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[1] The depth and timing of snowpack in the Sierra Nevada Mountains are of fundamental
importance to California water resource availability, and recent studies indicate a shift
toward earlier snowmelt consistent with projected impacts of anthropogenic climate
change. In order for future studies to assess snowpack variability on seasonal to
centennial time scales, physically based models of snowpack evolution at high spatial
resolution must be improved. Here we evaluate modeled snowpack accuracy for the central
Sierra Nevada in the Weather Research and Forecasting regional climate model coupled
to the Noah land surface model. A simulation with nested domains at 27, 9, and 3 km
grid spacings is presented for November 2001 to July 2002. Model outputs are compared
with daily snowpack observations at 41 locations, air temperature at 31 locations, and
precipitation at 10 locations. Comparison of snowpack at different resolutions suggests
that 27 km simulations substantially underestimate snowpack, while 9 and 3 km
simulations are closer to observations. Regional snowpack accumulation is accurately
simulated at these high resolutions, but model snowmelt occurs an average of 22–25 days
early. Some error can be traced to differences in elevation and observation scale between
point‐based measurements and model grid cells, but these factors cannot explain the
persistent bias toward early snowmelt. A high correlation between snowmelt and error in
modeled surface air temperature is found, with melt coinciding systematically with
excessively cold air temperatures. One possible source of bias is an imbalance in turbulent
heat fluxes, erroneously warming the snowpack while cooling the surface atmosphere.
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1. Introduction

[2] Water resource availability in much of the Northern
Hemisphere is strongly dependent on wintertime storage and
springtime melt of mountain snowpacks. Seasonal snow-
packs and glaciers provide water resources to more than a
sixth of the global population [Barnett et al., 2005], and
global modeling studies suggest that warming temperatures
and changing atmospheric circulation patterns associated
with anthropogenic climate change will likely result in
altered snowpack timing and magnitude in many areas
[Arnell, 1999; Vicuna et al., 2007]. Among the regions most
dependent on mountain snowpack is the American West,
especially the state of California, where snowmelt releases

stored water resources during seasons with little precipita-
tion [Mote et al., 2005].
[3] Recent studies of historical snowpack in California

suggest that a move toward earlier snowmelt and peak
streamflow is already apparent [Kapnick and Hall, 2009,
2010; Hidalgo et al., 2009; Barnett et al., 2008; Weare and
Du, 2008; Maurer et al., 2007; Howat and Tulaczyk, 2005a,
2005b; Barnett et al., 2004; Cayan et al., 2001; Dettinger
and Cayan, 1995]. Most projections of future change in
mountain snowpack in the American West have been based
on global climate model (GCM) output, but GCMs alone
often fail to correctly simulate mountain snowpacks because
the highly complex orography associated with mountain
belts cannot be adequately captured with coarse GCM grid
spacings [Cayan et al., 2008]. As a result, most studies
downscale GCM output via dynamical methods such as a
regional climate model (RCM) [Salathé et al., 2010; Qian
et al., 2009], through distributed hydrologic models such
as the Variable Infiltration Capacity (VIC) model [VanRheenen
et al., 2004; Vicuna et al., 2007;Maurer, 2007;Maurer et al.,
2007; Hamlet et al., 2005; Barnett et al., 2008], or using
other statistical techniques [Miller et al., 2003; Dettinger
et al., 2004; Maurer and Duffy, 2005; Stewart et al.,
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2004]. Results of these recent downscaling studies suggest
that as temperatures in the western United States warm,
snowmelt is likely to occur earlier in the spring, more pre-
cipitation will fall as rain instead of snow, and overall
snowpack will decline in thickness and duration. Beyond this
general qualitative agreement, however, there is substantial
quantitative uncertainty in future projections of the spatial
and temporal extent of snowpack loss. The improvement of
future snowpack projections may occur through improved
statistical downscaling methods or increased accuracy of
physically based models, but each approach has challenges.
The accuracy of statistical downscaling approaches depends
on the assumed stationarity of statistical relationships devel-
oped using existing data sets, an assumption that remains true
under a changing climate to an unknown degree [Milly et al.,
2008]. Meanwhile, greater accuracy in physically based
modeling efforts depends on the more accurate simulation of
snowpack physics in current and future climates.
[4] Among the most promising avenues for improving

physically based simulation of current and future snowpacks
is through regional climate models such as the Weather
Research and Forecasting (WRF) model developed by the
National Center for Atmospheric Research and a number of
partner agencies [Skamarock et al., 2008]. WRF has been
successfully coupled to several land surface models that
incorporate snowpack physics, including the Noah model
used here [Chen and Dudhia, 2001]. Evaluations of snow-
pack in earlier versions of WRF using a variety of land sur-
face schemes and in other regional climate models suggest
generally low skill in tracking the accumulation and ablation
of snowpack water content over a snow season [e.g., Wang
et al., 2010; Caldwell et al., 2009; Duffy et al., 2006].
Recent studies evaluating snowpack in Noah suggest that
changes to albedo parameterizations and other model com-
ponents may result in substantial increases in model skill
[Livneh et al., 2010; Wang and Zeng, 2010; Barlage et al.,
2010]. Some of the suggested changes presented in these
studies have been incorporated into the version of WRF‐
Noah used here (version 3.1.1).
[5] Despite recent advances in WRF‐Noah, detailed

evaluation of snowpack simulations has been limited. Some
studies have largely focused on qualitative comparisons of
snowpack extent and snow water equivalent (SWE) across
large areas [Qian et al., 2009], while others have conducted
more extensive statistical testing at a handful of specific
stations [Wang et al., 2010; Livneh et al., 2010; Feng et al.,
2008]. Among recent studies, only the work of Barlage
et al. [2010] and Ikeda et al. [2010] has conducted a
quantitative comparison between WRF‐Noah snowpack and
observations across a large number of observation sites in
Colorado. These studies utilize version WRF‐Noah v. 3.0,
and their principal recommendation is to add an improved
time‐varying albedo term. This recommendation has been
followed in WRF‐Noah v 3.1.1, which is used here. In part,
validation of snowpack in WRF‐Noah has been limited
because evaluation of gridded model output against point‐
based snowpack measurements presents inherent difficulties.
Mountain snowpacks exhibit substantial spatial heterogene-
ity on scales even smaller than that of high‐resolution model
grid cells (e.g., 3 km) [Liston, 2004; Anderton et al., 2004], so
comparison of observed andmodeled snowpack may result in
apparent error simply due to this scaling mismatch, even

