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In the context of the search for the QCD critical point using non-Gaussian fluctuations, we obtain the
evolution equations for non-Gaussian cumulants to the leading order of the systematic expansion in the
magnitude of thermal fluctuations. We develop a diagrammatic technique in which the leading order
contributions are given by tree diagrams. We introduce a Wigner transform for multipoint correlators and
derive the evolution equations for three- and four-point Wigner functions for the problem of nonlinear
stochastic diffusion with multiplicative noise.
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Introduction.—The recent resurgence of interest in the
classic subject of hydrodynamics in general [1] and hydro-
dynamic fluctuations [2] in particular has been largely
driven by the progress in heavy-ion collision experiments
that create and study droplets of hot and dense matter
governed by the physics of strong interactions described by
quantum chromodynamics (QCD). The importance of
fluctuations in heavy-ion collisions is due to the fact that
the QCD fireballs created in such experiments, with typical
particle multiplicities Oð102−4Þ, while being large enough
for hydrodynamics to apply, are not too large for fluctua-
tions to be negligible.
Such fluctuations are observable in heavy-ion collisions

via event-by-event measurements. Furthermore, fluctua-
tions are enhanced if the matter created in the collisions is
in a state close to a critical point and can serve as signatures
of the criticality [3–6] in the beam energy scan experiments
[7,8]. The magnitude of the signatures is determined by the
competition between the critical slowing down and the
finiteness of the expansion time [4,9–11].
This necessitates a quantitative description of the fluc-

tuation evolution within a hydrodynamic framework, and
there have been significant advances in that area recently
[12–25]. Most relevant for this work is the formalism
describing the evolution of correlation functions coupled to
the hydrodynamic background. While the approach was
considered long ago in a nonrelativistic context [26], the
relativistic formalism has been introduced recently in the
boost-invariant Bjorken flow characteristic of heavy-ion

collisions in Refs. [16,17], and in general background in
Refs. [20,21].
However, so far the formalism has been limited to two-

point correlation functions. The description of the higher-
point correlators quantifying the non-Gaussianity of the
fluctuations has been elusive until now. On the other hand,
the experimental search for the QCD critical point relies
heavily on such measures of non-Gaussianity [5–8]
(which, similar to fluctuation magnitudes, depend
on time evolution [10]). We tackle this crucial gap
between ability of the theory w.r.t. non-Gaussian fluctua-
tions and the demand of the experiment.
We obtain evolution equations for appropriate measures

of non-Gaussianity in the hydrodynamic regime, that is, the
regime where the ratio of correlation length to typical
fluctuation wavelength is small. Such a regime exists, even
near the critical point, provided the correlation length
remains much shorter than the size of the system, as is
the case in most physical systems, including heavy-ion
collisions.
General multivariable formalism.—To understand better

the issues of nonlinearity and multiplicative noise, which is
essential for non-Gaussian fluctuations, we begin with a
more general formalism for a discrete set of stochastic
variables v̆i, labeled by index i. The set of stochastic
Langevin equations reads

dv̆i
dt

¼ Fi½v̆� þHij½v̆�ηj; ð1Þ

where drift F and noise magnitude H are functions of v̆i,
summation over repeated indices is implied, and ηi is the
Gaussian white noise, i.e.,
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hηiðt1Þηjðt2Þi ¼ 2δijδðt1 − t2Þ: ð2Þ

Equation (1) suffers from a well-known ambiguity often
referred to as the problem of multiplicative noise: it needs
additional information to define the product of the stochas-
tic function H½v̆� and the noise η. From our point of view,
this is not really a problem but rather a shortcoming of the
notation used in Eq. (1), which does not reflect the
necessary information. The ambiguity is removed by
discretizing time in Eq. (1) and taking the limit Δt → 0.
The choice of the definition of the product of H and η is a
matter of convenience. We shall use the choice known as
Ito calculus, where H and η are evaluated at the same
moment. It is also well-known that the change of the
definition of stochastic calculus (e.g., Stratonovich instead
of Ito) is simply equivalent to a shift of the drift term
Fi [27].
Using Ito calculus, one can derive a Fokker-Plank

equation for the probability distribution of v̆:

∂tP ¼ ½−FiPþ ðQijPÞ;j�;i; ð3Þ

where Q≡HHT; ð…Þ;i ≡ ∂ð…Þ=∂vi, and ∂t ≡ ∂=∂t. The
Fokker-Plank equation is unambiguous as written, unlike
the Langevin equation [Eq. (1)].
Let us consider the equilibrium solution Peq to the

