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Abstract: Assessment of environmental justice (EJ, a concept related to the distributional fairness
of environmental risks) is a crucial component in environmental risk management. However, the
risks associated with air pollutants and toxins have rarely been evaluated jointly. Therefore, using
an approach integrating modeling, data fusion, and health benefits analysis, we performed an EJ
assessment on the mortalities caused by fine particle (PM2.5) and ozone (O3) concentrations and
mercury (Hg) deposition over the Pearl River Delta (PRD) region. The concentration index (CI)
was used to measure EJ in low-income distributions and age structures, and a larger value implied
a greater EJ issue. The results revealed that the CIs of PM2.5, O3, and Hg were 0.35, 0.32, and
0.16, respectively, based on the percentage of the low-income population, and 0.39, 0.36, and 0.23,
respectively, based on the elderly and children, indicating that environmental injustice was more
prominent for PM2.5 and more reflected in the elderly and children. The center (e.g., Guangzhou) and
some marginal areas (e.g., northeast of Jiangmen) in the PRD were overburdened areas with PM2.5,
O3, and Hg pollution due to their intensive source emissions. Moreover, cumulative environmental
risk (CER) corrected by population vulnerability exhibited significant differences among the cities;
for example, cumulative environmental risk scores (CERSs) in Jiangmen, Huizhou, and Zhaoqing
were 14.18 to 32.98 times higher than that in Shenzhen. Hence, the implementation of multipollutant
control policies for local PM2.5, O3, and Hg in overburdened areas is recommended to further promote
EJ in the PRD.

Keywords: environmental justice; environmental risk; fine particles; ozone; mercury deposition;
environmental vulnerable group

1. Introduction

Environmental justice (EJ) is the fair treatment and meaningful involvement of all
groups in environmental activities [1]. EJ issues, usually exhibited as the unequal distribu-
tion of environmental risks and benefits, will result in obvious health disparities between
different groups (e.g., low-income versus wealthy groups) [2–4]. With rapid economic
development and industrial transfer, there is an increasing gap among different social
groups, especially in developing countries such as China, making EJ problems gradually
prominent [5,6]. To address EJ issues and achieve the balanced and sustainable develop-
ment of society and the ecoenvironment [7,8], it is necessary to conduct an EJ assessment
for environmental risks of major pollutants.
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A series of related studies have been conducted since the 1980s in the United States [4,9],
in which wide-ranging political, socioeconomic, and discriminatory forces, combined with
spatial patterns of industrialization and development, were found to segregate people
of color (including low-income groups) into communities with higher indices of urban
poverty and material deprivation [10,11]. Furthermore, most of these communities are
located near sources of pollutant emissions, such as placing waste sites, industrial areas,
highways, etc. [12,13]. Hence, those minorities and low-income groups disproportionately
endure a higher share of environmental exposure risks [12,14–16]; in addition, they are
affected by unfavorable factors such as persistent poverty and a lack of health care, resulting
in obvious health disparities between them and advantageous populations [17,18]. For ex-
ample, infant mortality rates for nonHispanic blacks and indigenous residents are 2.35 and
1.97 times higher than that for nonHispanic whites, respectively [19], and life expectancies
for nonHispanic white males and white females are 4.9 and 3.1 years higher than that for
nonHispanic black males and black females, respectively [20]. EJ-related research initiated
in China in the last 10 years [21] is currently in the exploratory stage. Existing studies
have mainly focused on the unequal distribution of environmental resources [22,23], the
differences in pollution burdens between urban and rural residents [21,24], and pollution
transfer due to industry migration or trade [25–27]. Research considering both criteria—air
pollutants and air toxins—is seldom reported in EJ-related publications.

The Pearl River Delta (PRD), one of the typical city clusters in China, has experienced
deteriorating air quality during China’s 13th Five-Year Plan (2016~2020), especially in 2017
(Supplementary Materials, Table S1) when concentrations of PM2.5 and O3 exceeded the
WHO’s guidelines by 220% and 51%, at 151 µg/m3 and 32 µg/m3, respectively [28]. More-
over, in terms of air toxins, the concentration of total gaseous mercury (TGM) was about
twice the background Northern Hemisphere concentration of 1.5 ng/m3 [29–31]. High
PM2.5 and O3 levels can endanger public health with respiratory disease, cardiovascular
disease, and lung cancer [32–34], and intensive atmospheric mercury can also be deposited
into soil and water bodies and then enter the human body along the food chain, attacking
the heart and lowering the intelligence quotient of the fetus [35–37].

