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A B S T R A C T

Research performed to-date on data assimilation (DA) in storm surge modeling has found it to have limited value for predicting rapid surge responses (e.g.,
those accompanying tropical cyclones). In this paper, we submit that a well-resolved, barotropic hydrodynamic model is typically able to capture the surge event
itself, leaving slower processes that determine the large scale, background water level as primary sources of water level error. These ‘‘unresolved drivers’’ reflect
physical processes not included in the model’s governing equations or forcing terms, such as far field atmospheric forcing, baroclinic processes, major ocean
currents, steric variations, or precipitation. We have developed a novel, efficient, optimal interpolation-based DA scheme, using observations from coastal water
level gages, that dynamically corrects for the presence of unresolved drivers. The methodology is applied for Hurricane Matthew (2016) and results demonstrate
it is highly effective at removing water level residuals, roughly halving overall surge errors for that storm. The method is computationally efficient, well-suited
for either hindcast or forecast applications and extensible to more advanced techniques and datasets.

1. Background

The hazards of coastal flooding have been observed repeatedly
throughout human history. 49% of deaths from Atlantic hurricanes in
the U.S. (1963–2012) have come from storm surge (Rappaport, 2013).
Hurricane damages in the U.S. (1900–2005, from all sources) average
roughly $10 billion dollars per year (Pielke et al., 2008). In extreme
cases, direct economic damages have exceeded $100 billion (Hurri-
cane Harvey (2017), Hurricane Katrina (2005) and the Great Miami
Hurricane (1926)), and death tolls have extended into the hundreds of
thousands (Bhola cyclone (1970), Cyclone Nargis (2008), and others).
Enhancing the predictive power of storm surge models is therefore of
great importance.

Improvements in forecasting and hindcasting of tropical cyclones
(TCs) have led to much more accurate meteorological data associated
with these storms (Cangialosi, 2018; Landsea et al., 2012). These im-
provements, together with more detailed representations of the physics
and greater model resolution, have improved storm surge model skill
(Resio and Westerink, 2008). This has led to a state in which storm
surge forecast and hindcast errors are often dominated by what we refer
to as unresolved drivers, i.e., physical processes that are not explicitly
included in storm surge models. Common examples include baroclinic
processes, major oceanic currents, precipitation, steric fluctuations, and
far-field atmospheric forcing. These phenomena typically have longer
timescales than the storm surge itself and therefore often show up as
gradually varying residuals in water levels.
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This paper presents a method for improving coastal water level pre-
dictions in hydrodynamic models through assimilation of water level
data to correct for errors introduced by unresolved drivers. The method
was developed to improve multi-day coastal water level forecasts, and
is shown herein to be highly effective for retrospective studies, as
well. The paper’s structure is as follows: The remainder of Section 1
provides background on errors in forecasts, the nature of unresolved
drivers, and a brief overview of data assimilation (DA) techniques and
their use in surge models. These ideas are combined to argue in favor
of a specific combination of DA and model techniques in Section 2,
the details of which are then presented in Sections 3 and 4. A case
study demonstrating the effectiveness of this approach is shown using
Hurricane Matthew (2016) in Sections 5 and 6. We then discuss justi-
fication, limitations, and alternatives for the proposed DA framework
in Section 7. Discussion of the method’s use in an operational forecast
setting follows in Section 8, before concluding. Data and simulations
presented in this study have been published (Asher, 2019) and made
publicly available online through DesignSafe-CI at https://doi.org/10.
17603/2Z8H-7K90.

1.1. Advances in surge modeling

Uncertainties in meteorological forecasts are often the leading-order
source of uncertainty in storm surge forecasts of tropical cyclones:
The 2017 24-, 48-, and 72-h track errors for tropical cyclones in the
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Atlantic basin are 32, 56.4, and 87.7 nautical miles (59.3, 104, 162
km), respectively (Cangialosi, 2018). These distances can constitute the
difference between peak and relatively minor surge. However meteoro-
logical forecast errors continue to decrease, creating a critical window
1–3 days prior to landfall (and, roughly, peak storm surge) when
surge model errors due to factors other than meteorological forecast
uncertainty are becoming significant in the overall predictive power of
storm surge forecasts.

