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The quadrupole collectivity of low-lying states and the anomalous behavior of the 0+
2 and 2+

3 levels in 
72Ge are investigated via projectile multi-step Coulomb excitation with GRETINA and CHICO-2. A total 
of forty six E2 and M1 matrix elements connecting fourteen low-lying levels were determined using 
the least-squares search code, gosia. Evidence for triaxiality and shape coexistence, based on the 
model-independent shape invariants deduced from the Kumar–Cline sum rule, is presented. These are 
interpreted using a simple two-state mixing model as well as multi-state mixing calculations carried out 
within the framework of the triaxial rotor model. The results represent a significant milestone towards 
the understanding of the unusual structure of this nucleus.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The structure of low-lying states in even–even Ge isotopes has 
been the subject of intense scrutiny for many years due to the 
inherent challenge of interpreting their systematics as a function 
of mass A. These nuclei possess at least one excited 0+ state in 
their low-energy spectrum that differs from the ground state in 
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its properties. Systematically, the energy of the 0+
2 level varies 

parabolically with A and reaches a minimum in 72Ge, where it 
becomes the first excited state. The existence of even-mass nuclei 
with a Jπ = 0+ first excited state is an uncommon phenomenon 
which, to date, has been observed in only a few nuclei located 
near or at closed shells: 16O [1], 40Ca [2,3], 68Ni [4,5], 90Zr [6], 
180,182Hg [7–9], 184,186,188,190,192,194Pb [10–15]. There are also ex-
amples of such nuclei where a subshell appears to play a role 
similar to a closed shell such as 96,98Zr [16,17]. These cases have 
all been explained as resulting from shape coexistence due to the 
presence of intruder configurations; i.e., configurations involving 
the excitation of at least one pair of nucleons across a shell or 
subshell energy gap [18].

The structure of 72Ge is highly unusual in that this nucleus is 
far from closed shells and, yet, possesses a 0+ first excited state. It 
shares this distinction with only two other known nuclei: 72Kr [19]
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. (Color online.) Doppler-corrected γ -ray spectrum obtained in kinematic coin-
cidence with 72Ge ions. Note that the 1114-keV transition belongs to 72Ge, but has 
not been placed and, thus, was not included in the analysis. The insert illustrates 
the performance of the CHICO2 array in discriminating between the projectile and 
target nuclei.

and 98Mo [20]. It should be noted that while 68Ni might be dou-
bly magic [4,21] with a presumed subshell closure at N = 40 [22], 
there is no evidence to date of spherical ground-state configura-
tions in any of the other N = 40 isotones [23]. There are, however, 
strong experimental indications of enhanced collective behavior in 
or near the ground states of the N = 40 neutron-rich Fe and Cr 
isotones [24]. In the Ge isotopes, the absence of a subshell closure 
at N = 40 can be inferred from the fact that the 2+

1 level with 
the highest energy appears in 70Ge rather than 72Ge. Thus, under-
standing the nature and origin of this anomalous 0+

2 state in 72Ge 
has been a major challenge for collective model descriptions.

The theory of collectivity in nuclei is predominantly focused 
on models with quadrupole degrees of freedom. The simplest of 
these models, based on the quantization of a liquid drop [25,
26], describes quadrupole collectivity as either due to harmonic 
quadrupole vibrations of a spherical shape or to rotations and 
vibrations of a deformed quadrupole shape: a prolate or oblate 
spheroid or an axially asymmetric ellipsoid. None of these vari-
ants of nuclear collectivity possesses 0+ first excited states. More 
sophisticated models abound, for example models based on bo-
son degrees of freedom [27], and most notably the interacting 
boson model [28], but to produce a first excited 0+ state usually 
requires extreme parameter choices fitted to the nucleus under in-
vestigation. Other models with quadrupole collectivity introduce 
“pair-excitations” in an ad hoc way. These approaches are moti-
vated by the shape coexistence phenomena observed at and near 
closed shells. These models contain parameters that are fitted to 
the properties of low-lying excited 0+ states, most notably to a 
large pair excitation energy parameter which is overcome by en-
hanced quadrupole correlations. The latter lower the energy of the 
pair configuration, even to the extent that the intruder configu-
ration becomes the ground state [29–32]. It should be noted that 
microscopic collective models are now beginning to provide first 
insights into such structures [33].