Accordingly, in this presented paper, the intercity differences in mortalities attributed
to PM2.5 and O3 concentrations and Hg deposition fluxes in 2017 are explored, using the
economically developed PRD region of China as an example. The assessment process and
results are expected to assist policymakers in characterizing environmental hazards and
social vulnerability for environmental risk management.

2. Materials and Methods

The process for EJ assessment of PM2.5- and O3-related mortalities and Hg deposition
flux over the PRD is shown in Figure 1. First, the 2017 meteorological conditions were
simulated using the Weather Research and Forecasting Model (WRF, http://www2.mmm.
ucar.edu/wrf/ (accessed on 30 June 2021)) to drive the Community Multiscale Air Quality
Model (CMAQ, http://www.epa.gov/cmaq (accessed on 30 June 2021)) simulations for
PM2.5, O3, and Hg. Second, the simulation results of PM2.5 and O3 were fused with the
monitoring data to improve simulation accuracy utilizing the data fusion (DF) tool [38], and
the fused data subsequently flowed into the Environmental Benefits Mapping and Analysis
Program—Community Edition (BenMAP-CE) to assess premature mortality attributed
to PM2.5 and O3 [39]. Finally, based on the BenMAP-CE results, Hg deposition flux, and
selected demographic vulnerability indicators, injustices in the distribution of mortalities
caused by PM2.5, O3, and Hg deposition over the PRD and the cumulative environmental
risk score (CERS) of PM2.5, O3, and Hg in different cities were comprehensively assessed.

http://www2.mmm.ucar.edu/wrf/
http://www2.mmm.ucar.edu/wrf/
http://www.epa.gov/cmaq
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simulated by the CMAQ v5.2. The modeling domain was three-nested with 27 km, 9 km, 
and 3 km horizontal resolutions from outside to inside, and the innermost modeling 
domain (d03) covered the whole PRD region (Figure 2). January, April, July, and October 
(representing winter, spring, summer, and autumn, respectively) were chosen for the 
simulations to represent overall PM2.5 and O3 concentrations in 2017 and Hg deposition in 
the typical periods, and spin-up times of 5 and 7 days were determined to offset the effect 
of the initial condition on concentrations and deposition, respectively. In addition, the 
simulation results of PM2.5 and O3 were assimilated with the observed data from the 
national air quality monitoring stations in the PRD region using the downscaler (DS) 
algorithm in the DF v2.2 developed by our team [38]. It should be noted that Hg was not 
included in the assimilation process due to the lack of online monitoring data. The 
detailed model configurations, simulation results, and their validation are described in 
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Figure 1. Flowchart for EJ assessment of PM2.5- and O3-attributable mortalities and Hg deposition:
EI, emission inventory; EI-Hg, emission inventory of Hg.

2.1. PM2.5, O3, and Hg Simulations

Considering the spatial and temporal continuity of air quality data, the WRF-CMAQ
system was constructed to simulate the concentration or deposition of PM2.5, O3, and Hg,
and the DF was adopted to further reduce simulation error.

Meteorological inputs were provided by the WRF v3.9.1, and PM2.5, O3, and Hg
were simulated by the CMAQ v5.2. The modeling domain was three-nested with 27 km,
9 km, and 3 km horizontal resolutions from outside to inside, and the innermost modeling
domain (d03) covered the whole PRD region (Figure 2). January, April, July, and October
(representing winter, spring, summer, and autumn, respectively) were chosen for the
simulations to represent overall PM2.5 and O3 concentrations in 2017 and Hg deposition
in the typical periods, and spin-up times of 5 and 7 days were determined to offset the
effect of the initial condition on concentrations and deposition, respectively. In addition,
the simulation results of PM2.5 and O3 were assimilated with the observed data from
the national air quality monitoring stations in the PRD region using the downscaler (DS)
algorithm in the DF v2.2 developed by our team [38]. It should be noted that Hg was
not included in the assimilation process due to the lack of online monitoring data. The
detailed model configurations, simulation results, and their validation are described in the
Supplementary Materials, Sections S2–S4, respectively.
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Figure 2. Three-nested modeling domains (a) and the PRD region in the d03 (b). The dots in the d03
represent the national air quality monitoring stations in the PRD, in which the blue square dots repre-
sent the randomly selected national air quality monitoring stations to analyze the model performance.
The PRD region was divided into nine cities: Guangzhou (GZ), Foshan (FS), Shenzhen (SZ), Zhuhai
(ZH), Dongguan (DG), Zhongshan (ZS), Jiangmen (JM), Huizhou (HZ), and Zhaoqing (ZQ).