Fokker-Plank equation, i.e., ∂tPeq ¼ 0. While the diver-
gence of the probability flux on the rhs of Eq. (3) vanishes,
the flux itself does not have to and could be equal to the
divergence of an antisymmetric 2-form, which we write as

FiPeq − ðQijPeqÞ;j ¼ ðΩijPeqÞ;j; ð4Þ

where Ωij ¼ −Ωji. Thus, Fi can be expressed in terms of
the equilibrium distribution

Fi ¼ P−1
eq ½ðQþΩÞijPeq�;j ¼ MijS;j þMij;j; ð5Þ

where we introduced the Onsager matrix

M ≡Qþ Ω and also S≡ logPeq: ð6Þ

Rather than defining the stochastic process in terms of
the function Fi, which additionally needs specification of
the stochastic calculus rule, it makes more sense to use S
and M to define the process [28]. While S describes the
equilibrium distribution, and in a certain sense is analogous
to entropy, the matrix M describes the dynamics of the
stochastic process: the symmetric semipositive definite part
Q is responsible for relaxation and the antisymmetric
matrix Ω (symplectic form) for the Hamiltonian-like non-
dissipative motion. These physical properties of the process
are independent of the stochastic calculus prescription,
while their relationship to drift F depends on such a
prescription and is written in Eq. (5) for Ito calculus.

Perturbative expansion.—Using the Fokker-Plank equa-
tion [Eq. (3)], we can now write the evolution equation for
any function of variables v̆, including arbitrary products of
their fluctuations δvi ¼ v̆i − hv̆ii or n-point functions such
as Gi1…in ≡ hδvi1…δvini≡ Gn.
For example, if S is a bilinear function of vi and Mij are

constants, [i.e., when Eq. (1) describes a linear Ornstein-
Uhlenbeck process] the equations for Gn are linear and
involve only Gn and Gn−2, and therefore can be solved
iteratively. The equations for the cumulants,

Gc
i1…in

≡ ∂n loghexpðμiv̆iÞi
∂μi1…∂μin

����
μ¼0

; ð7Þ

are even simpler—they decouple from each other.
Equilibrium is achieved when all n > 2 cumulants vanish,
as expected for the Gaussian distribution Peq ¼ eS, while
Geq

2 ¼ −ðS00Þ−1 where ðS00Þij ≡ S;ij.
In general, S is not a bilinear and Mij are not constants,

and we have an infinite system of coupled equations for
cumulants. To organize this system into a hierarchy, we
develop a perturbation theory.
In many physical systems of interest, particularly in

hydrodynamics, the fluctuations around the equilibrium are
controllably small. In other words, the probability distri-
bution P is sharply peaked and can be treated as Gaussian
in the lowest order of an approximation.
To be systematic, we introduce an expansion parameter ε

to control the magnitude of the deviations from equilib-
rium. We assume

S00 ∼ ε−1 ð8Þ

and that this remains true for all higher-order derivatives of
S, ensuring that for small ε the probability distribution eS

approaches a narrow Gaussian with the characteristic
magnitude of fluctuations jδvj ∼ ffiffiffiffiffiffi

G2

p
∼

ffiffiffi
ε

p
.

Thus, G2n−1 ∼G2n ∼ εn. The odd-order moments G2n−1
are of the same order asG2n because hδvi ¼ 0. On the other
hand, the non-Gaussian cumulants are smaller for the same
order:

Gc
n ∼ εn−1: ð9Þ

This power counting is easily established by a diagram-
matic expansion of Eq. (7) using probability eS, with
ðS00Þ−1 ∼ ε playing the role of a propagator and each vertex
being of order ε−1.
Because, according to Eq. (9), cumulants of higher

orders are progressively suppressed, the hierarchy is now
parametrically controllable by ε. Truncating each equation
at the leading order, we find, for n ¼ 2, 3,

∂tGc
i1i2

¼ ½Mi1jðS;jkGc
ki2

þ δji2Þ�Pi1i2 ; ð10aÞ
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∂tGc
i1i2i3

