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Abstract Shifts in the frequency of typical meteorological patterns in an ocean basin, over interannual
to decadal time scales, cause shifts in the patterns of wave generation. Therefore, ocean basin-scale
climate shifts produce shifts in the wave climates affecting the coastlines of the basin. We present a hybrid
methodology for downscaling observed (or predicted) climate shifts into local nearshore wave climates
and then into the associated coastline responses. A series of statistical analyses translate observed
(or predicted) distributions of meteorological states into the deep water wave climate affecting a coastal
region and dynamical modeling combined with statistical analyses transform the deep water wave climate
into the nearshore wave climate affecting a particular coastline. Finally, dynamical modeling of coastline
evolution hindcasts (or predicts) how coastline shapes respond to climate shifts. As a case study,
we downscale from meteorological hindcast in the North Atlantic basin since 1870 to the responses of the
shape of the coast of the Carolinas, USA. We test the hindcasts using shoreline change rates calculated
from historical shorelines, because shifts in coastline shape equate to changes in the alongshore pattern
of shoreline change rates from one historical period to another. Although limited by the availability
of historical shorelines (and complicated by historical inlet openings), the observations are consistent with
the predicted signal of ocean basin-scale climate change. The hybrid downscaling methodology,
applied to the output of global climate models, can be used to help forecast future patterns of shoreline
change related to future climate change scenarios.

1. Introduction

Approximately 10% of the world’s population lives in the coastal zone below 10 m elevation (Nicholls &
Cazenave, 2010), in environments that are among the most dynamic on Earth. Natural processes that shape
these environments represent hazards to humans and infrastructure, including both acute storm hazards
(e.g., storm surge flooding and storm waves) and chronic shoreline erosion. Earth’s climate exhibits cycles,
including seasonal, sequencing, and clustering of storm events, and interannual and decadal oscillations of
various sorts. These cycles are superimposed on an accelerating background climate change arising from
human activities (Intergovernmental Panel on Climate Change, 2013), which could involve shifts in the statis-
tics of climate cycles. All of these climate shifts—the cycles and the trend—will tend to cause shifts in
coastline position and plan view shape. This work addresses some of the processes that cause long-term
(decadal and longer) changes in shoreline location. Although sea level rise, and related cross-shore sediment
transport patterns, leads to long-term shoreline erosion (e.g., Bruun, 1962; Cowell, Stive, Niedoroda, de Vriend,
et al., 2003; Cowell, Stive, Niedoroda, Swift, et al., 2003; Moore et al., 2010; Wolinsky & Murray, 2009), here we
focus on a different set of processes involving alongshore sediment transport, which also produce long-term,
cumulative shoreline change. Here we focus on multiannual to centennial time scales.

Although understanding and modeling the long-term behavior of the coastal landscape remains a significant
challenge, during the last two decades coastal researchers have increased their efforts to address middle-
and long-term morphodynamic evolution (e.g., French et al., 2016; Stive, 2004). Such efforts have led to more
robust models, which, by representing only what are hypothesized to be the most important dynamics,
require relatively little computational effort and provide insight into which aspects of coastal behavior are
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relevant from a long-term point of view and which are not (“signal” versus “noise”) (de Vriend et al., 1993;
Lazarus & Murray, 2007; Murray, 2007). However, using such models to address morphological change on
particular coastlines during particular time periods requires accurate forcing data at a level of detail and res-
olution appropriate for a given model during the long periods scientists are interested (e.g., Antolínez et al.,
2016; Camus, Mendez, & Medina, 2011). Waves are the most commonly source of data to use as model forcing.
However, buoy or satellite data are limited in time to recent decades. If we want to examine coastline change
driven by changes in wave climate over a time scale of decades to centuries, as we do here, buoy or satel-
lite data are not sufficient. In addition, to be of use as model forcing, wave data need to be aggregated/
synthesized into a form appropriate for a particular model. Here we present a method for generating (hind-
casting or forecasting) wave data over time scales spanning from annual to centennial (“hybrid downscaling”;
Camus, Mendez, & Medina, 2011; Camus, Méndez, Losada, et al., 2014; Camus, Menéndez, Méndez, et al.,
2014), in a form appropriate for a particular model (the Coastline Evolution Model (CEM); Ashton & Murray,
2006a, 2006b).

This work is made possible by the development of techniques to synthesize local wave conditions given
only ocean basin-scale meteorological data—surface pressure fields—which extend back 140 years (from
atmospheric reanalysis). Different approaches exist for downscaling from basin-scale atmospheric pressure
forcing to local wave conditions. In one end-member approach, daily pressure fields could serve as boundary
conditions to force dynamic atmospheric models to generate winds, ocean-atmosphere interaction models
would then generate the waves, and nested wave transformation models would then propagate the waves
to each shoreline location. However, such “dynamic downscaling” is too computationally expensive in the
context of a decadal- to centennial-scale modeling endeavor. In addition, a deterministic sequence of daily
wave conditions is not needed when modeling large-scale coastline shape changes (because the time scale
for response to changing wave forcing is much longer than days; Thomas et al., 2016). Robinet et al. (2016)
propose a statistical model that reproduces the interannual variability of shoreline evolution directly from
basin-scale atmospheric forcing, with a similar skill as empirical cross-shore models, which require wave data.
In contrast, we use a hybrid statistical and dynamical approach that translates daily surface pressure fields
into stochastic local wave distributions—an approach that produces wave climate data appropriate to use as
model forcing, and with orders of magnitude smaller computational costs than direct dynamical downscal-
ing would incur. In this application, we synthesize local wave data into the form needed to force the CEM:
the angular distribution of wave influences on alongshore sediment flux, defined on an annual time scale,
measured at the offshore limit of approximately shore-parallel contours (the base of the “shoreface”).

We use the CEM to investigate changes in coastline shape. The shape of coastal environments is function
of wave climate and also of the beach cross-shore profile (Hallermeier, 1980) and planform (Falqués et al.,
2000). Plan view coastline shapes, on scales from kilometers to hundreds of kilometers, are functions of the
angular distribution of wave influences (“wave climate” hereafter; Ashton et al., 2001, 2002; Ashton & Murray,
2006a, 2006b; Falqués et al., 2017; Idier et al., 2011; Kaergaard & Fredsoe, 2013a, 2013b). This relationship arises
from patterns in wave-driven alongshore transport. Gradients in net (e.g., annual) transport drive erosion and
accretion. When they take place on scales of kilometers and greater, they arise from coastline shape, which
(for a given wave climate) dictates patterns of wave momentum and energy fluxes reaching shore. The gra-
dients in transport, in turn, change coastline shape. From these “morphodynamic” interactions (Murray &
Ashton, 2013), different coastline shapes emerge under different wave climates. Shifts in wave climate cause
shifts in coastline shape, equating to enhanced erosion in some zones and decreased erosion (or accretion)
in others (Moore et al., 2013; Slott et al., 2006).