In this letter, a detailed study of quadrupole collectivity in 72Ge 
by multi-step Coulomb excitation is reported. This nucleus has 
been studied by Coulomb excitation in the earlier work of Kotliński 
et al. [34]. The extended set of E2 matrix elements obtained in 
the present study now permits a model-independent view of the 
shapes exhibited by 72Ge up to moderate spin (8h̄). This, to the 
best of our knowledge, is the most extensive set of shape invari-
ants achieved for any nucleus with a first-excited 0+ state. The 
deformation and asymmetry of the ground-state band are found to 
Fig. 2. (Color online.) A partial level scheme showing all the relevant levels (black +
red) identified in the present Coulomb excitation measurement. Transitions in black 
(6 in total) are those observed in the most recent measurement [34]; all others 
have been seen here for the first time in Coulomb excitation, but had been seen 
and established in other types of measurements [37].

be remarkably constant. The shape invariants from the yrast and 
non-yrast states support an interpretation based on shape coex-
istence, with the ground-state configuration exhibiting a triaxial 
deformation of γ ∼ 30◦ . These results are compared with a recent 
version of the triaxial rotor model. It is worth noting that the nu-
cleus 72Ge and its neighbors have also been the focus of detailed 
and varied spectroscopic investigations using multi-nucleon trans-
fer reactions: these are summarized with an attempt at a simple 
pairing occupancy picture in Ref. [18], but this picture has not been 
connected to the quadrupole collective properties of the nuclei in-
volved.

Multi-step Coulomb excitation of the 72Ge nucleus was car-
ried out by bombarding a 0.5 mg/cm2-thick 208Pb target, sand-
wiched between a 6 μg/cm2 Al front layer and a 40 μg/cm2

C backing, with a 301-MeV 72Ge beam delivered by the ATLAS 
facility at Argonne National Laboratory. The γ rays emitted in 
the deexcitation were detected with the γ -ray tracking array, 
GRETINA [35]. At the time of the experiment, this array consisted 
of 28 highly-segmented coaxial high-purity germanium (HPGe) 
crystals grouped into 7 modules. The scattered projectile and re-
coiling target nuclei were detected in kinematic coincidence with 
the γ rays by CHICO2, an array of 20 position-sensitive parallel-
plate avalanche counters arranged symmetrically around the beam 
axis [36]. CHICO2 covers 68% of the solid angle around the target 
and provides a position resolution (FWHM) better than 1.6◦ in θ
(polar angle) and 2.5◦ in φ (azimuthal angle) relative to the beam 
axis. In addition, it achieves a time resolution of 1.2 ns (FWHM), 
sufficient for a measurement of the time-of-flight difference, �Ttof , 
between the reaction products as a function of the scattering an-
gle, θ . This enables an event-by-event reconstruction of the re-
action kinematics and a precise Doppler-shift correction of the γ
rays. Fig. 1 provides the resultant γ -ray spectrum measured in co-
incidence with the scattered 72Ge projectiles. The insert depicts a 
two-dimensional histogram of �T tof vs. θ demonstrating the clear 
separation (with a mass resolution of �m/m ≈ 5%) between the 
reaction participants. A partial scheme, incorporating all the rel-
evant levels populated in the present measurement, is provided 
in Fig. 2, where the black-colored transitions are those observed 
in the prior Coulomb-excitation measurement [34]. The resolving 
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Table 1
Reduced E2 matrix elements for transitions of 72Ge, deduced from the present 
work, in comparison with previous measurements.

