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Fluctuation dynamics in a relativistic fluid with a critical point

Xin An ,1,* Gökçe Başar,2,† Mikhail Stephanov,1,‡ and Ho-Ung Yee1,3,§

1Department of Physics, University of Illinois, Chicago, Illinois 60607, USA
2Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599, USA

3Kadanoff Center for Theoretical Physics, University of Chicago, Chicago, Illinois 60637, USA

(Received 15 January 2020; accepted 23 July 2020; published 1 September 2020)

To describe dynamics of bulk and fluctuations near the QCD critical point we develop general relativistic
fluctuation formalism for a fluid carrying baryon charge. Feedback of fluctuations modifies hydrodynamic
coefficients including bulk viscosity and conductivity and introduces nonlocal and noninstantaneous terms
in constitutive equations. We perform necessary ultraviolet (short-distance) renormalization to obtain cutoff-
independent deterministic equations suitable for numerical implementation. We use the equations to calculate
the universal nonanalytic small-frequency dependence of transport coefficients due to fluctuations (long-time
tails). Focusing on the critical mode we show how this general formalism matches existing Hydro+ description
of fluctuations near the QCD critical point and nontrivially extends it inside and outside of the critical region.
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I. INTRODUCTION

The classic subject of relativistic hydrodynamics [1] has
experienced a renaissance of interest in recent years [2,3]. The
interest is driven in large part by the progress in heavy-ion col-
lision experiments which allow us to create and study droplets
of hot and dense matter governed by physics of strong interac-
tion described by quantum chromodynamics. The increasing
body of experimental evidence that relativistic hydrodynamics
is describing the evolution of the expanding fireball created
in these collisions motivates technical developments as well
as a closer look at many fundamental theoretical concepts in
hydrodynamics.

The subject of hydrodynamic fluctuations is particularly
relevant to heavy-ion collisions. The system size L is not
astronomically large compared to the typical microscopic
scale, �mic (factor 10 at most is a typical scale separation).1 As
a result, fluctuations are large enough to be easily observable
in experiments. In addition, since the leading corrections to
hydrodynamics are due to the nonlinear feedback of fluctu-
ations, we cannot afford to neglect them—a luxury one is
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the typical hydrodynamic gradient scale is set by the (transverse) size
of the nucleus L ∼ R ∼ 10 fm.
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used to in ordinary fluid dynamics. Fluctuations are even more
important when enhanced by critical phenomena.

From the modern point of view, hydrodynamics is a sys-
tematic expansion in spatial gradients. More precisely, it is
the expansion of constitutive equations for stress tensor (and
conserved current). The expansion parameter is the ratio of
a typical hydrodynamic wave number k = 1/L to a micro-
scopic scale, say, temperature T ; inverse scattering length; or,
generically, 1/�mic. In this view, the ideal, nondissipative (i.e.,
reversible) hydrodynamics is the truncation of this expansion
at lowest (zeroth) order. At first order in gradients [i.e., at
order k1 or, more precisely, (k�mic)1] one recovers standard
Landau-Lifshitz or Navier-Stokes hydrodynamics. It is the
following order in this expansion that concerns us here. That
order is not k2 but rather is k3/2 (or kd/2 in d dimensions).
Such nonanalytic behavior in k and, therefore, nonlocal con-
tributions come from fluctuations in hydrodynamics. Thus it
is essential to understand the physics of hydrodynamic fluctu-
ations to faithfully describe physics of heavy-ion collisions.2

Furthermore, in addition to modifying hydrodynamic equa-
tions by effectively nonlocal contributions, the fluctuations
themselves are measured in heavy-ion collision experiments.
In particular, one of the most fundamental questions these
experiments aim to answer is the existence and location of the
critical point on the QCD phase diagram [5,6]. The signature
of this phenomenon is a certain nonmonotonous behavior of
event-by-event fluctuation measures when the parameters of

2Second-order (k2) corrections could be dominant instead of fluctu-
ations in special cases, where fluctuations are suppressed, as in some
large-N theories [4]. Also for dimensions greater than 4, fluctuations
are parametrically smaller than k2 terms. This paper shall be con-
cerned with the generic hydrodynamics in three spatial dimensions,
relevant for QCD fireball evolution in heavy-ion collisions, among
other applications.
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the collision (such as center-of-mass energy) is varied in order
to “scan” QCD phase diagram [7,8]. This nonmonotonous
behavior is driven by critical phenomena and thus predictable
without being able to determine the QCD equation of state at
finite density (still an unsolved theoretical problem).

The existing predictions for critical behavior rely signifi-
cantly on the assumption of local thermal equilibrium. How-
ever, near the critical point, the equilibrium is increasingly dif-
ficult to achieve due to critical slowing down and a finiteness
of expansion time. Essentially, this limitation determines the
magnitude of the observable signatures of the critical point
[8,9]. Therefore the ability to describe the dynamical evolu-
tion of fluctuations during the fireball evolution, in particular,
in the proximity the critical point is crucial. The goal of this
paper is to provide such a description.

One of the recent advances toward this goal has been the
introduction of Hydro+ in Ref. [10], with a recent numerical
implementation in a simplified setup reported in Ref. [11].
Focusing on the mode responsible for the critical slowing
down, identifying it with the fluctuation correlator of the
slowest hydrodynamic mode, the authors of Ref. [10] pro-
posed the evolution equation which describes the relaxation
of this nonhydrodynamic mode to equilibrium.3 Extending
hydrodynamics by addition of such a mode one is then able
to broaden the range of applicability of hydrodynamics near
the critical point and describe the dominant mode of critical
fluctuations at the same time. The crucial ingredient of this
formalism is a nonequilibrium entropy of fluctuations derived
in Ref. [10].

We approach this problem from a different direction. We
start with the general formalism of relativistic hydrodynamic
fluctuations introduced earlier in Ref. [12] for neutral (charge-
less) fluids and extend it to include a crucial ingredient—
baryon charge density. The QCD critical point, if it exists,
is located at finite baryon density. The approach we pursue,
in which the two-point correlators of hydrodynamic variables
play the role of additional nonhydrodynamic variables, has
been introduced and developed recently in the context of
heavy-ion collisions, but limited to special types of flow such
as longitudinal boost-invariant expansion in Refs. [13–15].
In a more general but nonrelativistic case this approach was
pioneered by Andreev in the 1970s [16]. The approach is often
referred to as “hydrokinetic” to acknowldge the similarity be-
tween the two-point correlators and the distribution functions
in kinetic theory. In particular, the dynamics of the correlators
of the pressure fluctuations is essentially equivalent to the
kinetics of the phonon gas. This physically intuitive picture
was the original source of this formalism [13,17] and was
rigorously derived in general relativistic context in Ref. [12].

The hydrokinetic approach should be also contrasted with
the traditional stochastic hydrodynamics where the noise is
introduced into hydrodynamic equations as in Refs. [18,19].
From this point of view, the “hydrokinetic” approach could

3Note that the two-point correlator of a conserved density is not a
hydrodynamic mode itself, since it is not a conserved quantity. Such
two-point correlator is not a part of ordinary hydrodynamics.

also be called “deterministic,” as it replaces stochastic equa-
tions with deterministic equations for the evolution of cor-
relation functions. Of course, the two approaches solve the
same system of stochastic equations but in complementary
ways. The advantage of the deterministic approach is that it
allows one to deal with the problem of the “infinite noise”:
The noise amplitude needs to become infinitely large as
the hydrodynamic cell size is sent to zero, even though the
physical effect of the noise is finite due to its averaging out
in a medium whose properties vary slowly in space and time.
The effect of the infinite (or more precisely cutoff dependent)
noise can be absorbed into renormalization of hydrodynamic
equations—a procedure which can be performed analytically
in the deterministic approach. This avoids having to deal with
numerical cancellations which would otherwise be necessary
in a direct implementation of stochastic equations.

Near the critical point the deterministic approach we de-
velop here, although different from Hydro+ in Ref. [10],
nevertheless leads to the description of fluctuations in terms
of two-point correlators as in Hydro+. In this paper we verify
that in the limit of large correlation length the two approaches
exactly match. This is a nontrivial check of the validity of both
approaches. Furthermore, since the deterministic approach is
more general it allows us to extend the Hydro+ approach both
closer to the critical point and further away from the critical
point to describe also ordinary, noncritical fluctuations.

The paper is organized as follows. In Sec. II we start from
stochastic hydrodynamics and derive linearized stochastic
equations for the fluctuations of hydrodynamic variables. In
Sec. III we use this result to derive deterministic evolution
equations for the two-point correlators of hydrodynamic vari-
ables. These equations bear resemblance to evolution equa-
tions in kinetic theory. In Sec. IV we expand the stochastic
hydrodynamic equations again, now further, to second or-
der in the fluctuations. On averaging over noise, we obtain
the equations for averages of hydrodynamic variables (one-
point functions). These equations, due to nonlinearities, now
contain the contributions of two-point functions. These con-
tributions lead to renormalization of “bare” hydrodynamics
equations, i.e., they change the “bare” equation of state and
“bare” transport coefficients into physical quantities. All the
cutoff dependence is absorbed at this stage. The remaining
contributions are nonlocal and are known as long-time tails.
As an example, we work out explicitly the nonanalytic small-
frequency dependence of transport coefficients. In Sec. V
we study the behavior of the equations we derived near the
critical point, perform comparison with Hydro+ and propose
an extension to shorter time-/length scales which we refer to
as Hydro++.

II. STOCHASTIC HYDRODYNAMICS
AND FLUCTUATIONS

A. Hydrodynamics with noise

The starting point of our analysis is the relativistic hy-
drodynamics with stochastic noise which drives the thermal
fluctuations of hydrodynamic variables. The amplitude of the
noise is proportional to the dissipative transport coefficients
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as a consequence of the fluctuation-dissipation theorem. For
macroscopically large systems we are considering, fluctua-
tions are small because they originate from the noise at mi-
croscopically short scales and average out over macroscopic
distances. This allows us to treat the effects of these fluctu-
ations systematically in a power expansion. We shall discuss
the corresponding power counting in Sec. VI. In particular, in
this paper we will focus on the quadratic order in fluctuations
and neglect cubic and higher order. In this section, we lay out
this basic setup, up to the quadratic order of fluctuations that
we are working with. This is a generalization of our previous
work for fluids without conserved charges [12] to the case of
relativistic plasma with a conserved charge.

Stochastic hydrodynamics with a conserved U(1) charge is
defined by the conservation equations

∂μT̆ μν = 0, ∂μJ̆μ = 0. (2.1)

Here we follow the conventions in Ref. [12] and distinguish
stochastic quantities by the breve accent ˘. Defining the
stochastic hydrodynamic variables (ε̆, n̆, ŭμ) by the Landau’s
conditions

T̆ μν ŭν = −ε̆ŭμ, J̆μŭμ = −n̆, (2.2)

we can write T̆ μν and J̆μ as

T̆ μν = T μν (ε̆, n̆, ŭ) + S̆μν, J̆μ = Jμ(ε̆, n̆, ŭ) + Ĭμ, (2.3)

in terms of the “bare” constitutive relations

T μν (ε, n, u) = ε uμuν + p(ε, n)�μν + �μν,

Jμ(ε, n, u) = nuμ + νμ, (2.4)

where �μν ≡ gμν + uμuν is the standard spacelike projection
operator. The function p(ε, n) is the pressure, given by the
equation of state. As usual, p, in terms of entropy s:

p = T s − ε + μn, (2.5)

where temperature T and chemical potential μ are defined via
derivatives of s (the first law of thermodynamics):

ds = βdε − αdn, β ≡ 1/T, α ≡ μ/T . (2.6)

Throughout the paper we will also use the enthalpy density,

w ≡ ε + p = T s + μn, (2.7)

and, most importantly, entropy per charge ratio

m ≡ s

n
. (2.8)

The constitutive equations in Eqs. (2.4) are organized as an
expansion in powers of spatial gradients. The terms first order
in gradients are given by

�μν = −2η
(
θμν − 1

3�μνθ
)− ζ�μνθ, (2.9a)

νμ = −λ�μν∂να ≡ −λ∂
μ

⊥α, (2.9b)

and

θμν ≡ 1
2 (∂μ

⊥uν + ∂ν
⊥uμ), θ ≡ ∂μuμ ≡ ∂ · u. (2.10)

The shear and bulk viscosities are denoted by η and ζ , and
the charge conductivity is denoted by λ.4 The fluctuations are
sourced by random noise terms (S̆μν , Ĭμ) that are sampled over
a Gaussian distribution with an amplitude determined by the
fluctuation-dissipation theorem,

〈S̆μν (x)〉 = 〈Ĭλ(x)〉 = 0,

〈S̆μν (x)Ĭλ(x′)〉 = 0,

〈Ĭμ(x)Ĭν (x′)〉 = 2λ�μνδ(4)(x − x′),
(2.11)

〈S̆μν (x)S̆λκ (x′)〉 = 2T
[
η (�μκ�νλ + �μλ�νκ )

+ (
ζ − 2

3η
)
�μν�λκ

]
δ(4)(x − x′),

where λ, T , η, and ζ here assumed be functions of averaged
thermodynamic variables, such as energy density and number
density. Equations (2.1) together with constitutive equations
(2.4) determine evolution of stochastic variables ε̆, n̆, and ŭ.
Since we have the freedom to choose an independent pair of
scalar variables arbitrarily, we use this freedom to keep our
calculations and resulting equations relatively simple. We find
the following set of variables particularly convenient:

m̆ ≡ m(ε̆, n̆) and p̆ ≡ p(ε̆, n̆), (2.12)

where m(ε, n) and p(ε, n) are the entropy per charge and the
pressure, expressed as functions of the energy and charge
densities, defined in Eqs. (2.8) and (2.5). This choice sim-
plifies our calculations because the fluctuations of m and p
are statistically independent in equilibrium and correspond to
two eigenmodes of linearized ideal hydrodynamic equations.
We shall denote the ensemble averages of these variables by
simply removing the accent, i.e.,

m ≡ 〈m̆〉, p ≡ 〈p̆〉, u ≡ 〈ŭ〉. (2.13)

Having defined variables m and p as average values (one-
point functions) of primary variables in Eqs. (2.13) we shall
now define other deterministic variables, which appear in our
equations, such as ε and n as functions of m and p obtained
via equation of state:

ε ≡ ε(m, p), n ≡ n(m, p). (2.14)

Note that, due to nonlinearities in these relationships, ε �= 〈ε̆〉
and n �= 〈n̆〉.

In order to describe the evolution of these deterministic
quantities we shall perform the ensemble average on the
stochastic equations. Although this eliminates the noise terms,
because of the nonlinearities in the constitutive equations the
averaged equations cannot be simply obtained by substituting
stochastic variables by their averages. We shall describe the
effect of these nonlinearities on the evolution of average
values [i.e., one-point functions in Eq. (2.13)] in Sec. IV.
These effects, to lowest order in the magnitude of the fluc-
tuations, are given in terms of the two-point functions. Our
goal in Sec. III will be to derive evolution equation for these
correlators. We should also keep in mind that these two-point

4Note that in terms of the conventionally defined conductivity at
constant temperature defined as J = −σ∂μ: λ = σT .
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functions are of interest in their own right, since they describe
the magnitude of the fluctuations and correlations which, in
heavy-ion collisions, are measurable [6].

B. Linearized equations

To obtain equations for the two-point functions we first be-
gin by writing stochastic hydrodynamic equations linearized
in deviations of the stochastic variables from their average
values in Eq. (2.13):

m̆ = 〈m̆〉 + δm, p̆ = 〈p̆〉 + δp, ŭμ = 〈ŭμ〉 + δuμ.