Moore et al. (2013) identified coastline shape shifts associated with decadal-scale wave climate change
recorded in wave buoy and hindcast data (Komar & Allan, 2008). Moore et al. (2013) examined changes along
the Carolina coastline in Southeastern United States. This well-studied and economically valuable coastline
features large-scale cuspate capes with a wavelength of approximately 125 km and a cross-shore excursion of
20 km. Two of the capes (Capes Hatteras and Lookout), with extensive protected regions, are approximately
unaffected by human shoreline stabilization. The third (Cape Fear) features extensive stabilized stretches of
shoreline (Johnson et al., 2015, identified shifts in the rate that resources have been used to stabilize the
shoreline associated with wave climate change). As a case study, we will examine changes in the wave cli-
mate affecting the Carolina capes over the past 140 years. We will also examine the associated coastline shape
changes, through model hindcasts, and compare the hindcasts to observations of historical shoreline change
rates (to the extent that available shoreline observations allow).
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Figure 1. Conceptual framework of the proposed methodology. RD: regional downscaling/ND: nearshore
downscaling/SD: shoreline downscaling.

The paper is organized as a sequence of successive steps to be performed to downscale, from the climate, to
the shoreline response (see Figure 1). In the supporting information we describe the data used in this work.
Section 2 defines a global overview of the methodology, and section 3 explains in more detail the hybrid
framework, including the coastline change modeling. In section 4 we compare the hindcast shoreline change
rates with historical observations during select periods of time. We summarize conclusions in section 6.

2. Overview of the Methodology

Our approach starts with an empirical distillation of the pressure fields into characteristic daily weather types
(DWTs) representing typical patterns of low and high pressure systems and their temporal evolution. Then,
taking the time lags associated with wave propagation across the basin into account, a separate statistical
step relates the DWTs with typical deep water wave characteristics (sea state type, SST) and wind conditions
affecting a target region. To translate these typical SSTs into wave conditions affecting specific coastal loca-
tions, we use a dynamical model that propagates the waves in the SST across continental shelf bathymetry
and around any obstructions, taking local wind conditions into account. This versatile “hybrid” downscal-
ing approach, mixing statistical and dynamical modeling, can be used to generate wave data with a range
of different temporal resolutions, and the wave and wind data can be converted to other forcing variables,
including total water level (Rueda et al., 2017). This approach could also be used to address future wave cli-
mate change, using the meteorological conditions output from global climate models (Perez et al., 2015).
In this initial work, to assess the large-scale and long-term coastline response to interannual and interdecadal
shifts in the climate forcing, we synthesize the wave data into a form appropriate for driving the CEM and
address past changes along the Carolina Coast.

Figure 1 depicts the three downscaling models we use and the work flow chart. First, a regional downscal-
ing (RD) detects the statistical relationship between the basin-scale atmospheric/oceanic patterns (predictor,
X) and the regional deep water wave and wind climate (predictand, W0) as proposed by Camus, Menéndez,
Méndez, et al. (2014). Second, a nearshore hybrid downscaling model (ND; Camus, Mendez, & Medina, 2011)
propagates regional waves across the continental shelf, accounting for local winds (predictor, W0), to obtain
high-resolution waves (predictand, WHR) at a depth relevant to the shoreline change modeling (Y): the
depth beyond which, in the long-term, wave-driven sediment transport becomes negligible, that is, the base
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of the shoreface. The shoreline change modeling requires the following forcing variables: the alongshore
sediment transport, Qs, resulting from waves approaching from each offshore angle, ΦHR (discretized into
wave-angle bins, where ΦHR refers to the angle between the wave crests and the local shoreline orientation,
measured at the base of the shoreface). We label this sediment transport contribution Y , and we label the dis-
tribution of these contributions as a function of the approach angle fY (y). As described below, the shoreline
modeling (Ashton & Murray, 2006a) uses an empirical formulation for alongshore sediment transport, and Y is
integrated as in Ashton and Murray (2006b) to predict the large-scale shoreline response in the long term (Z).
The local coastline evolution Z is ultimately driven by changes in the basin-scale atmospheric/oceanic pat-
terns X ; thus, we refer to the shoreline modeling as shoreline downscaling (SD), the third downscaling model.
Below we summarize the methodology by describing briefly the different steps through the RD, the ND, and
the SD nomenclature.

Step RD1. To define areas of wave generation and characteristic temporal lags of wave energy using ESTELA
(Pérez et al., 2014) and to use this information to construct a spatially and temporally varying daily predic-
tor, that is, based on daily sea level pressure (SLP) fields accounting for the temporal lags arising from wave
propagation across the domain, as in Hegermiller et al. (2017).

Step RD2. To apply principal component analysis (PCA) to the preprocessed data above (Camus, Méndez,
Losada, et al., 2014).

Step RD3. To define DWTs from PCA space of SLP to obtain synoptic SLP patterns (Camus, Menéndez, Méndez,
et al., 2014) based on ESTELA (Hegermiller et al., 2017; Pérez et al., 2014). The DWTs are the predictor data (X)
of the RD.

Step RD4. To define daily SST performing a classification (Camus, Mendez, Medina, & Cofiño, 2011) on the
offshore wave and wind climate. Here the multivariate wave climate distribution for each SST is retained. The
SSTs are the predictand data (W0) of the RD and the predictor data of the ND.

Step RD5. To obtain the categorical distribution of SST for each DWT, fW0 (w0).

Step RD6. To obtain the monthly distribution of DWT for every year, fX (xt).

Step ND1. Selection of daily wave and wind conditions from the offshore wave and wind climate to reduce the
number of wave conditions to propagate dynamically, based on Camus, Mendez, Medina, and Cofiño (2011).

Step ND2. HR propagation of the selected cases in step ND1 using SWAN (Booij et al., 1999) accounting for
local winds.

Step ND3. Reconstruction of continuous propagated series applying radial basis functions, previously fitted to
the continuous daily wave climate series at an offshore location, on the propagated conditions in step ND2.
Steps ND1, ND2, and ND3 follow the methodology proposed by Camus, Mendez, and Medina (2011).

Step ND4. To obtain propagated daily SST distributions, predictand of the ND (WHR), and predictor of the
alongshore sediment transport, by projecting the propagated series in Step ND3 within each SST defined in
Step RD4.

Step SD1. To define the directional alongshore sediment transport distribution, fY (y), from the propagated
properties of the wave climate (WHR). For each SST, Y is function of a directional discretization (ΦHR) of the
alongshore sediment flux (Qs) following Ashton and Murray (2006b).The direct effect of local winds on along-
shore currents and sediment flux is neglected, because forces arising from breaking waves are typically much
larger than those arising from local wind drag on the water surface (Fredsoe & Deigaard, 1992).

Step SD2. To integrate the decadal and yearly asymmetry (A) and instability (U) parameters (Ashton & Murray,
2006b) from the combination of the monthly distribution of DWT for every year (fX (xt)) from Step RD6, the
categorical distribution of SST for each DWT from Step RD5 (fW0 (w0)), and the directional alongshore sediment
transport distribution (fY (y)) for each SST from Step SD1.

Note that looking for the relationship between ocean basin meteorological patterns (X) and nearshore waves
(WHR), we step into an intermediate stage—the offshore waves and wind (W0)—because this half step keeps
clean the statistical relationship between atmosphere and wave patterns in the study site without adding
the effects of shallow-water wave propagation (shoaling, refraction, bottom friction, breaking, … ), which
is a function of the bathymetry and makes the search for relationships linking X and WHR more difficult
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Figure 2. Mosaic of the study site. U.S. East Coast showing the capes and
shoals along North and South Carolina. White dots show the location of
NDBC buoys. Yellow dots are the location of the offshore hindcast (GOW2)
and one of the nodes from the nearshore propagation (Loc14).

because it mixes wave climates from different atmospheric conditions into
the same nearshore waves; allows us to independently assess the perfor-
mance of the individual methods—RD or ND—; and allows for future
improvement in the RD or ND methods without repeating everything from
scratch.