2.2. Environmental Risks Assessment

The environmental risks of PM2.5 and O3 were represented by their relative attributed
premature mortalities, which were quantified using the health impact function (HIF) in
BenMAP-CE v1.4.7 developed by the EPA [39,40]:

∆Y = [1 − exp(−β × ∆AQ)]× Y0 × Pop (1)

where ∆Y is the estimated health impact attributed to PM2.5 or O3, β is the concentration–
response function (C-R) coefficient derived from the relative risk (RR) reported in epi-
demiologic studies, ∆AQ is the change in pollutant concentration (pollutant concentration
changes to zero was assumed in this study), Y0 is the incidence rate, and Pop is the
exposed population.

In this study, six health endpoints (i.e., COPD, coronary heart disease, CVD, hy-
pertension, respiratory mortality, and stroke) and four health endpoints (i.e., coronary
heart disease, CVD, hypertension, and stroke) were selected to estimate PM2.5- and
O3-related premature mortalities, respectively, and the C-R coefficients used for PM2.5
and O3 were derived from studies by Chen et al. [41] and Yin et al. [42], respectively.
Incident rates in 2017 were obtained from the China Health Statistical Yearbook (http:
//www.nhc.gov.cn/mohwsbwstjxxzx/new_index.shtml (accessed on 1 June 2021)), and
population data for the exposure were collected from the statistical yearbooks or statistical
bulletins of each district in the PRD.

2.3. EJ Assessment of Environmental Risks
2.3.1. Inequality Curve and Concentration Index

The inequality curve and the concentration index (CI) were used to assess how and
to what extent environmental risk is unjustly distributed over the PRD region [43]. The
inequality curve is essentially a concentration curve developed by the World Bank and
demonstrates the trend in the distribution of risk, with the cumulative proportion of grids of
d03 in descending order by a demographic vulnerability indicator represented on the x-axis

http://www.nhc.gov.cn/mohwsbwstjxxzx/new_index.shtml
http://www.nhc.gov.cn/mohwsbwstjxxzx/new_index.shtml
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and the cumulative share of risk represented on the y-axis. If the risk is allocated evenly,
the inequality curve is a 45-degree diagonal line through the origin. When the inequality
curve lies above the 45-degree diagonal, it indicates that more risk is disproportionately dis-
tributed in the disadvantaged d03 grids with a higher demographic vulnerability indicator,
and vice versa, that more risk is disproportionately spread over the advantaged d03 grids
(Supplementary Materials, Figure S10). In this study, a disproportionate distribution of
environmental risk is considered unjust.

The CI is defined as twice the area between the 45-degree diagonal and the inequality
curve and takes values between −1 and 1 (Equation (2)). When it is negative (positive), it
represents that the risk tends to be in favor of disadvantaged (advantaged) grids, and a
larger absolute value means a higher degree of injustice.

CIj = 2 ×
[

1
2
−
∫ 1

0
f (x)dx

]
(2)

where f (x) is the fitted inequality curve for risk j.

2.3.2. Cumulative Environmental Risk Score

Existing research consistently agrees that socioeconomic and sensitive factors iden-
tified as “effect modifiers” can multiply the risk of pollutants [44–46], and multiple en-
vironmental hazards may accumulate or interact in complex ways to amplify their risks
to human health [47]. Therefore, we proposed CERS, a comprehensive indicator that
combines environmental and demographic information to investigate the differences in
environmental risks and vulnerable populations among cities in the PRD. Firstly, the simple
additive weighting (SAW) method, one of the most commonly used aggregation meth-
ods for constructing environmental composite indicators [43,48], was used to aggregate
the three environmental risk indicators to gain the cumulative environmental risk (CER,
Equation (3)). Subsequently, the CER was modified using the demographic vulnerability
indicator to obtain the CERS by referring to the CalEnviroScreen Score developed by the
CalEPA (Equation (4)) [44,49,50]. It is important to note that CERS values range from 0
to 1 and that the CERS, similar to the CalEnviroScreen Score and the EJ Index (an indicator
developed by EPA [51]), has only comparative and not absolute meaning. Environmental
risk management needs to be strengthened to protect public health, no matter whether the
larger CERS is the result of population vulnerability, air pollution, or a combination of both.