(2.15)
To linear order, the fluctuations of m̆ and p̆ are simply related
to fluctuations of ε̆ = ε(m̆, p̆) and n̆ = n(m̆, p̆) by a linear
transformation with coefficients given by thermodynamic
derivatives. We shall use the following intuitive short-hand
notations for these derivatives:

dε = εmdm + εpd p, dn = nmdm + npd p, (2.16)

whose exact definitions are given in Appendix A. Similarly,
we find it useful to express the fluctuations of the thermody-
namic function ᾰ = α(ε̆, n̆) defined in Eq. (2.6) in terms of
δm and δp and define corresponding coefficients:

dα = αmdm + αpd p. (2.17)

Of course, due to nonlinearities in the equation of state
the relationship between fluctuations of (ε̆, n̆, ᾰ) and (m̆, p̆)
is nonlinear, and we shall deal with this in Sec. IV
where we consider the second-order terms in the fluctuation
expansion.

Now we are ready to expand the constitutive equations to
linear order in fluctuations:

T̆ μν ≈ T μν (ε, n, u) + εmuμuνδm + [gμν + (1 + εp)uμuν]δp

+w(uμδuν + uνδuμ) − η(∂μ

⊥δuν + ∂ν
⊥δuμ)

− (
ζ − 2

3η
)
�μν∂ · δu + S̆μν,

J̆μ ≈ Jμ(ε, n, u) + nmuμδm + npuμδp + nδuμ

− λαm∂
μ

⊥δm − λαp∂
μ

⊥δp + Ĭμ. (2.18)

The equations of motion for both the background and the fluc-
tuations are obtained by substituting Eq. (2.18) into Eq. (2.1).
By definition, Eq. (2.15), one-point averages of fluctuations
vanish, 〈δm〉 = 〈δp〉 = 〈δu〉 = 0. Therefore, on averaging the
equations of motion, 〈∂μT̆ μν〉 = 〈∂μJ̆μ〉 = 0, we obtain

∂μT μν (ε, n, u) = 0, ∂μJμ(ε, n, u) = 0. (2.19)

At leading order in gradients, this gives us equations of ideal
hydrodynamics,

u · ∂ε = −wθ, ∂⊥μ p = −waμ, u · ∂n = −nθ,(2.20)

which we shall use in the following calculations below. Here
aμ ≡ u∂uμ is the fluid acceleration. Inserting Eqs. (2.19)
back into the original stochastic equations, Eqs. (2.1), we
obtain the linearized equations of motion for the fluctua-
tions. To present these equations compactly we introduce the

relaxation/diffusion coefficients,

γη ≡ η

w
, γζ ≡ ζ

w
, γλ = −λ

αmw

T n2
, γp = λc2

s α
2
pT w.

(2.21)

We also use the thermodynamic relation,

w

n
d

(
n

w

)
= − 1

w

(
1 − αp

αm
T n

)
d p − T n

αmw
dα, (2.22)

and express our equations in terms of gradients of p and
α. With the help of above expressions, including the ideal
equations of motion (2.20), we find, after some amount of
algebra, the following equations of motion for our fluctuating
variables:

u · ∂δm = − 1

αm
(αpwaν + ∂⊥να)δuν + γλ∂

2
⊥δm

+ αp

αm
γλ∂

2
⊥δp − 1

T n
∂μuν S̆μν + w

T n2
∂μ Ĭμ,

u · ∂δp = −c2
s εmθ (1 − ε̇m)δm − (

1 + c2
s + 2ċs

)
θδp

− w
[
c2

s ∂⊥ν − (
1 − c2

s

)
aν

]
δuν + αm

αp
γp∂

2
⊥δm

+ γp∂
2
⊥δp − Ṫ ∂μuν S̆μν − c2

s αpT w ∂μ Ĭμ,

u · ∂δuμ = −εmaμ

w
δm − 1

w

(
∂⊥μ + 1 + c2

s

c2
s

aμ

)
δp

− (− uμaν + ∂⊥νuμ − c2
s �μνθ

)
δuν

+
[
γη�μν∂

2
⊥ +

(
γζ + 1

3
γη

)
∂⊥μ∂⊥ν

]
δuν

− 1

w
�μν∂λS̆λν. (2.23)

We also introduced a useful notation “dot” for the operation
defined as:

Ẋ =
(

∂ log X

∂ log s

)
m

= s

X

(
∂X

∂s

)
m

(2.24)

for a given thermodynamic quantity X . Note that since this
operation is a logarithmic derivative it satisfies

(XY )̇ = Ẋ + Ẏ . (2.25)

This operator appears in our equations because, to leading
order (ideal hydrodynamics), (u∂ ) m = 0 and (u∂ )(log X ) =
−Ẋθ .

The quantity Ṫ , similarly to coefficients defined in
Eqs. (2.16) and (2.17), involves second-order thermodynamic
derivatives, i.e., second derivatives of the entropy s(ε, n).
Since there are only three independent second-order thermo-
dynamic derivatives, all such quantities can be expressed in
terms of three independent ones. We find that a convenient
choice, making equations most transparent, at this stage of the
calculation, is αm, αp defined in Eq. (2.17) and

c2
s ≡

(
∂ p

∂ε

)
m

. (2.26)

In the intermediate steps of the following calculations, we
shall sometimes use other second derivatives also, if neces-
sary, in order to keep our expressions as simple as we can.
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At the end, to express our final results, we shall switch to
another set, cs, cp, and Ṫ , which contains more commonly
used second-order derivatives. The quantity Ṫ is not common,
but it appears naturally and makes equations more transparent
and concise. It also has a reasonably simple meaning, in
particular, in a neutral fluid and also in a conformal fluid,
where Ṫ = c2

s (see Table I). If desired, it can be traded for a
more common quantity, such as cv , using Eq. (B8). Converting
second-order derivatives defined in Eqs. (2.16) and (2.17)
into different independent sets is easily accomplished via the
relations below (see also Appendix A):

εm = (T n)2αp = T n

(
1 − Ṫ

c2
s

)
, εp = c−2

s ,

nm = (αpT n − 1)T n2

w
= − Ṫ T n2

c2
s w

, (2.27)

np = n

c2
s w

, αm = − w

cpT
.

The quantities ċs and ε̇m involve third-order thermodynamic
derivatives [i.e., third derivatives of a s(ε, n)].

Another commonly known quantity we shall find useful in
what follows is the heat conductivity coefficient

κ ≡
(

w

T n

)2

λ (2.28)

in terms of which the diffusion coefficient is simply

γλ = κ

cp
. (2.29)

We introduce a collective notation for the fluctuating
modes,

φA ≡ (T nδm, δp/cs,wδuμ), (2.30)

where normalization of the modes is chosen to make result-
ing matrix equations simpler and more symmetric. We can
then write the above equations for the linearized fluctuations
[Eq. (2.23)] in a compact matrix form,

u · ∂φA = −(L + D + K)ABφB − ξA, (2.31)

where L, D, and K are 6 × 6 matrix operators. The operators
L and D are the ideal and dissipative terms, respectively, K
contains the corrections due to the first-order gradients of
background flow, and six-vector ξA denotes the random noise.
Explicitly

L ≡
⎛⎝0 0 0

0 0 cs∂⊥ν

0 cs∂⊥μ 0

⎞⎠, D ≡
⎡⎣ −γλ∂

2
⊥ (csαpT n)−1γp∂

2
⊥ 0

csαpT nγλ∂
2
⊥ −γp∂

2
⊥ 0

0 0 −γη�μν∂
2
⊥ − (

γζ + 1
3γη

)
∂⊥μ∂⊥ν

⎤⎦,

K ≡

⎧⎪⎨⎪⎩
(1 + Ṫ )θ 0 T n

αm

(
αpaν + 1

w
∂⊥να

)
csαp(1 − ε̇m)T nθ

(
1 + c2

s + ċs
)
θ

[
2 − (αpT n)2

αm

]
csaν − csαpT 2n2

αmw
∂⊥να

αpT naμ
1+c2

s
cs

aμ + ∂⊥μcs −uμaν + ∂⊥νuμ + �μνθ

⎫⎪⎬⎪⎭, (2.32)

ξ ≡
(

− w

n
∂λĬλ, csαpT w∂λĬλ, �μκ∂λS̆λκ

)
.

Equation (2.31) for linearized fluctuations provides the foun-
dation for the fluctuation evolution equations for the two-point
correlation functions, derived in the next section.

III. FLUCTUATION KINETIC EQUATIONS

The physical effects of fluctuations on hydrodynamic flow
manifest themselves through two-point functions. This is be-
cause, by definition, the first-order fluctuations average to zero
[i.e., 〈φA(x)〉 = 0 via Eq. (2.15)] and the leading-order correc-
tions to 〈T̆ μν〉 and 〈J̆μ〉 come from the second-order terms in
the fluctuation expansion (i.e., the two-point functions) whose
time evolution equation we derive in this section. How these
two-point functions modify the hydrodynamic flow, in other
words the feedback of fluctuations on background flow, will
be discussed in Sec. IV.

Our strategy is to use equations of motion for linearized
fluctuations, Eq. (2.31), to derive an evolution equation for the
“equal-time” two-point correlation function of fluctuations,
〈φA(x+)φB(x−)〉, obtained by averaging over the statistical
ensemble generated by the stochastic noises. Before we do so,

we discuss some general features of the two-point correlator
of hydrodynamic variables

GAB(x, y) ≡ 〈φA(x+)φB(x−)〉, where x± = x ± y/2.

(3.1)
In a static homogeneous equilibrium state of the fluid, the
correlator is translationally invariant, i.e., depends only on the
separation y = x+ − x− and not on the midpoint position x =
(x+ + x−)/2. Furthermore, because equilibrium correlation
length is shorter than the coarse grained resolution of hydro-
dynamics, the equilibrium equal-time correlation function is
essentially a δ function of the separation vector y with the
magnitude determined by the the well-known functions of
average thermodynamic variables ε and n.

However, in a generic relativistic hydrodynamic flow sev-
eral new observations need to be made. First, the concept
of “equal time” is no longer obvious, as it depends on the
frame of reference. The most natural choice, the rest frame of
the fluid, is now locally different in different points. We will
discuss how to implement it in the next subsection, following
the formalism introduced in Ref. [12].
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Furthermore, not only the local thermodynamic conditions,
and thus equilibrium magnitude of fluctuations, slowly vary in
space-time, but also the fluctuations themselves are driven out
of equilibrium. Therefore, not only the fluctuation correlator
depends slowly on x, but it also acquires nontrivial y depen-
dence, beyond the equilibrium δ function. It is crucial that the
scale of that y dependence is short compared to the scale of
the dependence on x.

The estimate of the y-dependence scale can be made by
observing that the equilibration of fluctuations of hydrody-
namic variables is a diffusive process (since the variables obey
conservation equations). This means that the scale of equili-
bration5�∗ is the diffusion length during time interval charac-
teristic of the evolution. For the reciprocal quantities such as
fluctuation wave number q∗ ≡ 1/�∗ and the frequency csk of
the sound, one obtains γ q2

∗ ∼ csk and thus q∗ = √
csk/γ � k.

In other words, �∗ 
 L ≡ 1/k. This separation of scales of
y and x dependence of the correlation function, or between
characteristic wave numbers q of the fluctuations and k of
the background will be used to systematically organize our
calculations and results in the form of an expansion in k/q 

1 as well as k�mic 
 1. Note that, for the characteristic wave
numbers of the fluctuations and the background, the ratio
k/q ∼ (k�mic)1/2. In other words, this expansion is controlled
by a power of the same small parameter as the hydrodynamic
gradient expansion itself.

With this separation of scales in mind, it is convenient
to work with the Wigner transform of GAB(x, y), that is
essentially the Fourier transform with respect to (spatial com-
ponents of) y, which we shall label as WAB(x, q). Since q corre-
sponds to the wave vector of fluctuating modes that contribute
to GAB, it is similar in concept to the momentum of a particle
in quantum mechanics. In this quantum mechanical analogy,
the Wigner transform would be the (matrix valued) phase-
space distribution of the fluctuation modes or a density matrix
in phase space, (x, q), in an effective kinetic theory of fluc-
tuation quanta. The evolution equation of WAB(x, q), which is
derived in this section, closely resembles a Boltzmann-type
kinetic equation for the fluctuation degrees of freedom that
are, in the case of hydrodynamics, phonons. In our previous
work, Ref. [12], we derived and studied such an equation
for relativistic hydrodynamics without a conserved charge.
In this paper we present its generalization to the case with
a conserved U(1) charge, which contains additional nontrivial
features we will discuss in the subsequent Secs. IV and V.
Some of these features, such as the existence of the slow
scalar mode, play an important role in the critical dynamics
near the QCD critical point which we discuss in Sec. V.
The derivation in this section closely parallels the analysis
presented in Ref. [12]. For completeness of this paper we will
briefly summarize the key concepts and steps from Ref. [12]
here before presenting our final result at the end.

5Reference [12] uses notation �eq for this scale; �∗ ≡ �eq.

A. Confluent correlator and confluent derivative

The concepts of “equal-time” and “spatial” y coordinates
we invoke when defining GAB(x, y) and its Wigner trans-
formation in the above discussion become nontrivial in a
general background of relativistic flow. Both concepts require
choosing a frame of reference. The most natural choice—the
local rest frame of the fluid, characterized by the (average)
fluid velocity uμ(x)—varies point to point with x. The change
of the frame from point to point is responsible for changing
the values of various vector components of hydrodynamic
fluctuations φA, such as δuμ, entering in the definition of GAB

in Eq. (3.1). This variation is purely kinematic (Lorentz boost)
and has nothing to do with the local dynamics of fluctuations
that we are interested in. Our goal is to define a measure
of fluctuations and a measure of its changes with space and
time to be independent of such mundane kinematic effects.
We achieve this by introducing the notions of “confluent cor-
relator” and “confluent derivative” which we describe below,
summarizing Ref. [12].

The key to defining these new concepts is a parallel trans-
port, or, equivalently, a connection, that takes care of the
change of u(x) between two points, say, x and x + �x. We
introduce a boost �(�x) which maps u(x + �x) to u(x), i.e.,

�(�x)u(x + �x) = u(x). (3.2)

In principle, this boost is not unique. In our previous work,
Ref. [12], we propose to use the most natural choice, that is a
pure boost without a spatial rotation in the local rest frame of
u(x). Note that the boost in Eq. (3.2) is defined for arbitrary
�x. In practice, however, we only need its infinitesimal form:

�ν
μ(�x) = δν

μ − uμ�uν + �uμuν,

�uμ ≡ uμ(x + �x) − uμ(x) = �xα (∂αuμ). (3.3)

Next, we introduce the notion of “confluent correlator.”
This notion arises because a certain property of the “raw”
definition of the two-point correlator GAB prevents us from
cleanly separating x and y dependence and performing Wigner
transform. Specifically,

uA(x+)GAB(x, y) = GAB(x, y)uB(x−) = 0, (3.4)

where uA ≡ (0, 0, uμ). These constraints follow from the
orthogonality uμ(x±)δuμ(x±) = 0 and relate different vector
components of GAB(x, y) in a y-dependent way. We can deal
with this problem by using Eq. (3.2) to boost GAB(x, y) in
such a way that instead of being orthogonal to uA(x+) and
uB(x−), it is orthogonal to uA(x) and uB(x). Thus we define
the “confluent correlator” as

ḠAB(x, y) ≡ �C
A (y/2) �D

B (−y/2) GCD(x, y), (3.5)

where �C
A (�x) = � ν

μ (�x) when AC = μν, and an identity
transformation otherwise. It is straightforward to check that
the confluent correlator indeed satisfies

uA(x)ḠAB(x, y) = ḠAB(x, y)uB(x) = 0, (3.6)
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i.e., the constraints are now independent of y. This allows us
to meaningfully perform the Wigner transformation of this
object with respect to y coordinates without affecting the
constraint. Correspondingly, the confluent Wigner function,
defined as a Fourier transform on the locally spatial hyper-
surface u(x) · y = 0, is given by

WAB(x, q) ≡
∫

d4y δ(u(x) · y) e−iq·y ḠAB(x, y), (3.7)

and obeys

uA(x)WAB(x, q) = WAB(x, q)uB(x) = 0. (3.8)

Note that, although the wave vector q is a four-vector, WAB

depends only on its projection on the hyperplane defined by
u(x)q = 0. In order to eliminate the redundant component
along u(x) we can impose the constraint u(x)q = 0. Because
this constraint depends on u(x), a meaningful derivative of
WAB(x, q) with respect to x should be then defined with a
parallel transport of q by �(�x) from Eq. (3.2) to maintain the
constraint. We shall also use the same transport to eliminate
the purely kinematic effect of the boost on the vector compo-
nents of variables φA. This leads to the notion of “confluent
derivative,” ∇̄μWAB(x, q), which we define as

�xμ∇̄μWAB(x, q) ≡ �(�x)C
A�(�x)D

B

× WCD(x +�x,�(�x)−1q) −WAB(x, q).

