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[1] In order to make well-informed decisions in response to future climate change,
officials and the public require reliable climate projections at the scale of tens of kilometers,
rather than the hundreds of kilometers that the current atmosphere–ocean general
circulation models provide. Recent efforts such as the North American Regional Climate
Change Assessment Program (NARCCAP) aim to address this need. This study has two
principal aims: (1) evaluate the seasonal performance of the NARCCAP simulations over
the southeast United States for both present (1971–2000) and future (2041–2070)
periods and (2) assess the impact of a performance-based weighting scheme on bias and
uncertainty. Application of the weighting scheme results in a substantial reduction in
magnitude and percent area exhibiting significant bias in all seasons for both
temperature and precipitation. The weighting scheme is then expanded to evaluate future
change. Temperature changes are universally positive and outside the bounds of natural
variability over the entire region and in all seasons. Application of the weighting
scheme tightens confidence intervals by as much as 1.6°C. Future precipitation changes
are modest, are of mixed sign, and vary by season and location. Though uncertainty is
reduced by as much as 50%, the projected changes are generally not outside the bounds of
natural background variability. Thus, under the NARCCAP simulations, stress on water
resources is most likely to come from increased temperatures and not changes in mean
seasonal precipitation. For energy use, the implication is that the�3°C temperature increase
during the peak use summer season may place additional strain on power grids.
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1. Introduction

[2] Currently, large-scale atmosphere–ocean general cir-
culation model (AOGCM) experiments such as those
employed by the Intergovernmental Panel on Climate
Change (IPCC) do not provide consistent, reliable informa-
tion, for the present or the future, at scales over which
humans tend to act (e.g., cities, states, municipalities)
[Oreskes et al., 2010]. In order to make well-informed
decisions with respect to climate change adaptation and/or
mitigation, elected officials, planners and the public require
information at spatial scales on the order of tens, not
hundreds, of kilometers. This issue is particularly acute over
regions where global models exhibit substantial disagree-
ment with respect to magnitude and even sign of present

conditions and/or projected changes in climate variables.
Development of reliable multimodel regional-scale climate
model ensembles, improved model performance, and
reduction of uncertainty (e.g., due to model error, disagree-
ment, internal variability) have been identified as pressing
current research needs following the IPCC’s Fourth Assess-
ment Report (AR4), published in 2007 [Doherty et al., 2009].
The present study aims to address some of these needs
through an evaluation of a six member ensemble of regional
climate models over the southeast United States There are
two goals: one is to evaluate the multimodel performance
of the North American Regional Climate Change Program
(NARCCAP) relative to observations over the southeast
United States and improve multimodel simulation of present-
day seasonal temperature and precipitation patterns at the
subregional scale. The second goal is to evaluate future
changes in temperature and precipitation over this region and
reduce their associated uncertainties using an expanded ver-
sion of the reliability ensemble averaging (REA) technique
developed by Giorgi and Mearns [2003]. The resulting
weighted projections of future change and estimates of
uncertainty provides information on a scale (e.g., 50 km2) that
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is useful for water resource planners, town and state officials,
the agricultural sector and the general public.
[3] The climate modeling community has been aware of

the need for better regional-scale climate projections for
some time, and numerous studies employing regional cli-
mate models (RCMs) have been performed in order to
evaluate mean temperature and precipitation [e.g., Mearns
et al., 2003; Chen et al., 2003] and extreme events [e.g.,
Diffenbaugh et al. 2005] at higher spatial resolutions. These
investigations generally employ only a few models and/or
a limited number of realizations and are thus not particu-
larly robust. Because of intermodel differences, particularly
in handling subgrid-scale parameterizations and land-
atmosphere interactions, recent studies suggest that multi-
model means almost always provide estimates superior to
any one “good”model [Phillips and Gleckler, 2006;Gleckler
et al., 2008]. Recently, coordinated international efforts have
made inroads in providing the research community with
multimodel regional climate simulations through efforts
such as NARCCAP and the European PRUDENCE and
ENSEMBLES programs (http://prudence.dmi.dk/). NARC-
CAP provides multimodel output for present and future cli-
mate at a spatial scale of 50 km2 over the entire North
American continent and is the primary data source for the
present study [Mearns et al., 2009].
[4] Even though the higher resolution of RCMs helps to

resolve finer-scale aspects of climate they suffer from many
of the same systematic biases and errors inherent in their
AOGCM counterparts. For example, RCMs must still
parameterize many subgrid-scale physical processes (e.g.,
convection, microphysics, surface-atmosphere interactions,
boundary layer processes). Thus, model error due to imper-
fect parameterization schemes and dynamical specifications
increases the uncertainty surrounding simulated climate.
Another source of uncertainty is the large influence of
internal variability (i.e., weather and climate “noise”) due to
the small number of realizations in most modeling experi-
ments. Deser et al. [2011] argue that the contribution of
internal variability to total uncertainty is, in most cases larger
than intermodel variability and that a large number of reali-
zations (e.g., 20+) of each model need to be run in order to
obtain robust results for variables other than surface tem-
perature. A final source of uncertainty is scenario uncer-
tainty due to the estimated trajectories of global development
and future emissions. This source of uncertainty is one over
which the researcher has little control, but it can be mitigated
by evaluating a number of more or less possible future sce-
narios. Recent studies argue that attempts to reduce uncer-
tainty should focus on improving model performance and on
adequately accounting for the influence of internal variabil-
ity [Hawkins and Sutton, 2009]. Others acknowledge that
some uncertainties can never be significantly reduced (e.g.,
scenario uncertainty) and suggest a more broad-based
approach that allows for decision making under deep uncer-
tainty [Mearns, 2010]. While these approaches for mitigating
and reducing the various sources of uncertainty are not
mutually exclusive in their application (one could conceiv-
ably employ all of them) we choose here to focus on reducing
model error and future uncertainty given a prescribed sce-
nario. One way to do this is to apply weighting schemes that
preferentially weight models on the basis of performance
relative to present-day conditions and/or level of future

