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Abstract Characterizing hydrological processes on large scales is challenging due to limitations of
observational networks, remoting sensing platforms, and modeling techniques. Water balances have
larger uncertainties in mountain regions, where orographic processes produce high spatial variability in
precipitation patterns and snow accumulation. Recent work suggests current water budgets underestimate
mountain snow water storage, perhaps indicating biases in modeled precipitation. We assess whether
global hydroclimate data sets underestimate precipitation for six North American watersheds, ranging from
3–70% mountainous. By selecting a single representative year for each watershed, we compare relatively
high‐resolution precipitation estimates from the Weather Research and Forecasting (WRF) regional climate
model with four global products: Modern‐Era Retrospective Analysis for Research and Applications,
version 2, the Global Land Data Assimilation System, the Global Precipitation Climatology Project, and the
Climate Research Unit's climate data set. Comparisons to WRF precipitation suggest that observation‐based
gridded data products do not produce reasonable estimates of watershed‐scale cool‐season precipitation,
underestimating by 1–69%. The Global Precipitation Climatology Project and the Climate Research Unit
data set have average biases of −26% and −38%, respectively. The Modern‐Era Retrospective Analysis for
Research and Applications version 2 and the Global Land Data Assimilation System show smaller
underestimates relative to WRF (−17% and −21%, respectively), with nearly all mean bias from the
mountains (underestimated by 27% and 39%) rather than the topographically simpler lowlands
(underestimated by 5% and 2%). We suggest global products fail to capture orographic enhancement of
precipitation, resulting in large underestimates of precipitation, snowfall, and snow water storage in
mountains of selected North American watersheds, which highlights the need for more accurate
precipitation estimates to accurately assess spatiotemporal variations in the water cycle.

1. Introduction

Although foundational to large‐scale water resource studies, and despite decades of work, characterization
of water balance fluxes and storages at continental‐to‐global scales remains challenging. Recent studies have
produced water balance estimates globally (Dirmeyer et al., 2006; Rodell et al., 2015; Trenberth et al., 2007;
Trenberth & Fasullo, 2013a), for individual continents (Trenberth & Fasullo, 2013b; Xia, Mitchell, Ek,
Sheffield, et al., 2012; Xia, Mitchell, Ek, Cosgrove, et al., 2012) and for a diverse range of large river basins
(Gao et al., 2010; Leung et al., 2003; Louie et al., 2002; MacKay et al., 2003; Roads et al., 2003; Roads &
Betts, 2000; Smith & Kummerow, 2013; Stewart et al., 1998; Szeto et al., 2008). However, the accuracy of
these estimates remains in question, since observational networks are sparse (Hughes et al., 2017; Kidd
et al., 2012; Lundquist et al., 2013; Serreze & Hurst, 2000; Shiklomanov & Nelson, 2003; Vörösmarty et al.,
2001; Walsh et al., 1998), current remote sensing capabilities vary significantly among the various terms
in the water balance (Lettenmaier et al., 2015), and modeling of hydrologic processes at large scales is
challenging (Dirmeyer et al., 2006; Wood et al., 2011; Xu, 1999).

Large‐scale precipitation estimates are particularly uncertain in mountainous basins. Due to orographic
enhancement, precipitation patterns change with variations in mountain elevation at relatively short
(~1 km) spatial scales (Barros & Lettenmaier, 1994; Daly et al., 1994; Dettinger et al., 2004; Henn et al.,
2018; Lundquist et al., 2008, 2010; Margulis et al., 2016; Neiman et al., 2002). High spatial variability in
orographic precipitation and other hydrologic processes combined with particularly limited observational
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networks (Hughes et al., 2017; Kidd et al., 2012; Lundquist et al., 2013) and poor satellite retrieval skill (Adler
et al., 2003; Maggioni et al., 2016) complicate estimation of both fluxes and storages in the mountains.

These limitations are especially problematic because mountain ranges often play outsized roles in hydrolo-
gical processes and water resources for regions downstream (Viviroli et al., 2007). For example, seasonal
snowpacks are often critical to characterization of large‐scale water balances but are challenging to model
or measure over large regions, especially in mountainous areas. In the continental United States, an esti-
mated two thirds of streamflow originating in mountainous areas begins as snow (Li et al., 2017).
Seasonal snowpack leads to order‐of‐magnitude increases in residence time of water within the basin, con-
trolling streamflow rates (Barnhart et al., 2016) and increasing the fraction of total precipitation that ulti-
mately becomes runoff (Berghuijs et al., 2014). Snow also complicates water balance measurement and
modeling: snowfall measurement is highly affected by wind speed at the time of the measurement, leading
to undercatch that often exceeds 50% (Gray & Male, 1981) and to the need for post facto corrections (Yang
et al., 2005). Even in highly gauged regions of the continental United States, high‐resolution gridded preci-
pitation data sets derived from in situ gauges exhibit significant uncertainty (Henn et al., 2018).