3. Application

We apply this methodology to the “Carolina capes” of North Carolina and
South Carolina, USA (Figure 2).

3.1. Regional Downscaling Model
3.1.1. Predictor Definition
We define the predictor X taking the daily SLP fields from atmospheric
reanalysis data (details in Data Set S1 in the supporting information) and
combining four different techniques to process the data until the pre-
dictor is appropriately optimized. First, we obtain the spatial domain and
temporal coverage for the predictor, and then we apply two data mining

techniques: a PCA reducing the data dimensionality and simplifying the subsequent process of classifying the
daily atmospheric conditions (using K-means algorithm) into a set of regional synoptic atmospheric patterns
related to the regional deep water wave conditions at our location.

Step RD1. Building up the raw predictor data. First, we apply the Estela method (ESTELA; Pérez et al., 2014) on
the Atlantic Ocean for the Carolinas coastline based on the historical wave fields. The ESTELA accounts for
the source and travel time of the wave energy (regionally generated) reaching our local area. Figure 3 shows
that there are three main sources of energy: a northwest, a southwest, and a local one. In line with previous
works (Antolínez et al., 2016; Camus, Menéndez, Méndez, et al., 2014) we use daily mean SLP and squared SLP
gradient (SLPG) fields from 1872 to 2010 at 2∘ spatial resolution from the 20CR reanalysis, representing the
geostrophic wind conditions over the spatial domain covered by the ESTELA (the envelope of the colormap
in Figure 3). As in Hegermiller et al. (2017) we build up the predictor Pt from the SLP and SLPG by accounting

Figure 3. ESTELA applied to the study area. The color map represents
the mean effective energy flux from 1993 to 2012 ( kW/m

∘ ∗ 360), and the
gray and black lines represent the characteristic travel time (isochrones). Red
lines are the great circles for certain directional sectors.

for the isochrones (characteristic travel time of the wave energy to the
target area, the gray and black lines in Figure 3),

Pt(x, t) =
[
SLPΩ1 ,t

; SLPGΩ1 ,t
;… ; SLPΩi ,t−i+1; SLPGΩi ,t−i+1;

… ; SLPΩl ,t−l+1; SLPGΩl ,t−l+1

]
∀i = 1,… , l,

(1)

where x is the spatial domain, t is time, Ωi is the domain between daily
isochrones i−1 and i, and l is the number of days for the longest wave prop-
agation time from generation until arrival at the target location (20 days
in this work). We emphasize that with this approach we keep track of
the geostrophic wind conditions that generate waves affecting the target
location.

Step RD2. Principal component analysis. The raw predictor data Pt at this
point are spatial and temporal SLP and SLPG fields spanning the North and
South Atlantic Ocean for 139 years at 2∘ spatial resolution and daily tempo-
ral scale. We perform a PCA of Pt to obtain the dominant spatial variability
patterns (Empirical Orthogonal Functions, EOFs) and their corresponding
temporal coefficients (PCs) (Camus, Méndez, Losada, et al., 2014) reducing
the dimensionality (2,478 grid cells for each SLP and SLPG) of the tempo-
ral Pt (50,769 days) while preserving the maximum variance of the sample
data. We select the first 188 modes from the PCA analysis (explaining 95%
of the variance). As an example, the time series associated with the first
mode EOF1(x) is PC1(t). The original predictor Pt can be expressed as a
linear combination of EOFs and PCs:

Pt(x, t) =
N∑

i=1

EOFi(x) ∗ PCi(t). (2)
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Figure 4. Predictor X . DWT lattice and different weather type patterns: Boreal summer in green (DWT 7), boreal winter in
purple (DWT 19), and TC activity in red (DWT 80). The blue-white-red color scale refers to the SLP in hectopascal (hPa).
The left panels show the total monthly DWT probability.

Retaining a higher number of modes here than is typical in PCA applications (Antolínez et al., 2016) is a con-
sequence of the high variability introduced by building up the Pt accounting for the ESTELA. At this step, the
cubic root of the daily and monthly wave energy flux is regressed from the PCs as in Camus, Méndez, Losada,
et al. (2014) to validate the performance of the raw predictor Pt defined above before going ahead with the
methodology (details on the preliminary validation of the predictor skill are given in Text S1 in the supporting
information).

Step RD3. DWT classification. The preliminary validation model only accounts for linear relationships between
waves and the PCs in the time domain. Categorizing the daily atmospheric conditions (statistically summa-
rized by the PCs of Pt) into homogeneous atmospheric circulation patterns allows us to account for nonlinear
relationships between waves and the predictor. The link is made in the probability domain (population of
multivariate local wave climate related to each homogeneous atmospheric condition) to identify the wave
conditions belonging to each weather class or weather type. Following Camus, Menéndez, Méndez, et al.
(2014), a K-means classification is applied to the daily PCs space of the raw predictor Pt obtaining nDWT = 81,
DWTs statistically representative of daily atmospheric synoptic situations. The DWTs are the predictor data X
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Figure 5. Predictand W0. The upper panels show the multivariate classification of wave height (Hs), period (Tp) and
mean direction (𝜃), and wind intensity (W) and direction (𝜃W ). The different colored dots represent the population
within a cluster and the black dots the centroids for each of the 81 clusters. The lower panel shows the
centroids projected in a lattice of 9 × 9. Blue scale is the occurrence probability for the period of 1979–2014.
White-yellow-red-black scale represents the wave height (HS). The arrow represents the mean direction (𝜃)). The length
and gray scale of the arrow represents the period (TP).
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of the RD. Figure 4 shows the lattice of the 81 DWTs arranged with a self-organizing map, producing smooth
transitions between adjacent synoptic situations (see Camus, Mendez, Medina, & Cofiño, 2011, for further
details on clustering techniques). The left panels represent the total monthly DWT probability; note that
there are nine DWTs occurring only during the months of August–October. Even though 20CR does not
have enough resolution (2∘) to capture the lowest pressures associated with tropical cyclones (TCs), it gets
the footprint of very low pressure tracks. The different synoptic patterns are characterized in Figure 4, from
boreal winter conditions (December-January-February) feeding southerly winds (e.g., DWT 19 represented
in purple), through boreal summer conditions (June-July-August) being related with light northerly winds
(e.g., DWT 7 represented in green), to TC activity with strong and highly variable local winds (e.g., DWT 80
represented in red).

3.1.2. Predictand Definition
We define the predictand W0 from the Global Ocean Waves (GOW2; Perez et al., 2017) data set from 1979
onward for the multivariate wave climate consisting of significant wave height (H0

S ), peak period (T 0
P ), and

mean direction (𝜃0) and the Climate Forecast System Reanalysis U and V components in 10 m height above
the sea level to perform the wind intensity (W) and mean direction (𝜃W ). This data set is extracted at a point
(longitude = 72∘W, latitude = 35∘N) located in deep water close to the buoy NDBC_41001 (see Figure 2). This
set of regional deep water multivariate wave and wind climate conditions are the linkage between regional
synoptic atmospheric patterns and nearshore waves. Data Sets S1 and S2 in the supporting information con-
tain further details of the data used for the predictand definition, and Text S2 contains more details on the
predictand definition.

