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As a newly emerging field, connectomics has greatly advanced our

understanding of the wiring diagram and organizational features of the

human brain. Generative modeling-based connectome analysis, in particular,

plays a vital role in deciphering the neural mechanisms of cognitive

functions in health and dysfunction in diseases. Here we review the

foundation and development of major generative modeling approaches

for functional magnetic resonance imaging (fMRI) and survey their

applications to cognitive or clinical neuroscience problems. We argue that

conventional structural and functional connectivity (FC) analysis alone is

not sufficient to reveal the complex circuit interactions underlying observed

neuroimaging data and should be supplemented with generative modeling-

based effective connectivity and simulation, a fruitful practice that we term

“mechanistic connectome.” The transformation from descriptive connectome

to mechanistic connectome will open up promising avenues to gain

mechanistic insights into the delicate operating principles of the human

brain and their potential impairments in diseases, which facilitates the

development of effective personalized treatments to curb neurological and

psychiatric disorders.
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Introduction

The human brain is a fascinating machine in which the interactions of vast numbers
of distributed circuits and networks give rise to complex cognitive functions such as
perception, attention, decision making and memory. Delineating the brain’s anatomical
wiring diagram and its functional operation principles constitutes an important first
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step to decipher the underlying mechanisms of cognition.
Connectomics is a newly developed field dedicated to providing
a complete map of neuronal connections in the brain (Sporns
et al., 2005). Fueled by the rapid advances of non-invasive
neuroimaging techniques, connectomics has become one of the
most vibrant disciplines in neuroscience (Craddock et al., 2013).
As a major international neuroscience initiative, the Human
Connectome Project (HCP) aims to build a network map
of neural systems by systematically characterizing structural
and functional connectivity (FC) of the human brain (Van
Essen and Glasser, 2016). The project has made ground-
breaking achievements in both method development and
scientific discoveries, which acquired and analyzed a wealth
of multimodal MRI and magnetoencephalography (MEG) data
of unprecedented quality for further exploration of brain
cognitive functions (Elam et al., 2021). Connectomics is not only
important for studying normal brain functions but also highly
promising to understand the pathological basis of neurological
and psychiatric disorders for better diagnosis and treatments
(Deco and Kringelbach, 2014).

As the essential components of human connectomics,
structural and functional connectomes are driven by two
major imaging modalities, diffusion MRI and functional MRI,
respectively. Diffusion MRI is a method based on measuring the
random Brownian motion of water molecules within the white
matter (Baliyan et al., 2016), which can be used to infer long-
distance whiter mater tracts (tractography) that connect distant
brain regions informing structural connectivity (SC) (Van Essen
and Glasser, 2016). Such structural information describes the
physical substrate underlying brain functions. On the other
hand, functional MRI (fMRI) is a class of imaging methods
designed to measure regional, time-varying changes in brain
metabolism in response to either task stimuli (task-fMRI) or
spontaneous modulation of neural process (resting-state fMRI)
(Glover, 2011). The most common form of fMRI employs
blood oxygen level-dependent (BOLD) contrast imaging which
measures variations in deoxyhemoglobin concentrations, an
indirect measure of neuronal activity (Soares et al., 2016; Chow
et al., 2017). BOLD-fMRI has been widely used for large-scale
brain mapping (Gore, 2003; Just and Varma, 2007; Glover, 2011;
Power et al., 2014) and the fMRI data is predominantly analyzed
using FC, which is defined as the statistical dependencies
among fluctuating BOLD timeseries from distributed brain
regions (Friston, 2011). FC can be computed using either
simple correlation analysis (e.g., Pearson’s correlation) or more
sophisticated statistical methods such as mutual information,
independent component analysis and Hidden Markov models
(Karahanoglu and Van De Ville, 2017; Vidaurre et al., 2017;
Bolton et al., 2018).

Despite the great success and widespread use of SC and
FC in characterizing the organizational principles of large-
scale brain networks, their application to fundamental cognitive
neuroscience problems and clinical treatments is still limited

due to several notable limitations. First of all, such macroscopic
connectivity analysis is largely descriptive and superficial
(Stephan et al., 2015; Braun et al., 2018), thus unable to
offer a mechanistic account of the neural process underlying
cognitive function or dysfunction. Second, both SC and FC are
undirected and unsigned. Consequently, they cannot model the
inherent asymmetry observed in both anatomical and functional
connections (Felleman and Van Essen, 1991; Frässle et al.,
2016). In addition, the unsigned connections imply that SC
and FC are not able to infer excitatory or inhibitory coupling
strengths for excitation-inhibition (E-I) balance estimation.
This disadvantage is non-trivial because E-I balance plays
an important role in neural coding, synaptic plasticity, and
neurogenesis (Froemke, 2015; Deneve and Machens, 2016;
Lopatina et al., 2019). Lastly, neither SC or FC captures
intrinsic or intra-regional connections. As cortical neurons
are more subject to the influence of short-range (local) than
long-range (inter-regional) connections (Unal et al., 2013),
an alternative connectivity measure or modeling approach is
needed to account for intrinsic neural interactions for a more
comprehensive characterization of connectome.

To overcome the limitations of SC and FC, Friston and
colleagues introduced the concept of effective connectivity
(EC), which is defined as the directed causal influence among
neuronal populations (Friston et al., 2003; Friston, 2011).
Different from SC and FC, EC builds on a generative model of
neural interactions and corresponds to the coupling strengths of
the neuronal model estimated from the observed neuroimaging
data (Friston et al., 2003; Friston, 2011). As the generative
model describes how the latent (hidden) neuronal states and
their interactions give rise to the observed BOLD measurements
(for fMRI), EC can potentially provide mechanistic neuronal
accounts of the fMRI data under both normal cognitive
process and abnormal disease state. In addition, EC is directed
and signed, allowing estimation of excitatory and inhibitory
coupling strengths for E-I balance inference. Furthermore, by
incorporating more fine-grained microscopic or mesoscopic
neuronal models, intra-regional connection strengths can also
be estimated. Thus, effective connectivity based on generative
modeling provides a highly significant complementary approach
to conventional SC and FC analysis, which enables deeper
mechanistic understanding of functional connectome.

This review paper attempts to give a concise overview of
existing generative modeling approaches in fMRI analysis and
how they contribute to the emerging and rapidly growing field of
human connectomics. We first define generative modeling in a
general sense, discuss their important roles in neuroscience, and
introduce three major generative modeling frameworks in fMRI
connectome analysis. Next we review the state-of-the-art of each
of the three major generative modeling approaches and sample
their applications to cognitive or clinical neuroscience problems.
Lastly, we summarize the developments and achievements of
generative models in fMRI connectome analysis and discuss
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future research directions for this dynamic and promising field
in neuroscience.