(3.9)

It is straightforward to see that ∇̄μWAB(x, q) is equal
to the Wigner transformation of the confluent derivative
∇̄μḠAB(x, y) similarly defined by

�xμ∇̄μGAB(x, y) ≡ �(�x)C
A�(�x)D

B

× ḠCD(x + �x,�(�x)−1y) − ḠAB(x, y).
(3.10)

Although the above confluent derivative is well defined
conceptually, its practical evaluation requires us to introduce
a local basis in the spatial hypersurface of u(x)q = 0 at each
point x, the triad eμ

a (x) (a = 1, 2, 3) satisfying u(x)ea(x) = 0
and eaeb = δab. The choice of the triad field ea(x) is arbitrary
and different choices are related by local SO(3) rotations.
Using this basis, we can write q = ea(x)qa with an internal
three-vector q = {qa} ∈ R3 and consider W (x, q) as a function
of q:

W (x, q) ≡ W (x, q = ea(x)qa). (3.11)

Working out (3.9) explicitly, we obtain

∇̄μWAB(x, q) = ∂μWAB − ω̄C
μAWCB − ω̄C

μBWAC

+ ω̊b
μa qb

∂

∂qa
WAB, (3.12)

where the connection,

ω̄ν
λμ ≡ uμ∂λuν − uν∂λuμ, (3.13)

arises from the Lorentz boost acting on indices A and B,
whereas the internal SO(3) connection,

ω̊b
λa ≡ eb

μ∂λeμ
a , (3.14)

is due to the fact that �(�x)−1ea(x) is in general not equal
to ea(x + �x) but could be related by an additional SO(3)
rotation.6 Note that the partial derivative ∂μ in Eq. (3.12) is
taken at fixed q, not fixed q = ea(x)qa. From here on we will
use the notation WAB(x, q), with understanding that it is a
function of x and q given by Eq. (3.11).

B. Kinetic equation for the Wigner function WAB

Having introduced the necessary mathematical tools, we
now derive the evolution equation of WAB(x, q) by using,
as the starting point, the stochastic equation of motion for
linearized fluctuations, Eq. (2.31). The crux of this derivation
is expressing the equation for WAB in terms of the confluent
derivatives, which have a clear physical meaning as the
derivatives in the comoving frame. This leads to many
nontrivial cancellations.

We start with the evolution equation for the two-point func-
tion GAB(x, y) = 〈φA(x+)φB(x−)〉, with x± = x ± y/2, and
choose y to be spatial in the frame u(x). The time evolution
of GAB(x, y) is obtained by

u(x) · ∂GAB(x, y)

= 〈[u(x) · ∂φA(x+)]φB(x−)〉 + 〈φA(x+)[u(x) · ∂φB(x−)]〉

+ lim
δt→0

1

δt

∫ u·x++δt

u·x+
u · dx′

∫ u·x−+δt

u·x−
u · dx′′〈ξA(x′)ξB(x′′)〉,

(3.15)

where the derivative operator, ∂ , always acts on the first
argument of the function, such as x in G(x, y), or x± in
φ(x±). Derivative with respect to the second argument, if
there is any, will be labeled explicitly. Next, we convert the
time derivatives in the right-hand side of (3.15) into spatial
derivatives. In order to do so we have to expand u(x) =
u(x±) ∓ 1

2 y · ∂u(x) and use the evolution equation for the one
point function, Eq. (2.31). To perform the resulting averaging
in the right-hand side of Eq. (3.15) we need to know the
average of the two-point function of the noise, which can be
calculated using the definition in Eq. (2.32) and Eq. (2.11):

〈ξA(x′)ξB(x′′)〉 = 2QABδ(4)(x′ − x′′), (3.16)

6One can introduce Wab(x, q) by WAB = ea
Aeb

BWab, so that the conflu-
ent derivative of Wab involves only the SO(3) connection ω̊. In other
words, ω̄ reduces to a SO(3) connection when it acts on WAB. It is a
simple matter of choice to work with Wab(x, q) or with WAB.
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where

Q = T w

⎧⎨⎩ α−1
m γλ∂

2
⊥ (csαpT n)−1γp∂

2
⊥ 0

(csαpT n)−1γp∂
2
⊥ −γp∂

2
⊥ 0

0 0 −[γη�μν∂
2
⊥ + (

γζ + 1
3γη

)
∂⊥μ∂⊥ν

]
⎫⎬⎭. (3.17)

Proceeding from Eq. (3.15) along these steps we arrive at

u · ∂GAB(x, y) = −
[
L(y) +1

2
L+ D(y) + K+ Y

]
AC

GC
B(x, y) −

[
− L(y) + 1

2
L+ D(y) + K+ Y

]
BC

GC
A (x, y) + 2Q(y)

ABδ3(y⊥),

(3.18)

where the superscript (y) on an operator indicates that the derivatives within that operator act on y, the second argument of
GAB(x, y). For example,

L(y) ≡
⎡⎣0 0 0

0 0 cs(x)∂ (y)
⊥ν

0 cs(x)∂ (y)
⊥μ 0

⎤⎦. (3.19)

The matrix Y,

Y ≡
⎡⎣�λκ 0 0

0
(
1 − c2

s

)
�λκ csuν�λκ

0 csuμ�λκ �μν�λκ − c2
s �μλ�νκ

⎤⎦1

2
y · ∂uλ∂

(y)κ
⊥ + 1

2cs
y · ∂csL

(y), (3.20)

results from the y dependence in u(x±) and cs(x±). Note that in deriving Eq. (3.18), we neglected higher order terms in y, based
on the scale separation between background wave number k and fluctuation wave number q: (∂u)y ∼ (∂cs)y ∼ k/q 
 1.

Equation (3.18) for GAB can then be used to derive the evolution equation for the Wigner function WAB, while expressing all
derivatives in terms of the confluent derivatives. After some algebraic manipulations, we find the following result, as expressed
in matrix form:

u · ∇̄W (x, q) = −[iL(q),W ] −
[

1

2
L̄ + D(q) + K′,W

}
+ 2Q(q) + (∂⊥λuμ)qμ ∂W

∂qλ

+ 1

2

(
aλ + ∂⊥λcs

cs

){
L(q),

∂W

∂qλ

}
+ ∂

∂qλ

(
[Ωλ,W } − 1

4
[Hλ, [L(q),W ]]

)
, (3.21)

where [A, B] = AB − BA and {A, B} = AB + BA are the usual matrix (anti) commutators, while a new notation is introduced for
the “quasicommutator” which appears naturally in this context:

[A, B} ≡ AB + BA†. (3.22)

The matrices that appear in Eq. (3.21) read

L(q) ≡ cs

⎛⎝0 0 0
0 0 qν

0 qμ 0

⎞⎠, L̄ ≡ cs

⎛⎝0 0 0
0 0 ∇̄⊥ν

0 ∇̄⊥μ 0

⎞⎠,

D(q) ≡

⎡⎢⎣ γλq2 −(csT nαp)−1γpq2 0

−csT nαpγλq2 γpq2 0

0 0 γη�μνq2 + (
γζ + 1

3γη

)
qμqν

⎤⎥⎦,

Q(q) ≡ T w

⎧⎨⎩ −α−1
m γλq2 −(csαpT n)−1γpq2 0

−(csαpT n)−1γpq2 γpq2 0
0 0

[
γη�μνq2 + (

γζ + 1
3γη

)
qμqν

]
⎫⎬⎭, (3.23)

K′ ≡ K + �K, �K ≡ −θ

2
1 − 1

2

⎛⎝0 0 0
0 0 csaν + ∂⊥νcs

0 csaμ + ∂⊥μcs −2uμaν

⎞⎠,

Ωλ ≡ c2
s

⎛⎝0 0 0
0 ωκλqκ 0
0 0 ωμλqν

⎞⎠, Hλ ≡ cs

⎛⎝0 0 0
0 0 ∂νuλ

0 ∂μuλ 0

⎞⎠,
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where K is defined in Eq. (2.32) and ωμν is the fluid vorticity,

ωμν ≡ 1
2 (∂⊥μuν − ∂⊥νuμ). (3.24)

Equation (3.21) is linear in W . The inhomogeneous term
2Q(q) is the source for random noise, and the matrix D(q)

characterizes dissipation. In a static uniform background, the
balance between the two gives the equation for the equilib-
rium value for the Wigner function:

−[iL(q),W (0)] − [D(q),W (0)} + 2Q(q) = 0, (3.25)

which is a fluctuation-dissipation relation. This equation is
solved by

W (0) = T w

⎛⎝cpT /w 0 0
0 1 0
0 0 �μν

⎞⎠, (3.26)

where we used Eq. (2.27): α−1
m = −cpT/w. Equation (3.26),

taken together with Eq. (2.30), is in agreement with the
well-known thermodynamic expectation values: V 〈(δm)2〉 =
cp/n2, V 〈(δp)2〉 = c2

s T w, V 〈(δu)2〉 = T/w and 〈δmδp〉 =
〈δmδu〉 = 〈δpδu〉 = 0, where V is the volume of the system.
The matrices K′, Ωλ, and Hλ encode the effects of background
gradients, that drive the system out of equilibrium.

C. Averaging out fast modes

Some of the components of WAB(x, q) oscillate fast with a
characteristic frequency ω ∼ csq, due to the L(q) ∼ csq term in
the matrix kinetic equation (3.21). According to our hierarchy
of scales, the other terms in Eq. (3.21), are of order either
k or γ q2 which are smaller than this oscillation frequency,
csq. This separation of timescales leads to a new effective
description of the system where the fast components of WAB

are eliminated by time averaging and only slow modes remain.
The corresponding coarse-graining timescale bt satisfies

csk 
 b−1
t 
 csq. (3.27)

The slow components of WAB that survive time averaging
correspond to effective distribution functions in a Boltzmann-
like kinetic theory of fluctuations. Note that this is also similar
to how we diagonalize a quantum density matrix to identify
the particle distribution functions starting from quantum field
theory.

To identify the fast components, we express the kinetic
equation in the basis where L(q) is diagonal. L(q) has six
eigenvalues:

λ± = ±cs|q|, λm = λ(1) = λ(2) = λ‖ = 0, (3.28)

corresponding to six eigenvectors ψA where A =
m,+,−, (1), (2), ‖. We arrange the eigenvectors to form
an orthogonal transformation matrix

ψA
A =

⎡⎣1 0 0 0 0 0
0 1/

√
2 −1/

√
2 0 0 0

0 q̂/
√

2 q̂/
√

2 t (1) t (2) u

⎤⎦, (3.29)

where q̂ = q/|q| is the unit vector along q and t (1) and t (2) are
two transverse unit vectors that satisfy

t (i) · t ( j) = δi j, t (i) · q̂ = 0, t (i) · u(x) = 0. (3.30)
Note that the last eigenvector is a consequence of orthogo-
nality constraint and is not a physical fluctuation mode. The
choice of the dyad t (i)(x, q) is not unique, and is subject to
SO(2) rotations that are local in both x and q spaces. This
local freedom will bring about additional connections in the
confluent derivatives, after we project WAB onto the slow
components.

We go to the basis where L(q) is diagonal by the orthogonal
transformation M → ψT Mψ , on which WAB transforms to

WAB = ψA
AWABψB

B . (3.31)

The spurious components WA‖, W‖B, and W‖‖ vanish automat-
ically due to the constraint, Eq. (3.8), and we are left with
5 × 5 matrix WAB. In the basis, we have

[L(q),W ]AB = (λA − λB)WAB, (3.32)

which means that the modes with λA �= λB are the fast modes.
They average out on the coarse grained timescale bt and thus
can be neglected. The remaining modes are not all indepen-
dent. In particular,

W++(x, q) = W−−(x,−q) ≡ WL(x, q) (3.33)

is the longitudinal mode associated with sound fluctuations.
The remaining diffusive modes form a 3 × 3 matrix and obey
WAB(x, q) = WBA(x,−q), i.e., only six of these modes are
independent. These seven independent components, WL and
WAB [A, B = m, (1), (2)], constitute the degrees of freedom
in the new effective kinetic description of fluctuations. Note
that the 3 × 3 block of WAB ≡ Ŵ [A, B = m, (1), (2)] still
contains off-diagonal components, which reflects the fact that
the three modes of A = m, (1), (2) are degenerate and can mix
with each other.

The kinetic equation for the surviving slow components
follows straightforwardly from Eq. (3.21). The sound fluctua-
tion mode completely decouples from other components and
satisfies

(u + csq̂) · ∇̄WL = −γLq2(WL − T w) + [(csaμ + ∂⊥μcs)|q| + (∂⊥μuν )qν + 2c2
s qλωλμ]

∂WL

∂qμ

−
{(

1 + c2
s + ċs

)
θ + θμν q̂μq̂ν + 1 + [

2 − (αpT n)2

αm

]
c2

s

cs
q̂ · a − csαpT 2n2

αmw
q̂ · ∂α

}
WL, (3.34)

where the sound damping coefficient γL is given by

γL = γζ + 4
3γη + γp, (3.35)
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and γζ , γη, and γp are defined by Eq. (2.21). Here the confluent derivative of WL is defined as

∇̄μWL ≡ ∂μWL + ω̊a
μbqa

∂WL

∂qb
, (3.36)

consistent with the fact that WL behaves as a Lorentz scalar. Defining

NL ≡ WL

cs|q|w , (3.37)

such that its equilibrium value, N (0)
L = T/cs|q|, is equal to what one would expect for the distribution function of “phonons”

with the dispersion relation ω = cs|q|, Eq. (3.34) can be recast into the form that resembles a Boltzmann kinetic equation for
phonons,

LL[NL] ≡
{

(u + csq̂) · ∇̄ − [
(csaμ + ∂⊥μcs)|q| + (∂⊥μuν )qν + 2c2

s qλωλμ

] ∂

∂qμ

}
NL = −γLq2

(
NL − T

cs|q|
)

. (3.38)

Remarkably, the advection operator LL[NL] is precisely equal to the Liouville operator in the relativistic kinetic theory of
massless (quasi-) particles which can be identified as phonons propagating in a flowing fluid. Their dispersion relation can
be written as an on-shell condition gμν

eff (x)qμqν = 0 in terms of an effective space-time-dependent inverse metric gμν
eff (x) =

−uμuν + c2
s �

μν that gives the dispersion relation of sound waves ω = cs(x)|q| in the local rest frame of the fluid (see Sec. VI in
Ref. [12] for the derivation). It should be emphasized that the Liouville operator LL[NL] in Eq. (3.38) emerges after ∂⊥α terms
vanish due to rather nontrivial cancellations. Equally striking is the simplicity of the collision (relaxation) term in the right-hand
side of Eq. (3.38), emerging after cancellation of all the background gradient terms in Eq. (3.34).