Step RD4. Daily SST classification. We apply the K-means algorithm technique to daily multivariate time series of
the wave and wind climate. Furthermore, we apply the maximum dissimilarity algorithm as a centroid initial-
ization technique to force the K-means technique to correctly describe the high diversity of the daily wave and
wind climate (Camus, Mendez, Medina, & Cofiño, 2011). These techniques are applied here to obtain nSST = 81
daily SST. Figure 5 shows the classification of the predictand data. Both, nDWT and nSST, were chosen to be a
square lattice of 9 × 9 = 81 after testing for the highest number of clusters that keep a significant population
data on each cluster. In this work, we tried pairs of {nDWT, nSST} with nDWT, nSST = 3×3, 4×4, 5×5,… , 10×10.
The SST are the predictand data W0 of the RD. Note that each daily record of the multivariate wave and wind
climate belongs to one of the 81 SSTs. We define the predictand W0 by

W0 =
{

H0
S , T 0

P , 𝜃
0,W, 𝜃W

}
. (3)

3.1.3. Statistical Downscaling
We present here the statistical properties of the RD inherited from the statistical relationship between the
predictor X and the predictand W0.

Step RD5. Monthly distribution of DWTs for every year. The monthly occurrence probability of a DWT for every
year is defined as

fX (xt) = Prob(DWT = i∕(year = r ∩ month = s));
∀i = 1,… , nDWT; ∀r = 1872,… , 2010; ∀s = 1,… , 12.

(4)

We empirically obtain fX (xt) from the temporal series of DWT for the period of 1872–2010, defined by 1 matrix
month

∗
12 month

year
∗ 139years = 1668 probability matrices of 9 × 9 = 81 DWT, represented in the sketch on the left

in Figure 6.

Step RD6. Categorical distribution of daily SSTs for each DWT. Here we link the predictand data W0 to the pre-
dictor X ; in other words we project the SST (lower panel of Figure 5) into the DWT lattice (Figure 4). Thus, the
probability of the SST “j” conditioned to the DWT “i” is given by the following:

fW0 (w0) = Prob(SST = j∕DWT = i) =
Prob(SST = j ∩ DWT = i)

Prob(DWT = i)
;

∀j = 1,… , nSST; ∀i = 1,… , nDWT.

(5)

We empirically obtain fW0 (w0) from the temporal series of DWT and SST for the shared period 1979–2010,
and it is calculated from the number of SST = j belonging to the DWT = i divided by the total SST belonging
to the DWT = i. The right scheme in Figure 6 represents the matrix of matrices.
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Figure 6. Statistical relationship between the predictor X and the predictand W0. The left side shows a sketch of the monthly distribution of DWT, fX (xt). The
right side shows the categorical distribution of SST for each DWT, fW0 (w0). We use the same DWT lattice as in Figure 4; however, for fW0 (w0) within each element
of the DWT lattice we represent a lattice of SST. The SST probabilities for different weather type patterns are highlighted: Boreal winter in purple (DWT 19),
TC activity in red (DWT 80), and boreal summer in green (DWT 7).

3.2. Nearshore Downscaling Model
The nearshore downscaling model, ND, consists of a dynamical downscaling of the representative subset of
SST conditions in deep water, W0. The ND output is the propagated distribution function of wave height,
period, and direction for each SST defined in section 3.1.2. With the ND we complete the procedure for
downscaling local nearshore waves from regional atmospheric conditions, obtaining the likely distribution
of the multivariate nearshore wave climate through the twentieth century. Note that this procedure is com-
putationally inexpensive compared with full dynamical downscaling (running wave models continuously
in time).
3.2.1. Hybrid Downscaling
Step ND1. Selection of daily wave and wind conditions. First, we apply the maximum dissimilarity algorithm
following Camus, Mendez, and Medina (2011) to the daily multivariate time series of wave height, period and
direction, and wind intensity and direction described above in section 3.1.2, at the same location, to select
M = 200 daily sea states to propagate numerically (red dots in top scatters in Figure 7).

Step ND2. Propagation of selected cases using SWAN. Then we perform stationary deep water to nearshore (base
of the shoreface) wave transformation of the most representative daily sea states selected above using the
wave propagation model SWAN (Booij et al., 1999). The offshore boundary condition of the numerical grid
matches the depth at which we take waves from GOW2 reanalysis, indefinite depths (the end of the conti-
nental shelf in Figure 2). We define a constant wind field in the computational domain by daily wind intensity
(W) and direction (𝜃W ). Further details of the bathymetry used for propagations are given in Data Set S3 and
details of SWAN modeling in Text S3 in the supporting information. The lower panels in Figure 7 show two
different wave transformations.

Step ND3. Reconstruction of the continuous propagated multivariate time series. Finally, we carry out the recon-
struction of the time series of nearshore wave parameters during the period 1979 to 2014 by an interpolation
technique based on radial basis functions, a scheme that is very convenient for scattered and multivariate
data (Franke, 1982); details on the use of radial basis functions are in Text S4 in the supporting information.
We have validated the reconstructed temporal series against buoy records at different depths. A summary
of the results is presented in Table 1. The BIAS in directions is high when the number of data to compare
is very low, and/or the difference in depth where the buoy measures against the depth of the closest node
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Figure 7. Nearshore wave transformation W0 ⇒ WHR. Upper scatters show the 200 selected wave climate conditions
(red dots) over the wave climate data (black dots). The lower panels show two representative wave transformations in
the computational domain for northern and southern wave direction components. The arrow orientation represents the
mean wave direction. The white-yellow-red-black scale represents the wave height. The vectors on top of lower panels
are the boundary conditions imposed for each propagation

[
Hs(m), Tp(s), 𝜃(∘),W(m∕s), 𝜃W (∘)

]
.

Table 1
Comparison of GOW Nodes (G) Against Buoys and Validation of the Hybrid Downscaling (D)

Depth (m) Longitude Latitude RHO RMS BIAS

Buoy Node buoy/node (deg) (deg) Data available Hs Tp 𝜃 Hs (m) Tp (s) 𝜃 (deg) Hs (m) Tp (s) 𝜃 (deg)

NDBC_41001 G ∞ −72.617 34.625 290 0.97 0.88 0.96 0.3 0.97 29.92 −0.01 0.03 15.81
NDBC_41002 G ∞ −74.84 31.76 657 0.97 0.83 0.96 0.22 1.17 27.46 0.01 −0.12 7.03
NDBC_41025 D 68.3 / 105 −75.402 35.006 730 0.77 0.70 0.77 0.56 1.70 52.12 0.07 0.21 23.41
NDBC_41004 D 38.4 / 37 −79.099 32.501 816 0.87 0.79 0.78 0.39 1.42 41.93 −0.08 −0.24 13.92
NDBC_41013 D 23.5 / 28 −77.743 33.436 3,703 0.87 0.77 0.82 0.36 1.52 38.88 0.04 −0.2 6.34
NDBC_44095 D 18.3 / 22 −75.33 35.75 1,214 0.76 0.66 0.59 0.72 2.64 64.02 0.33 0.95 −37.211
NDBC_41110 D 17 / 15 −77.717 34.141 2,552 0.75 0.73 0.61 0.31 2.11 39.24 −0.06 0.22 9.06
NDBC_41108 D 12.8 / 13 −77.743 33.436 944 0.69 0.65 0.76 0.43 2.19 40.88 −0.18 −0.73 −14.73