Regional climate models (RCMs) such as the WRF model have been shown to be remarkably accurate in
simulating precipitation and snowpack dynamics in the mountains, due in part to recent developments in
modeling snowfall processes. Leung and Qian (2003) recognized that orographic precipitation simulations
would be highly dependent upon model resolution and thus used high‐resolution RCMs to simulate pro-
cesses in complex terrain. More recently, a new microphysics scheme was developed to better represent
snowflake hydrometeor shape for modeling snowfall (Thompson et al., 2008). Following from these devel-
opments, considerable work has found WRF simulations to reliably estimate precipitation (Caldwell et al.,
2009; Cardoso et al., 2013; Gutmann et al., 2012; Leung & Qian, 2009; Qian et al., 2010; Warrach‐Sagi
et al., 2013), including snowfall in the Sierra Nevada (Hughes et al., 2017) and high precipitation rates in
the Olympic Mountains (Currier et al., 2017). Indeed, WRF simulations are emerging as one of the better
options for estimating basin‐scale precipitation in mountain environments where orographic processes
are important. Though WRF's ability to estimate precipitation is better represented in the literature, WRF
has also been shown to have skill in capturing snowpack dynamics in the Colorado Rockies (Rasmussen
et al., 2011) and the Sierra Nevada (Berg & Hall, 2017; Caldwell et al., 2009; Pavelsky et al., 2011; Waliser
et al., 2011; Wrzesien et al., 2015; Wrzesien et al., 2017), among other regions (e.g., Jin & Wen, 2012; Liu
et al., 2017; Qian et al., 2010). Thus, a consensus has begun to develop that RCMs show enough skill to repro-
duce reasonable patterns of snowfall and snow water equivalent (SWE) accumulation in mountain terrain
(Caldwell et al., 2009; Ikeda et al., 2010; Minder et al., 2016).

There is some evidence to suggest that our existing estimates of large‐scale precipitation and snow accumu-
lation dynamics are incorrect in mountainous areas. Data sets used to produce such estimates usually con-
sist of coupled atmospheric reanalyses (e.g., the Modern‐Era Retrospective Analysis for Research and
Applications [MERRA], Rienecker et al., 2011) or global compilations of offline forcing data and hydrologic
models (e.g., the Global Land Data Assimilation System [GLDAS], Rodell et al., 2004); for example, Rodell
et al. (2015) characterized the global water balance using both MERRA and GLDAS. Alternatively, gauge‐
based gridded precipitation data sets (e.g., the Global Precipitation Climatology Project [GPCP], Adler
et al., 2003) can inform water budgets (e.g., Trenberth et al., 2007), but they must contend with sparse
observational networks in mountain regions. For modeling hydrologic processes, global reanalyses and
land data assimilation products underestimate snow accumulation across the continental United States
(Broxton et al., 2016), though moving to finer spatial resolution improves simulations within global climate
models (Kapnick & Delworth, 2013). In mountain regions, global data sets can perform poorly (Snauffer
et al., 2016), perhaps underestimating peak snow accumulation by up to 90% in the Sierra Nevada
(Wrzesien et al., 2017). To refine mountain SWE estimation, Wrzesien et al. (2018) used WRF to develop
a new representative climatology of snow water storage (SWS) across all North American mountains by
simulating one average water year for individual mountain ranges, and their results suggested that global
data sets underestimate SWS in North America by ~35%. Biases are particularly likely in mountainous
regions, where SWS estimates from the Canadian Sea Ice and Snow Evolution (Mudryk & Derksen,
2017) ensemble global data product is 66% lower than the high‐resolution WRF estimate. However, the
potential implications for large‐scale water balances of major river basins in North America has not yet
been explored.
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Whereas Wrzesien et al. (2018) identified a bias in current estimates of SWS over mountain ranges, the pri-
mary goal in this paper is to assess whether the role of precipitation is correctly estimated during the cool
season (October through March) across entire watersheds. To achieve this objective, we compare
representative‐year wintertime precipitation and SWS estimates from existing global data sets to the WRF
simulations performed byWrzesien et al. (2018). Past studies cited above suggest that WRF produces reason-
able results in mountain environments; though model evaluation against gridded SWE (Qian et al., 2010;
Wrzesien et al., 2015), precipitation (Hughes et al., 2017), or even terrestrial water storage estimates from
the Gravity Recovery and Climate Experiment satellite (Frappart et al., 2006; Wrzesien et al., 2018) is possi-
ble, no true validation data set exists. As such, in this paper, we assess only whether global data sets are con-
sistent with WRF simulations rather than performing a formal validation. For six major North American
River basins (the Columbia, Mackenzie, Missouri, Nelson, Upper Colorado, and Yukon), we evaluate preci-
pitation and SWS for individual watersheds and, separately, for both the mountainous and lowland parts of
each watershed. Based on the literature reviewed above, we hypothesize that (1) WRF simulations produce
more precipitation and greater peak SWS than the global data sets and that (2) WRF simulations more accu-
rately represent winter precipitation and SWS. If the first hypothesis is upheld by our analysis (as noted, the
second is not formally testable), we will interpret this finding as evidence that existing climatological average
water balance estimates for major North American River basins have underestimated the magnitude of pre-
cipitation, particularly snow, during winter months.

2. Data and Methods
2.1. Data
2.1.1. WRF
We use precipitation and snow storage estimates from the WRF regional climate model (Skamarock et al.,
2008) to assess global data sets. Wrzesien et al. (2018) use WRF version 3.6.1 coupled to the Noah‐MP land
surface model (Niu et al., 2011) with the interim European Centre forMedium‐RangeWeather Forecasts Re‐
Analysis (ERA‐Interim) providing the meteorological conditions at the boundary (Dee et al., 2011). Unlike
the Noah land surface model, Noah‐MP has a multilayer snowpack, which allows for more accurate simula-
tion of snowpack temperature (Etchevers et al., 2004). Noah‐MP allows for both liquid water and ice to accu-
mulate on the vegetation canopy through the interception of snowfall, which improves simulation of heat
exchanges between the canopy and surface snow, particularly in boreal forest regions (Niu et al., 2011;
Niu & Yang, 2004). The WRF setup uses the Thompson microphysics scheme (Thompson et al., 2004,
2008), which provides accurate precipitation estimation (Liu et al., 2011) due to improved simulation of
snowflake hydrometeor shape (Thompson et al., 2008). Further details on the simulations used here are
in Wrzesien et al. (2018), and WRF SWS data are available for download at the National Snow and Ice
Data Center (Wrzesien & Durand, 2018).