agreement [e.g., Giorgi and Mearns, 2003; Raisanen et al.,
2010]. Recent research suggests that bias relative to pres-
ent-day observations may be an effective predictor of the
accuracy of a model’s future climate projection, lending
support to approaches that employ multimodel weighting
schemes based, at least in part, on model bias [Tebaldi et al.,
2005;Watterson, 2008;Matsueda and Palmer, 2011]. Others
offer generally positive evaluations of performance-based
multimodel weighting but advocate adding additional mea-
sures that also account for intermodel similarity in order
to improve the accuracy of future simulations [Raisanen
et al., 2010]. However, it should be noted that some
studies suggest there is limited advantage to selecting
models on the basis of present-day performance and advocate
larger ensembles and greater numbers of realizations in order
to reduce bias and uncertainty [Santer et al., 2009; Pierce
et al., 2009; Reifen and Toumi, 2009]. It is not the pur-
pose of this manuscript to enter into a debate on the merits
and drawbacks to weighting but to apply one approach to
model evaluation, report on the outcome and assess the
weighting scheme’s efficacy. Given the small number of
models and realizations in the NARCCAP database at the
time of evaluation (six), we choose to take the perfor-
mance-based weighting approach.
[5] The southeast United States is an ideal candidate

for the performance-based model weighting approach just
described. The observational record over this region is
robust, giving us high confidence in our ground truth
data. It is an economically important region that has expe-
rienced exceptional growth over the past two decades. For
example, North Carolina and Georgia report population
increases of 42% and 50% since 1990, respectively (data are
available from http://www.census.gov/). This increase in
population has put pressure on water and energy resources
and has reduced the region’s capacity to weather multiyear
droughts, two of which have occurred in the past 13 years
(1998–2002 and 2005–2008). As Seager et al. [2009] point
out, the recent 2005–2008 drought was typical in amplitude
and duration compared to the historical record but its effects
were exacerbated because of increased demand. This
inability to buffer the effects of the drought led to severe
municipal water rationing measures and losses in excess of
$1.3 billion [Manuel, 2008]. In addition to stresses on water
resources, energy demands have also risen along with pop-
ulation, economic activity and personal income. Over the
period of 1997–2006 overall energy consumption in the
Southeast increased 13%, over twice that of the national
average [Damassa, 2009]. Rising temperatures will likely
further increase energy demand over the region, particularly
during peak use months from late spring to early fall.
Because of this rising demand for water and energy the
southeast United States is particularly vulnerable to the
effects of global climate change on regional temperature and
precipitation. However, the southeast United States is a cli-
matically complex region, bordered on the south and east by
the Gulf of Mexico and Atlantic Ocean and influenced by
the orographic effects of the Appalachian and Blue Ridge
mountains. Assessment of potential impacts is complicated
by the fact that 20th century trends in seasonal temperature
and precipitation are modest [Karl and Knight, 1998;
Knutson et al., 2006] and that there is a lack of agreement on
future changes with respect to precipitation [Christensen
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et al., 2007; Seager et al., 2009]. In most seasons the
line of zero precipitation change typically runs through
the Southeast as it lies on the poleward flank of the
projected subtropical drying associated with expansion of
the Hadley Cell. Thus, the Southeast is a region where
elected officials, planners and the public require reliable
information at spatial scales on the order of tens, not
hundreds, of kilometers in order to make well-informed
decisions with respect to climate change adaptation and/or
mitigation.
[6] In this study we evaluate seasonal multimodel mean

temperature and precipitation output from six RCM-
AOGCM pairs. These data are obtained from the publicly
available NARCCAP archive [Mearns et al., 2009]. Once
multimodel mean bias and average model skill relative to
observations are identified, the enhanced REA weighting
scheme is applied in order to reduce bias in the present-day
simulations and reduce uncertainty in future projections. We
expand on previous studies which focused on either a single
RCM-AOGCM pair [e.g., Giorgi et al., 1998; Mearns et al.,
2003] or applied weighting to regional averages rather than
at subregional scales [e.g., Giorgi and Mearns, 2003].
[7] In section 2 we describe the NARCCAP modeling

experiments and the output used in this study. We also dis-
cuss the gridded observation-based data sets used as ground
truth for present-day comparisons in section 2. The weight-
ing methodology is introduced in section 3. Results of the
analysis for the present-day and future simulations are pre-
sented in sections 4 and 5, respectively. Discussion and
conclusions are presented in section 6.

2. Models and Data

[8] The modeled precipitation and temperature data used
in this study are publicly available from the NARCCAP
database and are the result of work performed by partici-
pating modeling groups (L. Mearns, The North American
Regional Climate Change Assessment Program Dataset,
National Center for Atmospheric Research Earth System Grid
data portal, 2007, updated 2011). (See the NARCCAP Web
site (http://www.narccap.ucar.edu) for complete descriptions
of the program and its various experiments.) The RCMs are
drivenwithAOGCMboundary conditions and cover a domain
that includes the conterminous United States and Canada at a
spatial resolution of 50 km. Here we focus on six RCM-
AOGCM pairings that each have one realization covering the
late 20th century (1971–2000) and the mid 21st century
(2041–2070). Each pairing has one realization for each time
period resulting in a 6 member multimodel ensemble. The
RCM-AOGM pairs are as follows: the Canadian Regional
Climate Model version 4 forced by the Community Climate
System Model (CRCM-CCSM in the NARCCAP archive),
the Canadian Regional Climate Model version 4 forced by
the Coupled Global Climate Model version 3 (CRCM-
CGCM3 in the archive), the Hadley Centre Regional Model
version 3 forced by the Hadley Centre Climate Model
version 3 (HRM3-HadCM3 in the archive), the fifth-
generation Pennsylvania State University–NCAR Meso-
scale Model forced by the Community Climate System
Model (MM5I-CCSM in the archive), the International
Centre for Theoretical Physics Regional Climate Model
version 3 forced by the Coupled Global Climate Model

(RCM3-CGCM in the archive) and the International
Centre for Theoretical Physics Regional Climate Model
version 3 forced by the NOAA Geophysical Fluid Dynamics
Laboratory climate model (RCM3-GFDL in the archive). We
do not describe the particular characteristics of individual
RCMs in depth here as this study is concerned with an
evaluation of overall, multimodel mean performance rather
than an intercomparison between individual models.
[9] For the present-day simulation the AOGCMs have

been initialized by historical observations while the 21st
century runs have been forced according to the SRES A2
emissions scenario. The A2 emissions scenario envisions
heterogeneous growth with the global population rising
to over 10 billion by 2050 and CO2 concentrations of
575 (870) ppm by the middle (end) of the 21st century.
Though A2 is at the high end of SRES emissions scenarios it
is not the highest and was chosen by the NARCCAP group
because, from an adaptation and mitigation perspective, a
higher-emission scenario potentially provides more infor-
mation than a low-emission scenario would.
[10] Gridded data sets of monthly mean precipitation rate