Note. RHO is the correlation coefficient, RMS is the root-mean-square error, and BIAS is the bias.
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Figure 8. Reconstruction of temporal series. Three upper panels: black lines represent the downscaled time series in the
period 1979–2014 and red lines the measured values at the buoy NDBC_41013 at 28 m depth (Figure 2). Squared lower
panels: scatter plots of the downscaled daily wave climate (model) against the daily buoy record (Buoy NDBC_41013,
empirical). The color map of the scatters represents the density of points, yellow is the maximum density, and blue the
minimum. rho is the correlation coefficient, and RMS is the root-mean-square error.

in the computational domain is significant (e.g., buoy NDBC_41025 is located close to Hatteras Canyon at

68 m depth, but the closest node is at 105 m depth because changes in bathymetry are very strong at this

location, Figure 2). Another source of error is the inherited bias from the offshore wave hindcast (see results in

NDBC_41001 and NDBC_41002 buoys in Table 1 and the location of the buoys and hindcast nodes in Figure 2).

The most valuable comparison is at NDBC_41013 and NDBC_41110 (Figure 2) because there are more than

2,000 daily multivariate wave climate (>5 years); they are centered in the computational grid and the depths in

the model and the buoys match sufficiently. We discuss how we address the bias in angle during the shoreline

modeling in section 5.

Figure 8 shows the reconstructed series and the quality of the hybrid downscaling at the buoy NDBC_41013

at 28 m depth (location in Figure 2). Note that this methodology supplies continuous temporal series over a

longer period than buoys provide and avoids gaps and inhomogeneity in measures.

Step ND4. Categorical distribution of propagated daily SSTs for each DWT. The aim of the hybrid downscaling is

to propagate the representative deep water wave and wind conditions to the nearshore. Here we project the

daily propagated wave conditions into the lattice of SST defined in section 3.1.2, as each propagated daily
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Figure 9. Deep water (blue) and 15 m depth (red) PDFs of significant wave height (Hs) in the SST lattice

wave climate condition is contemporary in time with one SST. The result of this projection is the propagated,
HR distribution function of the multivariate wave climate for each SST, WHR:

WHR =
{

HS(i), TP(i), 𝜃(i)
}

∀i = 1,… , n (6)

with n referring to the locations where the wave climate has been propagated. Figure 9 shows the deep water
and propagated distribution functions of wave height, period, and direction for each SST. The categorical
distribution of the propagated SST on each DWT remains constant once the propagated wave climate has
been projected to the deep water SST lattice. Thus, we have now captured the statistical relationship between
the regional atmospheric conditions X and the nearshore waves WHR relying on the deep water wave and
wind conditions W0.

fWHR (wHR) = fW0 (w0) = Prob(SST = j∕DWT = i)

=
Prob(SST = j ∩ DWT = i)

Prob(DWT = i)
; ∀j = 1,… , nSST; ∀i = 1,… , nDWT

(7)

3.3. Shoreline Downscaling Model
Waves approaching from “high angles” (angles between offshore wave crests and shoreline orientation larger
than the value that maximizes alongshore sediment transport) tend to cause instabilities in coastline shape
(Ashton & Murray, 2006a, 2006b; Murray & Ashton, 2013). When the influence of high-angle waves is greater
than the influence of low-angle waves (which tend to smooth coastlines), coastlines can self-organize into
regular, quasiperiodic shapes similar to those found along many natural coasts at scales ranging from kilome-
ters to hundreds of kilometers. If the asymmetry of the wave climate is small (small net alongshore sediment
transport relative to the gross transport), cuspate coasts develop that exhibit increasing relative cross-shore
amplitude and pointier tips as the proportion of high-angle waves is increased. For asymmetrical wave cli-
mates, shoreline features migrate in the downdrift direction. Increasing asymmetric wave climates produce
increasingly asymmetric coastline features (Ashton & Murray, 2006a). Hence, the SD (1) defines the directional
distribution of wave influences on alongshore sediment transport distribution for each SST by applying a sim-
ple sediment transport formula and (2) integrates over years and decades the alongshore sediment transport
to characterize the asymmetry—the proportion of influence from waves approaching from left, looking off-
shore (A)—and the proportion of influence from high-angle waves (U) in the effective wave climate over those
time scales.
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Figure 10. Directional distribution of alongshore sediment transport fY (y) in the SST lattice. Green line is the shoreline
orientation (N60∘E); cyan lines define the reference relative 42∘ relative angle (at the seaward limit of approximately
shore-parallel contours) that maximizes sediment transport (Ashton & Murray, 2006a). Black line is the directional
alongshore sediment transport distribution for each SST, fY (y), and red line is the average of fY (y) for all the SST. Note
that in the SST with largest values of directional alongshore sediment transport, Y(y) = QS(ΦHR), the circles have been
scaled to fit in the lattice but they represent the same magnitude as in the other groups.

Step SD1. Distribution of alongshore sediment transport. In this step we compute the daily alongshore sedi-
ment transport from the nearshore wave climate (WHR) applying the CERC sediment transport formula (Komar,
1971). We take the mean coastline orientation to be N60∘E (Ashton & Murray, 2006b). Then we achieve the
directional alongshore sediment transport distribution for each SST, fY (y), partitioning the sediment transport
into bins of 5∘, where the representative angle of the bin is defined byΦHR and the accumulated sediment flux
value by QS. Thus, the directional alongshore sediment transport is given by Y = QS(ΦHR) and the directional
distribution for each SST by fY (y). Figure 10 shows the fY (y) obtained with nearshore wave parameters during
the period 1979 to 2014 in the location Loc14 in front of Cape Lookout at 30 m water depth (see Figure 2). The
lower right panel of Figure 11 shows the sediment transport variables involved in the directional distribution
of alongshore sediment transport fY (y).

Step SD2. Decadal and yearly A and U parameters. Here we integrate fY (y), fW0 (w0), and fX (xt) to calculate the
cumulative directional alongshore sediment transport distribution during yearly and decadal time spans,
fY (yt), as below:

fY (yt) =
∑

nDWT

∑
t

fX (xt) ⋅
∑
nSST

fW0 (w0) ⋅ fY (y), (8)

where
∑

nSST
fW0 (w0) ⋅ fY (y) is the cumulative alongshore sediment transport for each DWT,

∑
t fX (xt) ⋅∑

nSST
fW0 (w0) ⋅ fY (y) is the cumulative alongshore sediment transport for each DWT in a period of time t,

here a decade or a year, and integrating over the DWT,
∑

nDWT
, accumulates the total Yt = Qs,t(ΦHR) for each

directional bin to obtain fY (yt). The top roses in Figure 11 show the decadal alongshore sediment transport
distribution from 1872 to 2010. The decadal roses present two very different directional sediment contribu-
tions, a southerly (contribution from the right looking onshore) and a northerly (contribution from the left).
These contributions vary through time as is shown by comparing to the mean value for the study period (red
dotted line in Figure 11). The end of the nineteenth century is characterized by more asymmetry and more
low-angle influence (sediment transport contribution between the two cyan lines in the decadal alongshore
sediment transport distribution) in the wave climate. For example, the northerly component in the 1880–1990
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Figure 11. Decadal directional distribution of alongshore sediment transport fY (yt) (upper roses). Green line is the
shoreline orientation (N60∘E); cyan lines define the reference 42∘ angle above which a wave tend to cause instability
in coastline shape according to Ashton and Murray (2006a, 2006b). Black line is the decadal distribution Y(yt), and
the red line is the mean value for all the decades. The lower left rose shows scheme for the integration of A and
U parameters. The lower right scheme shows the sediment transport variables involved in the directional distribution
of alongshore sediment transport fY (y).

distribution is larger than in the 1910–1920 distribution, relative to the southerly component. Changes in the
relative influences on alongshore sediment transport from waves approaching from different directions will
be reflected in the migration rate and shape of coastline features (Z).