¼
�
1

2
Mi1jðS;jkGc

ki2i3
þ S;jklGc

ki2
Gc

li3
Þ

þMi1j;mG
c
mi2

ðS;jkGc
ki3

þ δji3Þ
�
Pi1i2i3

; ð10bÞ

where ½…�Pi1…in denotes the sum over permutations of
indices. The corresponding equation for ∂tGc

i1i2i3i4
contains

nine terms (before index permutations), and it is easier to
express using diagrammatic representation in Figs. 1 and 2.
The symmetry factors, such as 1=2 in Eq. (10b), count the
number of permutations that do not produce different terms.
It is notable that the only diagrams appearing at the

leading order in ε are “trees.” The first term in each

equation is the same as in the linear problem, as it involves
only S00 and no derivatives of M. Other terms are due to
nonlinearities and/or multiplicative noise, which contribute
at the same order in ε. Higher-order terms contain loop
diagrams, which we shall not discuss in this Letter.
In most applications, the noise η is almost Gaussian,

being a cumulative result of many uncorrelated factors. In
our approach, one can treat noise non-Gaussianity system-
atically when H is a small parameter and the noise
cumulants obey the same hierarchy, as in Eq. (9). These
assumptions hold in hydrodynamics. The nth (n > 2) noise
cumulant contribution will enter at order Hn, while the
leading terms we keep in Eq. (10) are of order H2.
Equation (10) and its diagrammatic representation are

among the main results of this work. We shall apply this
approach to hydrodynamics, i.e., a system of stochastic
continuum fields, rather than discrete variables.
Stochastic nonlinear diffusion.—As the simplest exam-

ple of a stochastic hydrodynamic problem, we shall
consider the diffusion of conserved density (of, e.g.,
particle number or charge) in a slowly evolving (e.g.,
expanding and/or cooling) medium. This problem carries
the most important features we want to address in this
work, including multiplicative noise, without the compli-
cations of additional degrees of freedom and the
Hamiltonian (nondissipative) dynamics of ideal fluid
motion. We shall postpone the extension of these results
to full stochastic hydrodynamics to future work but will
discuss the implications of our findings below.
The diffusion equation is essentially a conservation

equation for fluctuating density n̆:

∂tn̆ ¼ −∇ · J̆; ð11aÞ

where the constitutive relation is

J̆ ¼ −λ̆∇ᾰþ
ffiffiffĭ
λ

p
η; ð11bÞ

with the stochastic noise η given by

hηiðt1; xÞηjðt2; yÞi ¼ 2δijδðt1 − t2Þδð3Þðx − yÞ: ð12Þ

λ̆ ¼ λðn̆Þ is conductivity and ᾰ ¼ αðn̆Þ is chemical potential
(in units of temperature).
To translate the generic multivariable stochastic system

into a stochastic hydrodynamic diffusion problem, we use
the following dictionary:

δij → δð3Þðx − yÞ≡ δxy; vi → nðxÞ≡ nx; ð13aÞ

S →
Z
x
ðsðnxÞ þ ᾱnxÞ; ð13bÞ

S;i → δS=δnx ¼ −½αðnxÞ − ᾱ�; ð13cÞ

FIG. 1. Diagrammatic notation used in Fig. 2 to represent the
evolution equations [Eq. (10)]. The subsets of diagrams denoted
by half-filled circles vanish in equilibrium.

FIG. 2. Diagrammatic representation of the evolution equations
[Eq. (10)] using notations described in Fig. 1.
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Mij → −∇xλðnxÞ∇xδxy; ð13dÞ

where α ¼ −∂s=∂n and ᾱ is a constant, understood as the
chemical potential (in units of temperature) of the particle
reservoir controlling the average particle density (similar to
a Lagrange multiplier). Since the indices i, j, etc. become
continuous coordinates x, y, etc., matricesM andH become
operators, which in Eq. (13) are expressed in terms of their
integral kernels. They are local, i.e., could be also written as
differential operators, i.e.,H ¼ ∇

ffiffiffi
λ

p
andM ¼ −∇λ∇. Note

that M ¼ HHT , i.e., Ω ¼ 0 for the diffusion problem.
As in Eq. (1), because the noise is multiplied by a

function of the stochastic variable n̆, the stochastic equation
[Eq. (11)] is not well-defined as written. As before, we can
define the problem by specifying the equilibrium distribu-
tion or, equivalently, the thermodynamic entropy S, as well
as the Onsager matrix or operatorM, given in Eq. (13) [29].
The role of expansion parameter allowing us to organize

