðxÞ�O½zðxÞ�R

dNxe− ~S½zðxÞ�

¼
R
dNx det Je− ~SRe−i ~SIOR

dNxe− ~SR

R
dNxe− ~SRR

dNxe− ~SRe−i ~SI

¼ he−i ~SIOi ~SR

he−i ~SIi ~SR

; ð8Þ

where ~S½x� ¼ S½zðxÞ� − log det J is the effective action
whose real part determines the probability distribution

[i.e., PðxiÞ ∝ e− ~SR½x�]. We use a standard Metropolis algo-
rithm to generate samples. In this method, we make all the
updates in RN and the flow evolution guarantees that the
points zi lie on the manifold Γ, as desired. In the last step of
Eq. (8) we reweighed the phase that involves both the
contribution from SI½zðxÞ� and Imðlog det JÞ. As we dis-
cussed earlier, the variation of SI½zðxÞ� on regions which
dominate the integral is mild. We have also found that

Imðlog det JÞ fluctuates very weakly on these regions as
well. Therefore, reweighting the phase does not produce
large errors. In a nutshell, the contraction algorithm is a
standard Metropolis algorithm in the variables xi using the
effective action ~SR½x�, where the phase e−i ~SI is reweighted
during the computation of the observable.
Some care has to be taken regarding the proposals.

Because of the nonlinear nature of the flow equation, the
image of the directions on Γ along which the variation of
the action is mild is typically very distorted and anisotropic
in RN , where the updates are made. As a result, there are
some steep directions in RN along which ~S½x� changes very
rapidly and some flat directions where it changes very
slowly. We choose the proposals such that the size of the
random step is larger along the flat directions and smaller
along the steep directions for better efficiency. In order to
do so, we use the a quadratic estimate for the effective
action ~SR½x� ≈ 1

2
xTMx, whereM is a real matrix [20]. In the

quadratic approximation, solution to the flow Eq. (5) and,
hence, the matrix M can be found analytically. Any vector
xi ∈ RN can be decomposed in terms of the eigenvectors of
M as

xi ¼
XN
α¼1

cðαÞρðαÞi ; where MρðαÞ ¼ λðαÞρðαÞ: ð9Þ

The eigenvalues λa provide an estimate for the variation of
the action on Γ in the direction ρðαÞ. The proposals are then
given by

cðαÞproposed ¼ cðαÞold þ
δffiffiffiffiffiffiffi
λðαÞ

p ; ð10Þ

where δ is a random number satisfying PðδÞ ¼ Pð−δÞ to
ensure detailed balance. At each update, we randomly
select a direction α and propose a step in that direction. The
proposed configuration is then accepted with probability
minf1; expð− ~S½xproposed� þ ~S½xold�Þg. To ensure the accu-
racy of the flow, we use an adaptive step size, high order
Runge-Kutta integrator [21].
Results.—We computed retarded correlation functions

h_xðtÞ_xðt0Þi and hxðtÞxðt0Þi for the quantum anharmonic
oscillator with VðxÞ ¼ ðω2=2Þx2 þ ðλ=4!Þx4. The former
characterizes the linear response of the system to an
external force. Of course, since there is a single degree
of freedom there is no actual dissipation in our model, but
nevertheless this correlator can be thought of a quantum
mechanical analogue of conductivity. Our parameters are as
follows: lattice spacing a ¼ 0.2, n1 ¼ 12, n2 ¼ 2 (i.e.,
tmax ¼ 2.2, β ¼ 0.8), ω ¼ 1, λ ¼ 24 and Tflow ¼ 0.2. The
choice of the coupling constant λ is such that the anhar-
monic term is of the same order as the quadratic mass term
and the theory is in the strongly coupled regime. Our results
for the real and imaginary parts of the retarded correlators
are plotted in Fig. 2.
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The problem we studied has been studied via the
complex Langevin method in the past [2–4]. However,
one vital shortcoming of the complex Langevin approach is
that it does not converge to the correct answer for operators
separated by real time intervals tmax > β. For the purposes
of computing transport coefficients, which are expressed as
small frequency limits of the Fourier transforms of the time
dependent correlation functions, it is important to be able
to accurately compute correlators with tmax ≳ β. This is
because one expects, for strongly coupled theories, the
damping time to be proportional to β and depending on the
proportionality constant the main support to the Fourier
transform can extend to t≳ β. For theories with intermedi-
ate coupling where the damping time might be greater, the
problem gets worse. Remarkably, our approach does not
suffer from this problem. In fact, in the computations
presented in Fig. 2 we were able to go as high as tmax ≈ 3β.
The convergence to the right result is encouraging and, to