The diffusive and transverse shear modes, contained in 3 × 3 matrix Ŵ , satisfy the matrix equation

u · ∇̄Ŵ = −{D̂,Ŵ − Ŵ (0)} + (∂⊥μuν )qν∇μ
(q)Ŵ − [K̂,Ŵ }, (3.39)

where

D̂ ≡
(

γλ 0
0 δi jγη

)
q2, Ŵ (0) ≡ T w

( cpT
w

0
0 δi j

)
,

K̂ ≡
{

1
2 (1 + 2Ṫ )θ T n

αm

[
αpa · t ( j) + 1

w
t ( j) · ∂⊥α

]
αpT na · t (i) 1

2θ δi j + t (i)
μ t ( j) · ∂uμ

}
, i = 1, 2. (3.40)

Here we introduced a covariant q derivative that takes into account the rotation of the basis t (i)(x, q) of the transverse modes in
q space:

∇μ
(q)Ŵ ≡ ∂Ŵ

∂qμ

+ [ω̂μ,Ŵ ], where ω̂i j
μ ≡ t (i)

ν

∂

∂qμ
t ( j)ν, ω̂mm

μ = ω̂mi
μ = ω̂im

μ = 0. (3.41)

The confluent derivative in Eq. (3.39) also includes additional SO(2) connection ̂̊ωi j
μ ≡ t (i)

ν ∂μt ( j)ν , associated with the x
dependence of the basis vectors t (i):

∇̄μŴ ≡ ∂μŴ + ω̊a
μb qa∇b

(q)Ŵ + [̂̊ωμ,Ŵ ]. (3.42)

Introducing the rescaled variables

Nmm ≡ Wmm

nT 2
, Nm(i) ≡ Wm(i)

nT
, N(i)( j) ≡ W(i)( j)

n
, (3.43)

and also a Liouville-like operator,

L[Ŵ ] ≡ [
u · ∇̄ − (∂⊥μuν )qν∇μ

(q)

]
Ŵ , (3.44)

we can simplify Eq. (3.39) substantially:

L[Nmm] = −2γλq2

(
Nmm − cp

n

)
− n

w
t (i) · ∂m[N(i)m + Nm(i)], (3.45a)

L[Nm(i)] = −(γη + γλ)q2Nm(i) − ∂νuμt (i)
μ t ( j)

ν Nm( j) − n

w
t ( j) · ∂mN( j)(i) + αpT 2n

w
t (i) · ∂ pNmm, (3.45b)

L[N(i)( j)] = −2γηq2

[
N(i)( j) − T w

n
δi j

]
− ∂νuμ

[
t (i)
μ t (k)

ν N(k)( j) + t ( j)
μ t (k)

ν N(i)(k)
]+ αpT 2n

w
∂μ p

[
t (i)
μ Nm( j) + t ( j)

μ N(i)m
]
, (3.45c)

where αp = (1 − Ṫ /c2
s )/T n, given by Eq. (2.27).
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The kinetic equations for fluctuations, Eqs. (3.34) and
(3.39), are the main results in this section. In the next section,
these equations will be used to isolate short-distance singular-
ities in the energy-momentum tensor and the charge current,
when we consider two-point correlator contributions to these
observables. This procedure can be done analytically, which
allows us to absorb the short distance singularities into the
renormalization of the equation of state and the first-order
transport coefficients. After the renormalization procedure is
carried out analytically, the resulting renormalized first-order
viscous hydrodynamics with fluctuations will have no short-
distance ambiguity (i.e., cutoff dependence). These equations
can be then applied to numerical studies of fluctuations in
hydrodynamically evolving systems, such as heavy-ion col-
lisions.

IV. FEEDBACK OF FLUCTUATIONS

Having studied the dynamics of the fluctuating modes
described by the two-point functions, WAB(x, q), in the pre-
vious sections, we now discuss how these fluctuations affect
background hydrodynamic flow. Hydrodynamics describes
the evolution of the average values, or one-point functions, of
hydrodynamic variables, such as ε, n, u, or more precisely, by
our choice, m, p, u. The equations governing this evolution are
obtained by averaging conservation equations (2.1). However,
the evolution of the one-point functions is affected by the
feedback from the higher-point functions. This is because

energy momentum-tensor and charge current are nonlinear
functions of the fluctuating variables, m̆, p̆, and ŭ, as follows
from the constitutive relations, Eq. (2.4), as well as the equa-
tion state. Therefore expanding the fluctuating variables in φA

inside 〈T μν〉 and 〈Jμ〉 to quadratic order, we get contributions
proportional to

〈φA(x)φB(x)〉 = GAB(x, y = 0)

=
∫

d3q

(2π )3
WAB(x, q)

≡ GAB(x). (4.1)

In this section we discuss two aspects of the fluctuation
feedback: (i) the renormalization of the variables, the equation
of state and the transport coefficients as well as (ii) the time
lagged hydrodynamic response, falling off as a power of
time, known as “long-time tails” or, equivalently, nonanalytic
frequency dependence of the response at low frequencies.

In order to calculate the contribution of the two-point func-
tions, we begin by expanding the energy-momentum tensor
and the charge current given in Eq. (2.3), up to second order
in φA. On averaging over the ensemble, the linear terms in
φA vanish by definition, 〈φA〉 = 0, and only the two-point
function contributions, expressed in terms of GAB(x), remain.
Expanding the (bare) equation of state up to second order in
fluctuations leads to

ε(m̆, p̆) = ε(m, p) + εmδm + εpδp + 1
2εmm(δm)2 + εmpδmδp + 1

2εpp(δp)2 + · · · ,

n(m̆, p̆) = n(m, p) + nmδm + npδp + 1
2 nmm(δm)2 + nmpδmδp + 1

2 npp(δp)2 + · · · , (4.2)

where the coefficients of linear terms were already defined in Eq. (2.16). The coefficients of bilinear terms are third-order
thermodynamic derivatives and are defined similarly [see Appendix A, Eqs. (A10)]. Similarly to expressions for second-order
thermodynamic derivatives in terms of three independent ones cs, cp, and Ṫ in Eq. (2.27), the third-order thermodynamic
derivatives can be also expressed in terms of two independent third-order derivatives ċp and ċs as7

εmm = − T n2

c2
s cp

[
1 − ċp + Ṫ − c2

s + 2cpT Ṫ

w

(
1 − Ṫ

c2
s

)]
, εpp = − 2ċs

c4
s w

,

nmm = − T n3

c2
s cpw

(
1 − ċp + Ṫ − 2cpT Ṫ

c2
s w

)
, npp = −

(
c2

s + 2ċs
)
n

c4
s w

2
. (4.3)

As a result, we obtain the following expansion for 〈T μν〉 and 〈Jμ〉:

〈T̆ μν (x)〉 = T μν (ε, n, u) + εmm

2T 2n2
uμuνGmm(x) + εppc2

s

2
uμuνGpp(x) + 1

w
Gμν (x)

+ εm

wT n
[Gmμ(x)uν + Gmν (x)uμ] + cs(1 + εp)

w
[Gpμ(x)uν + Gpν (x)uμ], (4.4a)

〈J̆μ(x)〉 = Jμ(ε, n, u) + nmmuμ

2T 2n2
Gmm(x) + c2

s nppuμ

2
Gpp(x) + nm

wT n
Gmμ(x) + csnp

w
Gpμ. (4.4b)

7Note that there are four independent third-order derivatives (four independent third-order derivatives of entropy), but only two are needed in
Eqs. (4.3). We do not need expressions for εmp and nmp because they will drop out on time averaging, as described below.
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The mixed term, Gmp(x) ∼ 〈δmδp〉, is dropped because it
is a rapidly oscillating component of G whose contribution
vanishes after time averaging, as explained in Sec. III C.
Furthermore, we neglect the fluctuations of the viscous part
�μν relying on the scale hierarchy γ q ∼ q/T 
 1. The two
point functions GAB(x) given by solutions of fluctuation ki-
netic equations are nontrivial functionals of the background
gradients and contain both local and nonlocal terms which are
associated with renormalization and long-time tails, respec-
tively.

A. Renormalization of variables and hydrodynamic coefficients

The locality of the noise in stochastic hydrodynamics is
manifested by the δ functions in Eqs. (2.11). In the coarse-
grained picture, this singularity is smeared out and the ampli-
tude of the noise is proportional to b−3/2 where b is the size
of the fluid cell. That means taking b → 0 requires infinitely
large noise. The fluid cell must be larger than the microscopic
correlation length, say T −1 or ξ whichever larger, for hydro-
dynamic description to be valid, but it is otherwise arbitrary.
And because it is arbitrary, the physical results obtained from
hydrodynamic equations cannot depend on the cutoff b.

Because of the infinite (δ function) noise, in our determin-
istic formalism, the singularities appear as infinite contribu-
tions to GAB(x), which arise as ultraviolet (UV) divergences
in the integrals over the fluctuation wave vector q in Eq. (4.1).
Introducing the UV cutoff � = 1/b, we expect that these
� dependent terms must be absorbed into the renormalized
variables, equation of state and transport coefficients in order
for the physics to be cutoff independent.

This renormalization procedure has been by now well
understood in both nonrelativistic hydrodynamics [16] and
relativistic hydrodynamics without conserved charge [12,14]
or in some special cases, such as, e.g., conformal fluids [15].
In this section, we complete this line of developments by
performing the renormalization of hydrodynamics of arbitrary
fluid with conserved charge in arbitrary backgrounds.

It must be kept in mind that, while � is a high-wave-
number cutoff from the perspective of the scale of fluctua-
tions, q, it is still small compared to the microscopic scales,
T or ξ−1. Therefore even the most dominant UV divergent
contribution to GAB/w ∝ �3T is still a small correction to the
average background variables that are of order T 4. However,
in practical numerical simulations, these corrections will in-
troduce a noticeable cutoff dependence, and the elimination of
the cutoff dependence via renormalization is not only a matter
of principle, but also an issue of practical importance.

Our starting point is to identify the physical, or “renor-
malized,” fluid velocity uR and the physical local energy and
charge densities (εR, nR) which are determined by Landau’s
matching condition

−〈T̆ μ
ν

〉
uν

R = εRuμ
R , (4.5a)

−〈J̆μ〉uRμ = nR. (4.5b)

in terms of the “bare” variables u, ε, and n. Although the
fluctuating fluid velocity is properly normalized (i.e., ŭ · ŭ =

−1), the average velocity, u ≡ 〈ŭ〉, is not since

u · u = −1 − 〈δu · δu〉 = −1 − 1

w2
Gμ

μ(x). (4.6)

We define uR such that it is normalized, u2
R = −1. Expanding

uR to first order in GAB, we obtain8

uμ
R ≡ uμ + εm

w2T n Gmμ(x) + cs (1+εp)
w2 Gpμ(x)√

1 + Gμ
μ(x)/w20

≈ uμ + εm

w2T n
Gmμ(x) + 1 + c2

s

csw2
Gpμ(x) − uμ

2w2
Gν

ν (x).

(4.7)

From Eqs. (4.5a) and (4.5b) we then find

εR = ε + δRε, nR = n + δRn, (4.8)

where the fluctuation corrections to local rest frame energy
and charge densities are given by

δRε = 1

w
Gμ

μ(x) + εmm

2T 2n2
Gmm(x) + c2

s εpp

2
Gpp(x), (4.9a)

δRn = n

2w2
Gμ

μ(x) + nmm

2T 2n2
Gmm(x) + c2

s npp

2
Gpp(x). (4.9b)

In terms of the εR, nR, and uR, we have now the following
expressions for 〈T̆ μν〉 and 〈J̆μ〉:

〈T̆ μν (x)〉 = εRuμ
R uν

R + p(ε, n)�μν + �μν + 1

w
Gμν (x),

(4.10a)

〈J̆μ(x)〉 = nRuμ
R + νμ − n

w2
Gmμ(x) − csn

w2
Gpμ(x). (4.10b)

The transformation to physical variables is not yet com-
plete in Eqs. (4.10a) and (4.10b)—the “bare” values ε and n
still appear in, e.g., p(ε, n), which will need to be expressed
in terms of physical εR and nR. We shall do this below.

After establishing the expressions for physical energy and
charge densities, our next goal is to determine the physical
values of pressure and transport coefficients. Their physical
values differ from their “bare values” that appear in the
constitutive relations Eqs. (2.4) and (2.9) due to fluctuations.
The fluctuations contain local terms that are zeroth order
(nonvanishing for homogeneous backgrounds) and first order
in gradients. We shall denote these as G(0)

AB(x) and G(1)
AB(x)

respectively. The former contributes to the physical value of
the pressure and the latter contributes to the physical values
of the transport coefficients. The remaining parts of GAB(x),
denoted by G̃(x)AB, are higher order in gradients (in fact, as
we shall see, they are nonlocal functionals of hydrodynamic
variables):

GAB(x) = G(0)
AB(x) + G(1)

AB(x) + G̃AB(x), (4.11)

8This expansion is based on the assumption that the two-point
function contributions are parametrically smaller than the corre-
sponding bare quantities, due to � 
 min(T, ξ−1), as will become
clear shortly. Because of this separation of scales, bare quantities that
multiply GAB can be simply replaced by their renormalized values.
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where the superscripts “(0)” and “(1)” denote the terms that are zeroth order and first order in gradient expansion.9 Similarly
since δRε and δRn in Eq. (4.9) are linear combinations of GAB(x), these quantities can be also expanded:

δRε = δ
(0)
R ε + δ

(1)
R ε + δ̃Rε, δRn = δ

(0)
R n + δ

(1)
R n + δ̃Rn, (4.12)

where expressions for δ
(0)
R (ε, n), δ

(1)
R (ε, n), and δ̃R(ε, n) are the same as δR(ε, n) in Eq. (4.9) with GAB replaced with G(0)

AB, G(1)
AB,

and G̃AB respectively.
By substituting this gradient expansion, Eqs. (4.11) and (4.12) into Eqs. (4.10a) and (4.10b) we can identify the

physical values of pressure and transport coefficients by collecting terms zeroth order in gradients into physical (renormalized)
pressure pR and terms first order in gradients into physical (renormalized) values of kinetic coefficients:

〈T̆ μν (x)〉 = εRuμ
R uν

R + pR�μν + �
μν
R + T̃ μν, (4.13a)

〈J̆μ(x)〉 = nRuμ
R + ν

μ
R + J̃μ. (4.13b)

where the zeroth-order terms in gradient expansion are given by

pR(εR, nR)�μν = p(ε, n)�μν + 1

w
Gμν (0)(x) =

[
p(εR, nR) −

(
∂ p

∂ε

)
n

δ
(0)
R ε −

(
∂ p

∂n

)
ε

δ
(0)
R n

]
�μν + 1

w
Gμν (0)(x), (4.14)

and the first-order terms are given by

�
μν
R = �μν −

[(
∂ p

∂ε

)
n

δ
(1)
R ε +

(
∂ p

∂n

)
ε

δ
(1)
R n

]
�μν + 1

w
Gμν (1)(x), (4.15a)

ν
μ
R = νμ − n

w2
Gmμ(1)(x) − csn

w2
Gpμ(1)(x). (4.15b)

The remaining, i.e., higher-order in gradients (and nonlocal), contributions to constitutive equations are given by

T̃ μν = −
[(

∂ p

∂ε

)
ñ

δRε +
(

∂ p

∂n

)
ε̃

δRn

]
�μν + 1

w
G̃μν (x)

= 1

2w

[
(1 − ċp)

w

cpT
G̃mm(x) + (

c2
s − Ṫ + 2ċs

)
G̃pp(x) − (

c2
s + Ṫ

)
G̃λ

λ(x)

]
�μν + 1

w
G̃μν (x), (4.16a)

J̃μ = − n

w2
G̃mμ(x) − csn

w2
G̃pμ(x). (4.16b)

Let us now work out the explicit expressions for the physical pressure and transport coefficients. According to Eq. (4.1), the
corresponding decomposition of Eq. (4.11) in phase space is given by

WAB(x, q) = W (0)
AB (x, q) + W (1)

AB (x, q) + W̃AB(x, q). (4.17)

The zeroth-order contribution G(0)
AB follows from the equilibrium solution to the fluctuation evolution equations given by

Eq. (3.26):

W (0)
AB (x, q) = diag(cpT 2, T w, T w�μν ). (4.18)

Since W (0) does not depend on q, the integration over q is divergent. We regularize this integral by the wave-number cutoff
q < �.