and systematically truncate the infinite system of coupled
equations for correlation functions is played by a certain
ratio of scales. Hydrodynamics describes long wavelength
modes of the field nx, characterized by wave numbers
q ≪ ξ−1, where ξ is the microscopic correlation length. The
noise is local, i.e., correlated on the scale ξ, and thus its
effect on the long wavelength modes involves averaging
over a large number OðqξÞ−3 of uncorrelated cells, sup-
pressing fluctuations (see, e.g., Refs. [20,21]). The small
parameter ðqξÞ3 plays a role similar to parameter ε in
Eq. (9). The smallness ofH, suppressing the contribution of

noise non-Gaussianity, is due to the gradient in conserva-
tion equation [Eq. (11a)] and is also controlled by qξ. Near
the critical point, ξ becomes large, but as long as ξ is much
smaller than the system size, hydrodynamic fluctuation
theory applies.
Applying the dictionary in Eq. (13), we can derive

evolution equations for the n-point correlators

Gnðx1;…; xnÞ≡ hδnðx1Þ…δnðxnÞi: ð14Þ

The equations for Gn can then be converted into corre-
sponding equations for multipoint Wigner functions after
we introduce and define these objects.
Multipoint Wigner transform.—In hydrodynamics we

consider fluctuations on a smoothly varying background
(see, e.g., Refs. [16,20,21]). As a result, two separate scales
characterize fluctuation correlators Gn. A shorter scale,
corresponding to wave number q, characterizes the depend-
ence on the separation between points, while the depend-
ence on the midpoint position occurs at a much
longer scale.
The well-known method to take advantage of such a

scale separation in a two-point function is to work with the
Wigner transform (as in the derivation of kinetic theory). In
order to do this for n-point functions, we need to generalize
the Wigner transform, thus far only known for two-point
functions.
We propose to define the symmetric generalization of the

Wigner transform and its inverse as follows:

Wnðx; q1;…; qnÞ≡
Z

d3y1…
Z

d3ynGnðxþ y1;…; xþ ynÞδð3Þ
�
y1 þ…þ yn

n

�
e−iðq1·y1þ…þqn·ynÞ; ð15aÞ

Gnðx1;…; xnÞ ¼
Z

d3q1
ð2πÞ3…

Z
d3qn
ð2πÞ3 Wnðx; q1;…; qnÞð2πÞ3δð3Þðq1 þ…þ qnÞeiðq1·x1þ…þqn·xnÞ: ð15bÞ

Note that, because of the δ function in Eq. (15a), the
Wigner function Wn is invariant under the shift of all
momenta qi by the same vector. Effectively, there are only
n − 1 nonredundant wave vector arguments in Wn (i.e., the
total number of nonredundant arguments is the same as for
Gn itself). Therefore, it is not surprising that, in Eq. (15b), to
obtain Gn we only need to evaluate Wn for a set of qi ’s that
sum to zero. The same is true for all expressions that follow.
As an example, consider the case n ¼ 2. Then q1 ¼

−q2 ≡ q and

W2ðx; q1; q2Þ ¼ W2ðx; q;−qÞ≡W2ðx; qÞ

≡
Z

d3yG2ðxþ y=2; x − y=2Þe−iq·y: ð16Þ

This is the usual Wigner transform. Because one of the qi’s
is always redundant, we shall adopt a simplified notation
forWn by dropping the redundant argument, as in Eq. (16).
Since, in this work, we consider Wigner functions sym-
metric w.r.t. their arguments, it does not matter which
argument is dropped. Also note that the Wigner transform
of a generalized n-point δ function is unity for all n.
The Wigner transform of the partial derivative of Gn is

given by

∇iGn⟶
W:T:

�
iqi þ

1

n
∇x

�
Wn: ð17Þ

In hydrodynamics, the gradient term is subleading to the
term proportional to qi. As a result, partial derivatives in the

PHYSICAL REVIEW LETTERS 127, 072301 (2021)

072301-4



equations for Gn turn into factors of q and partial differ-
ential equations become ordinary differential equations. To
simplify notations, below we shall omit the spatial x and the
time t arguments for the Wigner functions.