(P, mm/d) and surface temperature (T, ° C), are employed as
ground truth for comparison to present-day (historical)
RCM-AOGCM output. Terrestrial precipitation and tem-
perature data are obtained from the Wilmott and Matsuura
[1995] (hereinafter WM) 0.5° � 0.5° gridded monthly time
series from 1900 to 2008 (available at http://climate.geog.
udel.edu/�climate/). These data sets are developed from
observations and are especially well constrained over
regions with high concentrations of point data such as the
southeast United States. WM employ a combination of
techniques based on observational data and Climatologically
Aided Interpolation (CAI) coupled with an enhanced dis-
tance weighting method to build their data sets [Legates and
Willmott, 1990; Willmott and Matsuura, 1995; Willmott and
Robeson, 1995].
[11] In order to facilitate comparison all model data are

interpolated to a common 0.5°� 0.5° grid on the basis of the
observations. Further, monthly and seasonal means are
computed from modeled 3 h precipitation and temperature
outputs. We define the spatial domain of the southeast
United States as the land areas from 92.75°W–75.25°W and
29.25°N–37.75°N. The study area encompasses the states of
North Carolina, South Carolina, Georgia, Tennessee, Ala-
bama, Mississippi, and parts of six others (Figure 1). The
Florida peninsula is left out of the analysis because the
driving AOGCMs generally do not allow for clear repre-
sentation of this feature.

3. Bias-, Skill-, and Distance-Based Weighting
Scheme

[12] In this study we adapt the reliability ensemble aver-
aging (REA) techniques developed by Giorgi and Mearns
[2003] to the NARCCAP ensemble over the southeast
United States. Whereas Giorgi and Mearns [2003] applied
the REA scheme to large-scale regional averages (e.g., all of
North American is divided into 5 regions), we apply weights
at each 50 km grid cell over the study area. Further, we add
an additional weighting criterion that is based on each
model’s ability to match the probability density function
(pdf) of the observations. These weights are applied to the
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present-day NARCCAP output in order to illustrate present-
day bias reduction and future change in P and T (DP and
DT, respectively) where the weighting scheme reduces
uncertainty on the basis of model reliability and agreement.

We define future change for each model as the difference
between the 2041–2070 and 1970–2000 means. In this sec-
tion we provide a brief overview of the weighting techni-
ques, essential equations and assumptions. For all equations

Figure 1. (a–d) Observed mean seasonal surface temperature (°C), (e–h) North American Regional
Climate Change Assessment Program (NARCCAP) multimodel mean seasonal surface temperature,
and (i–l) mean seasonal bias. Stippling indicates grid cells where bias is statistically significant (at
the 5% level), as measured by two-sided Student’s t tests.
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we follow the naming and numbering conventions of
[Giorgi and Mearns, 2003] for consistency.
[13] For the unweighted case the multimodel mean esti-

mated climate change is calculated for T and P (note thatDP
is presented as percent change). The uncertainty surrounding
this estimate is measured by calculating the root-mean-
square difference (RMSD), dDT for temperature. If the pdf of
actual future changes is close to Gaussian, dDT is simply the
standard deviation (describing the 68.3% confidence bounds)
and the 95% confidence bounds may be approximately
described by �2dDT. In this case, the confidence bounds are
only approximately defined because we do not really know
the shape of the future pdf and invoke the central limit the-
orem to justify the assumption of normality. If the shape of
the future change pdf is uniform, then bounds described by
the RMSD are about 58% and �2 times the RMSD encom-
passes the entire distribution and is thus not particularly
informative.
[14] For the REA weighted case, the multimodel mean

change, taking T as an illustrative example, may be described
as follows:

fDT ¼
Pn

i¼1 RiDTiPn
i¼1 Ri

ð1Þ

where n is the number of RCM-AOGCM pairs and Ri is a
weighting factor that is composed of three components.
These components account for model bias relative to the
observations (RB,i), model skill at reproducing the distribu-
tion of present-day observations (RS,i) and future conver-
gence toward the multimodel mean (RD,i). Thus, Ri may be
decomposed as follows:

Ri ¼ Rm
B;iR

n
S;iR

p
C;i

h i
ð2Þ

RB;i ¼ �T
abs Ti � Tobsð Þ ð3Þ

RS;i ¼
Xn
1

min Zi; Zobsð Þ ð4Þ

RD;i ¼ �T

abs DTi �DT
� � : ð5Þ

[15] The bias component (RB,i) is defined as the difference
between each RCM-AOGCM pair and observations over the
1970–2000 historical period. Epsilon is an estimated mea-
sure of background, or natural, variability. In order to cal-
culate � the 1900–2008 temperature and precipitation time
series at each grid cell of the WM data sets are linearly
detrended and smoothed, using a 30 year moving average to
remove long-term trends. Next, � is estimated as the differ-
ence between the 97.5th and 2.5th percentiles of the
smoothed time series.
[16] The skill score component (RS,i) is a metric adapted

from Perkins et al. [2007] and is not part of the original REA
methodology described by Giorgi and Mearns [2003]. Zi,
Zobs are the frequency distributions across all bins (n) of the
models and observations, respectively. Bins are set at every
1 mm/d for P, while the bins for T are set at every 2°. Thus,
the skill score measures how well the pdf of each model
matches the pdf of the observations over the 1971–2000
period, with 1 being a perfect match and 0 being perfect

disagreement. The skill scores are computed here using
monthly mean values and therefore measure the models’
ability to replicate large-scale average conditions (e.g.,
effects of large-scale circulation, low-frequency variability,
etc.) rather than the synoptic conditions that a skill score
computed with daily values might capture.
[17] The distance criterion (RD,i) measures how close the

projections of individual models are to the multimodel mean.
For the first iterationDT is used as a “best guess” estimate of
the future change. Subsequently we update the weighted

average and compute the distance criterion again. Since fDT
is updated after each calculation of the distance criterion this
represents an iterative procedure and is repeated until con-
vergence occurs (about five iterations). Note also that
weights themselves may be weighted on the basis of either
subjective or objective criteria (m, n, p in equation (2)). For
the present study these values are all held at 1.
[18] Uncertainty in the weighted case is also measured by

calculating RMSD, ~dDT, in a manner analogous to the

unweighted case. However, in this instance fDT and Ri are
employed as follows:

~dDT ¼
Pn

i¼1 Ri DTi � fDT
� �2

Pn
i¼1 Ri

2
64

3
75
1=2

ð6Þ

[19] As before, if we assume the future change to be
normal the 95% uncertainty bounds may be approximated
by �2~dDT.
[20] The REA weights are applied at the monthly level and

then the weighted seasonal averages are computed. In addi-
tion to applying weighting factor, Ri to the multimodel mean
future change as described previously, we also analyze the
combined effects of RB,i and RS,i on the present-day simu-
lations in order to asses the performance of the NARCCAP
RCMs and the ability of the weighting scheme to reduce bias
in the present-day multimodel mean. In the latter case the
weights are applied to the monthly means of each model in
all years so that significance and confidence bounds of the
bias may be assessed via a Student’s t test. The difference
between the bias computed by weighting each model’s mean
monthly values for all years and weighting each model’s
monthly climatological mean is negligible.