CER =
n

∑
j=1

wjrj (3)

where n is the number of risks, rj is the normalized environmental risk j, and wj is the

weight assigned to the environmental risk j,
n
∑

j=1
wj = 1. The weights in the SAW method

are generally used to reflect stakeholders’ preferences on environmental issues and can be
obtained by combining expert surveys with some multiattribute evaluation models [48,52,53].
In the absence of accurate expert information or objective mechanisms to determine the
relative importance of different environmental variables, the choice of equal weights may
be more reasonable and more widely accepted [54,55]. This study assumes that each
environmental risk is treated equally and considers that the route of human exposure to
atmospheric Hg is less immediate than PM2.5 and O3. Hence, the weight of Hg was set to
half the weight of PM2.5 and O3 by referencing the research of Cushing et al. [14] (i.e., 2/5
weighting to PM2.5 and O3, 1/5 weighting to Hg).

CERSk = CER × Pk (4)
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where CERSk is the CERS based on the demographic vulnerability indicator k, and Pk is
the normalized demographic vulnerability indicator k.

3. Results and Discussion
3.1. Statistical Results of EJ Assessment Indicators

The EJ assessment indicators for the PRD are divided into demographic vulnerability
indicators and environmental risk indicators, of which the city-level statistical results are
summarized in Figures 3 and 4, respectively, and of which the selection bases are elaborated
on in the Supplementary Materials, Section S6, and the Introduction, respectively.
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3.1.1. Demographic Vulnerability Indicators

The percentage of low-income and elderly and children population groups over the
entire PRD are 0.85% and 20.22%, respectively. The city with the highest percentage of the
elderly and children is ZQ (29.60%), followed by HZ (25.27%) and JM (23.03%), and the
lowest is DG (10.51%). Similarly, the highest percentage of the low-income population is in
HZ (1.83%), followed by JM (1.30%) and ZQ (0.78%), while the lowest is in SZ (0.16%). In
general, the percentage of both low-income and elderly and children population groups is
higher in the peripheral cities (i.e., JM, HZ, and ZQ) and lower in the central cities of the
PRD. According to the information on socioeconomics and the population of the PRD cities
(Supplementary Materials, Table S6), this may be caused by the central cities having more
working opportunities, with a higher salary than the peripheral ones, which attracts more
young people.

3.1.2. Environmental Risk Indicators

The premature mortalities attributed to PM2.5 and O3 in the PRD are 3657 and 2238,
respectively, and Hg deposition during the simulation period is 77.7 µg/m2. The highest
PM2.5-attributable mortality is observed in GZ (952), followed by FS (574) and ZQ (521), as a
result of the higher PM2.5 concentrations in these three cities, contributed by intensive dust
and mobile emissions in the northern PRD (Supplementary Materials, Figure S1) [56]. The
highest O3-attributable mortality is also noticed in GZ (548), followed by FS (302), which is
probably because of considerable VOC emissions from local industries and transportation
sources that may contribute to high O3 levels [57]. In addition, it was noticed that the O3-
attributable mortality in JM, a typical disadvantaged city with a high degree of population
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vulnerability, is the third highest in the PRD; this may be caused by the distinct NOx
contribution from local biomass burning and ship activities and also the significant regional
contribution from the northeast areas to O3 in JM [57]. Regarding Hg, the central cities of
the PRD have greater Hg deposition fluxes during the simulation period, represented by
DG (115.9 µg/m2), FS (112.78 µg/m2), and ZS (96.12 µg/m2); this is because the mercury
sources are mainly concentrated in the central PRD (Supplementary Materials, Figure S12),
while atmospheric mercury emitted from these sources usually exhibits a short atmospheric
lifetime and is mostly deposited near the emission sources [29,58–60].

3.2. Unequal Distributions of PM2.5, O3, and Hg Risks
3.2.1. Trends in Risk Distributions

The distributions of environmental risks concerning age structure and low-income
levels are illustrated by the inequality curves in Figure 5. As can be seen, the inequality
curves based on the percentage of low-income and elderly and children population groups
are, overall, consistent. The inequality curves for mortalities attributed to PM2.5 and O3 and
Hg deposition all lie below the equality line, implying that more risks are disproportionately
taken by the advantaged areas in the center of the PRD because of the more intensive
precursor emissions in these areas (Supplementary Materials, Figure S13). The inequality
curves of Hg deposition are closer to the equality line compared with that of PM2.5 and O3
since some grids located in the central PRD have high PM2.5- and O3-attributable mortalities
but not high Hg deposition fluxes for the reason mentioned in Section 3.1.2, most obviously
those located in SZ (Supplementary Materials, Figures S1 and S14). In addition, it was
found that the inequality curves for O3 are slightly closer to the equality line than that for
PM2.5; this is because the difference in O3-attributable mortalities between the central and
peripheral cities is smaller than that in PM2.5, as demonstrated by the variation coefficient
for O3-attributable mortalities of 58%, while that for PM2.5 is 64%.
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3.2.2. Degrees of Injustices in Risk Distributions