State of the art storm surge models utilize the shallow water equa-
tions, often in depth-integrated, barotropic form. They include forcing
from tides, wind and atmospheric pressure, bottom drag, and in some
cases wind waves. The history, resolution requirements, and improve-
ments in storm surge models have been characterized in several studies,
including Bode and Hardy (1997), Blain et al. (1998), Dukhovskoy and
Morey (2011), and Kerr et al. (2013b,a). Model skill has improved
notably over the past two decades due to improvements in compu-
tational power, topographic data quality, meteorological model skill,
and model physics. For instance, DA in meteorological model hindcasts
produces wind and pressure fields that more closely match actual
events and significantly improves storm surge model skill (Cardone
and Cox, 2009). Surge models are now reaching a state where low-
frequency variations in water levels can be a primary contributor to
error, if not accounted for, as shown in Fig. 1. These data come from
validation hindcasts with the ADCIRC hydrodynamic model (described
in Section 5.1) during development of the National Oceanic and Atmo-
spheric Administration (NOAA) HSOFS mesh (Riverside Technologies,
Inc., and AECOM, 2015). Simulations were run with model zero at
mean sea level to match anticipated operational conditions, and the
resulting low bias is apparent. The difference in modeled and observed
mean water level and inspection of time series data (right Fig. 1),
make clear that, although higher frequency fluctuations are evident,
slowly-varying changes in the water elevation drove much of the
low bias for nearly all storms. Typically, surge hindcasts either de-
trend measured data to remove such ‘‘background’’ water levels, or
apply a spatiotemporally constant water level offset to the model that
approximates the mean water level preceding the storm in the vicinity
of maximum surge (e.g. Westerink et al., 2008). However, this fails to
account for spatial variations, which may be appreciable depending on
the unresolved driver(s) responsible and the size of the area affected
by surge. In operational forecast applications, changing the water level
correction between simulations could apply a shock to the model, and
if spatially varying, would create associated large-scale flows, making
it more suitable as a post-processing step. But post-processing means
physical effects of the altered water level (and therefore depth) are
not included in the model simulation, and also creates challenges in
changing the horizontal extent of the calculated floodplain after the
simulation completes, which can be quite complicated during major
surge events.

1.2. Unresolved drivers

Hydrodynamic models designed to accurately simulate storm surge
must resolve domains covering thousands of kilometers and features
such as elevated roadways and dunes only several meters wide (e.g. Bil-
skie et al., 2015). This results in the need for substantial computational
resources, and a desire to optimize model complexity. Thus, storm
surge models are typically depth-integrated, constant density, and de-
coupled from large scale oceanic motions, rainfall, and hydrologic input
(except at relatively large scale). In the case of TCs, since gridded
meteorological data may not adequately resolve the storm’s core, storm
surge models often use parametric representations of the storm’s wind
and pressure fields (such as Holland (1980)), thereby neglecting both
antecedent and far-field meteorological conditions. These introduce a
host of unresolved drivers with varying temporal and spatial scales. For
instance: (1) seasonal water level fluctuations have a spatial scale of
hundreds to thousands of kilometers and a temporal scale of months to

a year (e.g. Enfield and Allen, 1980); (2) fluctuations in major ocean
currents extend hundreds to thousands of kilometers and for days to
years (Meinen et al., 2010; Valle-Levinson et al., 2017); (3) runoff from
major rainfall events may affect tens to hundreds of kilometers and lasts
several days to weeks. Notably, these processes are slow compared to
storm surge, particularly due to tropical cyclones.

1.2.1. Magnitudes
Unresolved drivers generally produce smaller coastal water level

fluctuations than tides and storm surge. Seasonal water level fluctu-
ations (U.S. monthly averages available from https://tidesandcurrents.
noaa.gov/sltrends/sltrends.html) often exceed 10 cm along the open
coast (e.g. Barbosa et al., 2008). The rise in coastal water levels follow-
ing a rainfall event usually comes after storm surge, with magnitudes of
∼10 cm or less typical during the surge event, though as evidenced in
North Carolina during Hurricane Florence (2018), notable exceptions
to this may occur in semi-enclosed coastal water bodies. Interannual
anomalies in coastal water levels on the order of ∼5 cm have also
been detected and related to local and broader atmospheric forcing
patterns (Andres et al., 2013; Calafat et al., 2018; Hong et al., 2000).
Changes in Gulf Stream transport have been implicated in coastal sea
level fluctuations of up to several 10 s of cm (Ezer and Atkinson, 2017;
Goddard et al., 2015; Sweet et al., 2009). Atmospheric systems can
reduce Gulf Stream transport by ∼30% (Mooers et al., 2005); during the
time period preceding and including Hurricane Matthew, the Florida
current transport dropped by approximately 30% (Fig. 4 left). Ezer
and Atkinson (2017) associated a 30–40 cm rise in coastal water levels
following the passage of Hurricane Matthew with the large drop in Gulf
Stream transport.

1.3. Efforts in ocean data assimilation

Popular DA methods include Kalman filter variants (Verlaan and
Heemink, 1997; Evensen, 2003; Altaf et al., 2014), optimal interpo-
lation (OI) (Oke et al., 2002; Counillon and Bertino, 2009a; Madsen
et al., 2015), and variational methods (Bennett, 2002; Kurapov et al.,
2011; Troupin et al., 2012). OI typically uses the variability in the
observations and an error covariance matrix, assumed a priori, to create
a spatial field that blends the model and observations, and can emu-
late physical behavior by selecting appropriate covariance function(s)
(e.g. Cooper and Haines, 1996; Lorenc, 1981). OI is actually a sub-
optimal version of the more general Kalman filter, and more advanced
Kalman filter-based approaches do away with (parts of) these a priori
assumptions, using a variety of techniques to better propagate the error
covariance. These and advanced variational methods come at greater
computational cost than OI due to the complexity of the analysis and/or
the need to run multiple model realizations.