Iπi → Iπf 〈Ii | |M(E2)| ∣∣I f
〉
(eb)

This work Ref. [34] Refs. [40,41]

0+
1 → 2+

1 0.457(4) 0.46(1) 0.457(7)

2+
1 → 4+

1 0.90(2) 0.89(4) 0.76(4)

4+
1 → 6+

1 1.11+0.04
−0.05 1.2(3)

6+
1 → 8+

1 1.1+0.2
−1.6

2+
1 → 2+

1 −0.16+0.07
−0.02 −0.16+0.10

−0.07 −0.17(8)

4+
1 → 4+

1 −0.14+0.09
−0.04 −0.01(1)

6+
1 → 6+

1 −0.20+0.08
−0.25 −0.1(5)

2+
1 → 0+

2 0.35+0.01
−0.02 0.36(4)

∣∣0.45(2)
∣∣

4+
1 → 2+

2 −0.06+0.03
−0.04 −0.08(5)

6+
1 → 4+

2 0.28+0.10
−0.05 <

∣∣0.4
∣∣

2+
2 → 3+

1 1.19(2)

2+
2 → 4+

2 0.58+0.05
−0.01 0.41+0.06

−0.02

4+
2 → 6+

2 0.74(2)

2+
2 → 2+

2 0.179+0.03
−0.06 0.30(10)

3+
1 → 3+

1

∣∣0.001 ± 0.521
∣∣

4+
2 → 4+

2 −0.29+0.04
−0.20 <

∣∣0.4
∣∣

0+
1 → 2+

2 0.030(1) 0.034(5)
∣∣0.031(7)

∣∣

0+
2 → 2+

2 0.0144(6)
∣∣0.019(5)

∣∣ 0.016(3)

2+
1 → 2+

2 0.65+0.01
−0.02 0.78(2) |0.75(8)|

2+
1 → 4+

2 0.035(6)
∣∣0.024(5)

∣∣

4+
1 → 4+

2 0.43(10) 0.60(10)

4+
1 → 6+

2 0.178+0.020
−0.007

6+
1 → 6+

2 0.18+0.25
−0.08

6+
1 → 8+

2 0.23+0.05
−0.10

0+
1 → 2+

3 0.044(1) ≤∣∣0.022
∣∣

0+
2 → 2+

3 0.279+0.002
−0.004 ≤∣∣0.13

∣∣

2+
1 → 2+

3 0.243+0.002
−0.004 ≤∣∣0.12

∣∣

2+
2 → 2+

3 0.49+0.02
−0.01 ≤∣∣0.32

∣∣

2+
3 → 2+

3 −0.02+0.03
−0.14

power and efficiency of the present experiment is illustrated by 
the many additional transitions given in red.

The Coulomb-excitation analysis was performed using the 
coupled-channel least-squares search code, gosia [38,39], which 
constructs a standard χ2 function based on comparisons between 
the measured γ -ray yields and theoretical ones calculated from 
an initial set of transition and static matrix elements. Since the 
Coulomb cross sections depend on the relative phases as well as 
on the sign and magnitude of the Eλ matrix elements (ME), a ran-
dom set of the MEs used as starting values in the χ2 search were 
chosen to sample all possible signs of the interference term. Fur-
thermore, all intra-band transitions within the ground-state and 
quasi-γ bands as well as the 2+

3 → 0+
2 transition were assigned 

positive MEs. The signs of all other MEs for the inter-band tran-
sitions were determined relative to these, and varied during the 
fitting process to avoid being trapped in local χ2 minima. It should 
be noted that the signs of these MEs; i.e., intra- and inter-band 
transition matrix elements are not experimental observables. In 
contrast, the signs of the static or diagonal matrix elements deter-
mine whether the deformation is prolate (negative ME for K = 0) 
or oblate (positive ME for K = 0).