G(0)
AB(x) =

∫
d3q

(2π )3
W (0)(x, q) = �3

6π2
diag(cpT 2, T w, T w�μν ). (4.19)

Though the tensor part of the two-point function, G(0)μν (x) appearing in Eq. (4.14) is cutoff dependent, it is proportional to
�μν , and thus is absorbed into the definition of the physical (renormalized) pressure. Combining this contribution with the
contributions from the terms containing δ

(0)
R ε and δ

(0)
R n in Eq. (4.14) we find for the renormalized, i.e., physical, pressure:

pR(εR, nR) = p(εR, nR) + 1 − 3
(
1 − εm

2T n

)
c2

s

3w
G(0)μ

μ

+ c2
s w

2T 3n4
(nmεmm − εmnmm)G(0)

mm + c4
s w

2T n2
(nmεpp − εmnpp)G(0)

pp

9Note that G(0)
AB(x) still depends on x via terms such as w(x); however, it does not contain any gradient terms such as ∂μu or ∂μα and it does

not vanish in a homogeneous background. G(1)
AB(x) terms are explicitly linear in gradients and do vanish in a homogeneous background.
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= p(εR, nR) + 2 − 3
(
c2

s + Ṫ
)

6w
G(0)μ

μ + 1 − ċp

2cpT
G(0)

mm + c2
s − Ṫ + 2ċs

2w
G(0)

pp

= p(εR, nR) + T �3

6π2

[(
1 − c2

s − 2Ṫ + ċs
)+ 1

2
(1 − ċp)

]
. (4.20)

where we used

nmεmm − εmnmm = T 2n4

c2
s cpw

(1 − ċp), nmεpp − εmnpp = T n2

c4
s w

2

(
c2

s − Ṫ + 2ċs
)
, (4.21)

which can be derived by using Eq. (2.27) and (4.3). This procedure of defining the physical pressure that combines “bare”
pressure with the effects of equilibrium fluctuations is similar to the standard renormalization procedure in quantum field theory.
Having performed the renormalization of hydrodynamic variables and the equation of state, in what follows, for notational
simplicity, we will drop the subscript R on hydrodynamic variables εR, nR and uR and thermodynamic functions such as pR.

We now turn to the first-order terms in the gradient expansion given by Eq. (4.15). Since these terms are linear in gradients,
they must be combined with the “bare” transport terms into the physical transport terms. It may seem that this procedure, similar
to renormalization of pressure, is guaranteed to succeed. It indeed does, but this is not trivial because not all gradient (transport)
terms are allowed by second law of thermodynamics. The fact that only those that are allowed arise from fluctuation emerges
after delicate cancellations and is a nontrivial test of the conceptual validity of the framework we develop.

Let us begin with calculating W (1)
AB (x, q). This calculation essentially follows the same steps given in Ref. [12] but in this

case there is an additional mode associated with conserved charge. We begin with inserting the decomposition Eq. (4.17) into
our main kinetic equation given in Eqs. (3.38) and (3.39). This substitution leads to an equation for W (neq)

AB (x, q) which we then
expand to first order in gradients of the background flow. Because the kinetic equation already contains gradients of the leading
term W (0)

AB (x), we can use the ideal equations of motion to convert the time derivatives into spatial derivatives:

u · ∂ (T w) = −(1 + c2
s + Ṫ

)
T wθ, u · ∂ (cpT 2) = −cpT 2(ċp + 2Ṫ )θ,

∂⊥μ(T w) = −T w

[
1 + 2c2

s

c2
s

+
(

1 − Ṫ

c2
s

)2 cpT

w

]
aμ − T 2n

[
1 +

(
1 − Ṫ

c2
s

)
cpT

w

]
∂⊥μα. (4.22)

In deriving these, we use thermodynamic relations given in Appendix A. Keeping only the terms that are linear in background
gradients, the equations for W (1)

AB can be solved as

W (1)
L (x, q) = T w

γLq2

[
(Ṫ − ċs)θ − θμν q̂μq̂ν + csT n

w
q̂ · ∂α

]
,

W (1)
mm (x, q) = cpT 2

2γλq2
(ċp − 1)θ, W (1)

(i)m(x, q) = W (1)
m(i)(x, q) = cpT 3n/w

(γη + γλ)q2
t (i) · ∂α, (4.23)

W (1)
(i)( j)(x, q) = T w

2γηq2

[(
c2

s + Ṫ
)
θ δi j − 2θμνt (i)

μ t ( j)
ν

]
.

Note that these expressions are given in the (A, B) basis where L(q) is diagonal and we need to convert them back into the (A, B)
basis:

WAB = ψA
A WABψB

B =
⎛⎝Wmm Wmp Wmν

Wpm Wpp Wpν

Wμm Wμp Wμν

⎞⎠ =
⎡⎣ Wmm 0 Wm( j)t

( j)
ν

0 1
2 (W++ + W−−) 1

2 (W++ − W−−)q̂ν

W(i)mt (i)
μ

1
2 (W++ − W−−)q̂μ

1
2 (W+++W−−)q̂μq̂ν+W(i)( j)t (i)

μ t ( j)
ν

⎤⎦, (4.24)

which finally gives W (1)
AB (x, q) in components,

W (1)
mm (x, q) = cpT 2

2γλq2
(ċp − 1)θ, W (1)

pp (x, q) = T w

γLq2
[(Ṫ − ċs)θ − θμν q̂μq̂ν],

W (1)
mμ (x, q) = W (1)

μm (x, q) = cpT 3n/w

(γη + γλ)q2
t (i)
μ t (i) · ∂α, W (1)

pμ (x, q) = W (1)
μp (x, q) = csT 2n

γLq2
q̂μq̂ · ∂α, (4.25)

W (1)
μν (x, q) = T w

γLq2
[(Ṫ − ċs)θ − θλκ q̂λq̂κ ]q̂μq̂ν + T w

2γηq2

[(
c2

s + Ṫ
)
θ �̂μν − 2θλκ�̂λμ�̂κν

]
,
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where �̂μν = ∑2
i=1 t (i)

μ t (i)
ν = �μν − q̂μq̂ν . Then, the corresponding G(1)

AB(x) after q integration are given by

G(1)
mm(x) = cpT 2�

4π2γλ

(ċp − 1)θ, G(1)
pp (x) = − T w�

6π2γL
(1 − 3Ṫ + 3ċs)θ, (4.26a)

G(1)
mμ(x) = (cpT 3n/w)�

3π2(γη + γλ)
∂⊥μα, G(1)

pμ(x) = csT 2n�

6π2γL
∂⊥μα, (4.26b)

G(1)
μν (x) = − T w�

6π2γL

[(
1

5
− Ṫ + ċs

)
θ�μν + 2

5
θμν

]
− T w�

60π2γη

{[
2 − 10

(
c2

s + Ṫ
)]

θ�μν + 14θμν

}
. (4.26c)

Finally we substitute the above expressions for G(1) into
Eq. (4.15). The resulting contributions are linear in the gra-
dients and have the same form as “bare” viscous terms in
�μν and diffusion term in νμ. Therefore they can be absorbed
into the definitions of viscosities η, ζ and conductivity λ. Af-
ter straightforward computation, we obtain the renormalized
transport coefficients as

ηR = η + T �

30π2

(
1

γL
+ 7

2γη

)
, (4.27)

ζR = ζ + T �

18π2

{
1

γL
(1 − 3Ṫ + 3ċs)2

+ 2

γη

[
1 − 3

2

(
Ṫ + c2

s

)]2

+ 9

4γλ

(1 − ċp)2

}
, (4.28)

λR = λ + T 2n2�

3π2w2

[
cpT

(γη + γλ)w
+ c2

s

2γL

]
. (4.29)

A couple of comments are in order. First, all the gradients
appearing in the expansion of G(1) are matched by the gra-
dients appearing in the first-order terms in the constitutive
equations, �μν and νμ. For �μν , this is a simple consequence
of the fact that, by construction, �μν involves all gradients
allowed by Lorentz symmetry, so nothing else could have
appeared in Eqs. (4.26a) or (4.26c). However, this is less
trivial in the case of the corrections to νμ. This is because
there are two linearly independent gradient terms allowed by
Lorentz symmetry alone, e.g., ∂μα and ∂μ p, and, naively, any
their linear combination could have appeared in the expression
for G(1) in Eqs. (4.26b). However, precisely ∂μα appears
in Eqs. (4.26b), which allows us to absorb the fluctuation
contribution into λR. Any other linear combination would
require additional kinetic coefficient to absorb it. However,
the second law of thermodynamics only allows the gradient
∂μα to appear in νμ in order to guarantee the semipositivity of
entropy production rate. The way this constraint is respected
by fluctuation contributions appears to be highly nontrivial,
relying on delicate cancellations that result in rather elegant
thermodynamic identities given by Eq. (4.21). Of course, we
can view this as one of the many nontrivial checks of the con-
sistency of this approach and the validity of the calculations.

Second, in a similarly remarkable deference to the second
law of thermodynamics manifested in delicate cancellations,
the correction to the bulk viscosity given in Eq. (4.28) is non-
negative. Also, as expected, but similarly achieved through
nontrivial cancellations, the fluctuation corrections vanish in

the conformal limit, where c2
s = 1/3 and ε = 3p, when bulk

viscosity must vanish.

B. Long-time tails

After all constitutive equations are expressed in terms of
the physical, i.e., renormalized, variables, pressure and trans-
port coefficients, the remaining contributions, denoted by T̃ μν

are cutoff independent. This is very similar to renormalization
in quantum field theory, and it works for a similar reason—
the locality of the first-order hydrodynamics (similar to the
locality of quantum field theory Lagrangian). On a more
technical level, the gradient expansion in WAB is accompanied
by the expansion in 1/q2. This can be traced back to the
power-counting scheme in which k ∼ q2. The terms of order
k2 are accompanied by 1/q4 leading to convergent integrals in
G̃AB.

Thus, expressed in terms of physical quantities, the con-
stitutive equations (4.13) do not contain UV divergences
which could lead to cutoff dependence. Together with the
conservation equations

∂μ〈T̆ μν (x)〉 = 0, (4.30a)

∂μ〈J̆μ(x)〉 = 0, (4.30b)

and the fluctuation evolution equations (3.38) and (3.39), they
now form a closed set of cutoff-independent, deterministic
equations that describe the evolution of the background flow,
including the feedback of the fluctuating modes W̃ .

In principle this coupled system of equations can be solved
numerically and nonlocal effects of long-time tails in an
arbitrary background can be studied. We leave such a nu-
merical study for future work. Instead, for the remainder of
this section we will describe important analytical properties
of the long-time tails in simple backgrounds by solving the
fluctuation evolution equations (3.38).

A quick look at the evolution equations, (3.39) and (3.38)
leads to the following “impressionistic” expression for the
nonequilibrium part of the Wigner function:

W (neq) ≡ W − W (0) ∼ ∂ f

γ q2 + i(u + v) · k + ∂ f
, (4.31)

where v = ±csq̂ or 0 depending on which mode we are
considering and γ and ∂ f are schematic notations for the
relaxation rate coefficients and terms linear in background
gradients respectively. Note that k ∼ ∂ and uk = ω is the
frequency. After subtracting the term linear in the back-
ground gradients, which is absorbed into the definitions of
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renormalized transport coefficients, we obtain a schematic
expression for the finite part of the Wigner function:

W̃ ∼ ∂ f

γ q2 + i(u + v) · k + ∂ f
− ∂ f

γ q2

∼ (u + v) · k

γ q2 + i(u + v) · k + ∂ f

∂ f

γ q2
. (4.32)

This procedure could be viewed a a subtraction scheme
that regulates the phase-space integral of the fluctuation
modes where the local (and instantaneous) short distance
term is subtracted. The integration over q leads to G̃ ∼
k1/2∂ f /γ 3/2 ∼ k3/2 which is a nonlocal functional of the
gradients [16]. Notice that k3/2 in terms of gradient expansion
lies in between k (first order, viscous terms) and k2 (second-
order terms) After Fourier transformation these terms lead

to power-law corrections which correspond to the long-time
tails.

To be more quantitative, let us consider a special case
and focus on the nonanalytic ω dependence, by taking spatial
k to zero for simplicity. This means that we only keep the
k dependence for the background gradient term ∂ f that is
in the numerator of Eq. (4.31) which is consistent with the
order of gradient expansion that we are working with. In
other words we are looking at the frequency dependence of
the transport coefficients. From Eq. (4.32) we see that the
frequency dependence can be expressed as

W̃ (x, q) = W (1)(x, q )|γ q2→γ q2−iω − W (1)(x, q). (4.33)

The contribution of the two-point functions to the constitutive
relation for the charge current is given in Eq. (4.16b). We
can calculate the relevant W̃ (x, q) by using the substitution,
Eq. (4.33), in Eq. (4.25). By plugging the resulting expression
into Eq. (4.16b), we obtain

λ(ω)∂μ

⊥α ≡ λ∂
μ

⊥α + n

w2
G̃mμ(x) + csn

w2
G̃pμ(x)

= λ∂
μ

⊥α + iω
cpT 3n2

w3
∂ν
⊥α

∫
q

�μν − q̂μq̂ν

[(γη + γλ)q2 − iω](γη + γλ)q2
+ iω

c2
s T 2n2

w2
∂ν
⊥α

∫
q

q̂μq̂ν

(γLq2 − iω)γLq2
, (4.34)

from which we find the frequency-dependent conductivity, λ(ω), to be

λ(ω) = λ − ω1/2 T 2n2

w2

(1 − i)

6
√

2π

[
cpT

(γη + γλ)3/2w
+ c2

s

2γ
3/2
L

]
. (4.35)

Here λ denotes the renormalized value of the zero frequency conductivity. This result is consistent with the already known result
for the special case of a conformal, boost invariant plasma with conserved charge given in Eq. (50b) in Ref. [15].