DA in coastal water level problems is not new (e.g. the storm
surge work of Heemink, 1986), and has been successfully employed
in the North Sea (e.g. Zijl et al., 2015). Storm surges in this region are
often large (geographically) and remotely forced (Madsen et al., 2015).
Combined with the area’s large tidal fluctuations and dense sensor
network, DA is able to correct errors introduced by the use of a coarse
numerical model (e.g. Høyer and Andersen, 2003). Efforts in other
regions have shown some promise: Etala et al. (2015) demonstrate
short-term (6 h) forecasting improvements using satellite altimetry and
coastal water level data along the Argentine coast, and multiple authors
have successfully calibrated models via assimilation (e.g. Graham et al.,
2016; Mayo et al., 2014). However, tropical cyclones’ strong local
forcing and smaller spatiotemporal scales create many challenges for
practical data assimilation. Butler et al. (2012) and Altaf et al. (2013,
2014) improved hurricane surge prediction with a very coarse surge
model using several different ensemble Kalman filters. However, major
gains were only seen for a very short (2-h) forecast window and
required careful tuning of the assimilation scheme. Improvements more
than 2 h out were much more modest, and required a set of several
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Fig. 1. Characteristic storm surge model error. Left: Modeled vs. observed peak surges when mean water level offsets are not accounted for, all points are gage data. Right:
Modeled and observed water levels during Hurricane Sandy (2012) at the NOAA Cape May, NJ gage 8536110.
Source: Data from Riverside Technologies, Inc., and AECOM (2015).

hundred synthetic water level observations across the continental shelf
in the vicinity of the storm track (Figs. 4 and 5 in Butler et al.,
2012), a dataset which does not yet exist. Butler et al. also noted no
improvement in forecasts longer than 36 h for H. Katrina, whereas H.
Ike showed some improvement at 48 h. We interpret this as being due
to the exceptionally long surge signal seen preceding H. Ike, due to
the storm’s massive size and unusual forerunner surge (Kennedy et al.,
2011). Similarly, Peng and Xie (2006) noted no improvement in storm
surge forecasts beyond 8 h using 4DVar to revise initial conditions (with
a coarse 3D ocean model). By also revising the wind drag coefficient
with 4DVar (and the same model), Li et al. (2013) realized moderate
improvements when wind speed was deliberately set too high/low,
though the choice of correcting wind speed error with drag coefficient
is fortuitous. These cases point to a fundamental limitation in utilizing
DA for improving storm surge forecasting that will be explored in
the next section as we assess what sort of DA might best benefit this
problem.

2. Requirements for storm surge data assimilation

Both the physics model and the DA method face choices that bal-
ance complexity and computational cost: Forecast coastal water level
modeling systems must consider the relative importance of model
physics, grid resolution, the number of forecast ensemble members,
timeliness, etc., given available computational resources. Advanced DA
methods, such as 4DVar or ensemble Kalman filters, require substan-
tial computational resources, sometimes over an order of magnitude
greater than simulations without assimilation. Conversely, the a priori
assumptions made in OI typically lead to lower-quality results at a
lower computational burden.

A second consideration is the timescale of the surge event itself.
Peak surge events from TCs often last on the order of 12 h (e.g. Hur-
ricanes Matthew in Figs. 8 and 9, and Floyd in Fig. 10), forecast
cycles occur every 6 h, and lead times for emergency preparation and
evacuation are up to several days. The time scale of significant storm
surge is shorter than the lead time needed for action; storm surge is
often a locally driven process, which can mean water level data with
a strong surge signal cannot be assimilated early enough to provide
useful information. This point is particularly important, as it possibly
cannot be overcome through more data, computational resources, or

DA methods. Similarly, DA cannot be expected to represent phenomena
whose spatial scale is smaller than the spacing between observations
(typically 10–200 km along the U.S. Gulf and Atlantic coasts).

Given the phenomenological and computational constraints, the
question becomes: how can one most effectively use DA to improve
storm surge forecasts? We argue that a low-cost DA method paired
with existing surge model physics is an effective balance. Our approach
is to use DA to address the water’s response to more slowly varying,
large scale unresolved drivers, while using the hydrodynamic model to
accurately capture the generation and propagation of surge and tides.