our knowledge, unique to our method. There is, however,
room for improvement. The convergence is rather slow; the
results above required 3 × 107 Metropolis steps. Going
to high values of tmax requires more computational effort.
The dependence of the cost on the parameters, such as
Tflow, or the number of steps, is unclear. Nevertheless,
improving the proposals would have a big impact on the
efficiency. As discussed earlier, at the proposal stage we
estimate the behavior of the effective action as a function of

xi via a quadratic approximation. This approximation gets
worse for larger values of Tflow as larger flow amplifies the
anisotropies in the proposal space so that the flatness and
steepness of the different directions become more pro-
nounced. For our model with the particular parameters we
had, a value of Tflow ¼ 0.2 was enough to overcome the
sign problem (see Fig. 3), but for problems that require
higher flow, as it will inevitably be the case in systems
with more degrees of freedom, the proposals have to be
optimized further. Second, the most costly part of our
algorithm is the computation of the Jacobian J that is
performed at every update. Using an estimator which is
cheaper and reweighting the difference at every measure-
ment would significantly reduce the computational cost.
Several such estimators have been found in the context of
Lefschetz thimbles [22] and proved to be very useful, but
finding one that is applicable to our method that is flowing
from RN is still an open problem. These issues are left for
future work.
Discussion and conclusions.—We have presented a new

method to stochastically compute real time correlators of
the kind required for the calculation of transport coeffi-
cients. We pointed out that the straightforward separation of
phase leads to a sign problem that is, in a sense, infinitely
bad. The method, obviously inspired by the “Lefshetz
thimble” approach [5,23–32] [33], is based on a deforma-
tion of the region of integration of the path integral into
complex space but, contrary to the Lefshetz thimble
approach it does not require a priori knowledge of the
position of the critical points, their thimbles and the
contribution of each one to the original integral. We test
it with success, on a simple quantum mechanical model
where the complex Langevin method fails to converge.
Even though there is no theoretical obstruction to use the
method in problems with larger degrees of freedom, such as
field theory, at its current stage, the slow convergence of the

Re[G
T ,x

•
x
• (t,t')]

Im[G
T ,x

•
x
• (t,t')]

0.5 1.0 1.5 2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

t- t'

T
x• (t

) x• (t
' )

Re[GT ,xx(t,t')]

Im[GT ,xx(t,t')]

0.0 0.5 1.0 1.5 2.0

0.3

0.2

0.1

0.0

0.1

0.2

0.3

t- t'

T
x(

t)
x(

t')

FIG. 2. Retarded correlators h_xðtÞ_xðt0Þi and hxðtÞxðt0Þi. The
dotted and solid lines represent the exact results obtained by
diagonalizing the Hamiltonian.

FIG. 3. Histogram of SI (mod 2π) for the Tflow ¼ 0 calculation
corresponding to an integration over RN (in red) and the
Tflow ¼ 0.2 calculation corresponding to an integration over Γ
(in blue). It is clear that the modest flow Tflow ¼ 0.2 reduces the
sign problem significantly.
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method makes it expensive to do so. Future work should
focus on improving the convergence rate by developing
more efficient Metropolis proposals and by finding of a
good estimator of the Jacobian.
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