The frequency-dependent viscosities can be computed in the same way. The fluctuation contributions to the viscous tensor is
as follows:

�μν (ω) ≡ −2η(ω)

(
θμν − 1

3
�μνθ

)
− ζ (ω)θ�μν

≡ �μν + 1

w
G̃μν (x) + 1

2w

[
(1 − ċp)w

cpT
G̃mm(x) + (

c2
s − Ṫ + 2ċs

)
G̃pp(x) − (

c2
s + Ṫ

)
G̃λ

λ(x)

]
�μν, (4.36)

where �μν stands for �μν (ω = 0). After substituting the ω dependence in Eq. (4.33) in Eq. (4.36) we obtain

�μν (ω) = �μν + iωT
∫

q

{
[(Ṫ − ċs)θ − θλκ q̂λq̂κ ]q̂μq̂ν

(γLq2 − iω)γLq2
+
(
c2

s + Ṫ
)
θ �̂μν − 2θλκ�̂

μ

λ �̂ν
κ

(2γηq2 − iω)2γηq2

}

+ iωT

2
�μν

∫
q

{
− (1 − ċp)2θ

(2γλq2 − iω)2γλq2
+
(
c2

s − Ṫ + 2ċs
)
[(Ṫ − ċs)θ − θμν q̂μq̂ν]

(γLq2 − iω)γLq2

− (
c2

s + Ṫ
)[ (Ṫ − ċs)θ − θλκ q̂λq̂κ

(γLq2 − iω)γLq2
+ 2

(
c2

s + Ṫ
)
θ − 2θλκ�̂λκ

(2γηq2 − iω)2γηq2

]}
(4.37)

from which find the frequency-dependent viscosities,

η(ω) = η − ω1/2T
(1 − i)

60
√

2π

[
1

γ
3/2
L

+ 7

(2γη )3/2

]
,

ζ (ω) = ζ − ω1/2T
(1 − i)

36
√

2π

{
1

γ
3/2
L

(1 − 3Ṫ + 3ċs)2 + 4

(2γη )3/2

[
1 − 3

2

(
Ṫ + c2

s

)]2

+ 9

2(2γλ)3/2
(1 − ċp)2

}
. (4.38)
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Here η and ζ denote the renormalized values of the zero
frequency viscosities.

V. FLUCTUATIONS NEAR THE CRITICAL POINT

In the preceding sections we saw that kinetic coefficients,
ζ , η, and λ receive contributions from fluctuations. These
contributions are dominated by the fluctuations at the cutoff
scale � and therefore depend on the cutoff.

In this section we consider the physics of fluctuations at
the critical point. The main feature of the critical point is
that the equilibrium correlation length of the fluctuations,
ξ , becomes infinite. To maintain the separation between the
hydrodynamic scales L ∼ k−1 and microscopic scales, such as
ξ , we must limit the domain of applicability of hydrodynamic
description to wave vectors k 
 ξ−1. However, as empha-
sized in Ref. [10], this does not mean that hydrodynamics
applies until k ∼ ξ−1. Instead, the hydrodynamic description
ceases to be applicable (breaks down) before k reaches that
limitation. This happens when the frequency of the fastest
hydrodynamic mode (the sound, with ω ∼ csk) reaches the
rate of the relaxation of the slowest nonhydrodynamic mode.
Near the critical point this rate vanishes much faster than ξ−1.

The slowest nonhydrodynamic variable at the critical point
is the fluctuation of the slowest hydrodynamic mode (diffusive
mode m), given by Nmm. The relaxation rate depends on
q and equals 2γλq2 for q 
 ξ−1. Because the contribution
of the fluctuations to pressure and kinetic coefficient is UV
divergent, it is dominated by the modes near the cutoff, which
in the case of the critical point is effectively � ∼ ξ−1. Thus
the characteristic rate of nonhydrodynamic relaxation, �ξ , is
of order γλξ

−2. Together with the fact that γλ vanishes as
a power of ξ , i.e., to a good approximation γλ ∼ ξ−1,10 we
find that the hydrodynamic description ceases to be applicable
already when the frequency reaches ω ∼ ξ−3. For the sound
modes this corresponds to k ∼ ξ−3, much earlier than ξ−1.

To extend hydrodynamics past k ∼ ξ−3 we need to include
the slowest nonhydrodynamic mode, which is the idea behind
Hydro+ [10]. In our notations this mode (or modes, labeled
by index q) is Nmm. In this section we intend to show that
in the regime k > ξ−3 our formalism reproduces Hydro+.
This is a nontrivial check because Hydro+ formalism was
derived in Ref. [10] using a completely different approach
by considering a generalized entropy which depends on the
nonhydrodynamic variables (2PI entropy).

The formalism of Hydro+, while extending ordinary hy-
drodynamics beyond the scales k ∼ ξ−3, in turn, also breaks

10This can be easily estimated from Eq. (4.29). The contribution
of fluctuations which dominates at the critical point is in the term
proportional to cp, i.e., λR ∼ �cp. Given that cp ∼ ξ 2 and � ∼ ξ−1,
we find λ ∼ ξ 1 and γλ ∼ λ/cp ∼ ξ−1. We neglected the critical
exponent ηx (cp ∼ ξ 2−ηx ) and the divergence of the shear viscosity
η ∼ ξ xη (an error of less than 10%). Taking those into account,
we would obtain the exact relation for the exponent xλ, defined by
λ ∼ ξ xλ : xλ = d − 2 − xη − ηx (cf. Ref. [20]). Since �ξ ∼ γλξ

−2, the
standard dynamical critical exponent z defined as �ξ ∼ ξ−z is related
to xλ as z = 4 − ηx − xλ.

down well before k reaches k ∼ ξ−1. The breakdown occurs
when the frequency reaches the relaxation rate �′

ξ of the next-
to-slowest nonhydrodynamic mode. This mode (or modes) are
the fluctuations of velocity transverse to the wave vector. This
relaxation rate is of order γηq2 at q 
 ξ−1. Again, the domi-
nant contribution comes from modes at q ∼ ξ−1 and, since γη

to a good approximation can be treated as finite at the critical
point [20], Hydro+ breaks down when frequency reaches
ω ∼ �′

ξ ∼ ξ−2, which for the sound modes corresponds to
k ∼ ξ−2. Near the critical point this scale is still much lower
than ξ−1.

In our formalism the next-to-slowest modes responsible for
the breakdown of Hydro+ are Nm(i) and N(i)( j) [normalized
Wigner functions obeying Eqs. (3.45b) and (3.45c)]. There-
fore, within our formalism we can extend Hydro+ beyond its
limit at k ∼ ξ−2. In Sec. V B we shall describe how to do that.
Prior to that, in Sec. V A, we shall verify that in the regime
where Hydro+ is applicable, it is in agreement with our more
general formalism.

A. Connection to Hydro+
The main ingredient of Hydro+ is the entropy density s(+)

of the system in partial equilibrium state where a nonhydrody-
namically slow variable ϕ, or more generally, a set of variables
ϕq indexed by a discrete or continuous index q is not equal to
the equilibrium value ϕ(0)

q (ε, n) for given ε and n. For brevity
of notations we shall denote such a set of variables by a bold
letter, similar to a vector with components ϕq:

ϕ ≡ {ϕq}. (5.1)

The equations of motion for ϕ describe relaxation to equilib-
rium [maximum of s(+)] accompanied, in general, by dilution
due to expansion:

(u · ∂ )ϕ = −Fϕ − Aϕθ. (5.2)

The second law of thermodynamics requires (Fϕ )q =∑
q′ γqq′πq′ with semi-positive-definite γ where πq is the

thermodynamic “force” defined, as usual, via

ds(+) = β(+)dε − α(+)dn − π · dϕ, (5.3)

where π · ϕ = ∑
q πqϕq. The coefficient Aϕ in Eq. (5.2) de-

scribes the response of the variable ϕ to the expansion or
compression of the fluid (since θ = ∂ · u is the expansion
rate).11

The hydrodynamic variables ε and u obey, as usual, equa-
tions of the energy-momentum conservation. The equation of
state enters into constitutive equations

T μν = εuμuν + p(+)�
μν + �μν (5.4)

11For comparison, we can also cast evolution of hydrodynamic
variables or, in general, any function of ε and n, in the form of
Eq. (5.2). In this case Fϕ = 0 and Aϕ = ϕϕ̇. For example, for charge
density n: An = n, since ṅ = 1, – the density changes proportionally
with inverse volume, while for the ratio m = s/n, Am = 0, since
ṁ = 0.
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via pressure p(+) which, as a function of ε, n, and ϕ, is given
by the Legendre transform of s(+):

β(+) p(+) = s(+) − β(+)ε + α(+)n + π · Aϕ. (5.5)

This relationship between pressure and entropy is dictated by
the second law of thermodynamics [10].

Near equilibrium, the deviation of the entropy s(+)(ε, n, ϕ)
from the equilibrium value s(ε, n) is quadratic in π, since en-
tropy is maximized in equilibrium. The deviation of pressure
p(+) from equilibrium p is linear in π ,

p(+) = p + pπ · π + O(π2). (5.6)

The coefficient pπ can be expressed (see Appendix B in
Ref. [10]) using Eqs. (5.3) and (5.5), in terms of the equi-
librium value of ϕ at given ε and n, which we denote by
ϕ(0)(ε, n), as

βpπ = −w

[
∂ϕ(0)

∂ε

]
n

− n

[
∂ϕ(0)

∂n

]
ε

+ Aϕ

= −s

[
∂ϕ(0)

∂s

]
m

+ Aϕ = −ϕ(0)[ϕ(0)]̇ + Aϕ. (5.7)

We wish to show that the constitutive equations in Hydro+
with generalized pressure p(+) are in agreement with the
equations we derived by expanding to quadratic order in
fluctuations, such as Eq. (4.13).

Application of the Hydro+ approach near the critical point
consists of considering the two-point correlation function of
the slowest mode (m ≡ s/n): ϕ ∼ 〈δmδm〉. Essentially, using
our notations

ϕq(x) = Nmm(x, q). (5.8)

Due to the reparametrization invariance of Hydro+ (see Ap-
pendix C in Ref. [10]), either choice, Nmm or Wmm, different
by a normalization factor in Eq. (3.43), will lead to the
same result. The choice of Nmm is convenient because in
this case the compression coefficient vanishes: Aϕ = 0 [see
Eq. (3.45a)].

In order to find nonequilibrium correction to Hydro+
pressure in Eq. (5.6) we need to use the expression for the
nonequilibrium contribution to entropy derived in Ref. [10]

s(neq) ≡ s(+) − s = 1

2

∫
q

[
log

Nmm

N (0)
mm

− Nmm

N (0)
mm

+ 1

]
(5.9)

to determine π :

πq ≡ −∂s(+)

∂ϕq
= 1

2

[
1

N (0)
mm

− 1

Nmm

]
= 1

2

(
N (0)

mm

)−2
N (neq)

mm + O(N (neq)
mm

)2
, (5.10)

where

N (neq)
mm ≡ Nmm − N (0)

mm. (5.11)

The equilibrium value N (0)
mm of Nmm also determines the

value of pπ via equation (5.7) with ϕ(0) replaced by N (0)
mm

and Aϕ = 0. Putting this together we find, to linear order

in N (neq)
mm ,

p(neq) ≡ p(+) − p = −T

2

∫
q

[
N (0)

mm

]−1
Ṅ (0)

mmN (neq)
mm

= nT

2cp
(1 − ċp)

∫
q

N (neq)
mm = 1 − ċp

2cpT
G(neq)

mm , (5.12)

where we used N (0)
mm = cp/n, which follows from Eq. (4.18)

and (3.43) [and can be seen in Eq. (3.45a)] together with the
property of the log-derivative, Eq. (2.25).

We should compare this to the nonequilibrium contribution
to pressure from Nmm (which is dominant near critical point
due to being proportional to cp) in Sec. IV:

p(neq) =
(

∂ p

∂ε

)
n

[
δRε − δ

(0)
R ε

]+
(

∂ p

∂n

)
ε

[
δRn − δ

(0)
R n

]
= 1 − ċp

2cpT
G(neq)

mm , (5.13)

which is similar to equilibrium contribution (renormaliza-
tion of static pressure) found in Eq. (4.20) with index “(0)”
replaced by “(neq).” One can see that Hydro+ reproduces
these nonequilibrium contributions exactly. We emphasize
that this is a very nontrivial cross-check, involving an elab-
orate thermodynamic identity for third derivatives of entropy
in Eq. (4.21). This is in contrast to Ref. [10], where Hydro+
formalism emerged via a very different route, starting from
the derivation of the nonequilibrium entropy functional s(+) in
Eq. (5.9).

B. Hydro++
Since, as we already discussed above, the fluctuation con-

tributions are dominated by the modes near the cutoff �, and
for critical fluctuations the role of this cutoff is played by ξ−1,
the contributions responsible for the breakdown of ordinary
hydrodynamics and of Hydro+ are dominated by fluctua-
tions at scale q ∼ ξ−1. These modes themselves cannot be
described by ordinary hydrodynamics. The dynamics of these
modes is essentially nonlinear and nonlocal (often referred to
as mode-coupling phenomenon). However, this dynamics is
universal in the sense of universality of dynamical critical phe-
nomena and is described by model H in the classification of
Ref. [20]. We shall, therefore, use the known results from this
universality class to describe the dynamics of these fluctuation
modes.

Near the critical point, where the correlation length ξ

greatly exceeds all other microscopic scales, the description
simplifies due to (static and dynamic) scaling. That means the
relaxation rates, even though no longer polynomial in q, as in
the hydrodynamic regime where gradient expansion applies,
depend on the q and ξ via functions of only the dimensionless
combination qξ (times a power of ξ ). Furthermore, these
functions (and the powers of ξ ) are universal, i.e., independent
of the microscopic composition or properties of the system
close to the critical point in a given universality class. The
universality class relevant for our discussion is that of model
H, defined in Ref. [20] as dynamic universality class of liquid-
gas phase transitions.

034901-18



FLUCTUATION DYNAMICS IN A RELATIVISTIC FLUID … PHYSICAL REVIEW C 102, 034901 (2020)

As we already said, the fluctuation kinetic equations, such
as (3.45), do not apply in the regime qξ ∼ 1 as they are.
However, a modification of these equations, to match the
known results from model H is possible and shall be described
below. We must emphasize, that unlike the formalism derived
in the preceding sections, which was exact to a certain order
in a systematic expansion, here our out goal is to provide
the formalism which reproduces the physics of critical point
fluctuations correctly, but not necessarily exactly. For once,
the exact description would at a minimum require exact solu-
tion to model H, which is not available. Our approximation is
essentially equivalent to a one-loop approximation introduced
by Kawasaki in Ref. [21], which is known to be in good
quantitative agreement with experimental data [20]. Similarly
to Hydro+ formalism, the purpose of the new extended for-
malism, which we shall refer to as Hydro++ in this paper, is
to provide a practical way of simulating the dynamics near the
critical point, e.g., in heavy-ion collisions.

There are two main modifications required. First, we need
to modify equation for Nmm to make sure that the equilibrium
correlation function has finite correlation length ξ , i.e.,
N (0)

mm(x, q) must depend on momentum q. We shall express
this as

N (0)
mm = cp(q)

n
, (5.14)

where we defined function cp(q) in such a way that cp(0) = cp

is the usual thermodynamic quantity (heat capacity at constant
pressure). In this work we shall adopt a simple approximation
for the momentum dependence:

cp → cp(q) = cp

1 + (qξ )2
. (5.15)

This is known as Ornstein-Zernike form and is consistent with
other approximations we are making.12 A more sophisticated
form and a better approximation to the exact correlation
function (which is not known exactly as of this writing13) can
be used if necessary, see Ref. [10].

The second essential modification is required to correctly
describe relaxation rate of the slowest nonhydrodynamic
mode, Nmm. The critical contribution, ∼ξ−1 dominates near
the critical point. It is given in terms of the Kawasaki function

K (x) = 3

4x2
[1 + x2 + (x3 − x−1) arctan x] = 1 + O(x2).

(5.16)

Keeping also noncritical contribution, we can write for the q-
dependent rate

�(q) ≡ 2γλ(q)q2 = 2

[
κ0

cp(q)
+ T

6πηξ
K (qξ )

]
q2. (5.17)

Note that at small q, i.e., qξ 
 1, the rate is given by twice the
diffusion rate γλq2, where γλ = κ/cp with κ being the zero-
frequency heat conductivity:

κ = κ0 + cpT

6πηξ
. (5.18)

It contains a noncritical contribution κ0, but is dominated,
near the critical point, by the critical contribution due to the
fluctuations. The latter increases with ξ as κ ∼ ξ (in Kawasaki
approximation).