Instead of a traditional, 30‐year climatology, Wrzesien et al. (2018) create a representative climatology for
seasonal SWS accumulation over North America. They select a single, representative water year specific to
eachmountain range and estimate SWE at 9‐km spatial resolution. Representative years are selected by com-
paring the interannual variability from GLDAS and the National Land Data Assimilation System (Mitchell
et al., 2004; Xia, Mitchell, Ek, Sheffield, et al., 2012; Xia, Mitchell, Ek, Cosgrove, et al., 2012); specific details
and evaluation of the selection process are in the supporting information of Wrzesien et al. (2018). Their
comparisons show that each selected simulation year approximates long‐term average mountain snow accu-
mulation conditions. By simulating a single water year for eachmountain range, instead of amultiyear simu-
lation for the entire continent, the computational cost is greatly reduced. One limitation of theWrzesien et al.
(2018) data set for this analysis is that their method approximates average SWS for each mountain range;
here we are interested in precipitation for entire watersheds. Annual watershed precipitation, or even
watershed SWS, from their data set does not necessarily approximate the climatological average.

Here we use four of the domains in the WRF data set (centered on the Alaska Range, Cascades, Canadian
Rockies, and U.S. Rockies but including surrounding smaller mountain ranges and subranges), where each
WRF domain entirely encompasses at least one of our watersheds of interest. Since the WRF data are not a
traditional 30‐year climatology but rather a representative climatology that approximates long‐term average
conditions, we compare only a single water year of precipitation.While the data used here are fromWrzesien
et al. (2018), they only compared SWS across mountain regions; here we consider total precipitation,
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snowfall, and SWS for entire watersheds, incorporating both mountain and lowland regions. WRF
watershed precipitation data are available for download from Zenodo (Wrzesien et al., 2019).
2.1.2. GPCP
GPCP is a monthly precipitation data set based on observations—from station networks, satellites, and
sounding observations—with estimates available from 1979 to the present (Adler et al., 2003; Huffman
et al., 1997; Huffman et al., 2009). Gridded gauge data are from the Global Precipitation Climatology
Centre with over 70,000 stations (Schneider et al., 2008). The global data set is produced at 2.5° spatial reso-
lution. We use version 2.3, which can be downloaded at http://esrl.noaa.gov/psd/data/gridded/data.gpcp.
html.

2.1.3. CRU
The Climatic Research Unit (CRU) provides a 0.5° resolution monthly climate data set based on over 4,000
meteorological observations, spanning 1901 through the present (Harris et al., 2014; Mitchell & Jones, 2005;
New et al., 1999, 2000). First, a monthly climatology for 1961–1990 is created by interpolating station data
(New et al., 1999). For monthly meteorological estimates, observations within each grid cell are used to cre-
ate an anomaly estimate, relative to the 1961–1990 climatology, which can then be converted to a monthly
value across the entire time period. When stations are not available for a particular grid cell, data are either
infilled from more distant stations or relaxed to the climatological average. We use the CRU modeled preci-
pitation (hereafter referred to as just CRU) output from CRU TS v3.24.01. CRU data can be downloaded
from http://crudata.uea.ac.uk/cru/data/hrg.

2.1.4. MERRA‐2
Weuse precipitation, snowfall, and SWE data from theMERRA reanalysis, version 2 ([MERRA‐2] Rienecker
et al., 2011). MERRA‐2 data are available for download from the National Aeronautics and Space
Administration (NASA) Goddard Earth Sciences Data and Information Services Center (https://disc.gsfc.
nasa.gov/). The global reanalysis has a spatial resolution of 0.5° × 0.625°. MERRA‐2 has two precipitation
options, one entirely model generated and one with a correction algorithm based on the National Oceanic
and Atmospheric Administration Climate Prediction Center Unified Gauge‐Based Analysis of Global
Daily precipitation (Chen et al., 2008; Xie et al., 2007) and the Climate Prediction Center Merged Analysis
of Precipitation (Xie & Arkin, 1997) gridded observation‐based precipitation estimates (Reichle et al.,
2017). The corrected version, which is used to force the MERRA‐2 land surface parameterization, is applied
between 42.5°S and 42.5°N. Precipitation between 42.5°and 62.5° relaxes back to MERRA‐2 precipitation
estimates. Precipitation poleward of 62.5° is entirely generated by MERRA‐2.