Generative modeling of human
connectomics

Generative models are computational models that are built
to simulate the response profile of a complex system based
on the physical mechanisms of interactive components (Li
and Cleland, 2018). Such models are designed to generate
proper values for all embedded variables with interpretable
physical meaning rather than deriving certain properties from
a “black box” to study certain higher-level phenomena (Li
and Cleland, 2018). Generative modeling has many useful
applications, such as interpreting the underlying mechanisms of
emergent properties in complex systems, testing the sufficiency
of working hypothesis, and making testable predictions to
guide experimental design. Since the introduction of the
classical Hodgkin and Huxley model (Hodgkin and Huxley,
1952), generative modeling has become a core component in
computational neuroscience. Traditional generative neuronal
models (based on non-human data) have been focused on how
collective properties of neurons, synapses and structures give
rise to network activity and dynamics to sustain neural circuit
functions (e.g., Hasselmo et al., 1995; Durstewitz et al., 2000; Li
et al., 2009; Markram et al., 2015; Hass et al., 2016). Such detailed
biophysical neuronal models involve collecting sufficient
anatomical and electrophysiological data at the cellular and
synaptic levels mostly from non-human subjects. Generative
models can then be constructed by integrating the anatomical
and physiological data with known neuronal biophysics within
a microscale circuit. A notable example for such detailed
modeling is the Blue Brain project, an international initiative
that aims to create a digital reconstruction of the mouse brain
to identify the fundamental principles of brain structure and
function (Markram, 2006).

The generative models for human connectomics have
several distinct features compared with detailed microcircuit
models for non-human data. First, they focus on the estimation
of effective connectivity or coupling strengths among neural
populations. Second, they are driven and constrained by
neuroimaging data such as diffusion MRI, fMRI and MEG, and
seek to reveal the neuronal mechanisms underlying the observed
data. Third, they generally apply population-level (neural
mass) models to describe network dynamics as such dynamic
models relate more closely to macroscopic neuroimaging data
by describing the collective activity of neuronal populations
(Breakspear, 2017). Lastly, generative models for connectomics
commonly involve an optimization strategy to estimate
the coupling strengths among neural populations based on
neuroimaging data. This contrasts with detailed microcircuit
neuronal models that usually infer model parameters from

anatomical and electrophysiological data. Thus, generative
models for connectomics consist of three essential components:
(1) a neuronal model that generates population-level neural
activity; (2) an observation model that transforms the neural
activity to simulated neuroimaging data; and (3) an optimization
scheme to estimate connection parameters.

Depending on the differences in neuronal models, the scope
of parameter estimation and the optimization scheme, existing
generative models for connectomics can be broadly classified
into three major types: (1) Dynamic Causal Model (DCM);
(2) Biophysical Network Model (BNM); and (3) Dynamic
Neural Model (DNM) with direct parameterization. Below we
review the foundation and development of these three types of
generative models and survey their applications to cognitive or
clinical neuroscience.

Dynamic causal modeling

Overview

Dynamic causal modeling (DCM) is a predominant
analysis framework to infer effectivity connectivity of individual
connections at single subject level using standard Variational
Laplace procedures (Friston et al., 2003, 2007). A typical
DCM contains a forward (generative) model that describes
the dynamics of interacting neuronal populations and a
measurement model that converts the neuronal activity
into measurable observations such as fMRI, MEG and
electroencephalogram (EEG) (Figure 1). During model
inference, DCM simulates the BOLD responses for models
with different configurations of connectivity and determines
the model that best characterizes the empirical fMRI data.
DCM adopts a two-stage process to estimate EC (Zeidman
et al., 2019a,b). The first stage is Bayesian model inversion
(estimation), a process that finds the parameters which provide
the best trade-off between model accuracy (how good the
model fits the data) and model complexity (how far the
parameters need to deviate from their prior values to fit the
data); such trade-off is quantified as model evidence. The
second stage is termed Bayesian model comparison where
models with different network connectivity are compared based
on evidence either at the single-subject or group level. For
detailed procedures about the two-stage process, see two recent
tutorial papers on DCM (Zeidman et al., 2019a,b).

The original deterministic DCM applies to task-fMRI only
and is restricted to relatively small networks (< 10 brain
regions) due to computational burden (Daunizeau et al., 2011).
To account for resting-state activity, two variations of DCM,
stochastic DCM (Li et al., 2011) and spectral DCM (Friston
et al., 2014), have been developed. Stochastic DCM estimates
EC as well as random fluctuations on both neural states
and measurements, which is computationally intensive and
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FIGURE 1

Overview of DCM. In DCM, neural interactions among different brain regions (R1, R2, etc.) are described by a bilinear model. Effective
connectivity includes both a baseline (a21 a31, etc.) and a modulatory component (e.g., b2

31) due to exogenous experimental inputs (u1, u2),
whereas the matrix C represents the influence of external inputs on neural activity. The regional neural activity [x(t)] is converted to BOLD
response [y(t)] via a biophysical hemodynamic model. With individual empirical fMRI data, DCM estimates effective connectivity (the matrices A
and B) as well as the matrix C using Bayesian estimation technique.

thus can handle only a few numbers of brain regions. By
comparison, spectral DCM estimates the parameters of cross-
spectral density of neuronal fluctuations instead of time-varying
fluctuations in neuronal states, which is much more stable and
computationally efficient. By using FC as prior constraints, the
computational efficiency of spectral DCM is further improved,
enabling modeling of relatively large networks (36 nodes, Razi
et al., 2017).

The original DCM is limited to modeling one neural
population for each brain region, which is later extended to
two-state DCM to account for the intra-regional interactions
between excitatory and inhibitory neural populations
(Marreiros et al., 2008). Despite the added biological realism,
the two-state DCM is still a linear model, and consequently may
not accurately represent the brain neural dynamics in the long
term (Singh et al., 2020). A major advancement to DCM for
fMRI was introduced recently by replacing the bilinear model
with a neural mass model (NMM) of the canonical microcircuit
(Friston et al., 2019). Specifically, four neural populations are
modeled in each brain region coupled with both inter- and
intra- laminar connections of the cortical microcircuitry; each
neural population is further represented by two hidden states
whose dynamics are governed by second-order differential
equations. By incorporating a sophisticated and physiologically
informed NMM, DCM for fMRI parallels the development

of DCM for electrophysiological data (Moran et al., 2011;
Friston et al., 2012), which is able to provide deeper mechanistic
insights for observed fMRI data. It should be noted that both
the earlier two-state DCM or the latest NMM-based DCM are
designed for task-fMRI, although one could potentially apply
them to the resting-state condition by modeling the exogenous
inputs as Fourier series (Di and Biswal, 2014).