4. Present-Day Climate and Model Bias

4.1. Seasonal Temperature

[21] The present-day observed seasonal temperature cli-
matology (1971–2000 mean) is shown in Figures 1a–1d. The
Southeast is characterized by relatively homogeneous spatial
distribution of seasonal temperatures with a distinctive north-
south gradient in the winter which weakens somewhat in the
spring and fall. The summer season is uniformly hot and
humid with the exception of the Appalachian mountains
where temperatures are cooler. Figures 1e–1h show the sea-
sonal multimodel mean temperature from the NARCCAP
simulations. While the spatial patterns of the modeled tem-
peratures are similar to the observations there is a clear cold
bias over much of the Southeast in winter, spring and fall.
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Differences between the models and observations in summer
are modest and appear to be positive (negative) in the west
(east). Seasonal bias is shown explicitly in Figures 1i–1l.
Stippling indicates grid cells where the bias is statistically
significant at the 5% level, as measured by a Student’s t test.
Using these measures as guidance, the multimodel mean
exhibits significant negative bias over much of the Southeast
in winter, spring and fall with regional averages of �2.7°C,
�2.0°C, and �1.5°C, respectively. In many areas, the bias
exceeds �3°C. In summer the magnitude of the bias is
lower (generally < �1°C) and fewer regions exhibit
statistically significant bias than fall–spring. However,
there are regions of significant positive bias along the
Mississippi, negative bias over the Appalachian moun-
tains and southeast Georgia.
[22] Another way in which we assess multimodel perfor-

mance is to examine the skill scores averaged across all
models and the differences in variability between the models
and observations. The multimodel mean is not appropriate
for these comparisons as it reduces variability as an effect of
averaging. Rather, these metrics are computed for each
model individually and then averaged across all models.
Figures 2a–2d show the average model skill in reproducing
the seasonal pdf’s of the observations. Generally, regions of
poor skill correspond to regions of high bias shown in
Figure 1. In winter and spring there is a north (south) pattern
of high (low) skill scores. During summer, the pattern has a
more east (west) orientation with the eastern portion of the
Southeast exhibiting high skill scores (>0.7) while along the
Mississippi river skill scores are around 0.5. Generally, high
skill scores are exhibited through the central and extreme
southern portions of the Southeast during fall with low
scores seen around the Blue Ridge mountains. We may infer
from these results that model skill varies widely depending
on both location and season.
[23] The difference in standard deviation between the

models and observations is shown in Figures 2e–2h (we
show the standard deviation averaged across all models,
not the multimodel mean standard deviation). These dif-
ferences are generally modest in the winter, spring and fall
(< �0.3°C), though there is region-wide and systemic
underestimation of variability in the winter season. During
summer, however, the models overestimate variability over
the entire Southeast with some areas along the Mississippi
river exhibiting spreads that are larger than the observa-
tions by a degree or more.

4.2. Seasonal Precipitation

[24] The present-day observed seasonal precipitation cli-
matology (1971–2000 mean) is shown in Figures 3a–3d.
The observations illustrate the complex climate dynamics of
the Southeast region. From late fall through spring moisture
is transported out of the Gulf of Mexico in a roughly
southwest to northeast direction as it is entrained in midlat-
itude storm systems. During summer convective precipita-
tion dominates and the influence of the land-ocean contrast
and tropical systems are clear along the coasts. Fall exhibits
precipitation minima across the region. The orographic
effects of the Appalachian mountains are visible in all sea-
sons to a greater of lesser degree. The multimodel mean
seasonal precipitation from the NARCCAP simulations is

shown in Figures 3e–3h. The models tend to overestimate
the orographic effects of the Appalachian mountains in all
seasons but most markedly in winter and summer. The
multimodel mean is also generally unable to capture the
spatial patterns of precipitation in any season with possible
exception of spring. As Figures 3i–3l illustrate, the models
tend to significantly underestimate (overestimate) precipi-
tation in the western (eastern) part of the study area during
winter and spring. Precipitation is significantly under-
estimated along the coasts and along the Mississippi in
summer and region-wide in fall. These patterns suggest the
RCMs reproduce at least some of the well known, systematic
errors of the driving GCMs. In particular, the errors suggest
that the models have difficulty reproducing moisture trans-
port and synoptic-scale activity during the cool seasons,
convective processes and land-ocean contrasts during warm
seasons and orographic effects [e.g.,Martin et al., 2010, and
references therein]. There are also land surface process biases
that likely contribute to these patterns as well.
[25] Precipitation skill scores are shown in Figures 4a–4d.

The lowest skill scores are seen along the Gulf coast and
the Appalachian mountains during summer, otherwise
skill scores are generally above 0.6 across the region in
all seasons. Figures 4e–4h show the difference in vari-
ability between the models and observations. The models
tend to underestimate variability in the western region during
winter and spring. During fall variability is underestimated
over the entire Southeast, while summer exhibits modest and
heterogeneous differences in variability.

4.3. Effects of Weighting on Simulations of Present-Day
Climate

[26] Biases in the NARCCAP simulations of temperature
and precipitation appear in all seasons, but the patterns and
magnitudes are not consistent across seasons. This spatial
and temporal variability in the bias is likely linked to subre-
gional differences in climate, the physical processes that
dominate the Southeast at different times of the year and
the models’ difficulty in reproducing moist processes and
orographic effects. Weights based on monthly model bias
(RB,i) and skill score (RS,i) are applied to each individual
model and the seasonal multimodel means are computed.
Figure 5 shows the weighted bias for temperature (compare
to Figures 1i–1l). Although statistically significant biases
are still evident over much of the Southeast during winter,
spring and fall, the magnitude and area affected are both
greatly reduced. Temperature bias is all but eliminated in
summer. Figure 6 shows the effects of the weighting scheme
on the estimated pdf’s of temperature at three selected loca-
tions across all four seasons. This result illustrates how the
effectiveness of the weighting scheme varies depending on
location and season.
[27] Figure 7 shows the bias reduction for precipitation

(compare to Figures 3i–3l). As with temperature the bias is
reduced in both magnitude and area affected in all seasons.
Winter still exhibits statistically significant negative biases in
the western portion of the study area. However, spring bias is
virtually eliminated and summer bias is limited to the coastal
areas. The negative bias in fall is still region-wide and the
reduction in magnitude is small but nonnegligible. Estimat-
ing the pdf’s of precipitation under normal assumptions
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Figure 2. (a–d) Seasonal temperature skill score averaged across all models and (e–h) average difference
in standard deviation between models and observations (°C).
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produces similar, spatially and temporally varying, results as
Figure 6, though both the weighted and unweighted multi-
model means underestimate the spread of the observations
(not shown).