where model simulations of conditions averaged at the grid
scale are correct. However, all comparisons of gridded data
with point observations rest on the assumption that this type
of error is randomly distributed [Barlage et al., 2010; Ikeda
et al., 2010]. Absent any sources of persistent bias, compar-
ison of observed and modeled snowpack at a sufficiently
large number of points should yield a distribution with amean
error close to zero if the model snowpack physics are correct
and sufficiently detailed. An additional source of potential
error is derived from the effects of vegetation on snowpack.
Versions of WRF‐Noah from v 3.1 onward include consid-
eration of vegetation impacts on surface albedo in snow
covered areas but do not account for snowpack interception or
effects of the canopy on longwave radiation, both of which
can be important in forested environments [Andreadis et al.,
2009; Pomeroy et al., 2008, 2009]. However, because snow-
pack monitoring stations are generally sited in clearings rather
than under forest canopy, it is likely that these processes do not
substantially affect either the observations or model output
used here.
[6] In this study, we simulate snowpack and climate using

the WRF‐Noah model over the central portion of the Sierra
Nevada Mountains for the period November 2001 through
July 2002. This time period was selected to have approxi-
mately mean April snowpack values (96% of normal from
1950 to 2008) across 60 monthly snow stations used by
Kapnick and Hall [2010]. We compare model output against
daily SWE observations from 41 stations. We hypothesize
that by comparing observed and modeled snowpack at such
a large number of geographically proximate locations we
will be able to determine whether errors are due to a sys-
tematic model bias or are simply the result of different scales
of observation. While errors at any individual station may
result from the mismatched comparison of point‐based to
gridded data sets, bias in the distribution of errors at many
stations can likely be attributed to problems with the model.
Specifically, we address: (1) the impact of model grid
spacing on SWE simulation, (2) the accuracy of WRF‐Noah
SWE simulation, and (3) sources of error in WRF‐Noah
SWE output.

2. Data and Methods

2.1. The WRF‐Noah Modeling System

[7] The WRF model has been developed by the National
Center for Atmospheric Research (NCAR) and a number of
partner agencies [Skamarock et al., 2008]. WRF has been
used extensively for both operational meteorological fore-
casts and regional studies of climate and meteorology. Here,
we useWRF version 3.1.1 with the North American Regional
Reanalysis (NARR) product [Mesinger et al., 2006] as lateral
boundary conditions over the period November 2001 to July
2002 with output every 3 h. Simulations are conducted in
three one‐way nested domains at 27, 9, and 3 km horizontal
resolution (see Figure 1). These domains are referred to in the
text as D27, D9, andD3, respectively. The simulations are run
for 9 months without reinitialization by updating the large‐
scale forcing along the lateral boundaries at 3 h intervals.
NARR provides initial (at time step 0) and the regularly
updated lateral boundary conditions for D27. The boundary
conditions for D9 and D3 are obtained from the successively
coarser model domain. As such, simulations of all three
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domains are run concurrently, with larger domains processed
before smaller domains at each individual time step. There is
no feedback of conditions from high‐resolution domains
back to coarser domains. The outermost domain (D27) covers
the entire western coast of the U.S. and a large portion of the
adjacent Northeast Pacific to capture moisture flow into the
region. Elevation at the resolution of this domain is shown as
contours in Figure 1. The gross features of the regional
topography are captured at this resolution, but the finer def-
inition of individual mountain ridges is not resolved. The
middle domain (D9) covers the entire California Sierra
Nevada. The innermost domain (D3) covers the central por-
tion of the Sierra Nevada, including Yosemite National Park.
Figure 2, showing the region covered in D3, demonstrates
the substantially more detailed topography captured at 3 km
compared to the D27 topography shown in Figure 1. This is
unsurprising, since the entire D3 domain (3888 3 km grid
cells) is covered by just 48 D27 grid cells.
[8] We use the following physics options in WRF: the

Thompson et al. [2008] cloud microphysics scheme, the
rapid radiative transfer model longwave scheme [Mlawer
et al., 1997], the Dudhia shortwave scheme [Dudhia,
1989], the Yonsei University planetary boundary layer
scheme [Hong et al., 2006], and the modified Kain‐Fritsch
convection parameterization for the two outer domains
[Kain, 2004; Kain and Fritsch, 1990, 1993].

[9] We utilized the Noah land surface model [Chen and
Dudhia, 2001; Ek et al., 2003], which has been fully cou-
pled to theWRF atmosphere such that land surface conditions
can feed back into the atmosphere. The Noah model uses a
simplistic canopymodel and amultilayer soil model, in which
the topsoil layer is used to simulate surface soil conditions,
snowpack, and the vegetation canopy. As such, Noah simu-
lates snowpack as a single layer and does not separately
consider canopy snowpack. All liquid water within the
snowpack is immediately routed into the soil. However, Noah
does simulate snowpack accumulation, snowpack ablation
via sublimation and melting, and heat exchange between the
snowpack, soil, and atmosphere [Koren et al., 1999]. Noah
was selected over other land surface models coupled to WRF
because of its simple physics and extensive use in the recent
literature [e.g., Livneh et al., 2010;Barlage et al., 2010;Wang
et al., 2010].

2.2. Observational Data

[10] Daily observations of SWE were acquired at 41 loca-
tions within the innermost (D3) WRF domain from the Cali-
fornia Department of Water Resources Data Exchange Center
(CDEC) at http://cdec.water.ca.gov/. These stations are
mapped in Figure 2 and locations and elevations are summa-
rized in Table 1. Twelve stations are operated by the U.S.
Bureau of Reclamations, 19 by the California Department of
Water Resources, 9 by the Natural Resources Conservation

Figure 1. WRF simulation domains at 27, 9, and 3 km (from the outer to inner grids). Elevation is given
in meters at the resolution of the outermost domain.
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Service (NRCS), and one by the U.S. Army Corps of Engi-
neers. Those operated by the NRCS are a part of the official
network of SNOTEL stations that provide long‐term snow-
pack measurements across the American West. At all stations,
SWE observations were collected using pressure‐sensing
snow pillows. Observations were scanned for obvious data
entry or sensor failure errors and in three cases single data
points were removed and replaced with the mean of the two
adjacent days. At 10 of the 41 SWE observation stations, total
daily precipitation values are available for at least 95% of days
during the study period (Table 1). Additional stations with
intermittent precipitation data were not used here because of
concerns that missing data could bias results. Finally, at 31 of

the 41 SWE observation stations, hourly measures of surface
air temperature are also available (Table 1). Temperature
observations were averaged to provide mean daily temperature
values. Station elevations are also provided in the CDEC
archive and are included in Table 1.