Despite the significant technical advance of DCM in both
model scope (i.e., extension to resting-state fMRI) and model
complexity (i.e., use of sophisticated NMM), computational
efficiency remains a major limitation. Even for the most
efficient spectral DCM, inversion of a medium size network
with 36 nodes takes about 20–40 h (Razi et al., 2017),
limiting its application to whole-brain network and big dataset.
To address this limitation, a novel variant of DCM (i.e.,
regression DCM) has been developed (Frässle et al., 2017,
2018, 2021a,b). Regression DCM (rDCM) converts the linear
DCM equations from the time domain to the frequency
domain, enabling efficient solution of differential equations
using Fourier transformation. Together with other assumptions
such as fixed hemodynamic response function, rDCM treats
model inversion in DCM as a special case of Bayesian linear
regression problem. These technical innovations have equipped
rDCM with extremely high computational efficiency, which
requires just a few seconds to estimate EC of a whole-brain
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network with 66 nodes (Frässle et al., 2017). Later technical
improvements such as sparsity constraints in rDCM enable
EC estimation of larger brain-wide networks with denser
connections (> 200 regions, > 40,000 connections) within
only a few minutes (Frässle et al., 2018, 2021b). Together
with the latest extension to resting-state fMRI (Frässle et al.,
2021a), rDCM opens promising new opportunities for human
connectomics. Nevertheless, current rDCM is inherently linear
and has not incorporated more realistic generative NMMs,
which hinders its application to fundamental neuroscience
problems. Other variants of DCM include sparse DCM (Prando
et al., 2019) and DCM with Wilson-Cowan-based neuronal
equations (Sadeghi et al., 2020).

The neural and measurement models

The original DCM uses a bilinear state space model (Friston
et al., 2003):

ẋ (t) = [A+
∑

k

Bkuk (t)]x(t)+ Cu(t) (1)

where x(t) denotes the hidden neuronal states for multiple brain
regions, u(t) represents exogenous experimental inputs and the
matrix C models the influence of external inputs on neuronal
activity. A is the baseline effective connectivity and Bk represents
the modulation on effective connectivity due to the input uk(t).
DCM estimates the parameters A, Bk and C based on fMRI data.
For the generative neural models of other variants of DCM, refer
to related publications (Marreiros et al., 2008; Li et al., 2011;
Friston et al., 2014, 2019; Frässle et al., 2017, 2018).

DCM employs a biophysical hemodynamic model to
translate the regional neural activity xi(t) to observed BOLD
response yi(t) (Friston et al., 2003). Specifically, for each region
i, the fluctuating neuronal activity xi(t) leads to a vasodilatory
signal si(t) which is subject to self-regulation. The vasodilatory
signal induces change in the blood flow fi(t) resulting in
subsequent change in blood volume vi(t) and deoxyhemoglobin
content qi(t). The hemodynamic model equations are given as
follows (Friston et al., 2003):

dsi(t)
dt
= xi(t)− κsi(t)− γ(fi(t)− 1) (2)

dfi(t)
dt
= si(t) (3)

τ
dvi(t)

dt
= fi(t)− v

1
α

i (t) (4)

τ
dqi(t)

dt
=

fi(t)
ρ

[
1− (1− ρ)1/f (t)

]
−

qi (t)
vi (t)

v
1
α

i (t) (5)

where κ is the rate of decay, γ is the rate of flow-dependent
elimination, τ is the hemodynamic transit time, α is the Grubb’s

exponent and ρ is the resting oxygen extraction fraction.
The predicted BOLD response is calculated as a static non-
linear function of blood volume and deoxyhemoglobin content
that depends on the relative contribution of intravascular and
extravascular components:

yi(t) = v0(k1
(
1− qi (t)

)
+ k2(1− qi(t)/vi(t))+ k3(1− vi(t)))

(6)
where v0 is the resting blood volume fraction, and k1, k2

and k3 are the intravascular, concentration and extravascular
coefficients, respectively.

Development and implementation of
dynamic causal models

Development of DCM models involves several major
steps: (1) experimental design and hypothesis formulation;
(2) selection of regions and extraction of fMRI-BOLD
timeseries; (3) selection of DCM model depending on the
fMRI modality (task or resting-state), network size and the
problem of interest (i.e., one state, two-state or NMM-
based DCM); (4) specification of the neural model including
network connectivity and experimental inputs; (5) model
estimation at subject-level; and (6) group-level analysis with
Parametric Empirical Bayes (PEB; Friston et al., 2016). DCM
is implemented using the SPM software package1 running
under MATLAB. The detailed implementation procedures can
be found in two recent DCM guide papers (Zeidman et al.,
2019a,b).

Applications to cognitive neuroscience

As the predominant analysis method to compute EC, DCM
has been used extensively to study cognitive problems in
neuroscience. Below, we review a few examples from the huge
literature that showcase the applications of DCM to understand
cognitive processes including attention, perception, emotion
and decision making. Cognitive information processing is
regulated by two fundamental principles including functional
separation and functional integration (Sporns, 2013; Deco et al.,
2015; Wang et al., 2021). To investigate the basic connectivity
architecture of neural structures in goal-directed attentional
processing, Brázdil et al. (2007) conducted an event-related
fMRI study employing the visual oddball task, one of the most
widely used experimental paradigms in cognitive neuroscience.
The deterministic DCM and bayes factors were applied to infer
the coupling strengths among different brain regions and the
parameters embodying the influence of experimental inputs
on connectivity, and to compare competing neurophysiological

1 https://www.fil.ion.ucl.ac.uk/spm/software/
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models with different intrinsic connectivity. The study revealed
that a bidirectional frontoparietal information flow exists
[from intraparietal sulcus (IPS) to prefrontal cortex (PFC)
and from anterior cingulate cortex (ACC) to PFC and
the IPS] during target stimulus processing, which may
indicate simultaneous activation of two distinct attentional
neural systems. Compared with exteroceptive attention (i.e.,
inputs from external environment), the neural mechanism of
interoceptive attention (i.e., the awareness and conscious focus
toward physiological signals arising from the body) is much
less known. To evaluate the functional role of the anterior
insular cortex (AIC) in interoceptive attention, Wang et al.
(2019b) applied a novel cognitive task that directed attention
toward breathing rhythm and utilized DCM analysis of fMRI
data to explain the potential mechanisms of interaction between
AIC and other brain regions. After model inversion, random-
effects Bayesian Model Selection (BMS; Stephan et al., 2009)
was applied to determine the best model from 52 candidate
models based on the observed data from all participants. The
authors reported that interoceptive attention was associated
with elevated AIC activation, increased coupling strength
between AIC and somatosensory areas, and weaker coupling
between the AIC and visual sensory areas. Notably, the
differences in individual interoceptive accuracy can be predicted
by AIC activation, suggesting the essential role of AIC in
interoceptive attention.