Previous work has evaluated MERRA‐2 against other global models and reanalyses and found that it under-
estimates SWE compared to observations, though perhaps with a smaller negative SWE bias than other glo-
bal products (Broxton et al., 2016; Snauffer et al., 2016; Wrzesien et al., 2017).
2.1.5. GLDAS
For an offline, assimilated data set, we use precipitation estimates from GLDAS version 2.1 (Rodell et al.,
2004). Produced at 0.25°, GLDAS v2.1 provides 3‐hourly estimates for the entire globe from 2000 to the near
present. Atmospheric forcing, excluding precipitation, is from the National Oceanic and Atmospheric
Administration/Global Data Assimilation System (GDAS; Derber et al., 1991), while precipitation forcing
is from GPCP. GLDAS v2.1 uses the GPCP 1° daily version 1.2 data set (Huffman et al., 2001) and a disaggre-
gation routine of GDAS precipitation fields to create 3‐hourly GPCP estimates for precipitation forcing prior
to November 2015; after November 2015, only GDAS is used for precipitation since GPCP is not available.
GLDAS v2.1 can be downloaded from the NASA Goddard Earth Sciences Data and Information Services
Center (http://disc.sci.gsfc.nasa.gov). For simplicity, we refer to GLDAS v2.1 as GLDAS.
2.1.6. Methods

The six watersheds we analyze are shown in Figure 1. In Table 1, we describe each watershed in more detail
and include previously published annual precipitation estimates. Most studies consider annual total precipi-
tation, so cool‐season precipitation and SWS, which we focus on here, are not available for comparison.

One limitation of the WRF data set described in section 3.1.1 is that each domain is simulated for only one
water year, which was chosen to approximate average snow accumulation conditions for each mountain
range. To ensure the simulated precipitation also represents average conditions for each watershed, we com-
pare accumulated precipitation from the selected year to the 1980–2015 average fromMERRA‐2, GPCP, and
CRU; for GLDAS, we compare from 2001 to 2015 (Figure 2). We also compare monthly precipitation from
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the long‐term average and the selected representative year (supporting information Figure S1). For each, the
long‐term average presents a smoother seasonal pattern than our selected single year, though the
accumulated annual precipitation amounts are quite similar and within the standard deviation (Figure 2).
Table 2 gives the percent difference of the representative‐year precipitation from the long‐term average.
The annual precipitation for our representative years is within 5.3% (4.4%) of the long‐term average for
MERRA‐2 (GLDAS). Similarly, the annual precipitation of our selected years is within 4.4% (6.3%) of the
long‐term average for CRU (GPCP). The largest percent difference from each data set is 11%, 13%, 15%,
and 15%, for MERRA‐2, GLDAS, CRU, and GPCP, respectively. For MERRA‐2 and CRU, the largest
differences are over the Missouri watershed, while the largest difference for GLDAS is the Nelson and for
GPCP, the Upper Colorado. The high‐latitude watersheds (Mackenzie and Yukon) have the smallest
differences. Since the WRF simulation years were selected to approximate average snow accumulation
within mountains, it should not be surprising that we see some differences when comparing precipitation
over entire watersheds. The WRF domain for the Missouri watershed, for example, was designed to
estimate snow in the U.S. Rocky Mountains; therefore, while the selected year approximates average SWS
in the mountains, there are differences in the accumulated precipitation beginning in May, which is
outside of the period of analysis considered here. Despite differences in the selected year and the long‐
term average, particularly for the Missouri and the Upper Colorado, the SWS‐representative years are
generally representative of average precipitation conditions for each watershed. To ensure we do not
introduce additional uncertainty from the differences of the selected year and the climatological average,
throughout the rest of the study, we only consider the selected year for each watershed; that is, we
compare the same representative year from the five data products over each watershed.

Here we compare not only precipitation to WRF estimates but also snowfall and SWS, where applicable. We
consider how precipitation estimates differ over entire watersheds, in addition to the mountainous and

Figure 1. Map of river basins in this study. Darker areas indicate mountains within the watershed. Watersheds include
the Columbia (1), the Mackenzie (2), the Missouri (3), the Nelson (4), the Upper Colorado (5), and the Yukon (6).
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lowland portions of each basin. We divide watersheds into mountains and lowlands (see Figure 1) based on
the Kapos et al. (2000) mountain classification, which was also used to select mountain areas by Wrzesien
et al. (2018).

3. Results

Across our selected representative years, all five data sets have similar patterns of monthly cool‐season pre-
cipitation (Figure 3). Of the five estimates, WRF is the highest in most months, though occasionally other
data sets have larger monthly precipitation values, such as October–December in the Missouri. Figure 4
compares the total cool‐season precipitation for each river basin. Again, WRF has the largest estimate for
nearly all watersheds, with MERRA‐2, GLDAS, GPCP, and CRU estimates being 17%, 21%, 26%, and 38%
lower, respectively.

To examine spatial patterns of precipitation, we map the cool‐season accumulated precipitation for each
watershed (Figures 5 and S2–S6). The precipitation maxima over mountains are evident in the WRF visua-
lizations, due in part to WRF's high spatial resolution compared to the other data sets. To quantify the dif-
ference between WRF and the other data sets in mountains, we compare the total cool‐season
precipitation for mountainous areas and the percentage of precipitation that falls within mountains
(Table 3). In increasing order, the Nelson has the smallest fraction of precipitation falling in the mountains,
followed by the Missouri, Mackenzie, Upper Colorado, Yukon, and the Columbia with the largest fraction,
which is the same order as the basins sorted by mountainous area percentage. Of the data sets examined
here, WRF almost always has the largest fraction of its precipitation within the mountains; no data

Table 1
Drainage Area, Mountain Percentage, and Precipitation Estimates for Each Watershed

Watershed
Drainage
area (km2)

Mountain
percentage (%) Other annual precipitation estimate Point/subbasin precipitation estimates