2.3. Analytical Methods

[11] To assess the effect of spatial resolution on modeled
snowpack, we calculate the mean daily SWE for all three
domains at all elevations over 1500 m within the boundaries
of D3 (Figure 1). To ensure that identical areas are incor-
porated, D27 and D9 SWE grids are interpolated to the D3
grid using a nearest neighbor approach. Mean daily SWE is

Figure 2. Map of the study area covered by the 3, 9, and 27 km model domains. The grid shows the
spacing of the 3 km domain. Labeled dots indicate the locations of observation measurement stations,
with those representative stations used here in Figures 5, 7, and 8 in black.
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also computed for all model domains in four elevation
classes (1500–2000 m, 2000–2500 m, 2500–3000 m, and
3000+ m). D3 elevations are used to determine the elevation
class for each grid cell in all model domains to ensure
consistency. Comparison among elevation classes allows us
to determine whether the influence of spatial resolution on
modeled snowpack varies with terrain height.
[12] To compare observations and modeled outputs, it is

first necessary to develop a method for comparison of point‐
based and gridded data sets. In this case, we simply compare
each observation station to the model grid cell in which it
falls. An inverse distance weighting approach was also
tested, in which values for the four nearest model grid cells
were weighted according to the distance between the
observation point and the grid cell center. This approach
provided no discernible advantage over our simpler
approach and was abandoned. At individual observation
stations, model SWE error may increase with increasing
model grid spacing as grid cell parameters such as elevation
become less and less representative of observation locations.
[13] At each station, we compare modeled and observed

snowpack using six distinct metrics:
[14] 1. To gauge model skill in determining snowpack

timing we calculate the SWE centroid date (SCD) of accu-
mulated SWE through the entire snowpack season in the
observations and in each model domain. The SCD is defined
as the date corresponding to center of mass of the annual
snowpack and is measured in days from 1 November 2001,
the beginning of our simulation period. Observational
analysis has determined that SCD anomalies are roughly
proportional to anomalies in the peak date of SWE (see
Kapnick and Hall [2010] for more details). SCD is also
similar in principal to center timing, a commonly used
metric of streamflow seasonality [Maurer, 2007; Maurer
et al., 2007; Stewart et al., 2005, 2004].
[15] 2. To directly compare skill in simulating snowpack

magnitude, we determine total observed and modeled SWE
accumulation for each model domain by summing daily
SWE increases throughout the snow season. These values
may exhibit a slight low bias because melt occurring on the
same day as accumulation would reduce apparent accumu-
lation. However, this effect is expected to be small since
melt and accumulation events are generally independent of
one another.
[16] 3. We calculate the Pearson’s correlation coefficient

(r) for the paired time series of observed and D3 SWE.
Correlations are calculated for each station over the time
period between the first day on which either observed or
modeled SWE is greater than 1.0 mm and the last day on
which SWE is greater than 1.0 mm. This metric provides an
indication of model skill, but some caution is warranted
because both observed and modeled time series exhibit a
high degree of serial autocorrelation and because r is
insensitive to differences in time series magnitude.
[17] 4. We compare observed and WRF‐derived precipi-

tation in order to determine whether any biases in modeled
snowpack are related to an overabundance or under abun-
dance of precipitation. Daily precipitation totals are avail-
able at 10 of the stations used here, and we use a paired
Student’s t test to determine whether WRF‐derived annual
precipitation totals differ significantly from observations at
these locations. In addition, we separately compare D3, D9,

and D27 precipitation at low elevations (<2000 m) and high
elevations (>2000 m) to determine whether model resolution
has any effect on total precipitation via greater topographic
detail at higher resolutions. If so, then we expect to observe
similar levels of precipitation at low altitudes in all model
domains and substantially greater precipitation at high alti-
tudes at finer grid spacings due to the effects of orography.
If not, then either lower precipitation in D27 at high altitudes
will be offset by greater precipitation at low altitudes, or all
domains will generate similar amounts of precipitation at all
altitudes.
[18] 5. We compare time series of snowpack accumulation

(i.e., snowfall) and ablation (i.e., melt and sublimation) from
WRF‐Noah and observations. Despite the fact that they are
both sensitive to temperature, the physics associated with
accumulation and ablation processes are largely distinct. In
WRF version 3.1.1, precipitation, the principal form of
accumulation, is simulated by WRF directly while ablation
processes are handled in Noah. As a result, we divide
modeled and observed time series into periods of accumu-
lation and ablation in order to assess model skill in tracking
each process separately. Accumulation days are defined as
those where measured SWE is greater than the previous day,
while ablation days are those where accumulated SWE has
declined relative to the previous day. Days on which there is
both accumulation and ablation are not captured, but these
are likely to be a small subset of accumulation and ablation
days. We calculate Pearson’s correlations between observed
and simulated accumulation and ablation time series over
the highest‐resolution domain (D3) to determine model skill
in these variables.
[19] 6. Because Noah predicts snowpack evolution using

an energy‐mass balance scheme [Ek et al., 2003; Feng et al.,
2008; Wang et al., 2010], it is important to evaluate the
model’s ability to correctly track the observed energy bal-
ance. Unfortunately, a full suite of daily energy balance
observations is unavailable at most snow pillow observation
sites in the Sierra Nevada, with the exception of the Mam-
moth Mountain Energy Balance Monitoring Site (http://
www.snow.ucsb.edu/cues/description.html). Still, the extent
and timing of differences between observed and modeled
surface air temperature may provide indicators of strengths
and weaknesses of energy balance calculations in WRF‐
Noah. As we show in section 3.2, a comparison of the time
series of modeled and observed surface air temperature
allows us to conduct a preliminary assessment of errors in
the snowpack energy balance in WRF‐Noah. Because this
metric differs substantially from the first five, we will con-
sider it separately in section 3.2.