DCM has also been applied to study perceptual learning,
a process of improved perceptual performance after intensive
training. To examine how perceptual learning modulates the
responses of decision making-related regions, Jia et al. (2018)
combined psychophysics, fMRI and model-based approach,
and trained participants on a motion direction discrimination
task. DCM models were constructed to examine whether
learning changes the EC among V3A, middle temporal area
(MT), intraparietal sulcus (IPS), frontal eye filed (FEF) and
ventral premotor cortex (PMv). The network receives external
motion inputs from both V3A and MT with motion direction
(trained vs. untrained). BMS with random effect analysis
(Stephan et al., 2009) was applied to test nine candidate models
with different modulation assumptions. Results indicated that
learning strengthened the EC on the feedforward connections
from V3A to PMv and from IPS to FEF, suggesting that
perceptual learning leads to decision refinement. In a recent
study, Lumaca et al. (2021) employed DCM in conjunction
with PEB analysis to identify modulation of brain EC during
perceptual learning of complex tone patterns based on fMRI
of a complex oddball paradigm. The authors found that errant
responses were associated with excitation increase within the left
Heschl’s gyrus (HG) and left-lateralized increase in feedforward
EC from the HG to the planum temporale (PT), which
suggests that the prediction errors of complex auditory learning
are encoded by connectivity changes in the feedforward and
intrinsic pathways within the superior temporal gyrus.

In addition to task-fMRI, resting-state fMRI has been
analyzed by DCM models to study the neural substrate
of cognition. Esménio et al. (2019) combined functional
and effective connectivity analysis to characterize the
neurofunctional architecture of empathy in the default
mode network (DMN). They performed resting-state fMRI scan
on 42 participants who completed a questionnaire of dyadic
empathy. Using spectral DCM on resting-state fMRI data, they
observed that subjects with higher scores in empathy showed
stronger EC from the posterior cingulate cortex (PCC) to
bilateral inferior parietal lobule (IPL), and from the right IPL to
the medial prefrontal cortex (mPFC). Such findings support the
hypothesis that individual difference in self-perceived empathy
is mediated by systematic variations in effective connectivity
within the DMN, which underlie differences in FC.

Biophysical network model

Overview

Besides DCM, BNM is another popular generative model
that has been proved to be useful in studying fMRI connectome.
BNM for fMRI is a modeling framework that incorporates
structural and physiological properties of brain networks,
represents each network node with populations of neurons,
and connects distinct nodes with long-range fibers estimated
from diffusion MRI data to simulate fMRI responses (Figure 2;
Honey et al., 2007, 2009; Deco and Jirsa, 2012; Deco
et al., 2013a,b). BNM is typically large-scale whole brain
network model comprising of up to 1,000 network nodes
(Honey et al., 2007, 2009; Deco et al., 2013a,b; Sanz-Leon
et al., 2015). There are two major approaches to model the
neuronal dynamics of local network node. The first approach
is “direct simulations” where a large number of individual
neurons linked by local synaptic rules are simulated (Stephan
et al., 2015). This approach is similar to detailed biophysical
microcircuit modeling, though in BNM individual neurons
are usually modeled by simplified spiking models instead
of full-scale conductance-based compartmental models (i.e.,
Hodgkin and Huxley type model). The major drawbacks
of “direct simulations” include heavy computational burden
and large number of loosely constrained model parameters
often requiring inference from animal electrophysiological
data, which makes systematic exploration of parameter space
and conclusive analysis infeasible (Stephan et al., 2015). An
alternative method is to represent each network node with a
neural mass or mean-field model of local neuronal populations,
often referred to as a mean-field reduction approach (Deco
and Jirsa, 2012; Deco et al., 2013b). Due to the tractability and
balance between biophysical realism and model complexity, the
mean-field modeling approach has become the mainstream of
current BNMs of neuroimaging data.
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FIGURE 2

Overview of BNM. BNM is large-scale whole brain network model containing up to hundreds of network nodes (i.e., brain regions). For a
parcellation template, the connectivity of different brain regions is determined by structural connectivity (SC) informed from diffusion tensor
imaging (DTI) tractography. The SC is scaled by a global coefficient to model synaptic efficiency or strengths among remote neural populations.
The neuronal dynamics of each network node is described by first-order differential equation modeling the membrane potential of individual
neurons. The regional neural activity [x(t)] is transformed into BOLD signal [y(t)] via a hemodynamic model from which simulated functional
connectivity (FC) is computed. BNM fits simulated FC to empirical FC by optimizing the global scaling coefficient. After fitting, BNM can be
applied to simulate fMRI response and study the relationship between SC and FC.

Despite increased tractability of the mean-field reduction
approach, BNM is still highly complex because of large network
size and inherent non-linearity. As a result, it is extremely
challenging to estimate the coupling strengths of all individual
connections. Consequently, BNMs have been focusing on
simulating fMRI data using SC as a proxy for synaptic weights
(Honey et al., 2007, 2009; Deco et al., 2013a; Jirsa et al., 2017),
estimating only one single global scaling coefficient for all inter-
regional connections (Deco et al., 2013b; Wang et al., 2019a),
or estimating a small subset of connection parameters typically
at group-average level (Deco et al., 2014a,b; Demirtaş et al.,
2019). In addition, most BNMs are optimized to fit the high-
level statistics such as FC instead of raw BOLD timeseries (Deco
et al., 2013a,b; Wang et al., 2019a), which may not capture the
dynamic features of fMRI signals accurately.

Thankfully, substantial progress has been made in term
of parameter estimation for BNMs in recent years. Using
expectation-maximization (EM) approach, Wang et al.
(2019a) estimated a total of 138 parameters of a large-scale
dynamic mean-field model including region-specific recurrent
excitation strength and subcortical input level, though only
one global scaling constant was estimated for all inter-regional
connections. Besides, a new SC-guided computational approach
to estimate whole-brain EC has been proposed and applied to
language development (Hahn et al., 2019). This new approach
uses SC as initial guess for EC which is iteratively updated
according to a gradient descent algorithm to maximize the

similarity between modeled FC and empirical FC. Lastly, a
novel variant of BNM has been developed recently that is
capable of individual EC inference in whole-brain network
(Gilson et al., 2016, 2018, 2020). Different from traditional
BNMs, this new framework models local neuronal dynamics
with the multivariate Ornstein-Uhlenbeck (MOU) process
and estimates EC by maximum likelihood, which is referred
to as MOU-EC. From a dynamic systems point of view,
MOU-EC corresponds to a network with linear feedback
which is equivalent to the multivariate autoregressive (MAR)
process, or the linearization of the non-linear Wilson-Cowan
neuronal model (Wilson and Cowan, 1972; Gilson et al.,
2020). Characterized by a balance between tractability and
rich dynamics on parameter variations, MOU-EC offers a
comprehensive new set of tools to study distributed cognition
and neuropathology (Gilson et al., 2020). Nevertheless, the
MOU-EC approach does not model within-region excitatory
and inhibitory interactions.