In order to enhance the sensitivity to the MEs and to exploit 
the dependence of the excitation probability on the particle scat-
tering angle, the data were partitioned into seven angular sub-
sets: 31◦–40◦ , 41◦–50◦ , 51◦–60◦ , 61◦–70◦ , 71◦–85◦ , 96◦–130◦ , and 
131◦–165◦ . This resulted in a total of about 70 data points for 
Fig. 3. (Color online.)
〈
Q 2

〉
(top) and 〈cos 3δ〉 quantities (bottom) obtained from the 

invariant sum rule analysis described in the text. Limits for the various shapes are 
indicated by the dashed lines.

the χ2 analysis. In addition, known spectroscopic data such as 
lifetimes, branching and E2/M1 mixing ratios were included as 
constraints of the relevant parameters during the fitting process. 
The final MEs and their associated errors are displayed in Table 1. 
For the purpose of this discussion, only the relevant E2 MEs are 
tabulated, while the E3 ME for the 3−

1 state is given here; i.e., 
〈Ii | |M(E3)| ∣∣I f

〉 = 0.199(4) eb3/2. The quoted errors for all MEs 
were derived in the standard way by constructing a probability 
distribution in the space of fitted parameters and requesting the 
total probability to be equal to the chosen confidence limit (in this 
case 68.3%). These errors include the statistical and systematic con-
tributions as well as those arising from cross-correlation effects.

The quadrupole collectivity of the low-lying states in 72Ge 
and the associated shapes can be analyzed quantitatively using 
the model-independent invariant sum rules of Kumar [42] and 
Cline [43], which construct the deformation parameters [

〈
Q 2

〉
, 

〈cos 3δ〉] from a complete set of E2 MEs determined via Coulomb 
excitation. The quadrupole invariants, 

〈
Q 2

〉
and 〈cos 3δ〉, describe 

the nuclear charge distribution via rotationally-invariant scalar 
products of the quadrupole operators which relate the reduced E2
MEs to the quadrupole deformation parameters [43]. In this for-
malism, the parameters, Q and δ, have correspondence to the col-
lective model variables, β and γ , defining the overall quadrupole 
deformation and axial asymmetry, respectively. The experimentally 
determined expectation values of the sum of products of E2 MEs, 〈
Q 2

〉
, and the axial asymmetry quantity, 〈cos 3δ〉, for the relevant 

states within the ground-state (gsb) and the quasi-γ bands are 
presented in Fig. 3. The almost constant and nonzero value of 

〈
Q 2

〉

[Fig. 3(a)] indicates that 72Ge is deformed in its ground-state band. 
In addition, the behavior of the asymmetry parameter [Fig. 3(c)] is 
consistent with a triaxially-deformed shape for this band. Figs. 3(b) 
and 3(d) provide evidence that a similar conclusion can be drawn 
for the quasi-γ band as well.

Fig. 4 presents the invariant sum rules analysis for the two low-
est 0+ states of 72Ge, in comparison with those of neighboring Ge 
isotopes. The present and the previous results are given with filled 
and open symbols, respectively. While it is evident from Fig. 4 that 
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Fig. 4. (Color online.)
〈
Q 2

〉
and 〈cos 3δ〉 quantities for the 0+

1 and 0+
2 states in the 

Ge isotopes. The ‘old’ data (open symbols) are taken from Ref. [18].

a well-defined shape transition occurs when going from mass 70 
to 72; i.e., the ground-state configuration for 70Ge becomes the 0+

2
excitation in 74,76Ge and vice versa for the 0+

1 levels in the latter 
two nuclei, the results of the present investigation (filled symbols) 
indicate a more subtle transition and show that the 0+

1 and 0+
2

states in 72Ge have essentially the same 
〈
Q 2

〉
value. This is in con-

trast to previous investigations (see open symbols for 72Ge), partly 
because of the 0+

2 → 2+
3 ME, which was determined here for the 

first time, and found to contribute significantly to the sum rule. It 
should be noted that, while the mean value of the shape parameter 
is almost the same for these two 0+ states, it does not necessar-
ily follow that they are characterized by the same shape. In fact, 
the identical magnitude of the 