3. Results

3.1. Comparing Simulated and Observed Snowpack
Quantity and Timing

[20] A comparison of simulated area‐averaged daily mean
SWE values over the course of the 2001–2002 snow season
at 27, 9, and 3 km within the boundaries of D3 (Figure 3a)
indicates a substantial difference between D27 and the two
higher‐resolution grids but little difference between D9 and
D3. Figure 3b shows time series of SWE averaged across 41
observation stations listed in Table 1 as well as simulated
SWE in the corresponding model grid cells at 3, 9, and
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27 km resolutions. Figure 3 should be interpreted with
caution, since observed and modeled snowpack may repre-
sent variability at different spatial scales, as noted in section
2.3, and are not directly comparable. Still, the comparison
suggests that all model domains generally underestimate
overall SWE, with D3 being the most realistic. During the
early accumulation portion of the season, simulated SWE in
the 3 km and 9 km solutions tracks the observations well. At
about day 50, melt events begin to occur in the simulated
time series that are either weaker or nonexistent in the
observations. As melting becomes more common later in the
season, simulated and observed time series diverge further,
with the 3 km and 9 km solutions continuing to deliver
better performance than the 27 km solution.
[21] Examination of SWE values within 500 m elevation

bands (Figure 4) provides additional information about the
performance of the three simulations as a function of ele-
vation. Values of D27 SWE are substantially smaller than
D3 and D9 SWE at high elevations but are comparable to, or
even somewhat greater than, D9 and D3 SWE at lower
elevations. This pattern is likely due to the fact that in some
areas adjacent to high‐elevation regions D27 elevations are
higher than D3 or D9 elevations due to greater smoothing of
topography at lower spatial resolution. By contrast, D9 and
D3 SWE are relatively similar at all elevations, with the
greatest differences occurring at elevations greater than
3000 m, where D3 SWE is about 10% greater than D9 SWE.
[22] A suite of statistics quantifying model skill in simu-

lating snowpack evolution for the 2001–2002 snow season
is provided in Table 1, and the complete snowpack time
series for the D27, D9, and D3 are shown in Figure 5 for
eight representative stations (mapped in Figure 2). While the
fidelity of simulations exhibits substantial variability from
station to station, at most stations D3 and D9 SWE are
closer to observations than is D27. Additionally, at most
stations (TUM excepted) simulated snowmelt generally

occurs earlier in the season than does observed snowmelt.
Mean observed SCD for all stations occurs on day 117
(24 February), while mean modeled SCD occurs on days 81,
91, and 97 for D27, D9, and D3, respectively (20 and
30 January and 6 February). However, at some individual
stations observed and modeled SCD match closely, espe-
cially for D9 and D3, while at other stations modeled and
observed SCD differ by more than 50 days. Simulation of
SCD generally improves with increasing model resolution,
but even the 3 km solution exhibits an approximately 21 day
bias toward early SCD.
[23] Precipitation is among the most plausible sources of

bias in WRF‐Noah snowpack. A substantial underestimate
of total precipitation could potentially explain observed
negative snowpack biases. Figure 6a shows the differences
between observed and modeled total precipitation during the
study period at 10 observation stations. The mean value of
modeled minus observed precipitation is 123 mm (11.9%)
for D3, 28 mm (2.7%) for D9, and −169 mm (−16.4%) for
D27. None of these differences is statistically significant at
p = 0.05, which may be due to a small sample size and
substantial spread in the data. However, D3 and D27
observations are significantly different at from each other
p = 0.05. Mean correlations between daily observed and D3
(r = 0.79), D9 (r = 0.79), and D27 (r = 0.77) precipitation at
all ten observations stations suggest that WRF successfully
reproduces observed precipitation timing, which is likely
due to the accuracy of the NARR boundary conditions and
WRF physics parameterizations. Figures 6b and 6c show
mean WRF precipitation for each model domains in portions
of the D3 region below 2000 m (Figure 6b) and above
2000 m (Figure 6c). At low elevations, model resolution has
almost no impact on precipitation, while at high elevations
D27 precipitation is substantially lower than D9 and, espe-
cially, D3 precipitation. This contrast suggests that greater
topographic detail available in mountainous landscapes in

Figure 3. (a) Mean WRF simulated snowpack for all areas above 1500 m at 3, 9, and 27 km grid spa-
cings. (b) Mean snowpack across 41 snowpack observation stations shown in Table 1 and the corre-
sponding model grid cells at 3, 9, and 27 km grid spacings. Differences between 9 and 3 km are
comparatively small, while snowpack is substantially lower in the 27 km simulation. Snowpack at all
model resolutions is lower than observations, especially during the latter half of the snow season.

PAVELSKY ET AL.: SNOWPACK IN REGIONAL CLIMATE MODELS D16115D16115

7 of 18



D3 and D9 results in greater orographic precipitation, while
at low elevations precipitation is largely independent of
model resolution.
[24] Comparison of observed and modeled total snow

accumulation also suggests a substantial resolution depen-
dence of model snowpack accuracy (Table 1).Mean observed
SWE accumulation across the 41 test sites is 777 mm, and D3
SWE in the corresponding model grid cells matches this very
closely at 773 mm. By contrast, D9 (678 mm) and especially
D27 (473 mm) each generally underestimate total accumu-
lation. At the highest resolution, WRF simulates accumula-
tion timing with a high degree of fidelity as well. The mean
correlation coefficient between observed and D3 accumula-
tion is 0.80, with a range of 0.66 to 0.93 (Table 1). In most
cases, simulations at lower resolutions also reproduce accu-
mulation timing accurately, though somewhat less so than at
D3 resolution. Themean correlations for D9 andD27 are 0.76
and 0.73, with ranges of 0.57 to 0.90 and 0.13 to 0.92,
respectively.
[25] In contrast to snow accumulation, even D3 simulates