Applying the generalized Wigner transform to the
evolution equations for Gn we arrive at the following
evolution equations for n ¼ 2, 3, 4:

∂tW2ðq1Þ ¼ −½γq21W2ðq2Þ þ λq1 · q2�Pq1q2 ; ð18aÞ

∂tW3ðq1; q2Þ ¼ −
�
1

2
γq21W3ðq2; q3Þ þ

1

2
γ0q21W2ðq2ÞW2ðq3Þ þ λ0q1 · q2W2ðq3Þ

�
Pq1q2q3

; ð18bÞ

∂tWc
4ðq1; q2; q3Þ ¼ −

�
1

6
γq21W

c
4ðq2; q3; q4Þ þ

1

2
γ0q21W2ðq2ÞW3ðq3; q4Þ

þ 1

6
γ00q21W2ðq2ÞW2ðq3ÞW2ðq4Þ þ

1

2
λ0q1 · q2W3ðq3; q4Þ þ

1

2
λ00q1 · q2W2ðq3ÞW2ðq4Þ

�
Pq1q2q3q4

; ð18cÞ

where γ ¼ λα0. Equation (18) is the main result of this
work.
It is easy to map Eq. (18) to diagrams in Figs. 1 and 2 by

using the dictionary in Eq. (13) and noting that S;ij → −α0,
S;ijk → −α00, Mij → −λq1 · q2, Mij;k → −λ0q1 · q2, etc.
Equation (18) describes the relaxation of the Wigner
functions to their equilibrium values which, as one can
check, agree with thermodynamics. Consistent with the
underlying conservation laws, the longer wavelength
modes relax more slowly [31] at a rate proportional to
the square of their wave number.
Equation (18) bears a certain similarity to equations in

Ref. [10] for cumulants in a uniform finite size system [with
1=q in Eq. (18) and the system size in Ref. [10] playing
similar roles]. However, the terms with derivatives of λ,
related to multiplicative noise, are absent in Ref. [10],
where λ is a constant. These terms are not negligible in
general and, in particular, near the liquid-gas-type critical
point where λ is divergent [32].
We considered the problem of the diffusion of a con-

served quantity and left the generalization to full stochastic
hydrodynamics, including pressure and flow, to future
work. However, we can anticipate some features of this
full system based on what we have already learned from the
diffusion problem.
If we focus on the fluctuations of the slowest hydro-

dynamic mode, that is, entropy per charge, m≡ s=n, at
constant pressure, we should find a similar diffusion
equation with the substitution

n → m; γ →
κ

cp
; α0 →

n2

cp
; ð19Þ

where κ is thermal conductivity and cp is heat capacity at
constant pressure.

The equation for a two-point function hδmδmi was
derived by two different methods in Refs. [15,21]. As
expected, in the regime we consider, qξ ≪ 1, it coincides
with our Eq. (18a) upon substitution [Eq. (19)]. One can
argue that this should hold true for higher-point correlators
as well. It would be interesting and important for appli-
cations to heavy-ion collisions to combine the approach to
non-Gaussianity presented here with the relativistic treat-
ment of fluctuations in Ref. [21]. One can anticipate that, in
addition to Eq. (19), the time derivatives will be replaced by
corresponding Liouville operators. Additional correlators
will appear but, near the critical point, the slowest
and thus most out-of-equilibrium fluctuations will be
described by cumulants of m. The validity of this argument
should be checked by direct derivation, which we defer to
future work.
Conclusions.—We found a systematically controllable

hierarchy of equations describing the evolution of higher-
order, non-Gaussian cumulants of fluctuations in a general
multivariable stochastic system and introduced a conven-
ient diagrammatic representation.
We used this approach to tackle the problem of stochastic

nonlinear diffusion with density-dependent conductivity,
which involves multiplicative noise. We introduced a
generalization of a Wigner transform to multipoint corre-
lation function [Eq. (15)] that allows us to take advantage of
the separation of scales in hydrodynamics and obtain
evolution equations [Eq. (18)]. The equations for the full
system of hydrodynamic variables can be derived along the
same lines, and we defer this to future work.
It would also be interesting to extend the evolution

equations [Eqs. (10) and (18)] beyond the leading order to
loop diagrams and study the effects of ultraviolet renorm-
alization and long-time tails, as in, e.g., Ref. [21], now
involving multipoint correlations and multiplicative noise.
The formalism and the results we present are very

general and would pertain to problems where nonlinearity
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and non-Gaussian fluctuations are of interest—from cos-
mology and astrophysics [33–35] to the physics of elec-
tronic devices [36–38], glassy, granular, or colloidal
materials [39], and even finance [40], to name only a
few examples. Among the most immediate and practical
applications is the description of the evolution of the non-
Gaussian measures of fluctuations in heavy-ion collisions,
which is crucial for the ongoing QCD critical point search.
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