3. Assimilation formulation

In this section, we describe our approach for ingesting water level
corrections into the model, while the next section steps through how
the correction is generated and implemented in practice. We are work-
ing with the Reynolds averaged, depth integrated, constant density
shallow water equations (Vallis, 2006; Luettich and Westerink, 2004),

continuity∶
𝐷 (ℎ + 𝜁 )

𝐷𝑡
+ (ℎ + 𝜁 ) ∇ ⋅ 𝐔 = 0

xmomentum∶
𝐷𝑈
𝐷𝑡

− 𝑓𝑉 = −𝑔
𝜕𝜁
𝜕𝑥

− 1
𝜌0

𝜕𝑝
𝜕𝑥

+
𝜏𝑠𝑥 − 𝜏𝑏𝑥 + 𝜏𝑤𝑥

(ℎ + 𝜁 ) 𝜌0
+

𝜕𝛼𝜂
𝑑𝑥

+𝑀𝑥

ymomentum∶
𝐷𝑉
𝐷𝑡

+ 𝑓𝑈 = −𝑔
𝜕𝜁
𝜕𝑦

− 1
𝜌0

𝜕𝑝
𝜕𝑦

+
𝜏𝑠𝑦 − 𝜏𝑏𝑦 + 𝜏𝑤𝑦

(ℎ + 𝜁 ) 𝜌0
+

𝜕𝛼𝜂
𝑑𝑦

+𝑀𝑦

(1)

for h the static water depth, 𝜁 the water surface elevation, t time,
D/Dt the material derivative, U the depth-averaged velocity vector
(U, V ), f the Coriolis parameter, g acceleration due to gravity, p
pressure at the sea surface, 𝜌0 constant water density, subscripts x and y
indicating terms in their respective directions, 𝜏𝑠 surface wind stress, 𝜏𝑏
bottom drag stress, 𝜏𝑤 wave radiation stress, 𝜂 Newtonian equilibrium
tidal potential, 𝛼 effective earth elasticity factor, and M vertically-
integrated lateral stress gradient. The continuity equation imposes a
mass balance on the solution while the momentum equations impose
the force balance.

Our goal is to apply a gradually varying (in space and time) cor-
rection to the water elevation field, Δ𝜁 . A direct manipulation of the
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water level will not accomplish this by itself because a rapid barotropic
adjustment would occur in the velocity field and the added water would
simply flow away. Rather, we found this could be done effectively by
introducing a fictitious force into the momentum equations to drive
the solution to the desired surface elevation. Specifically, changes in
atmospheric pressure create corresponding changes in water surface
elevation (e.g., the bulge in sea level under an atmospheric low-
pressure center). This can be approximated via the inverse barometer
relationship: Δp = −𝜌0 g Δ𝜁 ; we therefore modify the sea surface
pressure term in the momentum equations to reflect both the actual
atmospheric pressure and a pseudo atmospheric pressure:

𝑝 = 𝑝𝑎 + Δ𝑝
= 𝑝𝑎 − 𝜌0𝑔Δ𝜁

(2)

where 𝑝𝑎 is the actual atmospheric pressure and Δp is a so-called
pseudo atmospheric pressure (PAP). Considering only the x-momentum
equation yields:

𝐷𝑈
𝐷𝑡

− 𝑓𝑉 = −𝑔
𝜕𝜁
𝜕𝑥

− 1
𝜌0

𝜕
(

𝑝𝑎 + Δ𝑝
)

𝜕𝑥
+

𝜏𝑠𝑥 − 𝜏𝑏𝑥 + 𝜏𝑤𝑥
(ℎ + 𝜁 ) 𝜌0

+
𝜕𝛼𝜂
𝑑𝑥

+𝑀𝑥 (3)

Substituting in Eq. (2) and regrouping terms, this can also be written
as:
𝐷𝑈
𝐷𝑡

− 𝑓𝑉 = −𝑔
𝜕 (𝜁 − Δ𝜁 )

𝜕𝑥
− 1

𝜌0

𝜕𝑝𝑎
𝜕𝑥

+
𝜏𝑠𝑥 − 𝜏𝑏𝑥 + 𝜏𝑤𝑥

(ℎ + 𝜁 ) 𝜌0
+

𝜕𝛼𝜂
𝑑𝑥

+𝑀𝑥 (4)

In either form, a fictitious force is being applied to drive a
re-arrangement of the total water elevation field to include the assimi-
lated elevation differences. The resulting adjustment of the total water
elevation field then propagates through all other terms in the shallow
water equations.

While adding the fictitious forcing term will drive water to achieve
the desired surface elevation correction over time, we can assist this
process by simultaneously introducing the desired water level cor-
rection directly into the water elevation field. As noted above, the
elevation field cannot be modified without the compensating forcing
term in the momentum equations because the added water would
quickly flow away. When directly applying a correction Δ𝜁 to the water
elevation, the correction in the momentum equations (Eq. (4)) can be
thought of as providing a force to maintain the elevation correction.