With these two modifications, the equations for Hydro++
we propose read:

L[Nmm] = −2γλ(q)q2

[
Nmm − cp(q)

n

]
− n

w
t (i) · ∂m[N(i)m + Nm(i)], (5.19a)

L[Nm(i)] = −[γη + γλ(q)]q2Nm(i) − ∂νuμt (i)
μ t ( j)

ν Nm( j) − n

w
t ( j) · ∂mN( j)(i) + T n

[
1

cp(q)
t (i) · ∂m + T

w
t (i) · ∂α

]
Nmm, (5.19b)

L[N(i)( j)] = −2γηq2

[
N(i)( j) − T w

n
δi j

]
− ∂νuμ

[
t (i)
μ t (k)

ν N(k)( j) + t ( j)
μ t (k)

ν N(i)(k)
]+ αpT 2n

w
∂μ p

[
t (i)
μ Nm( j) + t ( j)

μ N(i)m
]
, (5.19c)

where, again, αp = (1 − Ṫ /c2
s )/T n. The function γλ(q) is

defined in Eq. (5.17). The presence of function cp(q), defined
in Eq. (5.15), in Eq. (5.19b) ensures important property of
Nm(i) in equilibrium—proportionality to ∂α, which follows
from the second law of thermodynamics as we already dis-
cussed in connection with Eq. (3.45b).14 Other terms may
also contain “formfactors,” i.e., functions of qξ , which could
be determined from a more detailed calculation of three-point
functions in model-H. We leave such and similar refinements
to future work. It is likely that given the general degree of

12Such as cp ∼ ξ 2 instead of cp ∼ ξ 2−ηx .
13It is the correlation function of the three-dimensional Ising model.
14Heuristically, one can obtain Eq. (5.19b) from Eq. (3.45b) by

preforming substitution of cp according to Eq. (5.15).

applicability of hydrodynamics in heavy-ion collisions these
will be beyond the experimentally relevant precision.

Equation (5.19a) describes relaxation of the slowest nonhy-
drodynamic mode, Nmm, to equilibrium given by Eq. (5.14).
It would be identical to the corresponding Hydro+ equation
in Ref. [10], but for the last term describing the coupling to
next-to-slowest mode, Nm(i). Because cp ∼ ξ 2 diverges at the
critical point, this term is indeed much smaller than the first
term sufficiently close to the critical point. However, if we
want to interpolate Hydro+ description close to the critical
point with dynamics of fluctuations away from the critical
point this term has to be kept.

C. Conductivity and its frequency dependence in Hydro++
Let us discuss physics described by Eqs. (5.19) which is

pertinent to the breakdown of Hydro+ and its crossover to
Hydro++.
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We can use Eqs. (5.19) to determine the critical contribu-
tion λξ to the conductivity λ and verify it diverges as ξ →
∞. Following the procedure of renormalization described in
Sec. IV we now find that W (1)

mμ , i.e., the part of Wmμ linear in
gradients, is given by Eq. (4.25) with a simple substitution
cp → cp(q). This, in turn, makes the integral of W (1)

mμ , G(1)
mμ(x),

finite. The cutoff is now essentially given by 1/ξ , instead
of �. This means that instead of Eq. (4.26) we find, using
cp(q) in Eq. (5.15), � → π/(2ξ ). Substituting this result into
equation (4.29) for the renormalized conductivity we find
a contribution to renormalized conductivity which diverges
with ξ :

λξ =
(

T n

w

)2 cpT

6πηξ
∼ ξ 1, (5.20)

a well-known result [20]. We used the fact that cp ∼ ξ 2. In
particular, since γλ ∼ λ/cp ∼ ξ−1 we neglected γλ compared
to γη ∼ ξ 0. Denoting the noncritical contribution to conduc-
tivity by λ0 we can write the total physical conductivity
as

λ = λ0 + λξ = λ0+
(

T n

w

)2 cpT

6πηξ
=
(

T n

w

)2(
κ0+ cpT

6πηξ

)
.

(5.21)

Note that the relaxation rate �(q) in Eq. (5.17) at q = 0
matches twice the relaxation rate of the diffusive mode, γλ =
κ/cpq2, as it should since this is the relaxation rate of the
corresponding two-point function.

In the Hydro+ formulation in Ref. [10] the value of con-
ductivity was given directly by Eq. (5.20). In our more general
approach, which we refer to as Hydro++, the divergent
value of the conductivity is generated “dynamically” via the
contribution of the fluctuation mode Wm(i) [via Gmμ(x)] to the
constitutive equation for the current in Eq. (4.10b). The value
of λ = λ0 in Eq. (2.9b) is finite as ξ → ∞. This is similar
to the way divergence of bulk viscosity with ξ → ∞ is gen-
erated in Hydro+ (and, by extension, also in Hydro++), see
Ref. [10]. Similarly to Hydro+, which describes frequency
dependence of bulk viscosity (and sound speed) Hydro++
describes the frequency dependence of the kinetic coefficient
λ. We shall consider it below.

Hydro++ allows us to see how Hydro+ breaks down
when k (or, more precisely, the sound frequency ω = k/cs

at this wave number) exceeds a value of order ξ−2. This
happens because the characteristic relaxation rate of the
mode W (1)

mi responsible for λξ contribution also vanishes as
ξ → ∞:

�′
ξ ≡ γηq2|qξ=1 ∼ ξ−2. (5.22)

This is next-to-slowest relaxation rate, after the characteristic
relaxation rate of Wmm, given by15,16

�ξ ≡ 2γλq2|qξ=1 ∼ ξ−3. (5.23)

15More precisely, �ξ ∼ ξ xλ−4+ηx = ξ−z and �′
ξ ∼ ξ xη−2 = ξ z+d−8

(see also footnote 10).
16Since the bulk viscosity is proportional to the longest microscopic

relaxation time, vanishing �ξ is responsible for the divergence of the

Hydro Hydro+ Hydro++

Log scale

FIG. 1. Frequency dependence of transport coefficients ζ (ω) and
λ(ω) in the vicinity of a critical point, where the divergence of ξ

leads to several distinct regimes characterized by frequency ω (or
corresponding wave number k = ω/cs). The crossover from ordinary
hydrodynamics (Hydro) to Hydro+ is marked by the fall-off of
ζ (ω) at ω ∼ �ξ ∼ ξ−3, while the Hydro+ itself breaks down at
ω ∼ �′

ξ ∼ ξ−2 as signaled by the fall-off of λ(ω), when the crossover
to Hydro++ regime occurs. Of course, in ordinary hydrodynamics
both transport coefficients are constants independent of frequency
(dashed line), while in Hydro+, which does describe the fall-off of
ζ (ω), the coefficient λ is still a constant. Hydro++ describes the
fall-off of both ζ (ω) and λ(ω).

As discussed in Ref. [10], when the evolution rate (or
sound frequency) ω exceeds �ξ the mode Wmm is no longer
able to relax to its equilibrium value which is responsible for
the divergence of the bulk viscosity. Therefore, the divergent
contribution to the bulk viscosity is “switched off” for ω >

�ξ . Similarly, when the evolution rate (or sound frequency) ω

exceeds �′
ξ , the next to slowest mode, Wmμ, is no longer able

to relax to its zero-frequency value given in Eq. (4.25). As a
result, the contribution of Wmμ to the current in Eq. (4.10b)
“switches off.” This behavior and corresponding scales are
illustrated in Fig. 1.

We can further quantify this description by considering the
dependence of W (1)

mμ on frequency following the same proce-
dure as in Sec. IV B. Combining the substitution in Eq. (4.33)
with the substitution (5.15) in Eqs. (4.16b) and (4.25) we
find for frequency-dependent leading critical contribution to
conductivity:

λξ (ω) = λξ (0)Fλ(ω/�′
ξ ), (5.24)

where

Fλ(y) = 2

π

∫ ∞

0

dxx2

(x2 − iy)(1 + x2)
= 1

1 + √
y/i

. (5.25)

the bulk viscosity ζ ∼ c2
s /�ξ ∼ ξ z−α/ν . In the Kawasaki approxima-

tion ζ ∼ ξ 3. Since ζ is the coefficient of the gradient expansion, the
expansion breaks down at kξ 3 ∼ 1, which is an alternative way to see
that ordinary hydrodynamic description breaks down at this scale.
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We do not need to regularize and subtract a divergence, as
we did in Sec. IV B, because the divergence is tamed by the
fall-off of cp(q) at large q.

At small ω 
 �′
ξ Eq. (5.24) reproduces the power-law

nonanalytic dependence characteristic of the long-time tails
in Eq. (4.35): λξ (ω) − λξ (0) ∼ λξ (0)ω1/2. Not surprisingly,
since, compared to Sec. IV B, we only changed the nature
of the cutoff �. At large ω we find λξ (ω) ∼ ω−1/2 with
no ξ dependence as expected from scaling behavior char-
acterizing this regime.17 The dependence of λξ on ω de-
scribed by Eqs. (5.24) and (5.25) corresponds to the physics
we anticipated—the large critical contribution “switches off”
when ω � �′

ξ .
It may also be helpful to note that while real part of

λξ (ω) corresponds to (frequency-dependent) conductivity, its
imaginary part (divided by ω) is the electric permittivity.

One can also understand frequency dependence as a time-
delayed medium response to gradient of density, i.e., ∂α. The
diffusive current induced by the gradient is given by

Jξ (t ) = λξ

∫ t

−∞
dt ′�′

ξ F̃λ(�′
ξ (t − t ′))∂α(t ′). (5.26)

The delay is given by the Fourier transform of Fλ(y):

F̃λ(ỹ) =
√

1

π ỹ
− eỹerfc(

√
ỹ). (5.27)

As a function of t − t ′ it has a characteristic width given
by 1/�′

ξ ∼ ξ 2 and becomes δ function in the limit ξ → 0
corresponding to instantaneous response. At large t − t ′ it
falls off as (t − t ′)−3/2 typical of the long-time hydrodynamic
tails.

The discussion of the frequency dependence of conduc-
tivity here carries many similarities to the discussion of the
bulk viscosity in Ref. [10]. For completeness, let us present
the calculation of the leading critical contribution to the bulk
viscosity in Hydro++, which, of course, gives the same result
as Hydro+. Near the critical point the leading contribution
of fluctuations to the bulk viscosity comes from G(1)

mm in
Eq. (5.13). In Hydro++ the corresponding W (1)

mm is given
in Eq. (4.23), with the substitution of cp with cp(q) as in
Eq. (5.15), as well as γλ with γλ(q) according to Eq. (5.17).
As a result we obtain for the leading critical contribution to
bulk viscosity:

ζξ (ω) = 3

π
η ξ̇ 2Fζ

(
ω

�ξ

)
, (5.28)

where we used ċp = 2ξ̇ (according to scaling cp ∼ ξ 2) and
�ξ = T/(3πηξ 3) [according to Eqs. (5.23) and (5.20)]. We

17As before (see footnote 10), the exact value of the scaling
exponent in λξ (ω) ∼ ω−1/2 differs slightly from the rational value
−1/2. The exact value in model H following from dynamic scaling
−xλ/(2 − xη ) = −(4 − η − z)/(d + 2 − z) is approximately −1/2
in the Kawasaki approximation we are using, which corresponds to
z ≈ 3 and ηx ≈ 0.

introduced

Fζ (y) =
∫ ∞

0

dxx2

[x2K (x) − iy](1 + x2)2
. (5.29)

This is a known result in Kawasaki approximation [10,21].18

At ω = 0 Eq. (5.28) gives ζξ (0) ∼ ξ 3 (according to the scaling
of ξ̇ ∼ ξ 3/2). This large critical contribution is “switched off”
via function Fζ when ω > �ξ .19

The resulting behavior is illustrated in Fig. 1 together with
the behavior of λ(ω).

VI. DISCUSSION, CONCLUSIONS, AND OUTLOOK

In this paper we continued the development of the deter-
ministic approach to fluctuation hydrodynamics for an arbi-
trary relativistic flow. We extended the method developed in
Ref. [12] to the case of a fluid carrying conserved charge. In
QCD the relevant charge is the baryon number. Our ultimate
goal is practical—a formalism which would allow to simulate
heavy-ion collisions with dynamical effects of fluctuations,
especially relevant for the QCD critical point search.

We emphasize that, despite its practical aim, this formalism
is based on a systematic and controllable expansion, similar to
the effective field theory formalism in quantum field theory.
The expansion parameter in hydrodynamics is the ratio of the
wave number k = 1/L associated with background flow and
density gradients to a microscopic scale which sets the scale of
hydrodynamic coefficients and which we denote 1/�mic. This
allows us to view hydrodynamics as an effective theory.

Instead of directly solving stochastic hydrodynamic equa-
tions, we convert them into a hierarchy of equations for
equal-time correlation functions, which we truncate at two-
point correlators. This truncation is controlled by the same
expansion parameter as the gradient expansion in hydrody-
namics. One can see how the relevant power counting emerges
by considering the effects of fluctuations on the constitutive
equations for stress tensor (or conserved current). In stochastic
hydrodynamics the noise is local, i.e., it is only correlated
inside a hydrodynamic cell, as reflected in the δ function value
of the two-point noise correlator in Eq. (2.11). This locality is
the source of short-distance singularities, similar to ultraviolet
singularities in quantum field theories. Hydrodynamics is
regulated by finiteness of the cell size, which we denote by
b � �mic, equivalent to wave-number cutoff � = 1/b. As a
function of this regulator, the square variance of the noise in
each cell is proportional to �3 – the regulated value of the δ

function. This is, of course, the source of the cutoff-dependent
contribution to renormalized pressure in Eq. (4.20) and, as
such, is not of physical relevance.

The physically consequential contribution comes from
the fluctuations whose relaxation time is comparable to the

18As we already discussed, Kawasaki approximation only gives a
good approximation to the correct scaling behavior. To match the
exact scaling behavior on would need a more elaborate choice of the
substitution in Eq. (5.15), see, e.g., Refs. [10,21,22].

19The large ω asymptotics ζξ (ω) ∼ ω−1 in Kawasaki approxima-
tion is close to the exact asymptotics ω−1+α/(zν ).
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evolution time of the background. Correspondingly, this scale,
characterized by wave number q∗, can be estimated by the
condition γ q2

∗ ∼ csk. The effect of these fluctuations is the de-
layed or nonlocal response to perturbations of the background
(such as long-time tails) and cannot be simply absorbed by
renormalization of the local hydrodynamic parameters such
as pressure or transport coefficients. Since q∗ 
 �, the noise
on these longer distance scales, �∗ = 1/q∗, averages out and
the magnitude of the fluctuations is effectively reduced by a
factor (b3/�3

∗)1/2 = (q∗/�)3/2—the inverse of the square root
of the number of uncorrelated cells in a region of linear size
�∗—the familiar random walk factor. Therefore the physically
relevant magnitude of the fluctuations, obtained by averaging
over scales �∗ is given by �3/2 × (q∗/�)3/2 ∼ q3/2

∗ ∼ k3/4.
It is cutoff independent, of course. Therefore, the two-point
correlator of these fluctuations contributes at order k3/2, sup-
pressed compared to first-order gradients, but more important
than second-order gradients. Similarly, the contribution of
n-point functions, due to higher-order nonlinearities in the
constitutive equations, would come at order k3n/4 One can see
that the hierarchy of higher-point contributions is controlled
by a power of k, or more precisely, a power of dimensionless
parameter k�mic = �mic/L 
 1.