snowmelt quite poorly at many observation stations. The
mean correlation coefficient between observed and D3 abla-
tion events is 0.38, with a range of −0.19 to 0.89 (Table 1). D9
and D27 simulations are even poorer, with mean values of
0.23 and 0.05, and ranges of −0.26 to 0.86 and −0.29 to 0.79,
respectively. This wide disparity between the fidelity of

modeled ablation and accumulation suggests that the primary
source of error in WRF simulations of Sierra Nevada snow-
pack is simulation of ablation rather than accumulation.
Correlations between observed and D3 total SWE range from
0.34 to 0.99, with a mean of 0.80 (Table 1), suggesting that
despite major problems with simulation of ablation, high‐
resolutionWRF‐Noah simulations match observed variations
in total SWE at many stations. Correlation coefficients for
total SWE at individual stations are themselves highly cor-
related with the difference between observed and modeled
snowpack SCD (r > 0.93 for all domains). Thus the correla-
tion coefficient is essentially an additional measure of how
well the simulation reproduces snowpack timing. Conse-
quently, we do not include D9 and D27 snowpack correla-
tions here and include D3 correlations principally to
demonstrate the similarity to SCD differences.
[26] One potential source of error in WRF simulation of

ablation is the effect of smoothing model elevations at low
resolutions. IfWRF elevations inmountain environments are,
on average, substantially lower than observed elevations, it is
likely that snowmelt will occur too early. Figure 7 shows
scatterplots of model errors in SCD against model errors in
elevation. In each domain, calculation of Pearson’s correla-
tion coefficients reveals a statistically significant (p = 0.05)
and approximately linear relationship between SCD error and
elevation error. Regression slopes are nearly identical in all

Figure 4. (a–d) Mean WRF simulated snowpack for four 500 m elevation windows at 3, 9, and 27 km
grid spacings. Differences between 9 and 3 km are small for all windows, while snowpack is substantially
smaller in the 27 km simulation only at high elevations. Areas for each elevation band are calculated on
the basis of 3 km domain elevation values.
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domains. In D27 there is a clear systematic bias in model
elevation (mean model elevation is 206 m lower than
observed elevation). Given the slope of the elevation error/
SCD error relationship, this bias can account for approxi-

mately 11 days of the 36 day early bias in SCD in the 27 km
solution. In contrast, D9 and D3 have much smaller mean
elevation biases of 11 and −44 m, respectively. Thus, the
elevation bias can account for very little of the SCD bias in

Figure 5. Daily SWE measurements for three WRF model domains and observations at eight represen-
tative stations (see Table 1 for summary statistics for all stations). In general, 3 and 9 km domains better
match observations than does the 27 km domain. At most stations, all domains exhibit a bias toward early
snowmelt relative to observations.
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Figure 6. (a) Total WRF precipitation minus observed pre-
cipitation at 10 stations with complete precipitation records.
(b) Mean cumulative precipitation in portions of the 3 km
WRF domain below 2000 m. (c) Mean cumulative precipi-
tation in portions of the 3 km WRF domain above 2000 m.

Figure 7. Scatterplots comparing the error in simulated
SWE centroid date (SCD) and the error in simulated eleva-
tions relative to station observations. Each point represents
one observation station (Table 1). Scatterplots are for three
different model grid spacings: (top) 27 km, (middle) 9 km,
and (bottom) 3 km. In all domains, there is a substantial
relationship between elevation error and snowpack timing
error. Also, each domain exhibits a significant bias toward
early SCD.
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these simulations. For all three domains, the y intercept value
of the linear regression equations in Figure 7 is strikingly
similar, and indicates that even with no elevation error

WRF will underestimate SCD by, on average, between 22
and 25 days. There is therefore a systematic bias in theWRF‐
Noah framework that would not disappear even if topography
were resolved perfectly.
[27] We perform a similar analysis for error in SWE

accumulation to understand the impact of topographic fidelity
on simulated snowpack. Figure 8 shows scatterplots of model
errors in SWE accumulation (expressed as a percent of
observed accumulation) against model elevation errors. In all
domains, there is a strong relationship (r > 0.56) between
accumulation errors and elevation errors, though the strength
of the relationship decreases with increasing model resolu-
tion. D27 and D9 show systematic underestimates of SWE
accumulation of −17.8% and −9.2%, respectively, while D3
shows virtually no systematic bias (−0.6%) in accumulation.
This suggests that improved model resolution substantially
improves simulation of accumulation up to 3 km. Further
resolution increases are unlikely to be necessary to regional
SWE accumulation accurately, though they may improve
SWE accumulation at individual sites as elevation errors and
simulation‐scale discrepancies are reduced further.

3.2. Evaluation of the Snowpack Energy Balance
in WRF‐Noah

[28] Because Noah computes snowpack ablation on the
basis of an energy‐mass balance scheme, a likely source of
the systematic bias toward early snowmelt is in its simulation
of the energy balance during melt events. Snowmelt in the
Sierra Nevada is most responsive to increases in downwelling
solar radiation associated with lengthening days during the
spring season [Marks and Dozier, 1992]. This process is
partially mediated by decreases in snowpack albedo associ-
ated with aging and partial melting of snowpack surfaces
[Flanner and Zender, 2006]. Versions of WRF‐Noah prior to
3.1 contained very simplistic snowpack albedo schemes, and
analysis by Livneh et al. [2010] and Wang et al. [2010]
suggested that improved simulation of snowpack albedo
was necessary to improve model snowmelt. A new time‐
varying albedo scheme developed by Livneh et al. [2010] is
included in WRF‐Noah v.3.1, and subsequent analysis
including this modification shows substantial improvements
in snowpack simulation [Barlage et al., 2010]. In addition,
however, recent evaluations of WRF‐Noah snowpack also
suggest that modification of other elements of the Noah
snowpack‐energy balance scheme can also lead to substantial
improvements in snowpack simulation, including surface‐
atmosphere energy exchange, effects of vegetation on surface
roughness, and simulation of wind speed [Livneh et al., 2010;
Wang et al., 2010; Barlage et al., 2010]. Many weaknesses in
WRF‐Noah associated with these proposed changes are
related to accuracy of turbulent heat fluxes between the
snowpack and the atmosphere.
[29] The most widely available observational metric pro-

viding information related to snowpack energy balance is
surface air temperature, which we use here to infer linkages
between the energy balance and snowmelt in WRF‐Noah.
Evaluation of modeled albedo using point‐scale measure-
ments is far more problematic, and we do not attempt to do so
here. A comparison of D3 and observed daily mean 2 m air
temperatures shows that day‐to‐day and seasonal variations
in WRF temperature closely match observations in most
cases (Figure 9). The mean correlation between observed and