Using only the fictitious force term, we are altering the velocity
field to accomplish the re-arrangement of water to achieve the desired
total water elevation. Adding water in directly minimizes the need
for this dynamic re-arrangement and therefore lessens the accompany-
ing velocity field alteration. However, under the assumption that the
corrections are gradual in space and time, the two methods should
exhibit similar behaviors, which is what we observed in practice in
open coastal waters. Differences were primarily located in areas with
significant constrictions. The similarities and differences between the
methods are discussed in more detail in Section 7.4. For the sake of
clarity in the remainder of the manuscript we term the PAP method as
applying only the fictitious forcing in the momentum equations while
the CON method applies the forcing and directly adds/removes water.

4. Storm surge data assimilation framework

The DA system employed here can be broken down into four steps,
(1) performing an unassimilated simulation, (2) time-averaging or low-
pass filtering the difference between this simulation and observed water
levels at observation sites, (3) generating a spatial difference field from
these differences, (4) repeating the simulation with the added correc-
tion applied in the model. Fig. 2 shows a simplified schematic of the
process with steps 2–3 lumped together; a more detailed schematic is
shown in Supplemental Figure 1. The procedure is repeated at selected
intervals in time, e.g., every forecast cycle in a forecast system, and the
PAP forcing is interpolated in time between cycles. The unassimilated
and assimilated model states are saved at the end of each simulation so
that they may be resumed at the start of the next cycle.

Fig. 2. Schematic representation of the DA system; Supplemental Figure 1 provides a
detailed schematic.

The DA framework used here can be classified (e.g. Daley, 1991) as
a continuous sequential scheme using optimal interpolation, in that the
DA analyses are carried out every assimilation cycle (‘‘sequential’’) and
the correction is applied continuously to the simulation (‘‘continuous’’)
by way of the PAP forcing (and the mass field, if desired). Several parts
of our approach are similar to those developed in the DA literature,
including the time-distributed averaging procedure of Oke et al. (2002)
and the incremental analysis update technique of Bloom et al. (1996).
In the remainder of this section, we describe methodological details of
the 4 steps; a step-by-step summary is provided alongside Supplemental
Figure 1. We provide a more thorough discussion of our choices and
alternatives in Section 7. Before proceeding, however, we make two
clarifications on nomenclature. First, in DA literature, ‘‘forecast’’ often
refers to an unassimilated system state, such as an unassimilated simu-
lation; the term ‘‘background’’ is also used for this quantity, though its
history is somewhat complicated (see Ide et al., 1997), so here we use
‘‘first guess’’ for this quantity to avoid confusion with a true forecast.
Second, we use the term ‘‘difference field’’ here to refer to the spatial
field of differences between observed and unassimilated modeled water
levels.

4.1. Step 1: Unassimilated simulation

The ‘‘first guess’’ field of water elevations is determined by run-
ning an unassimilated simulation, whose final state is saved to permit
restarting at the beginning of the next assimilation cycle. Separating the
unassimilated and assimilated simulations is unusual in DA (we term
this a ‘‘two-track’’ assimilation scheme), however it ensures that our
model solution is driven to match the missing low frequency component
without introducing overshoot and undershoot oscillations.

4.2. Step 2: Time-averaging

The ‘‘first guess’’ and the observed water level data are averaged
over a chosen time period T (nominally 1–10 days) in order to filter out
high frequency fluctuations, such as astronomical tides, that constitute
most of coastal water level variations. Selecting the time scale as an
integer multiple of the dominant tidal cycle (12.42 h for M2 semidi-
urnal tides) suppresses tidal phasing errors that might cause undesired
oscillations in the difference field. Further discussion on the choice of
time scale is presented in Section 7.3.
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4.3. Step 3: Difference field

The mean difference between observed and modeled data is then
fed into OI with an assumed error covariance to produce a gridded
difference field (e.g., Fig. 6). Calculating and storing the full-resolution
covariance matrix, a 106 × 106 matrix for the 1.8 million-node mesh
used in this study, would be a daunting task, and it is common in the
DA literature to partition the domain into subdomains to manage this
problem. However, we argue the time-averaging of water levels, the
gradual nature of the unresolved drivers we wish to capture (compared
to typical grid resolutions), and the large distance between observations
make the use of a coarser grid for data assimilation computations
appropriate, after which results are interpolated to the model mesh.