Columbia 668,736 70
• 700 mm (Benke & Cushing, 2005) • 1,570 mm for Willamette (Daly et al., 1994)

• 200–2,500 mm from point measurements
(Matheussen et al., 2000; Naik & Jay, 2005;
Pulwarty & Redmond, 1997)

Mackenzie 1,807,920 25
• 258 mm (Benke & Cushing, 2005)
• 375–463 mm (MacKay et al., 2003;

Rouse et al., 2003; Stewart et al., 1998)
• 400 mm (Louie et al., 2002)

Missouri 1,371,017 11
• 501 mm (Benke & Cushing, 2005) • 450 mm for Great Plains (70% of drainage

area; Galat et al., 1998)
• 1,050 mm for Interior Highlands

(1.9% of drainage area; Galat et al., 1998)
• 626–1,072 mm for small subbasins

(Stone et al., 2003)
Nelson 1,104,354 3

• 520 mm (Benke & Cushing, 2005) • 300–500 mm for Canadian prairies
(Burn et al., 2008)

• 321–514 mm for meteorological stations
(Déry et al., 2005)

Upper Colorado 284,067 54
• 221 mm (Benke & Cushing, 2005)
• 405 mm (Dawadi & Ahmad, 2012;

Marlatt & Riehl, 1963)
• 354 mm (Christensen et al., 2004;

Christensen & Lettenmaier, 2007;
Vano et al., 2012)

Yukon 832,761 65
• 330 mm (Benke & Cushing, 2005) • 250–560 mm from precipitation gauges

(Brabets & Wolvoord, 2009)• 385 mm (Yang et al., 2009)
• 483 mm (Brabets et al., 2000)
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product consistently has the lowest fraction. Though fractions of mountain precipitation are similar, the four
global products have much less total cool‐season mountain precipitation than WRF (Tables 3 and 4), with
MERRA‐2 and GLDAS 27% and 39% lower than WRF, respectively, when averaged across all six
watersheds. Note that we produce no estimate from GPCP in the Nelson; due to the coarse spatial
resolution of GPCP, we cannot isolate the small mountain headwaters of the Nelson River.

We also compare precipitation estimates over the nonmountainous low-
lands (Table 4). Here we compare only GLDAS and MERRA‐2 to WRF,
since GPCP and CRU consistently underestimate WRF precipitation
across the entire watershed (Table 3 and Figure 4). When we evaluate pre-
cipitation estimates across full watersheds, MERRA‐2 and GLDAS are
17% and 21%, respectively, lower than WRF, on average. In the moun-
tains, MERRA‐2 is 27% lower than WRF estimates, while GLDAS is 39%
lower. In contrast, in lowland regions, MERRA‐2 and GLDAS are nearly
unbiased relative to WRF, with mean biases of 5% and 2%, respectively.
Thus, the negative bias over the full watershed is largely driven by under-
estimated precipitation in the mountains. In the lowlands, the three data
sets have similar accumulated precipitation estimates (Figure 6), and no
one data set consistently has the highest precipitation. In the mountains,
WRF always has the largest precipitation value (Figure 6).

The precipitation underestimates in the mountains compared to the low-
lands highlight a potential systematic bias in the global data sets. To
understand if the mountain precipitation biases are a source of the SWS

Figure 2. Monthly accumulated watershed precipitation, in millimeters, for the selected representative year (orange) compared to the monthly long‐term average
(LTA, blue line). Dashed lines indicate one standard deviation of the long‐term average. CRU = Climate Research Unit; MERRA‐2 = the second Modern‐Era
Retrospective Analysis for Research and Applications; GLDAS = Global Land Data Assimilation System.

Table 2
Percent Difference of Precipitation Estimates From Our Representative Year
Compared to the Long‐Term Average for Each Global Data Set

Watershed MERRA‐2 GLDAS CRU GPCP
Watershed
average

Columbia 3.6 4.9 8.3 6.8 5.9
Mackenzie 3.9 6.3 −0.1 −1.3 2.2
Missouri 11.2 5.7 14.5 11.9 10.8
Nelson 3.2 12.6 4.9 7.4 7.0
Upper Colorado 6.5 0.3 7.8 14.7 7.3
Yukon 3.2 −3.2 −9.0 −1.6 −2.7
Data set average 5.3 4.4 4.4 6.3

Note. MERRA‐2 = the second Modern‐Era Retrospective Analysis for
Research and Applications; GLDAS = Global Land Data Assimilation
System; CRU = Climate Research Unit; GPCP = Global Precipitation
Climatology Project.
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underestimation, we partition rain and snow in the WRF, GLDAS, and MERRA‐2 estimates (Figure 7);
GPCP and CRU do not provide estimates of snowfall. Since we analyze winter precipitation, it is
unsurprising that both WRF and MERRA‐2 have a snowfall fraction of >0.5 for each watershed. GLDAS
generally has smaller fractions of snowfall, with values of 0.30–0.95. The higher‐latitude watersheds have
larger snow fractions, with ~90% of the total precipitation in the Mackenzie and Yukon basins falling as
snow. Interestingly, the MERRA‐2 snow fraction is nearly always higher than the WRF value (Figure 7),
though MERRA‐2 generally has less rainfall and snowfall than WRF across the cool season (Figure 8).
WRF has the highest rainfall and snowfall totals across all watersheds (Figure 8) apart from the Missouri,

Figure 3. Monthly cool‐season precipitation for each watershed, in millimeters, from the five data sets. The black line is
WRF, the solid blue is GPCP, the dashed blue is CRU, the dotted blue is MERRA‐2, and the dashed‐dotted line is GLDAS.
CRU = Climate Research Unit; MERRA‐2 = the second Modern‐Era Retrospective Analysis for Research and
Applications; GLDAS = Global Land Data Assimilation System; GPCP = Global Precipitation Climatology Project;
WRF = Weather Research and Forecasting; WY = water year.