Figure 8. Scatterplots comparing the error in simulated
SWE accumulation and the error in simulated elevations rel-
ative to station observations. Each point represents one obser-
vation station (Table 1). Scatterplots are for three different
model grid spacings: (top) 27 km, (middle) 9 km, and (bot-
tom) 3 km. In all domains, there is a substantial relationship
between SWE accumulation and elevation errors. However,
the low bias in simulated accumulation is diminished as
model resolution increases.
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D3 mean daily 2 m temperatures at all 31 stations with tem-
perature data is r = 0.88 (individual station correlations not
shown). However, D3 temperatures exhibit a negative bias
relative to observations of between −1.1 and −5.6 K at 28 of
31 stations. Two stations showed substantial positive biases
(2.9, 4.5 K), while one station showed a negative bias of less

than −1 K (Table 2). The overall mean bias is −2.6 K.
However, this bias is not evenly distributed throughout the
snowpack season. A comparison of temperature error in D3
and modeled snowmelt timing shows a strong correspon-
dence between melt events and strongly negative temperature
errors (Figure 10). Indeed, the mean temperature error during

Figure 9. Observed mean daily surface air temperature (°C) at eight representative stations shown in
black and 3 km WRF mean daily surface air temperature shown in red. Time series are highly correlated,
but WRF temperatures are sometimes substantially lower than observations.
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modeled ablation events across all stations (−3.2 K) is nearly
twice that for nonmelt periods (−1.7 K), and temperature error
and modeled daily ablation are highly correlated, on average,
at r = −0.71, with systematically high anticorrelations
between these two quantities at nearly all stations (Table 2).
[30] The fact that errors in modeled surface air tempera-

ture coincide so closely with melt events indicates a possible
physical link between the two variables. Rather than erro-
neously high temperatures leading to excessive melt, sim-
ulated air temperatures are too low during melt events.
Zhang et al. [2009] found a similar cold bias in an earlier
version of WRF during springtime, especially for maximum
daily temperatures. In addition, Duffy et al. [2006] observed
both cold biases and anomalously early snowmelt in at least
two other regional climate models incorporating earlier
versions of the Noah snowpack scheme. The source of this
persistent low bias is unlikely to be pervasively low albedo
values, since increased absorption of incoming solar radia-
tion warms both the snowpack and the adjacent atmosphere.
On the other hand, this finding is consistent with an erro-
neously positive net energy flux from the surface atmo-
sphere into the snowpack, which would cool the atmosphere
and warm the snowpack. This finding also reaffirms recent
findings [Wang et al., 2010; Livneh et al., 2010; Barlage
et al., 2010] that components of the energy balance other
than albedo likely play a role in observed errors in WRF‐
Noah snowpack ablation. However, determination of the
precise source of this error in the WRF‐Noah snowpack

energy balance scheme requires additional energy balance
data not available at the observation sites used here.

4. Discussion and Conclusions

4.1. Comparing Simulated and Observed Snowpack
Quantity and Timing

[31] There are three principal conclusions to be drawn from
this analysis. The first is that model resolution substantially
affects the quantity and timing of SWE accumulation and
ablation in WRF simulation of mountain snowpacks. When
run at a 27 km spacing, WRF appears to substantially
underestimate snowpack persistence and magnitude at most
stations (Figure 5). By contrast, model grid spacings of 9 km
and 3 km come much closer to accurately simulating both
accumulation and ablation processes (Table 1). Examination
of Figures 6, 7, and 8 suggests that much of this discrepancy
is related to the limited ability of WRF to capture the effects
of elevation and orography on precipitation and ablation at
27 km in high‐altitude environments (i.e., spatially diverse
high‐elevationmountain ridges are reduced to lower‐elevation
plateaus). This is apparent in Figure 4, where at relatively low
elevations SWE at 27 km is comparable to that at higher
resolutions, while above approximately 2500 m 27 km SWE
estimates are dramatically lower. It is also possible that ele-
vation differences among the domains result in differences in
precipitation phase, which could also play a role in compar-
ison of snowpack among the three domains. The importance

Table 2. Observed and 3 km Modeled Elevations and Mean Errors in Model Temperature

Elevobs (m) Elev Diffa D3 (m) Elev Diffa D9 (m) Elev Diffa D27 (m)
Mean D3 Temperature

Error (K) Rmte
b

BLS 1982 −121 −197 −481 −1.86 0.75
KIB 2043 −184 −446 −573 −1.52 0.90
GRV 2104 −113 −86 331 −1.94 0.88
PSR 2104 −202 −506 −578 −2.50 0.68
HNT 2134 41 −3 193 −1.91 0.80
GIN 2149 −138 −148 −604 −1.95 0.93
CHM 2180 25 −87 −654 −1.31 0.66
BLD 2195 7 106 24 −3.50 0.67
TMR 2302 −147 28 135 −2.49 0.72
PDS 2332 343 −73 70 −4.52 0.62
SLM 2363 11 100 −143 −1.48 0.80
TNY 2485 238 335 26 −2.51 0.67
STR 2500 −154 −261 11 −0.38 0.88
GNL 2561 −80 −264 −225 −3.30 0.69
HRS 2561 254 252 −159 −2.83 0.57
TUM 2622 253 418 172 −2.47 0.66
HHM 2652 −41 −84 −288 −2.78 0.64
WWC 2774 −136 −273 −433 −2.37 0.60
KSP 2805 −40 −346 −477 −4.41 0.59
SLI 2805 290 192 −3 −4.21 0.58
DDM 2820 284 1 −186 −4.75 0.69
MHP 2835 −76 −42 −142 −4.11 0.59
AGP 2881 22 −43 −187 −5.55 0.60
SLK 2927 378 520 −28 4.53 0.96
UBC 2957 −78 −86 −521 −1.14 0.70
BGP 2988 283 9 −658 2.91 0.75
RCK 3049 161 236 −671 −4.37 0.87
VLC 3064 −26 110 −357 −2.80 0.65
SWM 3110 381 337 −211 −5.14 0.40
GEM 3277 −3 −439 −584 −3.91 0.72
BSH 3415 99 99 −516 −4.34 0.65
Mean 2612 49 −21 −249 −2.55 0.71