We integrate the decadal and yearly A and U parameters from fY (yt) = fY (Qs,t(ΦHR)) as follows (see also the
lower left panel of Figure 11):

A =
∫ΦHR > 0 fY (Qs,t(ΦHR))dΦHR

∫∀ΦHR
fY (Qs,t(ΦHR))dΦHR

(9)

U =
∫|ΦHR|> 42 fY (Qs,t(ΦHR))dΦHR

∫∀ΦHR
fY (Qs,t(ΦHR))dΦHR

, (10)

Figure 12 depicts the variability in values of A and U over annual and decadal time scales.

3.4. Downscaled Shorelines
In this section, we drive the CEM (Ashton & Murray, 2006a) using yearly A and U parameters (dotted black
line in Figure 12) over the period of 1870–2010. We generate an initial coastline using the values of U
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Figure 12. Yearly values (black), 10 year running mean of yearly values (red) and decadal (blue) A and U parameters for
the study period in location Loc14.

and A that maximize the resemblance between the model capes and the Carolina capes, U = 0.6 and A = 0.55
(Moore et al., 2013). Then, to examine the responses of a coastline (Z) with some of the main characteristics
of the Carolina Coast to the action of historical (hindcast) wave climate, we vary U and A relative to these
mean values using the differences from the mean shown in Figure 12. Figure 13 (right panel) exhibits the
values used to force CEM. Figure 13 (middle panel) shows the 10 year running mean of the yearly shoreline

Figure 13. CEM model results. The middle panel shows the 10 year running mean of the yearly shoreline change rate;
red is erosion, and blue is accretion. The lower panel is the initial model shoreline with scales resembling the Carolina
capes. The right panel shows the yearly values of A and U (dotted lines) and the 10 year running mean of yearly values
(continuous lines).
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Figure 14. (upper panel) The resulting coastline after forcing with the best
fit wave climate (black) and (lower panel) mean shoreline change after
100 years for the best fit climate (green) and for increased summer
hurricane waves (red). The darker (lighter) gray regions cover approximately
10 km north (south) of cusp locations (source: Moore et al., 2013).

change rate. The dominance of erosion (red colors) on the updrift flanks
of the capes (to the left of the cape tips) and accretion (blue colors) on
downdrift flanks reflects the downdrift migration of the capes, under the
asymmetrical wave climate. In contrast to that time-averaged behavior,
Figure 13 also highlights the different erosion/accretion behavior of the
modeled capes during different decades. Around the end of the nine-
teenth century, an erosional cycle driven by lower U and higher A creates
smaller cross-shore amplitudes. In contrast, near the end of the twentieth
century the accretional cycle due to an increase of both U and A creates
more asymmetrical features with pointier tips.

4. Comparison of Predictions With Historical
Observations

Using available historical shorelines (details in Data Set S4 in the
supporting information), we calculate historical shoreline change rates
and compare with those predicted in Figure 13, following the methodol-
ogy described in Moore et al. (2013). Historical shorelines extend as far
back in time as the 1850s, although shoreline surveys were temporally
sparse until recent decades. The availability of historical shorelines lim-
its the time periods over which we can calculate shoreline change rates.

Model predictions shown in Figure 13 include a strong contrast between the patterns of change before
approximately 1908 and during the 1908–1938 period (which we term “period 1” and “period 2,” respectively).
We focus on testing whether this strong predicted signal can be detected in historical observations.

But first, we carry out a preliminary assessment of how reliable the predicted signals are, by comparing the
model results based on the downscaling presented here to a previous modeling effort based on buoy and

Figure 15. Upper panel: predicted shoreline change rate (m/yr) in the
period 1974:2004. Lower panel: measured shoreline change rate (m/yr) in
the period 1974:2004 for Cape Hatteras (source: Moore et al., 2013).

Wave Information Study wave hindcasts for a more recent period,
1974–2004 (Moore et al., 2013). Moore et al. (2013) examined the response
of modeled capes to an altered wave climate, with a single pair of altered
A and U values representing the culmination of a trend observed in buoy
observations. Figure 14 shows how time-averaged shoreline change rates
influenced by wave climate change differ from the rates under a con-
stant wave climate, featuring increased erosion extending approximately
10 km updrift of the cape tips and increased accretion downdrift of the
tips. This climate change signal also appears in Figure 13. Although Moore
et al. (2013) only looked for a signal representing the period as a whole,
Figure 13 features pronounced erosion within 10 km updrift of cape tips in
the 1980s and pronounced accretion just downdrift of the tips during the
1990s and early 2000s.

This period, 1974–2004, features not only buoy and Wave Information
Study data but also shoreline data—data that are more reliable and more
frequent than the shoreline data from the late nineteenth or early twen-
tieth centuries. Therefore, we also compare our predicted model signals
with an analysis of shoreline change during this period (Moore et al.,
2013). Figure 15 shows the modeled shoreline change rate (top panel)
and the observed rates for the flanks of Cape Hatteras (bottom). To assess
whether the component of shoreline change from gradients in alongshore
transport, driven by downscaled wave climate data, is relevant on natural
shorelines, we focus on the areas adjacent to and updrift of Cape Hatteras
(excluding the shoreline in the vicinity of Hatteras Inlet, on the downdrift
flank, as discussed further below). The rough correspondence between
modeled and observed shoreline change rates near and updrift of the cape
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Figure 16. Upper panel: predicted shoreline change rate difference (m/yr)
between period 1 (1872:1917) and period 2 (1917:1946). Results are an
average of the rates for the capes shown in Figure 13, representing a generic
cape with characteristics similar to those of the Carolina capes. Middle
panel: measured shoreline change rate difference (m/yr) between period 1
(1852:1916) and period 2 (1916:1946) for Cape Hatteras. Lower panel:
measured shoreline change rate difference (m/yr) between period 1
(1851:1913) and period 2 (1913:1947) for Cape Lookout.

tip is consistent with the conclusion that the shoreline change processes
represented in hybrid downscaling play a significant role in producing
shoreline change on natural coastlines.

Turning back to the period featuring the strong predicted shoreline
change signal during the late nineteenth and early twentieth centuries,
Figure 16 shows the difference between shoreline change rates calculated
for period 1 and period 2 from model results and observations from near
Cape Hatteras and Cape Lookout.