The CIs in the environmental risk distributions and their significance test results are
presented in Table 1. In the distributions of environmental risks based on the percentage of
the low-income (elderly and children) population, the CIs for PM2.5, O3, and Hg are 0.35
(0.39), 0.32 (0.36), and 0.16 (0.23), respectively. Compared with those in the United States
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case studies [14,43,61], the CIs in our study are all positive, implying that the environmental
risks are disproportionately imposed more on central areas with lower proportions of
vulnerable groups instead of marginal areas with population disadvantage; however,
the absolute values of our CIs are larger in general, suggesting the more concentrated
distribution of environmental risks in the PRD. The reason for the differences is that the
PRD contrasts with the situation in the United States, and the more developed areas in the
heart of the PRD experience more intensive pollutant emissions and, correspondingly, take
more exposure risks.

Table 1. CIs and t-test results of the environmental risk distributions based on the demographic
vulnerability indicators.

Demographic Vulnerability
Indicators

Environmental Risk
Indicators

CI
t-Test Results on CI

t-Value
(Ref: 2.01)

p-Value
(Ref: 0.05)

95% Confidence
Interval

% of the population with low
income

Mortality_PM2.5 0.35 5.67 <0.001 (0.23, 0.47)
Mortality_O3 0.32 5.67 <0.001 (0.21, 0.43)

Deposition_Hg 0.16 5.66 <0.001 (0.10, 0.22)

% of elderly (≥65) and
children (≤14)

Mortality_PM2.5 0.39 5.93 <0.001 (0.26, 0.52)
Mortality_O3 0.36 5.94 <0.001 (0.24, 0.49)

Deposition_Hg 0.23 5.92 <0.001 (0.15, 0.30)
Note: If the absolute value of the t-value is greater than 2.01 or the p-value is less than 0.05, then it suggests that
there is a significant difference in the CI.

The injustice degree of PM2.5-attributable mortality is the greatest, followed closely
by O3, manifesting that the EJ issues in the PRD are mainly exhibited in PM2.5 and O3
risks. The injustice degree of Hg deposition is much smaller than that of PM2.5 and O3;
this is probably because the implementation of a series of industrial pollution control
policies (Supplementary Materials, Section S4) has reduced mercury emissions in the
central cities of the PRD, especially SZ, which exhibits indistinctive mercury emissions
even with concentrated mercury sources (Supplementary Materials, Figures S12 and S13),
leading to a decreasing difference in Hg deposition between the central and peripheral
cities in the PRD. As for the environmentally vulnerable groups, the absolute values of the
CIs based on the percentage of the elderly and children are slightly larger than that based on
the percentage of the low-income population overall. Therefore, the injustice distributions
of environmental risks in the PRD may be more reflected in age structure, in which the
elderly and children, one of the susceptible groups (Supplementary Materials, Section S6),
should be given more assistance than the low-income population. Moreover, to verify the
statistical significance of our assessment results, a one-sample t-test was conducted, and the
results are given in Table 1. It can be seen that the p-values are all lower than the reference
(0.05) and the absolute values of t are all larger than the reference (2.01), indicating that
there are significant differences in the CIs of our results [62].

3.2.3. Overburdened Areas of PM2.5, O3, and Hg

The injustice in the distribution of environmental risk is usually caused by the existence
of certain areas that disproportionately take more risk (denoted as “overburdened area”
hereafter); thus, screening out these overburdened areas can support policymaking for risk
management. Inspired by the research conducted by Damgaard et al. [63] on exploring
inequalities in plant size or fecundity and considering the negative effects of environmental
risk, the overburdened areas in this research were screened based on the points on the
inequality curve that were obtained by differentiating the fitted inequality curve and
parallel to the equality line. As shown in the example graphs in the Supplementary
Materials (Figure S11), when the inequality curve is below (above) the equality line, the
areas represented by the x-axis after (before) the parallel point are recognized as the
overburdened areas (Supplementary Materials, Figure S11a,b); when the inequality curve
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crosses the equality line, the areas represented by the x-axis between or at both ends of the
parallel points will host more risk (Supplementary Materials, Figure S11c,d).