To explain generation of the difference field, we begin with a
brief introduction to sequential data assimilation. There is substantial
variability in the notation utilized in DA literature, however we mostly
follow that of Ide et al. (1997). The base equation in sequential data
assimilation is,

𝐱a = 𝐱f +𝐊
(

𝐲o −𝐇𝐱f
)

= 𝐱f +𝐊𝐝
𝐝 = 𝐲o −𝐇𝐱f (5)

where bold lowercase/uppercase variables denote vectors/matrices. We
now define the variables and their dimensions in context of traditional
DA terminology (in quotes); their meaning for the problem at hand is
supplied in the following paragraph.

n Number of grid points
m Number of observed values, denoted p in Ide et al. (1997)
xf = xf (t) (n × 1) Time-varying ‘‘forecast’’, ‘‘background’’, or ‘‘first

guess’’ system state vector
yo = yo(t) (m × 1) Time-varying ‘‘observation’’ vector
xa (n × 1) The ‘‘analysis’’ vector
K (n × m) The (Kalman) ‘‘gain matrix’’ or ‘‘gridding operator’’
H (m × n) The ‘‘observation operator’’ or ‘‘measurement

operator’’
d (m × 1) The ‘‘innovation vector’’ or ‘‘observational residual’’

Put in the context of this problem, n is the number of grid points;
m is the number of gages where observed water levels are available
for assimilation; xf are the water levels from an unassimilated model
simulation at the grid points; yo are the observed water levels at the
gages; xa are the water levels calculated by the assimilation process
at the grid points at a single point in time; H linearly interpolates the
unassimilated model water levels to the locations of the observations;
d is a set of water level differences at the observed locations; and K
performs the heavy lifting of creating the difference field Kd. In reality,
K depends on H and the error covariance structure of the first guess and
the observations. For a conceptual overview, readers are directed to a
recent review article (Moore et al., 2019); for further details, interested
readers are directed to Fletcher (2017), Bertino et al. (2003), Bennett
(2002), and Evensen (2003), Daley (1991).

Calculation of the water level correction is termed the ‘‘analysis
step’’ in DA. We do not directly apply Eq. (5) in our method. Rather,
we time-average d as described in the last section and compute the
difference field as,

Δ𝜻a = 𝐊 ⟨𝐝⟩𝑇 (6)

for Δ𝜁 a (n × 1) the difference field (corresponding to Δ𝜁) and T the
time scale of the averaging operator denoted by angle brackets. We then
introduce this time-averaged difference field in the model to apply the
correction gradually, and let the model’s physics respond accordingly,
using either the PAP or CON methods, as explained in Section 3.

4.4. Step 4: Assimilated simulation and forecast

With a new difference field calculated, the assimilated simulation
is then restarted from its last saved state and run forward from the
previous cycle until the current time is reached, much like the unas-
similated simulation in step 1. Each difference field is considered to
represent the correction for the current time, and so the PAP forcing
(and the elevation correction, if desired) applied during a simulation
evolves in time by linearly interpolating between the previous and
current difference fields. If this is used as part of a forecast system,
the forecast simulations would then be initiated using that assimilated
solution as the initial condition together with some assumption of how
the difference field evolves into the future.

5. Case study setup

Modeling experiments were undertaken to evaluate the ideas pre-
sented here and to build an algorithm for carrying out such assimi-
lations under operational conditions. Hurricane Matthew (2016) was
selected due to the presence of a persistent bias between predicted
and observed water levels prior to and throughout the event and
the availability of high-quality data to support the investigations. The
ADCIRC model, coupled with the SWAN wave model, was used. Data
assimilation was done with water level data from a set of coastal water
level gages. Each of these components is described in further detail in
this section.

5.1. Numerical model

ADCIRC is an ocean circulation model based on the 2D/3D shallow
water equations. It solves these equations in a continuous Galerkin,
linear finite element, unstructured mesh framework (Luettich and Wes-
terink, 2004; Westerink et al., 2008). Here, it is used in its 2D depth-
integrated form. SWAN is a 3rd-generation phase-averaged spectral
wave model that solves the conservation of wave action equation as it
evolves in time and space (Booij et al., 1999; Zijlema, 2010). It operates
on the same linear triangular mesh as ADCIRC. The two models are
tightly coupled, with water depths and currents passed to SWAN and
wave radiation stress gradients passed to ADCIRC at each shared time
step (Dietrich et al., 2011b,a). The coupled model is highly parallelized
for execution on supercomputing systems (Tanaka et al., 2011; Dietrich
et al., 2011a; Kerr et al., 2013a), making it useful for numerous surge
modeling applications.

The 1.8 million node, 3.6 million element HSOFS mesh was used
(Riverside Technologies, Inc., and AECOM, 2015). Shown in Fig. 3, the
HSOFS mesh covers the western north Atlantic, and all overland areas
of the neighboring U.S. coast up to an elevation of 10 meters above
sea level, with detailed representations of inlets, rivers, barrier islands,
roadways, and other key features. Elevation data is based on the latest
available bathymetry and lidar-derived topography. Mesh resolution in
coastal areas is typically 400 to 500 meters (and as low as 200 meters
in some areas), making it an intermediate-resolution grid developed
specifically for national-scale real-time storm surge forecasting appli-
cations. This mesh is now used by NOAA for operational coastal water
level and storm surge guidance in their ESTOFS (Extratropical Surge
and Tide Operational Forecast System) and HSOFS (Hurricane Surge
On-demand Forecast System) programs.