〈
Q 2

〉
values can be interpreted as 

a consequence of mixing of two distinct (or unperturbed) config-
urations characterizing these states, each being associated with a 
different shape. Within a simple two-state mixing model, the 0+

1
and 0+

2 states can be expressed as linear combinations of two un-
mixed 0+

u1,u2 basis levels with different mixing amplitudes and 
unique deformations [44]. Assuming no interaction between the 
intrinsic states; i.e., 〈Iu1| |M(E2)| |Iu2〉 = 0, and using the four MEs 
connecting the 0+

1,2 to the 2+
1,3 mixed states, the intrinsic, unmixed 

basis states, initially separated by �int = 32 keV, are shifted by 
330 keV with respect to one another by a mixing ME of 345 keV. 
The wavefunction of the mixed 0+

1 state contains an amplitude 
cosθ0 = 0.72(3) of the unmixed ground-state wavefunction, which 
indicates maximum mixing [cos2θ0 = 0.52(4)], and is consistent 
with values derived in two-neutron and alpha transfer measure-
ments [45]. In principle, the mixing strength can also be deter-
mined on the basis of the known E0 monopole strength between 
the two 0+ states [ρ2(E0; 0+

2 → 0+
1 ) × 103 = 9.18(2) in 72Ge] [46]. 

This would however, require knowledge of the difference in the 
mean-square charge radii of the two configurations which is at 
present unavailable. Thus, while the simple two-state mixing cal-
culations describe the mixing between configurations of the 0+
states reasonably well, ambiguities associated with the influence 
of the highly-mixed 2+ “subspace” (comprising the 2+

1 , 2+
2 , and 

2+
3 states), as evidenced by the various decay branches and mag-

nitudes of the linking MEs (see Table 1), remain to be addressed. 
Hence, a complete description requires, at the minimum, a three-
band mixing calculation that takes into account the contributions 
of the 2+ states with, in addition, the inclusion of triaxiality, as 
indicated by the 〈cos 3δ〉 analysis of Fig. 4.
In order to quantify the role of triaxiality and present a better 
understanding of shape coexistence in the low-lying states, a re-
vised version of the triaxial rotor model with independent inertia 
and electric quadrupole tensors [47–51] was applied to the newly 
deduced E2 MEs of 72Ge. This version is a departure from the stan-
dard use of irrotational flow moments of inertia; e.g., the Davydov–
Filippov rotor model [52]. Using this model, the E2 MEs for states 
within the ground and quasi-γ bands were calculated [53] with 
a minimum set of assumptions and compared to the experimen-
tal results. The three model parameters required to describe the 
E2 MEs of a triaxial rotor include the deformation, Q 0, the asym-
metry of the electric quadrupole tensor, γ , and the mixing angle 
of the inertia tensor, �. These parameters are determined ana-
lytically in this study from the 〈01||M(E2)||21〉, 〈01||M(E2)||22〉, 
and 〈21||M(E2)||21〉 experimental MEs (cf. Ref. [49]) and result in 
Q 0 = 1.45 eb, γ = 27.0◦ , and � = −23.2◦ .