[28] Figure 8 shows the regional average bias for temper-
ature (Figure 8a) and precipitation (Figure 8b) with 95%
confidence bounds for both the unweighted and weighted
cases. Also shown in Figure 8 is the percent area of the

Figure 3. (a–d) Observed mean seasonal precipitation (mm/d), (e–h) NARCCAP multimodel mean sea-
sonal mean precipitation, and (i–l) mean seasonal bias (shown as percentage). Stippling indicates grid cells
where bias is statistically significant (at the 5% level), as measured by two-sided Student’s t tests.
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Figure 4. (a–d) Seasonal precipitation skill score averaged across all models and (e–h) average differ-
ence in standard deviation between models and observations (mm/d).
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Southeast that exhibits statistically significant bias for both
the unweighted and weighted cases. A decrease in the
absolute value of seasonal bias is exhibited in all seasons for
both temperature and precipitation (absolute values are used
in order mitigate the cancellation between regions of nega-
tive and positive bias). Temperature exhibits substantial
decreases in the magnitude of bias in all seasons, with spring
showing the greatest improvement from �2°C to �0.8°C.
The percent area exhibiting statistically significant temper-
ature bias is reduced from 72% to 14% in the summer and
99% to 78% in spring. However, the other season exhibit
only modest reductions in percent area of a few percentage
points. Conversely, precipitation exhibits more modest
reductions in absolute value of seasonal bias relative to

temperature, while exhibiting much more substantial reduc-
tions in percent area (Figure 8b). The average regional pre-
cipitation bias improves by a few percentage points in all
seasons, while percent area decreases by over 20% in spring
and summer, 10% in winter and a more modest 7% in fall.
[29] As noted in the introduction there is debate over the

efficacy of weighting and model selection schemes. While it
is not the purpose of the present study settle, or even enter,
this debate, it is important to make some remarks regarding
the fidelity of the bias reduction scheme. To evaluate the
bias reduction approach the techniques of Reifen and Toumi
[2009] are adapted to the present case. In short, weights are
developed (“trained”) over a variety of 20 year subsets of the
1971–2000 NARCCAP simulation period and are then

Figure 5. Multimodel mean seasonal temperature bias after application of performance-based weighting
(°C). Stippling indicates grid cells where bias is statistically significant (at the 5% level), as measured by
two-sided Student’s t tests.
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applied to the remaining 10 years. These 10 year “test” cases
are then compared to the concurrent observations to see if
the training weights improve performance during test peri-
ods. While the relatively short 30 year simulation period is
not ideal for this type of cross-validation test, the results give
some indication of the fidelity of the scheme. Figures 9 and
10 show the region-wide results of the test cases for the two
periods and should be compared to Figure 8. The reductions
in seasonal regional bias and percent area are generally quite
similar to those shown in Figure 8. The results are largely
insensitive to selection of training and testing periods though
there is a reduction in performance as the training period is
decreased down to 10 years (not shown). It should also be

noted that the REA scheme has not been optimized in this
study. Investigating the optimal magnitudes of the weights
(by altering the exponents in equation (2)) and varying bin
sizes for the skill score by season or month is the subject of
ongoing investigation and has the potential to lead to
increased performance.
[30] Thus, the weighting scheme is effective at reducing

overall regional bias of both temperature and precipitation.
However, we note that substantial bias still exists in some
seasons and locations. Generally, the models exhibit nega-
tive temperature bias over the entire Southeast in all sea-
sons except summer. Precipitation bias varies more with
location, season and sign but, in general, the models

Figure 6. Probability density estimates of temperature for three select points showing the effects of
weighting. From left to right the locations correspond to eastern Arkansas, southeast Louisiana, and north
central North Carolina. Observations (solid lines), multimodel mean (dotted lines), and reliability ensem-
ble averaging (REA) weighted multimodel mean (dashed lines) are shown for (a) winter, (b) spring,
(c) summer, and (d) fall.
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underestimate precipitation. Weighting was also performed
with skill scores and bias separately. However, the com-
bined weighting method was found to result in the largest
bias reductions for both variables (not shown).

5. Future Change and Uncertainty

[31] Having established the efficacy of the bias- and skill
score–based weighting scheme on the present-day simula-
tions, we add the distance criterion (RD,i) and apply the
complete REA scheme (Ri) to the 21st century change in
temperature and precipitation. It should be noted that the
future multimodel mean (DT), used in the computation of Ri,
is simply a best guess estimate of the future conditions; we

make no claim that it is the true future value given the
described scenario.
[32] Figure 11 shows the REA weighted 21st century

change in temperature in Figures 11a–11d and the
unweighted and weighted uncertainty in Figures 11e–11h
and 11i–11k, respectively. The temperature change and
uncertainty are in degrees Celsius. As discussed in section 3,
if the pdf of future change is nearly Gaussian, then �2 times
the RMSD approximately defines the 95% confidence
bounds. The temperature change in by the middle of the 21st
century is positive over the entire southeast United States.
The stippling indicates grid cells where the entire 95%
confidence bounds of the projected change lie outside the

bounds of natural variability as defined by � in section 3. fDT

Figure 7. Multimodel mean seasonal precipitation bias after application of performance-based weighting
(shown as percentage). Stippling indicates grid cells where bias is statistically significant (at the 5% level),
as measured by two-sided Student’s t tests.
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is generally homogeneous over the region in each season,
with slight north-south, coast-inland gradients (i.e., more

warming north (inland) less south (coasts)). Maximum fDT
occurs in the summer with temperatures rising over 3°C over
much of the Southeast. This intense warming continues into
the fall and decreases slightly in the winter and spring whenfDT is between 1.5°C and 2°C. The unweighted 21st century
changes are not shown as they are not qualitatively different,

though slightly fewer grid cells exceed natural variability at
the 95% level.
[33] Figures 11e–11h show the upper half of the approxi-

mate 95% unweighted uncertainty bounds, or 2dDT. The
unweighted uncertainties are over 0.5°C across most of the
Southeast in all seasons. The Gulf states (spring), North
Carolina and Mississippi (summer) and the northern states
(fall) exhibit coherent areas with uncertainties as high as
1°C, indicating 95% confidence intervals of around 2°.