aElev Diff refers to the difference in elevation between the observation station and the corresponding model grid cell.
bRmte is the Pearson’s correlation between modeled snowmelt and temperature error.
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of accurate topography in driving SWE simulations is also
clear in Figures 7 and 8, which show clear relationships
between model skill and elevation accuracy regardless of the
grid spacing selected. However, the fact that observed station
elevations are substantially higher than model elevations at
27 km (206 m), while at 9 and 3 km spacings mean elevation
errors are much lower (44 and −12 m, respectively) supports
the idea that a grid spacing sufficiently fine to accurately
reflect topographic variations is critical to robust simulation

of snowpack. For the Sierra Nevada, it appears that the
optimal grid spacing is less than 27 km, which supports
previous conclusions by Jin and Miller [2007]. A comparison
of SWE in 9 km and 3 kmWRF simulations with station data
does show generally higher correspondence at 3 km (Table 1
and Figure 3b), especially in simulation of overall SWE
accumulation. Moreover, the presence of a −9.2% systematic
bias in D9 SWE accumulation (relative to −0.6% for D3)
shown in Figure 8 suggest that snowpack may be better

Figure 10. Errors inmodeled surface air temperature relative to observations are shown in black,whilemod-
eled snowmelt is shown in red for eight representative observation locations. As discussed in section 2.3,
snowmelt is inferred from day‐to‐day changes in total snowpack and is not directly measured. At all stations,
there is a statistically significant relationship between simulated snowmelt and temperature error, suggesting a
relationship between the timing of model snowmelt and the surface energy balance in WRF.
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simulated in D3 than in D9. However, the close correspon-
dence between 9 km and 3 km area‐averaged SWE in
Figure 3a (as opposed to SWE averaged over the observation
locations in Figure 3b) suggests that this difference may be
largely a result of improved correspondence between model
grid cells and observations at higher resolutions as opposed to
simulation of overall snowpack. This finding supports pre-
vious work by Ikeda et al. [2010], who found little difference
in accumulation accuracy between 6 km and 2 km WRF‐
Noah simulations over the Colorado Plateau. Even though
mean elevation errors in both D9 and D3 are close to 0 m,
D3 likely better simulates the spatial extent of precipitation
shadows and other orographic features. Overall, for climate‐
focused studies that do not require great geographic precision
a 9 km grid spacing may be sufficient in mountainous
environments such as the Sierra Nevada. A 3 km grid appears
to provide further incremental improvements in simulated
snowpack but only at the cost of substantially increased
computational resources. A 9 km grid spacing is close to
those used in some recent RCM studies of mountain climates
[Suklitsch et al., 2010; Caldwell et al., 2009] but somewhat
finer than those used in other studies [Qian et al., 2009;
Weare and Du, 2008].
[32] The second principal conclusion of this work is that

WRF‐Noah simulates snowpack accumulation without major
systematic bias, providedmodel resolution is sufficiently high,
but fails to realistically capture melt processes. A comparison
of observed and modeled precipitation at 10 stations yields no
statistically significant differences and nonsignificant high
biases at 3 km and 9 km resolutions, suggesting that erroneous
precipitation is likely not the source of observed snowpack
biases in WRF. The deficiency of WRF in simulating ablation
processes has been observed by other recent studies [e.g.,
Livneh et al., 2010; Wang et al., 2010; Barlage et al., 2010],
but in these studies accumulation and melt events have not
been explicitly separated as they are here. The dichotomy
between simulation of accumulation and ablation is first evi-
dent in Figure 3b, where D3 and D9 SWE closely match
observations during the accumulation season but diverge
during the melt season. At individual stations, timing and
magnitude of accumulation events match closely between
WRF and observations (mean r = 0.80), while most modeled
ablation events occur earlier than observed melt (Table 1 and
Figure 5). At some individual stations shown in Figure 5 this
early melt is readily apparent (e.g., GIN and PSR), while at
others there is a much closer match between observed and
modeledmelt timing (e.g., SLI and SWM). Some portion of the
variation among stations is likely caused by differences
between the grid cell and the point‐scale observation in the
spatial scale sampled. For example, past research suggests that
a point‐based snowpack observation (on the order of 1 m2)
does not accurately reflect spatial variability at larger scales
such as the 9 to 729 km2 model grid cells used here [Anderton
et al., 2004]. However, this source of error likely has a mean
near zero when averaged over a large number of observation
locations [Ikeda et al., 2010; Barlage et al., 2010] and is thus
more important from a validation perspective than for regional
hydroclimate studies. Of greater concern are the systematic
biases toward early snowmelt apparent when comparing
observations and model output. At low resolutions (e.g., D27),
a portion of this melt bias (approximately 11 days observed

bias in SCD) is almost certainly related to differences in ele-
vation between the model grid cell and observation location, as
is apparent in Figure 7. Only a few hundred meters of differ-
ence in elevation can result inmajor differences in the timing of
snowmelt. However, even with discrepancies in elevation
taken into account, the model exhibits a systematic bias of 22–
25 days toward earlier snowmelt. This bias can most easily be
explained by problems arising from snowpack physics in
WRF‐Noah.