Meteorological forcing is shared by ADCIRC and SWAN and is
described in the next section. Tidal forcing in the ADCIRC model
is specified by periodic water elevations along the offshore bound-
ary and body forcing throughout the domain based on the Oregon
State University TOPEX/Poseidon Global Inverse Solution version 7.2
(TPXO7.2) (Egbert and Erofeeva, 2002). Manning’s n-based bottom
friction in ADCIRC is based on 2006 C-CAP land cover data, so that
increased dissipation during flooding in marshes and overland areas
is accounted for. Directional reductions in wind speed due to the
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Fig. 3. HSOFS mesh topobathy (left, meters below MSL) and node spacing (right, meters); black lines are coastlines, brown lines (left) are inland model boundaries and levees.

roughness of overland features is accounted for using the land cover
data upwind of a given location to determine the roughness height
in a Charnock-type relation for Oceanweather and Holland-type wind
models (discussed in the next section), since these are considered to be
at marine exposure. Overland drag for waves is considered less impor-
tant since their primary use here is in helping calculate accurate surge
elevations via wave radiation stresses and depth-induced breaking is
the primary mechanism of energy dissipation in such cases. Bottom
friction in SWAN is formulated as a JONSWAP-type sea state-dependent
drag (Hasselmann et al., 1973), and no wind reductions are performed.
The ADCIRC model is explicit and finite difference in time, and so
has a Courant-limited time step of 2 s for this application. The SWAN
model is time implicit, allowing it to have a larger 15-minute time
step. More granular detail on model setup parameters is provided in
the supplemental.

5.2. Hurricane Matthew

Hurricane Matthew was a Cape Verde type1 hurricane that devel-
oped into a tropical cyclone on September 28, 2016, near Barbados. The
storm passed between South America and the Greater Antilles, briefly
becoming a Category 5 hurricane on the Saffir Simpson hurricane wind
scale, before turning north on October 2. It made landfalls on Haiti and
Cuba on October 4 and 5, respectively. It then tracked just offshore of
the southeastern U.S. coastline for several days, barely making landfall
in South Carolina on October 8, before transitioning to an extra-tropical
cyclone on October 9 and heading offshore (Stewart, 2017). Although
the storm’s surges were not as severe as many other historic storms,
Matthew’s track (Fig. 4) brought moderate surges to over 1000 km of
U.S. coastline, and high water conditions for several days at many sites,
providing a large amount of observational data over which to study the
storm’s effects.

Meteorological forcing for the coupled model is provided in the form
of winds and sea level pressures, and is taken from three sources in
order to assess the effects of different meteorological fields. The most
basic meteorological forcing comes from a parametric vortex model, the
Generalized Asymmetric Holland Model or GAHM, based on Holland
(1980), but without requiring the cyclostrophic balance assumption
(Gao, 2018). Parametric models such as GAHM are useful in that they
allow wind and pressure fields to be constructed in a dynamically
consistent manner directly from meteorologist forecast parameters. In

1 Hurricanes originating near the Cape Verde islands, more info here: http:
//www.aoml.noaa.gov/hrd/tcfaq/A2.html.

the case of GAHM, radii to maximum winds are determined in each
storm quadrant by fitting the model to specified wind isotachs in each
quadrant (Gao, 2018; Dietrich et al., 2018). There are no far field
winds associated with the GAHM other than those of the translating
vortex of the storm. An intermediate quality meteorological forcing was
developed by combining the GAHM with North American Mesoscale
Forecast System (NAM) fields, the latter supplying the far field winds
and pressures. Blending between the two datasets is performed over
a range of several radii to maximum winds away from the storm
center in order to provide a smooth transition. The third and highest-
quality source of wind and pressure forcing comes from reanalysis
meteorological fields defined objectively using airborne, terrestrial,
and oceanic measurements, including stepped frequency microwave
radiometer (SFMR) data, by OceanWeather Inc. (OWI), (Cox et al.,
1995; Cardone and Cox, 2009).

5.3. Observation data

Water level data was collected from a total of 44 permanent stations
along the open coast, estuaries, bays, and rivers, and 129 temporary
storm tide sensors deployed for Hurricane Matthew. All of these data
are from either NOAA or the U.S. Geological Survey (USGS). 24 NOAA
gages were used in the assimilation set that forms the yo observations
needed for DA (shown in Fig. 4). 19 gages and 129 storm tide sensors
(visible in Fig. 7) were used as validation of the scheme. The final gage,
located at Springmaid Pier, SC, was lost when the pier was destroyed
by Matthew shortly before the storm surge peaked. This gage was also
included in yo (𝑚 = 25) while functioning, but then dropped (𝑚 =
24) when found to be out of operation, without any apparent loss of
fidelity in the solution, suggesting the methodology is reasonably robust
to events like gage failures, provided sufficient gages are included in
determining the difference field. All gages in the assimilation set were
located at or close to the open coast, whereas the validation data
are generally in more sheltered waters, rivers, and overland. Further
information on all data used is supplied in Supplemental Table 2.