Figure 4. Average cool‐season precipitation, in millimeters, for each watershed. CRU = Climate Research Unit; MERRA‐
2 = the second Modern‐Era Retrospective Analysis for Research and Applications; GLDAS = Global Land Data
Assimilation System; GPCP = Global Precipitation Climatology Project; WRF = Weather Research and Forecasting.
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where GLDAS has more rainfall than WRF or MERRA‐2, and the Yukon, where all three products have
similar amounts of snow. The higher snowfall fraction for MERRA‐2 coupled with the lower total
precipitation (Figure 4) indicates that MERRA‐2 has a larger percent difference from WRF in rainfall than
in snowfall. For example, for the Columbia at the end of March, MERRA‐2 has 15% less accumulated
snowfall than WRF, but 34% less rainfall. This is evident in Figure 8, where MERRA‐2 and WRF have
similar snowfall amounts for most watersheds (MERRA‐2 is 12% lower), but MERRA‐2 has much
less rainfall (34% lower). In contrast, GLDAS almost always has more rainfall than MERRA‐2 but less
snowfall. Further, GLDAS has 34% less accumulated snowfall than WRF, on average, but only 13% less
rainfall. Differences between GLDAS and MERRA‐2 may be due to how they partition rain and snow.

Finally, we compare watershed SWS fromWRF,MERRA‐2, and GLDAS (Figure 9). For the Yukon, the three
data sets have similar values of SWS throughout the accumulation and ablation seasons. For the other river
basins, however, MERRA‐2 (GLDAS) peak SWS ranges from 26–63% (48–72%) lower than the WRF peak

SWS estimate. Differences are more pronounced in the midlatitude
Columbia, Missouri, and Upper Colorado basins. When considering just
the mountains of each watershed (Figure 9, dashed lines), the pattern is
similar: MERRA‐2, GLDAS, andWRF SWS are comparable for the moun-
tains of the Yukon, but MERRA‐2 has 38–63% less SWS in the mountains
of all other watersheds, and GLDAS has 47–84% less. On average,
MERRA‐2 SWS for the full watershed is 43% lower than WRF and moun-
tain SWS is 51% lower; GLDAS SWS is 51% and 58% lower than WRF for
the full watershed and the mountains, respectively.

Though we aim to compare SWS estimates for a representative year, we
note that 1 year will never match a climatology. For example, in the
Missouri watershed, all data sets show a spike in SWS at day 175 from a
snowfall event in the lowland portion of the watershed (see lowland pre-
cipitation increase in March in Figure 6). By comparing 1 year, we can
only evaluate a single instance of snowpack accumulation and ablation,

Figure 5. Accumulated cool precipitation (October–March) over the Columbia River basin from (a) Weather Research and Forecasting, (b) the secondModern‐Era
Retrospective Analysis for Research and Applications, (c) Global Land Data Assimilation System, (d) Global Precipitation Climatology Project, and (e) Climate
Research Unit. Accumulated precipitation is measured in millimeters. Each data product is shown at its native grid resolution.

Table 3
Average Watershed Precipitation, in Millimeters, From October Through
March in the Mountainous Portion of the Basin, With the Percent of Total
Cool‐Season Precipitation That Falls Within the Mountains in Parentheses

Mountains WRF MERRA‐2 GLDAS GPCP CRU

Columbia 652 (82) 451 (77) 366 (69) 355 (73) 390 (78)
Mackenzie 387 (41) 253 (35) 220 (41) 275 (44) 167 (32)
Missouri 317 (20) 271 (18) 205 (12) 201 (9) 153 (12)
Nelson 590 (10) 317 (6) 180 (5) — 282 (6)
Upper Colorado 293 (70) 222 (67) 177 (59) 174 (34) 215 (70)
Yukon 221 (72) 194 (67) 211 (64) 176 (60) 50 (51)

Note. MERRA‐2 = the second Modern‐Era Retrospective Analysis for
Research and Applications; GLDAS = Global Land Data Assimilation
System; CRU = Climate Research Unit; GPCP = Global Precipitation
Climatology Project; WRF = Weather Research and Forecasting.
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which will almost certainly not match a 30‐year climatology. Regardless of differences from our
representative year and a true climatology, by comparing the same year from WRF, MERRA‐2, and
GLDAS, we can still evaluate how the three data sets differ.