Two factors complicate this test. First, the availability of historical meteo-
rological observations differs from the availability of historical shorelines;
our model results, based on meteorological data, begin in 1871, while his-
torical shoreline change rates pre-1908 can only be determined between
approximately 1850 and approximately 1915. Thus, period 1 includes two
decades of shoreline change in the observations that cannot be included
in the model results. Second, the opening of inlets during these historical
periods affects the shoreline change rates on the downdrift flanks of the
capes (to the southwest of the cape tips). The large Hatteras Inlet opened
at approximately the beginning of period 1, and the growth of large tidal
deltas during period 1 acted as a sediment sink for the surrounding coast-
lines, driving local patterns of rapid shoreline change. Thus, shoreline
change rates became much less erosional in period 2 relative to period
1 on the downdrift flank of Cape Hatteras, for reasons not connected to
changes in wave climate. Similarly, Barden Inlet opened downdrift of the
tip of Cape Lookout during the period 2, altering coastline change patterns
there. (We do not include Cape Fear in this analysis, because dredging of
the river channel strongly affects shoreline change rates both updrift and
downdrift of the cape tip.)

Therefore, we focus our comparison on the updrift flanks of the capes.
We do not compare the absolute rates of change during each period in
model results to observations for two reasons: (1) The rates of shoreline
change can be adjusted in the model (by adjusting the poorly constrained
empirical coefficient in the parameterization for alongshore sediment
flux). (2) We are assessing whether the signal of climate change involv-
ing altered wave climate and related alterations to alongshore sediment
transport gradients has significant roles in past shoreline change pat-
terns, although cross-shore sediment transport, such as the overwash dur-
ing major storms, also contribute to the magnitude of shoreline change.
Rather than comparing raw shoreline change magnitudes, to test for the
climate change signal we are addressing, we compare the observed along-
shore pattern of differences in shoreline change rates from one period
to the other. The model predicts (Figure 16, upper panel) that (1) within
approximately 10 km updrift of the cape tips, the trend from period 1 to
period 2 should have been toward more accretion/less erosion (positive
values of the difference in shoreline change rates between the two peri-
ods) and (2) farther updrift, the trend should have been toward less accre-
tion/more erosion. Figure 16, lower panels, shows the changes from one
period to the other in the observations, exhibiting a shift toward more
accretion/less erosion near the cape tips and toward less accretion/more
erosion farther updrift. In addition, the transition from more accretion/less
erosion to less accretion/more erosion occurs at a distance updrift of the
cape tip on the order of 10 km, roughly matching the spatial scale of the
transition in the model results (Figure 16, upper panel).
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5. Summary and Discussion
5.1. Model Limitations
We have presented a “hybrid approach,” combining statistical and dynamical modeling, to downscale from
meteorological hindcast in the North Atlantic basin since 1870 to the responses of the shape of the coast of
the Carolinas, USA. In the first step, RD, we use the daily SLP fields from the ensemble mean of 20CR reanal-
ysis to build up 81 different weather types (X) reproducing the interannual variability through the period of
1872–2010. In this step, we link the offshore wave and wind climate conditions (hindcast) W0, with the atmo-
spheric conditions X , in the period of 1979–2010 through a statistical relationship. Here we use empirical
distributions although statistical models could be used instead (Antolínez et al., 2016; Méndez et al., 2007;
Rueda et al., 2017). This method will statistically reflect any variability presented in X into W0. Note that the
20CR data assimilation system is based on an ensemble Kalman filter. The data are produced in a series of
5 year “streams”(independent runs), with 56 members in each stream (Compo et al., 2011). Therefore, ensem-
ble members only remain temporally continuous during the 5 year duration of each stream. This is reflected
in how variability is assessed over long time periods. The increased uncertainty in the early period of the data
leads to greater disagreement between the ensemble members, such that a time series of their mean will
have much less variability than the members individually. This would lead to a spurious strong reduction in
variability appearing at earlier times in the ensemble mean.

In the second step, ND, we propagate W0 —the daily offshore wave conditions accounting for local wind—to
the nearshore (WHR) during the period of 1979–2010. We combine 200 SWAN runs of multivariate wave and
local wind conditions in the hindcast period, selected with data mining techniques (maximum dissimilarity
algorithm), with statistical interpolation techniques (radial basis functions) to reconstruct the daily continu-
ous temporal series in the nearshore. Tests reveal that increasing the number of runs does not improve the
results significantly. We could increase the complexity of the nearshore wave propagation by forcing spa-
tial wave and wind fields instead of uniform multivariate wave and wind climate at the offshore boundary.
However, as forcing for the CEM, increasing the spatial resolution of the nearshore wave data would not be
useful. Furthermore, we could account for temporal changes in bathymetry if multiple bathymetries were
available. With the procedure we have used, any variability presented in X will be statistically reflected in W0

and so in WHR.

The CEM omits several factors and processes that contribute to changes on natural coastlines. In this work,
we do not consider alongshore variations in underlying lithology (Moore et al., 2010; Valvo et al., 2006), and
in the coastline modeling we do not consider local variations in wave conditions arising from complicated
nearshore bathymetry (Limber et al., 2017; McNinch, 2004; Schupp et al., 2006). (The downscaled nearshore
wave data include local variations at depths that can extend to the limit of wave breaking, but to force the
CEM, we use only the wave data at depths corresponding to the base of the shoreface, and we average dif-
ferent locations alongshore.) In such a “one-contour-line model,” coastline accretion or erosion arises from
gradients in n et alongshore sediment transport that occur in the uppermost portion of the shoreface profile,
and the accretion or erosion is distributed across the whole shoreface all at once. This simplified approach
neglects delays in propagating the accretion or erosion to the lower parts of the shoreface profile (Kinsela &
Cowell, 2015), which over the time scales of decades can alter the rates of coastline response to alongshore
transport gradients. Thus, when comparing modeled to observed shoreline change rates, we emphasize not
the magnitude of the rate but rather the patterns of alongshore variations in the rates, which are diagnostic
of the climate change signals we are testing for (Figure 16).

Perhaps most notably, one-contour-line models do not address the component of shoreline erosion that arises
from cross-shore sediment fluxes shoreward of the beach. Strong storms wash sediment from the beach and
upper shoreface landward. Such “overwash” events remove sand from the beach and shoreface, inducing
shoreline erosion. And because the frequency and magnitude of such events tends to increase with the rate
of sea level rise, the resulting component of shoreline change is related to the rate of sea level rise. The model
results presented here do not include this component of shoreline change, but neither other cross-shore pro-
cesses. With the simplifying assumption that the sea-level-rise-related component of shoreline changes is
approximately homogeneous alongshore, that component could be superimposed with the CEM results pre-
sented here. However, the alongshore variations in shoreline change rates we are using to test for the signals
of wave climate change would be unaffected. On the other hand, the cross-shore sediment fluxes that arise
from the opening of an inlet and the subsequent growth of ebb- and flood-tidal deltas contribute a strong
shoreline change signal that is alongshore heterogeneous. This signal complicates the detection of the wave
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Figure 17. Interannual variability of the DWTs (X). Upper panel: yearly occurrence probability for the 81 DWTs. Lower
left panel: DWT lattice as presented in Figure 4. Lower middle panel: self-organizing map of the colors used in the upper
panel with the same organization as the DWT in the lower left panel. Lower right panel: categorical distribution of SST
for each DWT. The right side color bar represents the numbers and colors of the DWT in lower middle panel with the
same order than in the upper panel. It links the lower left and right panel with the upper panel.

climate change signal we are testing for, prompting us to exclude the portions of the coastline in the vicinity
of inlets from the comparisons between model hindcasts and historical observations.