Figure 8. Regionally averaged seasonal (a) temperature and (b) precipitation bias for the unweighted
(AVE) and weighted (REA) cases. Absolute values are used to mitigate cancellation due to subregional
variations in sign. The 95% confidence intervals calculated from Student’s t tests are denoted by whiskers.
The percentage of total area exhibiting statistically significant bias for AVE/REA cases is shown on the
bottom.
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This range of uncertainty sets the lower limits of change
as low as 1°C in some areas during winter and spring.
Conversely, the upper limits may be as high as 4.5°C–5°C
over some areas during summer. While consideration of
the unweighted uncertainties does not change the story of
warming over the entire southeast United States by the
middle of the 21st century, the range of potential warming

is increased everywhere and specific seasons and locations
(e.g., spring along the Gulf coast) exhibit confidence
intervals that approach 2°.
[34] The effect of the REA weighting scheme can be seen

by comparing Figures 11e–11h and 11i–11l. Figures 11i–11l
show 2 times the REA RMSD, or 2d̃DT. The average change
shown in Figures 11a–11d plus or minus this uncertainty

Figure 9. Weighting scheme test results. Training was performed in the first 20 years of the simulation
period, and testing was on the last 10 years. Regionally averaged seasonal (a) temperature and (b) precip-
itation bias for the unweighted (AVE) and weighted (REA) cases. Absolute values are used to mitigate
cancellation due to subregional variations in sign. The 95% confidence intervals calculated from Stu-
dent’s t tests are denoted by whiskers. The percentage of total area exhibiting statistically significant bias
for AVE/REA cases is shown on the bottom. The similarity to Figure 8 suggests that weighting based on
skill in simulating present-day conditions is warranted.
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Figure 10. Weighting scheme test results. Training was performed in the first 20 years of the simulation
period, and testing was on the last 10 years. Regionally averaged seasonal (a) temperature and (b) precip-
itation bias for the unweighted (AVE) and weighted (REA) cases. Absolute values are used to mitigate
cancellation due to subregional variations in sign. The 95% confidence intervals calculated from
Student’s t tests are denoted by whiskers. The percentage of total area exhibiting statistically signif-
icant bias for AVE/REA cases is shown on the bottom. The similarity to Figure 8 suggests that
weighting based on skill in simulating present-day conditions is warranted.
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Figure 11. (a–d) Weighted 21st century multimodel mean seasonal temperature change (2041–2070
minus 1971–2000), where stippling indicates areas where the weighted 95% confidence intervals lie out-
side the range of natural variability as measured by �. (e–h) Unweighted uncertainty shown as 2 times the
unweighted root-mean-square difference (RMSD) of the projected change. (i–l) REA weighted uncer-
tainty shown as 2 times the weighted RMSD of the projected change (equation (6)). All units are in °C.
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Figure 12. (a–d) Weighted 21st century multimodel mean seasonal precipitation change (2041–2070
minus 1971–2000), where stippling indicates areas where the weighted mean lies outside the range of nat-
ural variability as measured by �. (e–h) Unweighted uncertainty shown as 2 times the unweighted RMSD
of the projected change. (i–l) REA weighted uncertainty shown as 2 times the weighted RMSD of the pro-
jected change (equation (6)). All results are shown as percentages.
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gives the approximate 95% uncertainty bounds. These plots
indicate that the REA uncertainty is below 0.5°C over much
of the study area in all seasons with spring exhibiting region-
wide uncertainty lower than 0.2°C. The highest uncertainties
occur in summer over the eastern Carolinas and the Gulf
coast states. The Northwest portion of the study area in fall
and winter also exhibit uncertainties of 0.5°C. Overall, the
pattern of REA uncertainties suggest confidence bounds of
much less than one degree, or about half that of the
unweighted case, over most of the Southeast.
[35] Figure 12 shows the REA weighted 21st century

change in precipitation in Figures 12a–12d and the
unweighted and weighted uncertainty in Figures 12e–12h
and 12i–12l, respectively. All changes and uncertainties are
shown as percentages. Unlike temperature, the projected

changes in precipitation are modest and vary in both sign
and magnitude by location and season. Winter and spring
exhibit increases of �10% across the much of the Southeast
while decreases of �15% over the western portion of the
study area are indicated for summer. During fall, increases of
�10% are projected for the coastal regions. The stippling in
this case represents grid cells where the average weighted
change is greater than the background variability (�). This is
in contrast to the case of temperature where the stippling
represents grid cells where the entire 95% confidence bound
lies outside background variability. This less restrictive cri-
teria is chosen because the modest magnitudes of the pre-
cipitation changes. Thus, the average precipitation change
only exceeds background variability along the Mississippi
river in summer and the Appalachian mountains in winter.

Figure 13. Weighted 21st century multimodel mean seasonal precipitation change (2041–2070 minus
1971–2000) showing only grid cells where the weighted 95% confidence intervals lie completely above
or below zero. All results are shown as percentages.
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[36] The uncertainty in the unweighted case is shown in
Figures 12e–12h. Over most of the Southeast the uncer-
tainties are larger than the projected change itself during all
seasons. Over specific locations the unweighted 95% con-
fidence intervals are up to a factor four larger than the pro-
jected changes (e.g., east coast in fall, Gulf coast in summer
and spring). Uncertainties greater than 25% are exhibited
over the coasts and some inland areas during spring, summer
and fall. This suggests confidence intervals of over 50% in
some areas. Winter exhibits generally lower uncertainties
inland but uncertainties of�20% around the Gulf states. The
reductions in uncertainty due to the REA weighting scheme
are evident from a comparison of Figures 12e–12h and
12i–12l. These patterns suggest that, in all seasons, over
most of the Southeast, the REA 95% confidence intervals
are now smaller than the projected changes. Over most of
the Southeast the uncertainties are around 5% though there
are scattered areas which exhibit uncertainties over 15%
(e.g., the east coast during summer), suggesting confidence
intervals of �10%–30%.
[37] While the uncertainty reductions due to weighting in

the temperature projections are large they do not change the
interpretation of the future change; they merely increase
confidence in the robustness of the NARCCAP simulations.
Conversely, the uncertainty reductions in the precipitation
projections due to weighting tighten the confidence intervals
substantially and pull the bounds to either side of zero
change over much of the study region. Figure 13 shows only
grid cells where the approximate 95% confidence intervals
of the REA future precipitation change lie completely to
either side of zero change. Using this measure, the increases
in winter (over the northern states) and the decreases in
summer (along the Mississippi) appear coherent and robust,
although the magnitudes of the projected changes are mod-
est. This is in contrast to the unweighted case where the 95%
intervals at all grid cells for all seasons straddle the line of
zero change (not shown).