In summary, BNM and DCM share similarities but also bear
significant differences. At the common side, they both have a
generative model for neuronal dynamics and a measurement
model to convert the neuronal activity to BOLD signal, and
usually integrate an optimization scheme to estimate EC. At
the different note, DCM focuses on estimating individual EC
at single subject level, while BNM focuses on simulating fMRI
data. Based on such distinct design objectives, DCM utilizes
a relatively simple bilinear neural model while BNM employs
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more realistic spiking or neural mass models. Also, BNM usually
utilizes SC as a proxy for synaptic efficacy or a backbone
for EC, while DCM does not necessarily require structural
information, though it can be used as a prior constraint
(Sokolov et al., 2020). Besides, DCM is usually confined to
small networks (up to tens of nodes) while BNM applies to
large-scale whole brain networks (up to hundreds of nodes).
Moreover, DCM uses a Bayesian framework to estimate EC
which provides the full posterior probability distributions of
model parameters and enables Bayesian model comparison. In
contrast, the optimization schemes in BNMs are diverse and
generally provide point estimates of model parameters, which do
not possess the capability of automatic pruning of connections.
Lastly, DCM generally fits to raw BOLD timeseries (but see
spectral and regression DCM) while BNM usually fits to high-
level summary statistics such as FC. It should be recognized that
the latest developments of DCM for fMRI (e.g., NMM-based
DCM, regression DCM) and BNM (e.g., MOU-EC) have strived
to overcome the limitations of each framework, representing a
convergence between DCM and BNM (Stephan et al., 2015).

The neural model

Spiking neuron model
For the “direct simulation” approach in BNM, individual

neurons are commonly described by the classical integrate-
and-fire (IF) spiking neurons (Tuckwell, 1988) connected with
biophysical synapses. The membrane potential (Vm) is governed
by the following equation:

Cm
dVm

dt
= −gm (Vm − VL)− Isyn + IExt (7)

where Cm is the membrane capacitance, gm the leak
conductance, VL the resting potential, and IExt the external
input. When Vm crosses a threshold Vth in the upward direction,
a spike is generated and the membrane potential is reset to a
value Vres for a refractory time period τres. The total synaptic
current Isyn is a summation of recurrent excitatory/inhibitory
inputs from local region and excitatory inputs from other
brain areas; Excitatory inputs are mediated by both AMPA
and NMDA receptors, while inhibitory inputs are mediated
by GABAA receptors. Synaptic currents follow the following
biophysical model (Deco and Jirsa, 2012; Deco et al., 2014b):

Isyn (t) =WgsynB(Vm)s(Vm − Vsyn) (8)

where W is the synaptic weight, gsyn the maximal synaptic
conductance, s the gating variable, and Vsyn is the
synaptic reversal potential. The magnesium block function
B (Vm) = 1/(1+ exp(−0.062Vm)/3.57) for NMDA currents
and B (Vm) = 1 for AMPA and GABAA currents. The gating
variable s follows the following dynamics:

For AMPA or GABAA current:

ds
dt
=

−s
τAMPA/GABA

+

∑
i

δ(t − ti) (9)

For NMDA current:

ds
dt
=
−s

τNMDA
+ αsx(1− s) (10)

dx
dt
=
−x
τx
+

∑
i

δ(t − ti) (11)

where x models the neurotransmitter concentration with the rise
time constant τx. τAMPA, τGABA and τNMDA are the decay time
constants for AMPA, GABAa and NMDA synapses, respectively,
ti is the presynaptic spike times, and αs controls the saturation
properties of NMDA.

Dynamic mean field model
The dynamic mean field model (MFM) has been frequently

used in BNMs (Deco et al., 2013b, 2014a,b; Wang et al., 2019a),
which is derived by mean-field reduction of the spiking neuronal
network model. Each brain region is described by the following
set of non-linear stochastic differential equations (Deco et al.,
2013b; Wang et al., 2019a):

dSi

dt
= −

Si

τs
+ r (1− Si) H (xi)+ σvi (12)

H (xi) =
axi − b

1− exp(−d(axi − b))
(13)

xi = wJSi + GJ
∑

j

CijSj + I (14)

where Si, xi and H (xi) represent the average synaptic gating
variable, the total input current, and the population firing rate
at brain region i, respectively. G is a global scaling factor, J is
the value of synaptic coupling, w is the recurrent connection
strength, and Cij denotes the SC between region i and region j. τs

and r are kinetic parameters, and a, b and d are parameters of the
function H (xi). vi represents uncorrelated Gaussian noise with
standard deviation σ. The simulated neural (synaptic) activity Si

is fed to the same hemodynamic model as DCM (Eqn. 2–6) to
generate simulated BOLD timeseries.

Development and implementation of
biophysical network models

Development of BNMs includes the following major steps:
(1) parcellating the brain into discrete regions; (2) extracting
whole-brain fMRI-BOLD timeseries and calculating FC; (3)
computing SC based on diffusion MRI data; (4) representing
each network node with populations of spiking neurons or
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neural-field/NMM of local neuronal populations; (5) linking
individual network nodes with long-range connections based
on SC; (6) transforming the network activities to simulated
BOLD signals via a hemodynamic model; and (7) fitting model
parameters to FC via an optimization scheme.

There are a number of computational software packages
to facilitate the development and implementation of BNMs
including NEURON (Carnevale and Hines, 2006), BRIAN
(Goodman and Brette, 2009; Stimberg et al., 2019), NEST
(Gewaltig and Diesmann, 2007), and The Virtual Brain (TVB;
Jirsa et al., 2010; Sanz-Leon et al., 2013). Specifically, NEURON
is the preferred simulation environment for the construction
of morphologically and biophysically realistic neuronal models
and networks. BRAIN and NEST are tailored for spiking
network models that focus on the dynamics and structures of
neural systems rather than the exact morphology and physiology
of individual neurons. Different from NEURON, BRAIN and
NEST that concentrate on simulation of individual neurons
within small brain regions, TVB is a platform specifically
designed for constructing and simulating personalized brain
networks based on multimodal neuroimaging data such as
fMRI, diffusion MRI, MEG and EEG. Conveniently, one could
choose different neural mass or neural field models of local
dynamics from TVB’s predefined model classes and apply
different measures of anatomical connectivity [CoCoMac or
human diffusion-weighted imaging (DWI) data].