The overburdened areas screened out using the inequality curves in Figure 5 are over-
lapping, as displayed in Figure 6. It can be seen that the central cities of the PRD—GZ, FS,
SZ, DG, ZS, and ZH—are all screened as overburdened areas for the three environmental
risks, which is generally consistent with the spatial patterns of precursor emissions. For
example, these overburdened areas account for 81.79%, 86.51%, 66.48%, and 72.77% of the
entire PRD for VOC, NOx, primary PM2.5, and Hg emissions, respectively (Supplementary
Materials, Figure S13). One notable thing is that parts of the three marginal disadvantaged
cities are also screened as overburdened areas, including northeastern and southern JM and
south-central HZ and ZQ. Northeastern JM was screened as a PM2.5 and O3 overburdened
area because of considerable local primary PM2.5 and PM2.5 precursor emissions from dust
sources and agricultural activities, as well as the reasons mentioned in Section 3.1.2; in con-
trast, northeastern and southern JM were screened as a Hg overburdened area since 73.61%
of industrial boilers and all power plants in JM are concentrated there (Supplementary
Materials, Figure S12). Likewise, 54.3% of industrial boilers and 80% of power plants in HZ
are located in the overburdened area, resulting in more intensive Hg, NOx, and primary
PM2.5 emissions (Supplementary Materials, Figures S12 and S13), and the situation in ZQ
is also similar to that in HZ. Summarily, the central cities of the PRD should be the priority
for PM2.5, O3, and Hg risk management, but overburdened areas in the peripheral cities
also require special attention because of local population vulnerability in these areas.
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3.3. CERS in Different Cities

The distributions of CERSs in different cities of the PRD are visually compared in
Figure 7 (details in Supplementary Materials, Table S7), and the CERS in each city is
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represented by the overall condition in different districts of this city. The city with the
lowest median CERS value based on the percentage of low-income or elderly and children
population groups is SZ, the most advantaged central city in the PRD, with values of
0.003 and 0.008, respectively. In contrast, the median CERS based on the percentage of the
low-income population in JM, HZ, and ZQ, three marginal cities in the PRD, is 30.88, 32.98,
and 14.18 times higher than that of SZ, respectively, and based on the percentage of the
elderly and children, is 16.01, 18.23 and 20.30 times greater than that of SZ, respectively.
This regional disparity is driven jointly by differences in environmental risk and population
vulnerability. Although individual environmental risk (particularly that of Hg deposition)
in the peripheral cities is relatively insignificant compared to that in the central cities, the
impact of CER is magnified by demographic disadvantages to a certain extent, which may
further increase health disparities between the peripheral cities and the demographically
advantaged cities. Therefore, cities with higher levels of CERS, such as JM, HZ, and ZQ,
should be given further consideration for risk management in the PRD.
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4. Conclusions

In this study, injustices in the distribution of mortalities attributed to PM2.5 and O3 and
Hg deposition over the PRD region of China were comprehensively assessed by combining
the WRF-CMAQ, DF tool, and BenMAP-CE.
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Our results suggested that the CIs for PM2.5- and O3-attributable mortalities and
Hg deposition were 0.35, 0.32, and 0.16, respectively, based on the percentage of the
low-income population, and 0.39, 0.36, and 0.23, respectively, based on the elderly and
children. These findings indicated that EJ issues were more evident for PM2.5 than for O3
and Hg and more reflected in the elderly and children than in the low-income group in
the PRD. The screened overburdened areas of mortalities attributed to PM2.5 and O3 and
Hg deposition were mainly located in the center (GZ, FS, SZ, DG, ZS, and ZH) and some
marginal areas (northeast of JM and south-central HZ and ZQ) because many emission
sources were concentrated in the central areas of PRD and, accordingly, more risks were
taken, as shown by the inequality curves. The CER affected by population vulnerability
exhibited distinct differences among the PRD cities, in which the CERSs in JM, HZ, and ZQ
were 14.18 to 32.98 times higher than that in SZ. Therefore, multipollutant control strategies
for PM2.5 and O3 and combined with air toxins (e.g., Hg) for overburdened areas and risk
management with increased attention on cities with higher CERSs (e.g., JM, HZ, and ZQ)
are recommended to effectively promote EJ and achieve sustainable development in the
PRD, China.
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