6. Discussion and Conclusions

[38] One of the many goals of the multimodel NARCCAP
simulations is to provide information and evaluate uncer-
tainty at scales on which humans structure their societies. At
the 50 km resolution the NARCCAP simulations should
provide information that officials and stakeholders at
municipal to state levels will find useful in developing local
strategies to respond to climate change. This program
implicitly addresses the issues raised by recent claims that
climate output at typical GCM scales does not provide actors
with sufficient information to make informed decisions
about climate change adaptation and/or mitigation [Oreskes
et al., 2010]. The present study aims to improve the repre-
sentation of present-day climate by the NARCCAP simula-
tions and reduce the uncertainty associated with projected
future changes in temperature and precipitation. After com-
paring the multimodel mean of the NARCCAP simulations
to observations a weighting scheme is applied on the basis of
the REA approach devised by Giorgi and Mearns [2003]
that incorporates an additional measure on the basis of the
model skill score [Perkins et al., 2007]. It is important to
note that the results presented here should be viewed within
the context of the set of NARCCAP simulations and the

SRES A2B scenario. Any reduction in uncertainty pertains
to the ensemble of models under investigation, not uncer-
tainty related to future climate change directly. In this sec-
tion we discuss the sources and magnitude of model error
and bias, implications of the weighting scheme and issues
related to number of realizations and ensemble size. We
make recommendations for future research directions that
may address outstanding modeling issues. We then discuss
the implications of the future projections for temperature and
precipitation over the southeast United States.

6.1. Evaluation of NARCCAP Multimodel
Performance

[39] As Figures 1 and 3 illustrate, simply increasing model
resolution leads to improved representation of the spatial
patterns of temperature and precipitation (see Mearns et al.
[2003] and the NARCCAP Web site for examples of T
and P at AOGCM scales). However, as Figures 1i–1l and
3i–3l demonstrate, substantial biases persist. While some of
these biases may be explained by propagation of errors from
the AOGCM down to the RCMs, the southeast United States
is far enough away from the RCM domain boundaries that
these types of errors should be minimized. Visual inspection
of the NARCCAP simulations forced with NCEP reanalysis
data suggests that biases still exist even when the RCMs are
forced with observation-based reanalysis data (http://www.
narccap.ucar.edu/results/ncep-results.html). Thus, it likely
that the RCMs have systematic errors in heat transport, land-
atmosphere processes and moist processes (i.e., subgrid-scale
parameterizations). Especially troubling are the systematic
and significant underestimation of temperatures across the
region in winter, spring and fall. The pattern of bias in pre-
cipitation fields suggests that the RCMs have trouble with
subgrid-scale processes. The results here suggest they are not
able to reproduce the cool season moisture transport out of
the Gulf of Mexico and subsequent entrainment into synoptic
systems and they have difficulty with moist processes in the
presence of orography and along the coasts. Despite recent
improvements in both RCMs and their AOGCM counter-
parts, improving these models’ ability to reproduce funda-
mental aspects of the climate systems is clearly a pressing
need [Doherty et al., 2009]. There are a few ways to address
this issue. For example, one suggestion in the recent litera-
ture is to initialize simulations with observations in order to
reduce the influence of model error and internal variability
on near-term projections [Hawkins and Sutton, 2009]. While
this approach is certainly viable for near-term simulations of
future climate (e.g., 10 years) it currently not feasible for
experiments with more distant time horizons. Another
approach is to implement a performance-based weighting
scheme which may improve confidence in multimodel pro-
jections. For the present study we chose to implement a
weighting scheme that rewards models which show an
ability to reproduce the mean and pdf of the observations
and leads to improved reproduction of the present-day cli-
mate by the NARCCAP simulations and greater confidence
in the future projections.
[40] Recent research suggests that performance-based

weighting of multimodel results has the potential to improve
confidence in estimated future projections and supports
efforts to reduce bias in present-day simulations [Raisanen
et al., 2010; Matsueda and Palmer, 2011]. One of the
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difficulties in applying any weighting scheme is the tacit
assumption that the location, sign and magnitude of present-
day bias is time invariant. Certainly the present scheme is
unable to address this issue although the results of [Matsueda
and Palmer, 2011] provide some support that bias may be a
useful predictor of the accuracy of the future signal for spe-
cific regions and variables. Given the results shown in
Figures 1i–1l and 3i–3l, it is likely that optimal weighting
scheme over the southeast United States will depend non-
linearly with time of year and magnitude. The weighting
scheme as applied here makes two important assumptions
that need to be acknowledged. First of these is that the future
multimodel mean is the “best guess” estimate of the projected
change given the chosen future scenario. The other is that the
future changes will be nearly Gaussian and that �2 times the
RMSD approximately represents the 95% confidence bounds
of the future projections. A third caveat involves the skill
scores. Computing the skill scores using monthly means
results in a measure of large-scale rather than synoptic-scale
performance. Thus, we ignore the ability of models simulate
the distribution of weather events, which likely results in
higher scores that those computed with the more variable
information contained in daily data. For example, a recent
study over this region using NARCCAP output finds con-
siderably lower skill scores when using daily values than
those reported here [Kabela and Carbone, 2011]. This is as
one would expect given the greater variability introduced
when one considers daily values rather than monthly means.
Despite these potential shortcomings the results shown in
Figures 5 and 6 indicate that substantial improvements and
reductions in both the magnitude and the area affected by
model bias. Further, the effect of weighting on the future
projections results in significant reductions in uncertainty,
particularly in the case of future precipitation change
(Figures 8 and 9). As Figure 13 shows this reduction in
uncertainty leads to more robust estimates of future precipi-
tation change over the northern states in winter and the
Mississippi in summer.
[41] Another potential complication concerns sample size.