The results of triaxial rotor model calculations [53], designated 
as (TRM), are compared with the data in Figs. 5 and 6. For com-
pleteness, calculations for a symmetric rotor (Symm) and triaxial 
rotor with irrotational flow moments of inertia (DF) [52] are also 
included. All three versions of the rotor model equally reproduce 
the ground [Fig. 5(a)] and quasi-γ intra-band transitions [Fig. 5(b)]. 
Beyond this point, however, the symmetric rotor (Symm) has little 
to no value in describing the data. For the quasi-γ to ground inter-
band transitions, the TRM and DF calculations appear to perform 
equally well, predicting large values when the experimental values 
are large and likewise when they are small (see Fig. 6). However, 
there is a consistent failure to reproduce the 〈61||M(E2)||42〉 and 
〈41||M(E2)||62〉 MEs (see indices 8 and 11 in Fig. 6); these �I = 2, 
�K = 2 transitions have been shown to be very sensitive to inter-
ference effects [49,51]. With the exception of the 42 state, perhaps 
the most important outcome is the ability of the TRM calculations 
to reproduce the static quadrupole moments; i.e., the diagonal E2
MEs 〈Ii ||M(E2)||Ii〉. This is presented in Figs. 5(c) and 5(d), where 
both the experimental 〈Ii ||M(E2)||Ii〉 values and the general trend 
with spin are in good agreement with expectations of a triaxial 
rotor.

Configuration mixing between two triaxial rotor models was 
utilized [54] to investigate further the nature of the first excited 
0+

2 level and the 2+
3 state possibly built upon it, and to deter-

mine their impact on the E2 MEs of the ground and quasi-γ
bands. A simple approach was adopted to extract the model pa-
rameters without any effort to further adjust the parameters for 
better agreement. This approach was to factorize the solution into 
two 2 × 2 subspaces in order to solve the �K = 2 triaxial mix-
ing (see above) and �K = 0 configuration mixing. Then, using 
the parameters from these solutions, the E2 MEs for the full 
4 × 4 space were calculated. The �K = 0 configuration mixing was 
solved using the 〈01||M(E2)||21〉, 〈21||M(E2)||02〉, 〈01||M(E2)||23〉, 
and 〈02||M(E2)||23〉 experimental MEs. The adopted parameters 
for the configuration mixing are Q 01 = 1.93 b, Q 02 = 0.57 b, 
θI=0,�K=0 = 43.2◦ , and θI=2,�K=0 = 21.1◦ . From the �K = 0 con-
figuration mixing alone, the MEs 〈21||M(E2)||21〉, 〈23||M(E2)||23〉, 
and 〈21||M(E2)||23〉 are predicted to be 0.66, −0.28, and −0.17 eb, 
respectively, but the corresponding experimental values are −0.16, 
−0.02, and 0.24 eb. Hence, �K = 0 configuration mixing alone is 
not sufficient to describe the data and suggest including �K = 2
triaxial mixing.

The triaxial and configuration mixing solutions were combined 
to give the following overall adopted parameters: Q 01 = 1.93 b, 
γ1 = 27◦ , and �1 = −23.2◦ for the first triaxial rotor, Q 02 = 0.57 b, 
γ2 = 30◦ , and �2 = −30◦ for the second one (30◦ was assumed for 
simplicity), and θI=0,�K=0 = 43.2◦ and θI=2,�K=0 = 21.1◦ for the 
configuration mixing. This approximation scheme results in calcu-
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Fig. 5. (Color online.) (a) and (b): Experimental transition matrix elements for intra-band transitions, 〈Ii | |M(E2)| ∣∣I f
〉

in comparison with theoretical calculations using the 
triaxial rotor model (TRM), symmetric (symm), and Davydov–Filippov (DF) models. (c) and (d): Similar comparisons for static quadrupole moments 〈Ii | |M(E2)| |Ii〉 in the 
ground and quasi-γ bands.
Fig. 6. (Color online.) Experimental transition matrix elements for inter-band tran-
sitions in comparison with theoretical calculations using the triaxial rotor model 
(TRM), symmetric rotor (symm) and the Davydov–Filippov (DF) models.

lated E2 MEs that are typically within a few percent of the exact 
solution [54].