4. Discussion

Cool‐season water balances are largely controlled by the amount and phase of precipitation, impacting the
partitioning and timing of runoff (Berghuijs et al., 2014; Li et al., 2017; Musselman et al., 2017) and evapo-
transpiration (Hamlet et al., 2007), as well as affecting storage changes in snowpack, soil moisture, and
groundwater. In this study, we compared WRF to data sets often used to construct large‐scale water bal-
ances. We find that GLDAS, MERRA‐2, and GPCP total precipitation estimates to be on the order of 20% less
than WRF, with some variability among the six basins; CRU is 38% less than WRF. Though WRF precipita-
tion is consistent with GLDAS and MERRA‐2 in the lowlands (Figure 10), WRF estimates are over 30% lar-
ger than GLDAS and MERRA‐2 in the mountains. These differences are generally consistent across the six

Table 4
Cold‐Season Precipitation Biases, in Percentages, for the Full Watershed, the Mountains, and the Lowlands FromMERRA‐2
and GLDAS, Compared to Weather Research and Forecasting Values

Watershed

Full watershed Mountains Lowland

MERRA‐2 GLDAS MERRA‐2 GLDAS MERRA‐2 GLDAS

Columbia −24 −34 −31 −44 6 13
Mackenzie −22 −43 −35 −43 −13 −44
Missouri −8 11 −14 −35 −6 23
Nelson −20 −38 −46 −69 −17 −34
Upper Colorado −23 −29 −24 −40 −18 −5
Yukon −4 6 −13 −5 17 33
Average −17 −21 −27 −39 −5 −2

Note. MERRA‐2 = the second Modern‐Era Retrospective Analysis for Research and Applications; GLDAS = Global
Land Data Assimilation System.

Figure 6. Cool‐season accumulated precipitation in the mountains (top row) and lowlands (bottom row) of each watershed from WRF (blue line), MERRA‐2
(orange line), and GLDAS (yellow line). MERRA‐2 = the second Modern‐Era Retrospective Analysis for Research and Applications; GLDAS = Global Land
Data Assimilation System; WRF = Weather Research and Forecasting; WY = water year.
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watersheds, with one exception: for the Columbia (the watershed with greatest precipitation), WRF is >30%
greater than all other estimates. The Columbia is also the most mountainous of the watersheds at 70.3% and
has the highest fraction of precipitation that falls in the mountains (82% inWRF); this substantial contrast in
the Columbia highlights that basin‐wide precipitation differences are driven primarily by differences in the
mountains.

For snowfall, we find that WRF is fairly consistent with MERRA‐2 (12% different) but that WRF has more
snowfall than GLDAS (33% different). Neither GPCP nor CRU provide snowfall estimates. All snowfall
biases from MERRA‐2 and GLDAS are negative, compared to WRF, except for the Yukon basin. Finally,

Figure 7. Fraction of cool‐season (October–March) precipitation that falls as snow for each watershed. MERRA‐2 = the
second Modern‐Era Retrospective Analysis for Research and Applications; GLDAS = Global Land Data Assimilation
System; WRF = Weather Research and Forecasting.

Figure 8. Monthly accumulated cool‐season rainfall (top row) and snowfall (bottom row), in millimeters, for each watershed from WRF (blue lines), MERRA‐2
(orange lines), and GLDAS (yellow lines). MERRA‐2 = the second Modern‐Era Retrospective Analysis for Research and Applications; GLDAS = Global Land
Data Assimilation System; WRF = Weather Research and Forecasting; WY = water year.
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we find that WRF has larger peak SWS than either MERRA‐2 or GLDAS (again, GPCP and CRU do not pro-
vide estimates of SWS). On average, MERRA‐2 and GLDAS produce 43% and 50% less SWS, respectively.
Once again, this difference is almost entirely due to differences in the mountains (Figure 10). In the lowland,
MERRA‐2 (GLDAS) peak SWS is 9% (23%) less than WRF. WRF has far more SWS in the mountains how-
ever: MERRA‐2 and GLDAS values are 51% and 58% less than WRF, respectively. This finding is generally
consistent across all watersheds, though differences are more extreme for midlatitude basins and less
extreme at higher latitudes.

Figure 9. Watershed snow water storage, in cubic kilometers, fromWRF (blue lines), MERRA‐2 (orange lines), and GLDAS (yellow lines). Solid lines indicate the
entire watershed and dashed lines indicate the mountains of the watershed. MERRA‐2 = the second Modern‐Era Retrospective Analysis for Research and
Applications; GLDAS = Global Land Data Assimilation System; WRF = Weather Research and Forecasting; SWS = snow water storage; WY = water year.

Figure 10. Mean percent difference, in absolute value, of MERRA‐2 and GLDAS precipitation, fraction of precipitation
from snowfall, and SWS for the mountains and lowlands, as compared to WRF values. MERRA‐2 = the second
Modern‐Era Retrospective Analysis for Research and Applications; GLDAS = Global Land Data Assimilation System;
WRF = Weather Research and Forecasting; SWS = snow water storage.
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Though true validation of WRF precipitation and snow values remains impossible due to the inherent
mismatch in scale between the limited gauge network and the much coarser WRF grid, numerous recent
studies suggest that WRF produces reasonable estimates of precipitation (Caldwell et al., 2009; Cardoso
et al., 2013; Currier et al., 2017; Gutmann et al., 2012; Hughes et al., 2017; Leung & Qian, 2009; Qian
et al., 2010; Warrach‐Sagi et al., 2013) and snowpack (Ikeda et al., 2010; Liu et al., 2017; Minder et al.,
2016; Rasmussen et al., 2011; Wrzesien et al., 2018). As such, large divergences from WRF precipitation
may represent inaccuracies in global hydroclimate data sets. In some of our comparisons, we observe rela-
tively small differences betweenWRF, MERRA‐2, and GLDAS. Basin‐wideMERRA‐2 cold‐season precipita-
tion is within 24% of WRF values in all six basins (−17% mean bias), and MERRA‐2 lowland precipitation is
even more similar to WRF (maximum bias 18%, mean −5%). In each of these cases, GLDAS is somewhat
more different from WRF than is MERRA‐2 on a basin‐by‐basin comparison (with some cases >30% differ-
ent) but with mean biases relative to WRF similar to those fromMERRA‐2. In contrast, MERRA‐2 and espe-
cially GLDAS produce much larger (and consistently negative) biases in mountain precipitation (Table 4).
Though certainly not definitive, this result suggests that careful further examination of mountain precipita-
tion is warranted in these two widely used global products.