Application to cognitive neuroscience

One fundamental question in cognitive neuroscience is
how different cognitive states such as attention, sleep and
wakefulness are defined mechanistically and switch from
one state to the other. Existing definitions focus on resting
networks and statistical description of functional activity
patterns (Barttfeld et al., 2015; Tagliazucchi et al., 2016), which
do not provide a mechanistic understanding of the dynamical
coordination between neural systems. Recent breakthrough
from computational neuroscience has filled this important gap
(Deco et al., 2019; Kringelbach and Deco, 2020). Based on
the concept of metastabilty (i.e., the ability of a system to
maintain its equilibrium for an extended time in the presence
of small perturbations), Deco et al. (2019) defined brain state
as an ensemble of “metastable substates” each characterized by
a probabilistic stability and occurrence frequency. This novel
definition allows for systematic investigation of brain state
transition. Using a unique fMRI and EEG dataset recorded
from healthy subjects during awake and sleep conditions,
Deco et al. (2019) fit a whole-brain generative BNM to the
probabilistic metastable substates (PMS) space of the empirical
data corresponding to the awake and sleep conditions. It was
demonstrated that in silico stimulation predicted by the BNM
can accurately force transitions between different brain states,
and in particular, from deep sleep to wakefulness and vice versa.

These findings provide valuable insights how and where to
induce a brain state transition using whole-brain BNM, which
may potentially apply to restore the pathological brain state to
normal state using external stimulation. The new brain state
definition and modeling framework were recently applied to
study the effect of external stimulation on functional networks
in the aging healthy human brain (Escrichs et al., 2022). The
authors first characterized the brain states as PMS space in two
groups of subjects [middle-aged adults (age < 65) and older
adults (age ≥ 65)], based on a large-cohort resting-state fMRI
dataset (N = 310 for each group). A whole-brain BNM was
then developed and fit to the PMS and in silico stimulation
with region-specific intensity was applied to induce transitions
from the brain states of the older group to those of the middle-
age group. The authors discovered that the precuneus, a brain
region belonging to DMN and involved in a variety of complex
functions such as episodic memory and visuospatial processing,
is the best stimulation target for brain state transition. This
elegant study suggests that generative models for neuroimaging
data could potentially serve as gateway for the design of novel
brain perturbation techniques to reverse the adverse effects of
aging on cognitive functions.

Another important contribution of BNM to cognitive
neuroscience is the manifestation of the dynamical origin of
slowness of thought during task-based cognition (Kringelbach
et al., 2015). This discovery relies on a major finding from whole-
brain BNMs that the brain is not only metastable (Tognoli
and Kelso, 2014), but also maximally metastable (Cabral et al.,
2014; Kringelbach et al., 2015). Such dynamical property has far-
reaching implications as it leads to a characteristic slowness of
spontaneous dynamics when the brain network enters the state
of transition, a phenomenon termed “critical slowing down”
(Kringelbach et al., 2015; Meisel et al., 2015). Notably, a previous
whole-brain BNM has also revealed a critical slowing down on
the edge of a criticality (Deco et al., 2013b). Together these
modeling studies suggest that optimal task processing requires
extensive examination of the dynamical repositories of brain
networks, which explains the nature of slowness of cognition.
It should be stressed that such fundamental insights can only be
made possible by generative neuronal modeling (Deco and Jirsa,
2012) because traditional FC analysis cannot reveal whether the
brain is maximally metastable or not.

Since its introduction, the MOU-EC model (Gilson et al.,
2016) has been applied to offer insights into the neural
mechanisms of cognition. It has been well documented that
perceptual categorization, the mapping of sensory stimuli to
category labels, involves a two-stage processing hierarchy in
both the visual and auditory systems (Riesenhuber and Poggio,
2000; Ashby and Spiering, 2004; Jiang et al., 2007, 2018).
The first stage is a “bottom-up” stage where neurons in the
sensory cortices learn to respond to stimulus features while
the second stage is a “top-down” stage where neurons in
higher cortical areas learn to classify the stimulus-selective
inputs from the first stage. To investigate whether the two-stage
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processing hierarchy also exists in the somatosensory system,
Malone et al. (2019) designed an experiment where human
participants, after training to label vibrotactile stimuli presented
to their right forearm, underwent an fMRI scan while actively
engaging in categorizing the stimuli. The authors first applied
representational similarity analysis to identify the stimulus-
and category- selective areas. Next they utilized the MOU-
EC method (Gilson et al., 2016) to estimate whole-brain EC
among 200 regions. It was observed that the influence (i.e.,
effective drive) from most of the category-selective areas to
the stimulus-selective areas was much higher than that in
the opposite direction. These findings support the two-stage
processing hierarchy in the somatosensory system, providing a
unified computational principle for perceptual categorization.
The MOU-EC model has also been used to study the
neural mechanisms underlying the engagement of functionally
specialized brain regions, and in particular, how brain network
connectivity is modulated under different cognitive conditions
to give rise to differential regional dynamics (Gilson et al., 2018).

Dynamic Neural Model with direct
parameterization

Overview

In addition to DCM and BNM, the two major types
of generative models for fMRI, there exist other modeling
frameworks that estimate EC and study connectome in a
generative fashion (Havlicek et al., 2011; Olier et al., 2013;
Fukushima et al., 2015; Becker et al., 2018; Singh et al., 2020; Li
et al., 2021). One framework that shows promising application
to cognitive and clinical neuroscience is Dynamic Neural Model
(DNM) with direct parameterization. This type of modeling
approach attempts to balance the complexity of BNM with the
identifiability of DCM so that the model is both sufficiently
realistic and equipped with the capability to efficiently estimate
individual connections at single subject level. Notably, DNM
utilizes non-linear dynamic models or NMMs to model local

FIGURE 3

Overview of the MNMI framework. The neural activity [x(t)] is generated by the Wilson-Cowan network model (Wilson and Cowan, 1972)
consisting of multiple brain regions (R1, R2, etc.). Each region contains one excitatory (E) and one inhibitory (I) neural populations coupled with
reciprocal connections and receives spontaneous input (u). Different brain regions are connected via long-range fibers whose baseline
strengths are determined by structural connectivity from diffusion MRI. The regional neural activity is converted to corresponding BOLD signal
[y(t)] via a hemodynamic model (Friston et al., 2003). Both intra-regional recurrent excitation (WEE) and inhibition (WIE) weights and
inter-regional connection strengths (W12, W21, etc.) as well as spontaneous input (u) are estimated using genetic algorithm to maximize the
similarity between simulated and empirical FC. Adapted from Li et al. (2021) under the Creative Commons Attribution License (CC BY).
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neuronal population activity, thus able to capture the extended
patterns of the spatiotemporal dynamics of brain networks.

One recent development of DNM is termed Mesoscale
Individualized Neurodynamic (MINDy) modeling that fits
non-linear dynamical neural models directly to fMRI data
(Singh et al., 2020). To achieve computational efficiency,
MINDy models regional neural population activity in the fMRI
scale (instead of neuronal firing scale) using an abstracted
NMM. After converting the continuous-time neural model
to a discrete-time analog, an objective function is formed
by summing up the one-step prediction errors of empirical
BOLD timeseries, which allows the calculation of error gradients
analytically. Using a computationally efficient optimization
algorithm [Nesterov-Accelerated Adaptive Moment Estimation
(NADAM, Dozat, 2016)], model parameters are estimated
to minimize the objective function. The high computational
efficiency enables identification of EC parameters in large-scale
networks with hundreds of nodes in just 1–3 min per subject,
making it ideally suitable for big dataset application. Notably,
MINDy requires no prior anatomical constraints or long-term
summary statistics for model inversion and provides estimation
of individual connection parameters in an individualized and
efficient manner, representing a significant departure from
existing methods.