4.2. Evaluation of the Snowpack Energy Balance
in WRF‐Noah

[33] The third principal conclusion of this work is that an
imbalance in heat fluxes is a likely contributor to the observed
early snowmelt bias in WRF‐Noah. At first glance, the cold
bias in WRF‐Noah surface air temperatures during melt
events seems incompatible with the erroneously early simu-
lated snowmelt. When viewed from an energy balance per-
spective, though, these seemingly contradictory observations
suggest an erroneously positive heat flux from the atmo-
sphere into the snowpack as one possible source of early melt
bias. This hypothesis requires further testing, however, as
currently available energy balance data at observation loca-
tions used here is insufficient to fully evaluate modeled
fluxes. We recommend this aspect of the WRF‐Noah system
as a strong candidate for future study.
[34] In absence of validation data, examination of how

snowmelt is simulated in Noah can provide guidance for
future efforts to improve WRF‐Noah. The primary energy
balance equation for snowmelt in Noah is

Qmelt ¼ Qdown � Qp � Qfr � Qup � Qsoil � Qlh � Qsh ð1Þ

All fluxes are in W/m2. QMelt is the snowmelt heat flux, Qdown

is downwelling radiation, Qp is the heat flux between new
precipitation and the snow surface, Qfr is the heat flux asso-
ciated with freezing rain,Qup is upwelling longwave radiation,
Qsoil is the soil heat flux, Qlh is the latent heat flux (limited to
sublimation over snowpack), and Qsh is the sensible heat flux
between the atmosphere and snowpack [Koren et al., 1999].
Several components of the snowmelt equation cannot ade-
quately explain the observed low‐temperature biases during
snowmelt events. Qp and Qfr are associated with precipitation
events and are thus unlikely to affect melt except in unusual
cases (e.g., large rain‐on‐snow events). Problems with Qdown

and Qsoil are unlikely to result in the negative air temperature
observed specifically during melt events. This leavesQup,Qsh,
and Qlh as potential sources of error.
[35] The upwelling longwave flux is calculated in Noah

using the Stefan‐Boltzmann equation:

Qup ¼ "�T 4 ð2Þ

where " is the snowpack emissivity, s is the Stefan‐Boltzmann
constant, and T is the snowpack temperature in K. One
potentially large source of error is the emissivity value
selected. The range of snowpack emissivity values in the
published literature is between approximately 0.94 and 0.99,
with lower values occurring only in very limited cases such as
bare ice [Hori et al., 2006]. While the maximum snowpack
emissivity value in WRF‐Noah is 0.95, at the low end of this
range, model snowpack proved nearly identical when the
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maximum emissivity was increased to 1.0. As such, selection
of the maximum snowpack emissivity is unlikely to be the
source of observed error in surface air temperature and
snowmelt timing.
[36] The other possible sources of error are the sensible and

latent heat flux terms. In Noah, sensible heat is calculated as

Qsh ¼ RCh Ts�Qð Þ ð3Þ

where RCh is a surface heat exchange coefficient multiplied
by the wind speed, air density, and the specific heat of water;
Ts is the surface skin temperature; and � is the air potential
temperature. During major melt events, the air temperature is
warmer than the surface skin temperature, leading to heating
of the surface, or negative sensible heat flux from the surface
to the atmosphere. The temperature component of equation (3),
(Ts − �), is unlikely to be the source of anomalously high
snowmelt because while Ts is fixed near 0°C during melt
events, simulated � is too low. This scenario results in less
heating of the snowpack by the atmosphere than if there were
no temperature bias, thus decreasing melt. The other term
in equation (3), RCh, is highly dependent on wind speed, and
in order to achieve the excess snowmelt and negative bias in
modeled air temperature, WRF wind speeds would likely
have to be substantially too high. Although accurate in situ
wind speed data is not available at the snowpack observation
stations used here, past studies of wind speed in WRF in the
western United States do suggest a bias toward anomalously
high wind speeds [e.g., Cheng and Steeburgh, 2005]. Over
snow covered areas, latent heat fluxes in Noah are limited
to sublimation and frost, and there are no terms in the energy
balance equations to account for evaporation of liquid water
from the snowpack [Koren et al., 1999]. As melting snow-
packs often contain substantial amounts of liquid water
[Jordan, 1983], the inclusion of a term to explicitly account
for evaporative heat flux from snow could also improve
simulation of snowmelt in Noah.
[37] Ultimately, the source of the observed bias toward

early snowmelt remains uncertain. Attempts to improve
simulation of snowpack in earlier versions of WRF‐Noah by
adjusting the turbulent heat flux equations have met with
some success, however. For example, Wang et al. [2010]
show substantially increased snowpack when the effect of
under‐canopy resistance on wind speed is included. In
addition, RCh is estimated in Noah using an iterative
approach, and with a small number of iterations the model
can at times fail to converge. Adding a larger number of
iterations (thirty, increased from five) results in improved
snowpack estimates [Wang et al., 2010]. In future studies,
comparison of WRF‐Noah and observations for a full suite
of snowpack mass and energy terms should be conducted to
determine the precise source of errors in both snowmelt
timing and surface air temperature and to assess the best
means of improving snowpack simulation. Regardless, this
study has resolved some of the uncertainty in past studies
[e.g., Duffy et al., 2006] regarding the nature of persistently
early snowmelt combined with low biases in temperature.
Duffy et al. [2006] speculate that either insufficiently fine
model resolution or positive temperature errors on days with
high precipitation totals could be the cause of observed
snowpack biases. We have shown that neither of these is a
likely source.

[38] Overall, comparison of our analysis with other recent
simulations of snowpack in earlier versions of WRF and/or
Noah [e.g., Livneh et al., 2010; Barlage et al., 2010; Wang
et al., 2010] suggests that version 3.1.1 of the WRF‐Noah
modeling system represents a substantial improvement over
earlier versions in simulating mountain snowpack. Skill in
simulation of accumulation can largely be attributed to
accurate simulation of precipitation processes in WRF.
Examination of the recent literature suggests that increased
fidelity in simulation of ablation processes, on the other
hand, is likely due to improvements in handling of snow-
pack albedo in Noah [Livneh et al., 2010; Barlage et al.,
2010]. Some apparent error will always be present when
comparing model output with point‐based snowpack
observations because of a mismatch in observation scale,
but recent studies suggest that this type of error is randomly
distributed with a mean near zero when comparing model
results against stations that are not directly influenced by a
vegetation canopy [Ikeda et al., 2010; Barlage et al., 2010].
Our results show that at 3 km and 9 km resolutions there is
little systematic bias in snowpack accumulation, but that
systematic bias in snowpack ablation is still present in the
WRF‐Noah configuration used here. With additional
improvements to the simulation of snowpack energy balance
in Noah, it may be possible to substantially reduce sys-
tematic bias in WRF‐Noah simulation of mountain snow-
pack. The result would be a more robust modeling system
for simulation of changing snowpack and climate in
mountainous regions such as the Sierra Nevada.
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