The results of configuration mixing calculations with the 
two-triaxial-rotor model [54], designated as (TRM×2), are com-
pared with the experimental values in Fig. 7. The diagonal 
E2 MEs 〈21||M(E2)||21〉, 〈22||M(E2)||22〉, and 〈23||M(E2)||23〉
(i.e., quadrupole moments, corresponding to indices 2, 8, and 
12, respectively, in Fig. 7) are well described. However, the 
〈21||M(E2)||23〉 ME (index 5) is still not reproduced; nor is 
〈22||M(E2)||23〉 (index 10). Interestingly, the 〈21||M(E2)||22〉 and 
〈22||M(E2)||02〉 MEs are predicted well, and configuration mix-
ing substantially improves the description of the 〈21||M(E2)||02〉
ME (index 3) over that from a single triaxial rotor (see above). It 
can be concluded that this configuration mixing is well justified 
in describing the E2 MEs between the 01, 02, 21, and 22 states, 
which can also be described with only four parameters; i.e., Q 0a =
Fig. 7. (Color online.) Experimental matrix elements in comparison with triaxial–
triaxial mixing calculations using the triaxial rotor model with independent mo-
ments of inertia.

1.93 b, γa = 27◦ , and �a = −23.2◦ for the first triaxial rotor and 
θI=0,�K=0 = 43.2◦ for configuration mixing with an isolated 0+
state. However, the evidence is not so compelling for the 2+

3 level. 
This state could possibly be viewed as a member of a two-phonon 
γ vibration, but this would necessitate the presence of excited 
K = 0, 4 bands at nearly twice the energy of the first excited K = 2
sequence. There is at present no evidence for this conjecture.

Finally, the sum of 2+ quadrupole moments provides another 
interesting perspective on triaxiality and shape coexistence. This 
sum over a complete basis or subspace should be zero [55]. 
For a triaxial-rotor model, there are only two 2+ states, whose 
quadrupole moments must be equal and opposite. For 72Ge, 
〈21||M(E2)||21〉 = −0.16(+7

−2) and 〈22||M(E2)||22〉 = 0.179(+3
−6), 

yielding a sum of 0.02(+8
−6). If the sum is made over the three 

2+ states observed in the present study, where 〈23||M(E2)||23〉 =
−0.02(+2

−14), the result is 0.00(+8
−15). Assuming that the 2+

3 state 
is part of a second triaxial rotor configuration, there must then be 
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another 2+ level with a diagonal E2 ME equal to 0.00(+8
−15), consis-

tent with γ2 = 30◦ . It can thus be concluded that the quadrupole 
moment sum is consistent with shape coexistence between two 
triaxial structures, but it is also consistent with other scenarios; 
e.g., shape coexistence between triaxial and spherical structures. It 
can also be argued, based on the magnitude and the general pat-
tern of the MEs linking the 2+

3 level to the lower-lying states, that 
this state may not be directly associated with the 0+

2 level, as has 
often been assumed. In fact, the TRM calculations account for only 
∼32% of the measured B(E2) value for this state. The introduction 
of gamma softness, perhaps resulting from a two-phonon charac-
ter, may be required to account for the remaining strength. Further 
work will be required to clarify this issue.

In summary, the collective properties of the ground-state and 
quasi-γ bands as well as the first excited 0+ and 2+

3 states in 
72Ge have been investigated in a model-independent way using 
sub-barrier multi-step Coulomb excitation. The model-independent 
shape invariants obtained from the Kumar–Cline sum rule analysis 
of the low-spin structure provide compelling evidence for the co-
existence of two triaxially-deformed configurations associated with 
the 0+

1 and 0+
2 states. Within a two-state mixing model, the ex-

tracted matrix elements agree with this shape coexistence inter-
pretation, but also require maximum mixing between the wave-
functions of the first two 0+ states. The results of multi-state 
mixing calculations performed within the framework of the triax-
ial rotor model demonstrate the importance of the triaxial degree 
of freedom and indicate that the low-spin structure of 72Ge can 
be adequately described by mixing of two triaxial rotors. This re-
sult reveals that a nucleus, apparently unlike any other known 
collective one, possesses a simple underlying structure. This in-
terpretation, by way of coexistence of different shapes, supports 
structural simplicity when the phenomenology appears complex.
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