Our results suggest similar skill levels for MERRA‐2 and GLDAS SWS. In each global data set, lowland SWS
remains reasonably close to WRF values, with average differences of −8.8% and −22.7% for MERRA‐2 and
GLDAS, respectively. In contrast, mountain SWS values are often >50% different fromWRF values. SWS dif-
ferences for entire watersheds are largest in the Columbia, Missouri, and Upper Colorado. In the mountains,
results are similar, with large differences in the midlatitudes (Columbia, Nelson, and Upper Colorado) and
smaller differences in the high latitudes (Mackenzie and the Yukon). SWS differences in the midlatitude
mountains are likely driven by both precipitation (Figures 6 and 10) and temperature biases due to oro-
graphic processes at warmer air temperatures. Once the snow is on the ground, MERRA‐2 and GLDAS
are also characterized by earlier snowmelt than WRF, suggesting snow processes are likely handled incor-
rectly, perhaps due to energy balance biases. Previous work suggests that MERRA‐2 has large ground heat
flux errors during spring snowmelt (Lytle & Zeng, 2016). The fact that peak SWS biases are worse in midla-
titudes fits with this theory; snow at lower latitudes is likely to be closer to the melting point and thus more
susceptible to a temperature bias. Early snowmelt would have implications for other water cycle processes
throughout the spring and summer.

A difference fromWRF of >50% in SWS was suggested by Wrzesien et al. (2018) as a conservative threshold
for reasonable values. When compared to WRF estimates, MERRA‐2 (GLDAS) SWS has an average bias of
−51% (−58%) for the mountains, while only −8% (−23%) in the lowlands. Therefore, our analysis suggests
that MERRA‐2 and GLDAS produce reasonable values of SWS in lowlands but not in mountains.

Regardless of the differences between WRF, MERRA‐2, and GLDAS precipitation, our analyses and conclu-
sions are hindered by being limited to only a single simulation year. As discussed above, though the
Wrzesien et al. (2018) data set was created to approximate average SWS conditions for the mountains of
North America, it does not necessarily provide climatological precipitation for the six watersheds.
Further, it would be better to compare the data products across a range of hydrological conditions—wet,
dry, and average water years. Though multiyear WRF simulations would greatly increase the computational
cost, we suggest that future studies should consider multiple water years, such as the 13‐year simulation of
the contiguous United States developed by Liu et al. (2017). Simulating multiple years also provides an
opportunity to capture more diverse hydrologic conditions. For example, a low snowpack year could be
due to low precipitation or above‐average temperatures. Through careful selection of water years, future stu-
dies could compare how WRF and MERRA‐2, for example, differ in how they simulate snow droughts.
Addressing these considerations is beyond the scope of this study, but with ever‐improving computational
abilities, future work should prioritize multiyear simulations to evaluate over a broader range of
hydrologic conditions.

5. Conclusions

Our main objective was to determine whether cool‐season precipitation estimates from global data sets are
biased for major North American watersheds. We approached this goal by comparing a new data set from
high‐resolution WRF RCM simulations to four data sets: two that have precipitation amount only (CRU
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and GPCP) and two that include precipitation amount, phase, and snow accumulation (MERRA‐2 and
GLDAS). Three of the four global data sets (MERRA‐2, GLDAS, and GPCP) have mean basin‐wide, cold‐
season precipitation estimates <30% different from WRF. Both MERRA‐2 and GLDAS produce reasonable
fractions of snowfall. However, neitherMERRA‐2 nor GLDAS retains the snowpack long enough: They have
43% and 50% less peak SWS than WRF, on average.

Here we have shown that this disparity is almost entirely due to differences in the mountains, where oro-
graphic enhancement has been shown to have a critical role in regional water balances (Luce et al., 2013).
Indeed, all data sets produce substantially (27–39%, on average) less precipitation and snowfall than WRF
in mountainous areas. Remarkably, MERRA‐2 and GLDAS peak SWS is somewhat consistent with WRF
in the lowlands but 51% and 58% less than WRF in the mountains.

Our results point toward a possibility that global data sets produce too little cold‐season precipitation in the
mountains, which complements the findings of Wrzesien et al. (2018), who suggest global models underes-
timate mountain snow accumulation. However, when considering the nonmountainous portions of each
watershed, global data sets appear to have adequate precipitation in lowland areas. MERRA‐2 and
GLDAS precipitation estimates are within 5% of WRF values, on average, suggesting that global products
likely perform better in regions with simpler topography and precipitation processes. Here we also show that
MERRA‐2 and GLDAS do not retain snow long enough in the mountains, perhaps due to energy balance
biases. One possible source of bias may be that air temperatures simply do not stay cool enough to maintain
montane snowpack due to coarse resolution used to represent topography. When snowmelt comes too early,
it may also come too slowly. Slower snowmelt may shift the overall partitioning of precipitation from runoff
toward evapotranspiration (Berghuijs et al., 2014; Musselman et al., 2017). Thus, the low spatial resolution of
these models may lead to underestimation of mountain precipitation, impacting other water cycle processes,
such as runoff timing.
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