The processes and factors omitted in the CEM would be flaws in a model designed to fully mimic the shore-
line changes along specific coastlines. In the future, models that combine the different processes and factors
contributing to shoreline change will likely allow meaningful forecasts or hindcasts of raw shoreline change
patterns, including the magnitude of rates and their alongshore variations. However, such models do not yet
exist—and the coastal science community is still trying to understand what causes the observed temporal
and spatial variability in shoreline change rates. A simplified, “exploratory” model such as the CEM can help
illuminate the component of shoreline change arising from wave climate (meaning here the angular distri-
bution of wave influences on alongshore transport) and wave climate changes. The comparisons between
model hindcasts and historical observations that we have emphasized (Figure 16) serve to test whether the
signal of wave climate change is embedded in the observed shoreline change—change that results from a
combination of different factors and processes. Detecting the hindcast signal of temporal shifts in alongshore
patterns of shoreline change rates, as is suggested by Figure 16, indicates that this climate change effect can
play a significant role in determining past—and future—shoreline changes.

5.2. Atmospheric and Oceanic Climate Shifts and Implications for the Future
Figure 17 shows the interannual variability of the yearly occurrence probability of the DWTs. We highlight in
purple frequent winter low pressure systems in the North Atlantic, and we distinguish two different flavors
of them in the upper panel of Figure 18: the aquamarine (wSTRONG, DWT numbers: 28, 19, 29, 37, and 38)
associated with the lowest pressure systems and the pistachio green (wWEAK, DWT numbers: 10, 11, and 20)
associated with very persistent and weak pressure systems, usually related with a negative phase of North
Atlantic Oscillation.

According to Müller et al. (2015) in the period prior to the 1900s, the North Atlantic Oscillation state and
the associated weak winds resulted in a weak North Atlantic Current and subpolar gyre, which is translated
into less warm water going to the North and thus less Labrador Sea convection. This is in line with reduced
probabilities found in wSTRONG and increased in wWEAK in the period before the 1910s compared with the
period 1910s–1930s. From the 1910s Arctic freshwater export is reduced. Thus, the North Atlantic Current
and the subpolar gyre are strengthened. The Labrador Sea convection and Atlantic Meridional Overturning
Circulation increase. The intensified North Atlantic Current, subpolar gyre, and Atlantic Meridional Overturn-
ing Circulation redistribute subtropical water into the North Atlantic and Nordic Seas, therefore increasing
observed and modeled temperature and salinity during the 1920s on higher latitude, which is also reflected
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Figure 18. Interannual variability for the highlighted DWTs in Figure 17. The black line is the cumulative probability of DWTs 71, 72, 80, and 81, which are
associated with TC activity near the U.S. East Coast.

in the shifts in the probabilities of wSTRONG (higher) and wWEAK (lower) for that period. Fenster and Dolan
(1994) found nearly two thirds of the U.S. East Coast shorelines have undergone a significant change in the
long-term rates of change between 1950s and 1980s, which could be related with the shift in the wSTRONG
(higher-lower-higher) and wWEAK (lower-higher-lower) DWT probabilities during the 1930s–1970s (upper
panel, Figure 18), considering some time lag in coastline responses (Thomas et al., 2016).

Changes in TC activity will also affect wave climates and coastline change patterns. The red rectangle in
Figure 17 highlights weather types related to TC activity, taking place during the TC season—August–
October—(see left panel of Figure 4). Moore et al. (2013) explain the dynamics of modern cuspate shorelines
from observed changes in hurricane-driven waves, which matches the shift in TC activity during the 1970s
(lower panel, Figure 18). Peaks in the probabilities of the DWTs corresponding to TCs near the Southeastern
U.S. coast also occur prior to approximately 1910, as shown in Figure 18. The Gulf Stream passes by the
Southeastern U.S. coast, and the weakened flow of warm water northward prior to 1900 (Müller et al., 2015)
would have caused more heat to accumulate in the coastal waters during that time. Warmer coastal water
would tend to enhance tropical activity there—allowing tropical storms to retain more strength as they prop-
agate northward, compared with other periods. One result would be that tropical storms making landfalls
along the Carolina coast would tend to be stronger, compared with other periods—likely explaining why
multiple strong hurricanes made landfall along the Carolina coast during this period (Stick, 1990).

The downscaled hindcasts reflect such occurrences. In the SSTs near the center of Figure 10 (rows 6 and 7 and
columns 6 and 7), large magnitude contributions from waves approaching from the east and just south of east
represent landfalling or near landfalling TCs, with the strongest onshore winds from these directions gener-
ating the largest waves (Moore et al., 2013). The decadal directional distributions of influences on alongshore
transport in Figure 11 represents the dominant effect such landfalling or near landfalling TCs had during the
1880s and 1890s (and to a lesser degree, 1900–1910). The TC-generated waves tend to increase the asym-
metry of the wave climate, A. They also tend to decrease U. (The decreased occurrences of wSTRONG noted
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above, and associated decrease in waves from high angles north of east, during the pre-1900 period, would
also tend to decrease U, although these effects are less striking in Figure 11.) The corresponding trends in A
and U, shown in the right panel of Figure 13, drive the dramatic shifts in erosion and accretion patterns during
period 1 (before 1917) shown in the middle panel of Figure 13.

This strong signal of erosion and accretion, combined with a contrasting erosion/accretion pattern during
period 2 (1917–1946), produces the result in the top panel of Figure 16. The fact that the observations, as syn-
thesized into the bottom two panels of Figure 16, qualitatively match the signal predicted in the top panel
of Figure 16, despite the factors complicating the comparison (including different limits on period 1), sug-
gests that basin-scale climate shifts produce significant responses in coastline shape. Scenarios for future
basin-scale shifts in climate can be generated by global climate models. Such scenarios are likely to include
the warming of coastal waters that may have contributed to the strong signal that seems clear in Figure 16.
Based on the comparison in Figure 16, the downscaling procedure presented here provides the opportunity
to forecast the component of the future pattern of shoreline change rates related to shifting climate states
through shifts in wave climates—whether decadal-scale oscillations or a trend related to global warming.

6. Conclusions

The hybrid methodology presented here provides a computationally efficient way to downscale from ocean
basin-scale meteorological climate to the nearshore wave and wind climate affecting any particular coast-
line. The multivariate wave and wind climate could be used to examine a range of different types of coastal
responses, including the statistics of total water levels and coastal flooding. Here we use the local wave cli-
mate to investigate shifts in coastline shape. This methodology captures the interannual and interdecadal
shifts in the climate forcing throughout the last century and hindcasts how these shifts may have affected
coastline shape (along the coast of the Carolinas, USA, as a case study). Coastline-shape responses manifest
as shifts in the patterns of shoreline change rates. An initial comparison between predicted and observed
shifts in patterns of shoreline change rates suggests the conclusion that climate shifts can play a significant
role in determining shoreline change rates, increasing or decreasing erosion rates by up to meters per year.
This method combines statistical, data mining and dynamic modeling techniques that now are available to
quickly address coastal responses to projected future climate change.
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