Another example of DNM with direct parameterization is a
framework termed Multiscale Neural Model Inversion (MNMI,
Figure 3; Li et al., 2021). In MNMI, the neuronal activity
is generated by a neural mass network model comprised of
multiple brain regions. Each region contains one excitatory
and one inhibitory neural populations coupled with reciprocal
connections, and the intrinsic dynamics are described by the
classical Wilson-Cowan model (Wilson and Cowan, 1972). The
excitatory neural populations within different brain regions
are connected via long-range fibers whose baseline connection
strengths are determined by SC from diffusion MRI; weak
inter-regional connections are removed to construct sparse
networks and avoid the problem of over-parameterization.
The regional neural activity is converted to corresponding
BOLD signal via a hemodynamic model (Friston et al.,
2003) and FC is computed using Pearson’s correlation.
MNMI then applies genetic algorithm, a biologically inspired
optimization algorithm, to estimate both intra-regional and
inter-regional coupling strengths to minimize the difference
between simulated and empirical FC. Similar to MINDy,
MNMI estimates EC for individual connections at single
subject level, thus offering personalized assessment. MNMI
differs from MINDy in several aspects including using a more
biologically informed NMM with excitatory and inhibitory
interactions, modeling neural activity in neuronal firing scale
(vs. fMRI scale), utilizing structural information to constrain EC
estimation, and applying genetic algorithm (vs. gradient descent
algorithm) to estimate model parameters. One limitation of
MNMI is its heavy computational burden, which prevents

large-scale whole-brain network applications. Nevertheless,
MNMI provides a multiscale modeling framework to fathom
deeper brain connectivity features in health and disease.

The neural model

Neural mass models are commonly used to model local
neuronal dynamics in DNM. For instance, MINDy and MNMI
use one-state and two-state NMMs, respectively. The NMM
in MNMI is described by the following differential equations
(Wilson and Cowan, 1972; Li et al., 2021):

τe
dEj(t)

dt
= −Ej (t) +

S

(∑
k

WkjCkjEk(t)+W j
EEEj(t)−W j

IEIj (t)+ u+ ε (t)

)
(15)

τi
dIj(t)

dt
= −Ij (t)+ S

(
W j

EIEj (t)+ ε(t)
)

(16)

where Ej and Ij are the mean firing rates of excitatory and
inhibitory neural populations in brain region j, τe and τi are the
excitatory and inhibitory time constants, W j

EE, W j
EI and W j

IE are
the local coupling strengths from excitatory to excitatory neural
population, from excitatory to inhibitory neural population and
from inhibitory to excitatory neural population, respectively.
The variable u is a constant external input representing average
extrinsic drive from other un-modeled brain regions, and ε(t)
is random additive noise following a normal distribution. The
long-range connectivity strength from region k to region j is
represented by Wkj scaled by empirical SC (Ckj). The non-
linear response function S is modeled as a sigmoid function
S = 1/(1+ e−( x−µ

σ
)). MNMI estimates connection parameters

Wkj, W j
EE, W j

IE, and input u based on individual SC and FC.

Development and implementation of
Dynamic Neural Models

The development steps of DNMs are generally similar
to BNMs: (1) parcellating the brain into discrete regions;
(2) selecting brain regions to model and extracting fMRI-
BOLD timeseries; (3) calculating FC and/or SC if necessary;
(4) representing each network node with a NMM of local
neuronal populations; (5) linking individual network nodes
with long-range connections with or without SC constraint; (6)
deconvolving the empirical BOLD signals with a hemodynamic
response function (HRF, Singh et al., 2020) or transforming
the network activities to simulated BOLD signals via a
hemodynamic model (Li et al., 2021); and (7) fitting model
parameters to deconvolved BOLD signals or FC via an
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optimization scheme. Due to the flexibility in neuronal
model, SC utilization, choice of objective function and
optimization algorithm, DNMs are generally implemented
using customized scripts with MATLAB or other computing
languages (e.g., C++).

Application to clinical neuroscience

DNM has been applied to study the circuit mechanisms of
major depressive disorder (MDD). MDD is a leading cause of
chronic disability worldwide with a lifetime prevalence of up to
17% (Kessler et al., 2005), but the underlying pathophysiological
mechanisms remain elusive. Functional connectome analysis
indicates that MDD can be characterized as a disorder with
dysfunctional connectivity and regulation among multiple
resting-state networks including the DMN, salience network,
executive control network and limbic network (Menon, 2011;
Dutta et al., 2014; Mulders et al., 2015; Drysdale et al., 2017).
However, two important questions remain unresolved. First, it
is not clear which functional networks play a central role and
which functional networks play a subordinate role in MDD
pathogenesis. Second, it is unclear whether the dysconnectivity
or dysregulation originates from limbic or cortical system
and whether such dysregulation results from intrinsic (intra-
regional) or extrinsic (inter-regional) mechanisms. Answering
these two questions is not only important for deeper mechanistic
understanding of MDD pathology but also necessary for more
targeted treatments.

The MNMI framework is well suited to address these
questions due to its biological realism utilizing a physiologically
informed NMM and its multiscale nature incorporating
both intra-regional and inter-regional neural interactions. By
applying the MNMI framework to a large sample-size resting-
state fMRI dataset consisting of 100 MDDs and 100 normal
control (NC) healthy subjects, Li et al. (2021) demonstrated
that MDD pathology is more likely caused by aberrant circuit
interactions and dynamics within a core “executive-limbic”
network rather than the “default mode-salience” network,
consistent with the long-standing hypothesis of limbic-cortical
dysregulation in MDD (Mayberg, 1997, 2002, 2003; Davidson
et al., 2002; Disner et al., 2011). Notably, model results
indicated that both limbic and cortical systems and both
intra-regional and inter-regional connectivities could play a
role in MDD pathology. Specifically, MNMI analysis showed
that recurrent inhibition within the amygdala was abnormally
decreased and the excitatory EC from the superior parietal
cortex (SPC) to the amygdala was abnormally increased,
which may underlie hyperactivity of the amygdala in MDD
(Drevets, 2001; Siegle et al., 2002), leading to increased anxiety
and cognitive bias over negative stimuli (Figure 4; Disner
et al., 2011). In addition, the EC from the SPC to the
dorsolateral prefrontal cortex (dlPFC) switched from excitation

in NC to inhibition in MDD, which well explains dlPFC
hypoactivity (Fales et al., 2008; Hamilton et al., 2012), resulting
in deficit cognitive control (Figure 4; Disner et al., 2011).
The model also revealed other abnormal connectivity patterns
in MDD including elevated recurrent excitation in the SPC,
reduced SPC inhibition on the thalamus and decreased dlPFC
excitation on the hippocampus, which may underlie biased
attention for negative stimuli, abnormal brain oscillations and
impaired memory function, respectively (Figure 4; Disner et al.,
2011; Li et al., 2021). Overall, by employing a biologically
plausible NMM, the MNMI framework provides a mechanistic
account of circuit dysfunction in MDD which highlights
the importance of targeting the executive-limbic system for
maximal therapeutic benefits.