The equations we derive form a closed set of deterministic
equations. The one-point functions (averaged values of hydro-
dynamic variables) obey conservation equations (4.30). The
constitutive equations (4.13) contain contributions T̃ μν and J̃μ

which are given in terms of the subtracted two-point functions
G̃ in Eqs. (4.16). The unsubtracted two-point functions G are
evaluated at coinciding points and therefore contain short-
range singularities. When unsubtracted G are expressed in
terms of the wave-number integrals of the Wigner functions
Eq. (4.1), these singularities appear as ultraviolet divergences
which need to be subtracted. The unsubtracted Wigner func-
tions are obtained by solving equations (3.38) and (3.45),
rescaling according to Eqs. (3.37) and (3.43) and substituting
into the matrix in Eq. (4.24). The subtraction of terms of
zero and first order in gradients, W (0) and W (1), given by
Eqs. (4.18) and (4.25) respectively, can be done analytically,
and either before or after solving equations (3.38) and (3.45),
depending on numerical efficiency. The resulting solutions to
one-point and two-point equations will describe evolution of
the average hydrodynamic variables, their fluctuations, as well
as the feedback of the fluctuations on the evolution of average
quantities.

As usual, numerical implementation of relativistic hy-
drodynamic equations is hindered by well-known causality
and stability issues which, in ordinary hydrodynamics with-
out fluctuations, can be addressed by adding nonhydrody-
namic degrees of freedom with relaxation dynamics, as re-
viewed in Ref. [3] (see also interesting recent developments
in Refs. [23–25]). In a nutshell, the approach amounts to
modification of the equations in the domain (characterized
by large gradients) where hydrodynamic description is not
applicable. As such these modifications are inconsequential
from the point of view of physics but make the equations
mathematically well posed and suitable for numerical imple-
mentation [26]. The hydrodynamic equations we obtained in

this work will require a similar treatment before they can
be implemented numerically. It is reasonable to expect that
the approaches which work for nonfluctuating hydrodynamics
will also work in this case. The additional equations for
the Wigner functions introduced in our formalism describe
relaxation (as opposed to relativistically problematic diffu-
sion) and, as such, should not lead to causality/stability
problems. Moreover, it is also reasonable to expect that the
relaxation dynamics of fluctuations could improve (if not
solve) the stability problems, similar to the way relaxational
dynamics of fluxes in Israel-Stewart approach achieve this.
We expect that these issues will be addressed by future
research.

With the equations we derived we can now also describe
the essential features of the hydrodynamic evolution near
the QCD critical point. The critical phenomena are origi-
nating from the divergence of the correlation length ξ . The
phenomenon of the most consequence for hydrodynamics is
the critical slowing down. Since it is caused by the fluc-
tuations of the slowest diffusive mode out of equilibrium,
our formalism is ideally suited to accommodate and de-
scribe this phenomenon. The formalism of Hydro+ intro-
duced earlier in Ref. [10] is based on the same observation
and adds the two-point correlation function of the diffusive
mode to hydrodynamics to describe critical slowing down.
The approach in the present paper is very different from
the derivation in Ref. [10], therefore, the exact agreement
between the results is a nontrivial check on the validity of both
derivations.

Since, our present approach is more general, we can now
connect Hydro+ description of critical fluctuations to descrip-
tion of ordinary fluctuations away from the critical point.
Because the validity of Hydro+ is limited by the relaxation
rate of the next-to-slowest mode, and this mode, absent in
Hydro+, is now a part of our description, we are able to extend
the validity of hydrodynamic description closer to the critical
point than Hydro+. We propose a set of equations, which we
call Hydro++ which could accomplish this. It should be kept
in mind that, unlike the systematic approach taken in the rest
of the paper, the Hydro++ equations (5.19) are an attempt to
interpolate between the description of fluctuations outside of
the critical regime and the known properties of the fluctuations
in the critical, scaling regime described by model H (in the
standard classification of Ref. [20]). While the hydrodynamic
description still works for the background gradients for which
k�mic ∼ kξ 
 1, it breaks down for critical fluctuations, for
which qξ ∼ 1. This means that the coefficients become non-
polynomial in q and that the theory becomes fully nonlinear
and the truncation to two-point functions is no longer, strictly
speaking, controllable. However, it is known from the studies
of model H that the results obtained in one-loop (Kawasaki)
approximation are in good quantitative agreement with exper-
iment [20]. Therefore we propose a set of equations (5.19)
which incorporate the model H physics at the corresponding
level of approximation. This approach is similar to the one
taken in the derivation of Hydro+ and extends the region of
applicability closer to the critical point. More precisely, while
Hydro+ breaks down at k ∼ ξ−2, the validity of Hydro++
extends to k ∼ ξ−1. The physical phenomenon which leads to
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breakdown of Hydro+ is the frequency dependence of (i.e.,
time-lag of) conductivity, which is described by the next-to-
slowest mode in Hydro++.

Once the fluctuation hydrodynamics in the deterministic
approach is implemented in a fully functional hydrodynamic
code,20 the extension to full Hydro++ approach should be
straightforward and will allow eventual comparison with
heavy-ion collision experiments not only near, but also away
from the critical point. However, additional developments
are needed to make this comparison more impactful. First,
it should be straightforward to generalize this approach to
multiple conserved charges. In the case of QCD, of course,
fluctuations of isospin are a primary candidate. We have not
included these fluctuations in our description because they
are not exhibiting singularities near the critical point, unlike
the baryon number fluctuations, which lead to signatures
of the QCD critical point [27]. Furthermore, the approach
must be extended to description of non-Gaussian fluctuations,
which are related to most sensitive signatures of the critical
point [28,29]. This means going beyond two-point correlators
considered in this paper. It would also be interesting and
important for comparison with experiment to consider the
extension of this approach to the fluctuations near the first-
order phase transition, which is, of course, an inseparable part
of the physics near a critical point. We defer these and other
pertinent developments to future work.
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APPENDIX A: USEFUL THERMODYNAMIC RELATIONS
AND DERIVATIVES

The thermodynamic derivatives appearing in Eq. (2.16)
and (2.17), i.e.,

dε = εmdm + εpd p,

dn = nmdm + npd p, (A1)

dα = αmdm + αpd p,

are defined in the standard notation

εm ≡
(

∂ε

∂m

)
p

, εp ≡
(

∂ε

∂ p

)
m

, nm ≡
(

∂n

∂m

)
p

,

np ≡
(

∂n

∂ p

)
m

, αm ≡
(

∂α

∂m

)
p

, αp ≡
(

∂α

∂ p

)
m

. (A2)

20A simplified example of such an implementation for Hydro+ is
presented in Ref. [11].

To obtain the relations of the second-order thermodynamic co-
efficients, Eq. (2.27), we begin with the thermodynamic rela-
tions coming from the first law of thermodynamics [Eq. (2.6)]:

dε = T ndm + w

n
dn,

d p = w

T
dT + T ndα, (A3)

d

(
w

n

)
= T dm + 1

n
d p,

from which we obtain(
∂ε

∂m

)
n

=
(

∂ p

∂α

)
T

= T n,

(
∂ε

∂n

)
m

= w

n
,(

∂n

∂m

)
ε

= −T n2

w
,

(
∂α

∂T

)
p

= − w

T 2n
, (A4)(

∂T

∂ p

)
m

= −nm

n2
.

Therefore

εm =
(

∂ε

∂m

)
n

+
(

∂ε

∂n

)
m

(
∂n

∂m

)
p

= T n

(
1 + nmw

T n2

)

= (T n)2

[(
∂α

∂ p

)
T

+
(

∂α

∂T

)
p

(
∂T

∂ p

)
m

]
= (T n)2αp.

(A5)

Noting that

Ṫ = n

T

(
∂T

∂n

)
m

= n

T

(
∂ε

∂n

)
m

(
∂T

∂ p

)
m

(
∂ p

∂ε

)
m

= −c2
s nmw

T n2
= c2

s

(
1 − εm

T n

)
= c2

s (1 − αpT n), (A6)

we obtain

εm = T n

(
1 − Ṫ

c2
s

)
, αp = 1

T n

(
1 − Ṫ

c2
s

)
, (A7)

demonstrating the first identity in Eq. (2.27). Likewise, the
remaining nontrivial identities in Eq. (2.27) are obtained by
using Eq. (A4) and turn out to be

nm =
(

∂n

∂m

)
ε

+
(

∂n

∂ε

)
m

(
∂ε

∂m

)
p

= n

w
(εm − T n) = T n2

w
(T nαp − 1) = − Ṫ T n2

c2
s w

,

np =
(

∂n

∂ε

)
m

(
∂ε

∂ p

)
m

= n

c2
s w

,

αm =
(

∂α

∂T

)
p

(
∂T

∂m

)
p

= − w

nT 2

(
∂T

∂m

)
p

= − w

cpT
. (A8)

Throughout the above derivation, we have used the definition

c2
s ≡

(
∂ p

∂ε

)
m

, cp ≡ T n

(
∂m

∂T

)
p

. (A9)
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TABLE I. The behavior of thermodynamic coefficients used in the paper in different limits. For nonrelativistic ideal gas γ = cp/cv > 1
denotes adiabatic constant and M the molecule mass.

Nonrelativistic Scaling
Thermodynamic Conformal ideal gas power of ξ at
quantities Definition fluid (T 
 M) critical point

c2
s (∂ p/∂ε)m 1/3 γ T/M −α/ν

cp T n(∂m/∂T )p cp γ n/(γ − 1) 2 − η

Ṫ (∂ log T /∂ log s)m 1/3 γ − 1 −α/ν

ċs (∂ log cs/∂ log s)m 0 (γ − 1)/2 (1 − α)/ν
ċp (∂ log cp/∂ log s)m 1 1 (1 − α)/ν

Similarly, the third-order derivatives appearing in Eq. (4.2)
are defined by

εmm ≡
(

∂2ε

∂m2

)
p

, εpp ≡
(

∂2ε

∂ p2

)
m

,

nmm ≡
(

∂2ε

∂m2

)
p

, npp ≡
(

∂2ε

∂ p2

)
m

. (A10)

Note that the mixed third-order derivatives are not pre-
sented here as they are not relevant in our calculation. The
results presented in Eq. (4.3) can be derived straightfor-
wardly from the known expression of second-order thermo-
dynamic derivatives given above. We leave this exercise to the
reader.

APPENDIX B: COMPARISON TO KNOWN RESULTS

Our new results can be compared to some existing results
in the literature for several special cases.

A charged fluid studied in Ref. [15] is (i) conformal and (ii)
undergoes a boost-invariant (Bjorken) expansion. Thermody-
namic functions of a conformal fluid satisfy Ṫ = c2

s = 1/3,
εm = αp = ċs = 0, ċp = 1 as summarized in Table I. The
boost-invariant flow implies that aμ = ωμν = 0 and spatial
gradients of background scalar fields vanish (e.g., ∂⊥μα = 0).
Under these conditions our results are significantly simplified.
Since in a boost-invariant Bjorken flow, the charge does not
diffuse due to the absence of background gradients forbid-
den by boost-invariance, in order to generate the dissipative
(ohmic) charge current, one needs to apply an external electric
field to the system. Adding such a source term is indispens-
able for obtaining such important results as renormalized or
frequency-dependent conductivity in Ref. [15]. We find that
except for a few minor typos, our Eqs. (4.27) and (4.29) for
renormalized transport coefficients, as well as Eq. (4.35) and
(4.38) for frequency-dependent transport coefficients, reduce
to Eq. (3.19) and (3.18) in Ref. [15], respectively. Notice that
ζ = 0 in conformal fluid.

Despite this agreement with Ref. [15], there are still some
mismatches. For example, our Eq. (2.31) would have matched
Eq. (3.30) in Ref. [15] in the absence of source term, if it
was not for the last term ∼1/τ in Eq. (64a), which should
be ∼(1 + c2

s )/τ according to our results.
To compare one of the key results of our paper,

Eqs. (3.45), to Ref. [15] we need to rescale our Wigner

functions, somewhat similarly to Eq. (3.43),

NB
mm ≡ Wmm

τ
, NB

(i)( j) ≡ W(i)( j)

τ
, (B1)

where τ is the Bjorken proper time coordinate, and express
the unit vectors in spherical coordinates

q̂ = (0, sin θ cos φ, sin θ sin φ, cos θ ),

t (1) = (0,− sin φ, cos φ, 0), (B2)

t (2) = (0, cos θ cos φ, cos θ sin φ,− sin θ ).

Then, our equations read

∂τ NB
mm = −2γλq2

(
NB

mm − cpT 2

τ

)
− 2 + 2Ṫ

τ
NB

mm,

∂τ NB
m(1) = −(γη + γλ)q2NB

m(1) − 2 + Ṫ

τ
NB

m(1),

∂τ NB
m(2) = −(γη + γλ)q2NB

m(2) − 2 + Ṫ + sin2 θ

τ
NB

m(2),

∂τ NB
(1)(1) = −2γηq2

[
NB

(1)(1) − T w

τ

]
− 2

τ
NB

(1)(1),

∂τ NB
(2)(2) = −2γηq2

[
NB

(2)(2) − T w

τ

]
− 2(1 + sin2 θ )

τ
NB

(2)(2).

(B3)

The equations for NB
(1)(1) and NB

(2)(2) match those in Ref. [15].
The remaining equations, although very similar, do not match
completely. We believe our results are correct but do not have
a definitive explanation for these disagreements.

Unlike the chargeless fluid in Ref. [12], the charged fluid
in the present paper can be taken to nonrelativistic limit,
where it can be compared with Refs. [16,30]. The most
glaring omission in Refs. [16,30] are the Gm(i) components
of the correlators. It appears they were omitted based on the
observation that their equilibrium values vanish. They do, but
they are not zero out of equilibrium and are essential, for
example, for describing the dominant critical contribution to
conductivity as discussed in Sec. V C.

To compare the equations for remaining components of
WAB, we need to rescale our variables as

NA
mm ≡ Wmm

n2T 2
, NA

(i)( j) ≡ W(i)( j)

wn
. (B4)

034901-24



FLUCTUATION DYNAMICS IN A RELATIVISTIC FLUID … PHYSICAL REVIEW C 102, 034901 (2020)

Omitting Wm(i) terms as in Refs. [16,30] we find

L[NA
mm

] = −2γλq2

(
NA

mm − cA
p

n

)
+ θNA

mm,

L[NA
(i)( j)

] = −2γηq2

[
NA

(i)( j) − T

n
δi j

]
+ (

1 + c2
s

)
θNA

(i)( j)

− (θμν − ωμν )
[
t (i)
μ t (k)

ν NA
(k)( j) + t ( j)

μ t (k)
ν NA

(i)(k)

]
,

(B5)

where the specific heat per mass is cA
p ≡ cp/n. This would

agree nicely with Ref. [30] in the nonrelativisitic limit (c2
s 


1) if we also follow Ref. [30] and impose NA
i j ∼ δi j which will

eliminate ωμν term. Similarly to the omission of Gm(i), the
assumption G(i)( j) ∼ δi j was apparently made by neglecting
off-equilibrium contribution to this correlator.

Our equation (3.38) for sound fluctuations completely
matches the Boltzmann equation given in Ref. [16] in the

nonrelativistic limit, where the γp = λc2
s α

2
pT w, appearing in

Eq. (3.35) is replaced by its nonrelativistic limit

γ NR
p = κ

(
1

cv

− 1

cp

)
. (B6)

Indeed, since in our units the speed of light is 1, for a
nonrelativistic fluid c2

s 
 1 (see also Table I),

(T n)2α2
p =

(
1 − Ṫ

c2
s

)2

≈ Ṫ 2

c4
s

= w

c2
s T

(
1

cv

− 1

cp

)
, (B7)

where in writing “≈” we used c2
s 
 Ṫ (see Table I) and

expressed Ṫ in terms of cv , cp, and cs:

Ṫ 2 = c2
s w

T

(
1

cv

− 1

cp

)
, cv ≡

(
∂ε

∂T

)
n

. (B8)
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