Recent research suggest that current small ensemble sizes
underestimate the contribution of internal variability (i.e.,
climate or weather noise) to total uncertainty and that this
type of variability is, in some cases more important than
intermodel variations [Deser et al., 2011]. Further, Deser
et al. [2011] find that while only one to three realiza-
tions are required to produce detectable, significant forced
responses for temperature many more (as many as 20 in
some instances) are required for precipitation. The six
RCM-AOGCM pairs provided by the NARCCAP simula-
tions have one realization each. Thus, given the modest pre-
cipitation response it is likely that many more realizations are
needed in order to increase the signal-to-noise ratio. We also
note that it is possible that many areas of the southeast United
States will experience negligible to modest changes in
mean seasonal precipitation and that these changes will
never be significant no matter how many ensemble reali-
zations are run.
[42] The small number of realizations also render rigorous

probabilistic assessment of the future changes impossible, as
the pdf’s of the future changes cannot be known because of
the small sample size. What we provide here is a qualitative
assessment and evaluation that marks a good first step to

evaluating future changes at the subregional scale. A number
of techniques exist to increase the relative sample size and
enable construction of pdf’s of the future climate change,
though few have been employed at this scale. One approach
is to construct Bayesian statistical models, using RCM out-
put, to fully account for uncertainty [e.g., Tebaldi et al.,
2004, 2005]. Another is to apply resampling techniques to
artificially increase the number of realizations [e.g., Raisanen
and Ruokolainen, 2006]. Currently both approaches are
being investigated over the southeast United States as an
extension of the present study.

6.2. Implications for Water Resources and Energy Use
in the Southeast United States

[43] When the issues discussed in the preceding para-
graphs are considered, the projected changes in temperature
and precipitation present a mixed message for city planners,
state officials and water resource managers. The temperature
changes shown in Figure 7 are consistent with previous
GCM and RCM studies and are likely robust given the A2
SRES scenario. The confidence bounds of these changes lie
well outside the range of natural variability and it is not
likely that increasing ensemble size, resolution or number of
models will significantly alter this finding. We note how-
ever, that considerable bias exists between the multimodel
mean and observations that is only partially corrected by the
weighting scheme, indicating a systematic underestimation
of temperature by the models in all seasons except summer,
over most of the southeast United States. Whether these
biases will be of similar sign, magnitude and location in the
future is an open question.
[44] If the A2 SRES assumptions prove correct, the results

suggest that average temperatures across the Southeast will
increase by over 2.5° in summer and fall with slightly
smaller increases of about 1.8° in winter and spring. There is
a slight northwest to Southeast gradient in all seasons with
largest changes in the Northwest and smallest in the South-
east. With respect to water resources the largest changes are
expected for inland regions during times of year which
typically experience peak demand (summer) and minimum
precipitation (fall). The increased temperatures will likely
lead to greater evapotranspiration and plant water stress in
the absence of increased precipitation. Further, the largest
increases in temperatures are projected for the time of the
year (summer) that currently experiences peak energy
demand because of widespread air conditioner use in both
home and industrial settings. Since we have evaluated
seasonal means we do not speculate on the potential
increase in heat waves or droughts, but previous research
indicates that both extremes may be expected to increase
over the southeast United States over the 21st century
[Diffenbaugh et al., 2005]. So, in addition to the pressures
placed on energy and water resources by population and
economic growth, increasing temperature will also likely
add to these pressures in the future. Research is needed to
quantify the relative contributions of population, economic
activity and climate change.
[45] With respect to precipitation the picture is not so

clear. None of the changes shown in Figure 12 are signifi-
cantly greater than background variability, and given the
large intermodel spread, it is possible that a new set of
NARCCAP simulations, even under the same forcing
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scenario, would yield different results. However, Figures 9
and 10 suggest that with the reduction in uncertainty due
to the weighting scheme and with more realizations, the
patterns of change in winter and summer may be robust
though modest. The winter pattern suggests modest increa-
ses in precipitation, on the order of 10%–15%, along the
northern states of the region (i.e., Arkansas, Tennessee,
North Carolina, Virginia, and Kentucky). Conversely, the
summer change suggests decreases as high as 20% in the
western portion of the Southeast region. This decrease is
mostly along the Mississippi but also extends along the Gulf
coast. As with temperature we make no claim with respect to
future extreme events, but previous research indicates that
extreme wet events are likely to increase over the region
because of enhanced moisture convergence along the coasts
[Diffenbaugh et al., 2005]. There is some promise that the
NARCCAP simulations are capable of reproducing histori-
cal precipitation extremes over some parts of North Ameri-
can so there is hope that this resource may be useful for
investigations of future extremes [Gutowski et al., 2010]
Additional contributions to changes in extreme precipitation
may come from changes in intensity and/or frequency of
tropical cyclone activity [Knutson et al., 2008a, 2008b].
Contributions to precipitation changes on synoptic scales
will also depend on the magnitude and dynamic implications
of future changes that are still poorly understood, such as
widening of the Hadley circulation [Lu et al., 2007a, 2007b;
Frierson et al., 2007] and northward shifting of the North
Atlantic storm tracks [Yin, 2005]. The line of zero 21st
century precipitation (or P� E) change bisects the Southeast
latitudinally [Christensen et al., 2007; Seager et al., 2010]
and a shift of this line north or south may have profound
implications for the numerous large, expanding municipali-
ties across the southeast United States. What the present
study reveals however, is that given the small number of
realizations and comparatively large uncertainties, the pro-
jected precipitation changes for the Southeast are likely to be
modest with the possible exception of the northern portion of
the region in winter and the western portion in summer.
From a water resources perspective, stress is more likely to
come from increased temperatures with little contribution
(either mitigation or exacerbation) from the seasonal mean
precipitation changes. There is potential for a positive con-
tribution from more frequent extreme events, but runoff
from extreme precipitation events tends not to not to con-
tribute to storage as infiltration capacity is greatly exceeded
and excess water runs off, eventually escaping to the ocean.
[46] In conclusion, the application of a performance-based

weighting scheme allows us to reduce bias in the present and
uncertainty in the future NARCCAP multimodel simula-
tions. Further, the analysis of high-resolution model output
allows for subregional patterns to emerge in the future pro-
jections that are unresolvable at typical GCM scales. While
more realizations are currently needed to increase robustness
of the projected precipitation response, the temperature
response is likely quite robust. Improvements to model
physics are also needed to address shortcomings in moist
processes, orographic effects and land-ocean moisture
transport. Despite these issues, the present study enables
officials and the public across the southeast United States to
consider a warmer future in all seasons, particularly away
from the coasts and during the peak water and energy

demand seasons. At the seasonal scale, precipitation changes
are uncertain but likely modest, with increases along the
northern boundary in winter and decreases in the west during
summer. Future work will build on the analysis presented
here in an effort to explain the physical mechanisms driving
future changes to the hydrological cycle over the southeast
United States.
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