Summary and future direction

Driven by the rapid advances in non-invasive neuroimaging
techniques, the young emerging field of human connectomics
has made significant accomplishments in characterizing the
large-scale organizational features of both structural and
functional brain networks. Notwithstanding, the potential
of connectomics to answer fundamental neuroscience and
clinical questions has yet to bring into full play. To achieve
such important goal, computational connectomics has moved
beyond the anatomical and statistical description of connectivity
to more mechanistic formulation of the neural processes
underlying neuroimaging data (i.e., mechanistic connectome).
Mechanistic connectome based on generative modeling of fMRI
offers a natural and principled tool to link microscopic or
mesoscopic neural process with macroscopic BOLD dynamics,
which enables mechanistic understanding of brain cognitive
functions in heath and dysfunction in diseases. It is important
to note that, unlike static structural connectome, mechanistic
connectome based on effective connectivity is parameterized
by the state of the brain. That is, one would obtain a very
different mechanistic connectome when the task demands
change, or when the stimuli challenge, or when endogenous
activity switches to a different state (e.g., inward vs. outwardly
directed attention) (Friston et al., 2003; Jung et al., 2018; Park
et al., 2021). Thus, there will not be a conventional atlas for
the mechanistic connectome like one could obtain for the
structural connectome.

Recent years have seen tremendous development and
expansion of generative model-based connectome analysis
toolsets. Two well-established and widely used modeling
frameworks include DCM and BNM, which represent
two approaches at the opposite end of biological realism
and estimation tractability. Specifically, while DCM allows
estimation of full connection parameters at individual subject
level, the physiological interpretability for model parameters is
limited due to the abstract bilinear state model. On the other

Frontiers in Human Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnhum.2022.940842
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-940842 August 16, 2022 Time: 9:21 # 13

Li and Yap 10.3389/fnhum.2022.940842

FIGURE 4

A hypothetic model of executive-limbic malfunction in MDD. MDD is mediated by increased recurrent excitation in the superior parietal cortex
(SPC) and greater inhibition from the SPC to the dorsolateral prefrontal cortex (dlPFC), leading to increased SPC activity and decreased dlPFC
response, which may underlie deficit cognitive control and biased attention for negative stimuli. In addition, the excitatory drive from the SPC to
the amygdala is abnormally elevated in MDD. Combined with reduced recurrent inhibition, the amygdala shows hyperactivity which causes
increased anxiety and biased processing of negative stimuli. Besides, the inhibitory drive from the SPC to the thalamus is reduced while the
excitatory projection from the dlPFC to the hippocampus is abnormally decreased in MDD. The former change could result in abnormal brain
oscillations and insomnia while the latter change could account for impaired memory function and biased memory for negative stimuli. The
blue arrows indicate the change of the connection strengths in MDD from normal control. The pink UP/DOWN arrows next to the brain regions
indicate the change in neural responses in MDD compared to normal control. Adapted from Li et al. (2021) under the Creative Commons
Attribution License (CC BY).

FIGURE 5

A unified mechanistic pipeline for generative model-based neuroimaging analysis to treat brain disorders. In this analysis pipeline, individual
subjects first undergo multiple neuroimaging scans/recordings such as MRI, EEG and MEG. The multi-modal neuroimaging data are then
combined with data fusion and fed into the generative model to estimate individualized EC and other relevant physiological parameters such as
neuromodulatory levels. The estimated model parameters are then fed back into the generative model to simulate existing treatment response
and new treatment development as well as their side effects. Based on the simulation outcome, the generative model will predict optimal
treatment strategy for the patient along with drug dose or stimulation parameters.

hand, though BNM incorporates more physiologically grounded
neuronal models for fMRI generation, its identifiability is
limited to one or a small subset of parameters often at the

group-average level. Effort to combine the advantages of DCM
with BNM has led to the development of a different type of
modeling framework that can be categorized as Dynamic
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Neural Model (DNM) with direct parameterization. DNM
seeks to model population-level neuronal dynamics accurately
with biophysically plausible NMMs and estimate physiologically
meaningful parameters for individual connections at single
subject level. It should be noted that the boundary among
these three types of generative models is diminishing with the
latest developments of DCM and BNM which utilize more
biophysically informed models and are equipped with the
capability for efficient EC estimation of large-scale networks
at both individual connection and individual subject levels.
One should expect the convergence of DCM, BNM and DNM
continues in the future.

While much progress has been made, more needs to be done
to meet the challenges in neuroscience. It should be recognized
that even the most sophisticated BNM is only a highly simplified
representation of the human brain, yet more complex models
would make parameter inference much more difficult, raising
the question of how to determine the right level of complexity
in generative modeling. One important rule of thumb is that
models should only be considered that are in the right ballpark
of complexity to address the question at hand. That is, they
need to have parameters relating to the quantities of interest
(interpretability), while not being more complex than the data
can accommodate (given the limited resolution of fMRI). This
principle has been well implemented in DCM via Bayesian
model selection, a process where different candidates of models
are iteratively generated and compared to reach the models
that have the optimal level of complexity (Stephan et al., 2009;
Rosa et al., 2012). Specifically, the optimal model optimizes the
trade-off between accuracy and complexity, which is quantified
by the log model evidence (i.e., log p(y|m); Zeidman et al.,
2019a,b). The topic of complexity deserves more consideration
in future generative modeling studies given the need to
explore more physiologically based neuroscience questions
(e.g., neuromodulatory effects on cognitive functions). Also,
to have a thorough understanding of the neural mechanisms
of cognition, a truly multiscale model is wanted which has
the capability to link cellular, circuit, network and system
dynamics with behavioral response. Moreover, to enable more
accurate estimation of model parameters, generative models
need to integrate multimodal neuroimaging data (e.g., fMRI,
MEG, and EEG) into a unified framework. Lastly, in order

to apply to clinical interventions, generative models should
be able to explore new treatment paradigms such as non-
invasive brain stimulation for brain disorders, predict optimal
personalized treatment and simulate the treatment outcome
(Figure 5). Addressing such grand challenges will lead to a
new class of generative models for neuroimaging data that not
only revolutionizes the field of human connectomics but also
significantly advances our understanding of the human brain
and neuropsychiatric disorders.
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