5.4. Data assimilation

DA was carried out using the method described in Section 4. Assim-
ilated simulations were run using both the PAP method and the CON
method as described in Section 3. A 6-h assimilation cycle was used
that corresponded to the hurricane advisories provided by the National
Hurricane Center, (Fig. 2). Every assimilation cycle, the first guess field
xf was updated with a 6-h model run, using the ending state of the
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Fig. 4. Hurricane Matthew and its effects on the Gulf Stream. Left: Florida current transport during Hurricane Matthew; orange lines denote the latitude of Matthew’s eye and
the FL cable current measurement. Right: Gage sites and storm track; dots along Hurricane Matthew’s track denote 6-h interval positions and landfall, brown X’s denote gages in
the assimilation set.

previous unassimilated solution as its initial condition. Observed and
unassimilated modeled water levels were averaged over the previous
24.84 h (two M2 tidal cycles) and were used to compute differences
at the gage locations. These differences were input into OI assuming a
Gaussian error covariance matrix with a constant correlation length2 of
1 degree. In addition, the difference field was constrained to approach
zero offshore by placing a sequence of artificial ‘‘gages’’ just off the
continental shelf break, with their d set to zero. Offshore of these areas,
the difference field was discarded. An example of a resulting difference
field for each of the meteorological forcings is shown for 00:00 h UTC
on October 5, 2016 in Fig. 6. A 6-h model run with assimilation was
then performed, using the ending state of the previous assimilated
solution as its initial condition, and linearly interpolating the difference
field in time from the previous to the newly constructed difference field
over the 6-h assimilated model run. If this were to be used as part of
a forecast modeling system, the assimilated model run would then be
used as the initial condition for the forecast.

6. Case study results

Simulations were carried out from 00:00 UTC October 2 to 00:00
UTC October 11, 2016 with the three sources of meteorological forcing
both with and without assimilation, giving a total of 6 simulations
for hurricane Matthew. Runs without assimilation are referred to as
‘‘baseline’’ cases, and the two-letter shorthand nomenclature shown in
Table 1 will now be used to refer to individual simulations. Minimal
differences in skill metrics were observed between the results from
the PAP and CON methods and so only the PAP method results are
presented in this section; CON results are in supplemental material.
Data and simulations presented here are available online through their
publication (Asher, 2019).

6.1. Model skill

Errors in peak surge estimates are provided in Figs. 5 and 7; time
series at selected gages are shown in Fig. 8, and time series plots at
all gages are in Supplemental Figure 3. Skill metrics for both peak and
time series data are provided in Table 1, with bias being positive when

2 The observation error is assumed very small (1 mm) since NOAA water
level gages are very accurate.

the model water level is higher than the observed. Time series statistics
were calculated over the 120 h from October 5 00:00 to October 10
00:00 UTC.

All three baseline simulations show negative (model underestima-
tion) biases, ranging from −22 to −79cm at the 24 assimilation sites.
The GB simulation has the greatest bias, being approximately twice that
of the OB and NB simulations, which have similar biases. With DA, the
bias is largely removed, ranging from 1 cm to −6cm, as measured by
peak surge or time series across all assimilation and validation stations
for the three meteorological forcings. Mean absolute error (MAE) and
root mean square error (RMSE) are reduced by a quarter to two thirds
of their baseline simulation values as well. Error statistics for the CON
method (Supplemental Table 1) were within 1 cm of the PAP method,
with no systematic trend.

The largest remaining errors in the DA simulations occurred within
Pamlico Sound and its accompanying rivers, in North Carolina. These
errors are due to a combination of a frontal weather system north
of Matthew that is not well represented in any of the meteorological
forcing datasets as well as errors in model bathymetry within the
Sound. Model simulations (not shown) using a different grid with
higher resolution and better bathymetry gave an increase in peak surge
of 30 cm at the NOAA Hatteras gage (Fig. 8), bringing it into much
closer agreement with observations.

6.2. Assimilation effects

The spatial structure of the difference fields indicates a slight in-
creasing trend from south to north along the US southeast Atlantic
coast, Fig. 6. At this time, 00:00 UTC 10/5/2016, the eye of Matthew
was located at approximately 20 degrees North (Fig. 4). The temporal
behavior of the difference field is shown at selected stations along
the coast in Fig. 9, time series plots at all gages are in Supplemental
Figure 3. The two M2 tidal cycle time average and the Gaussian error
covariance with 1-degree correlation length together appear to impose
reasonable spatial and temporal smoothness in the difference field,
consistent with the objective of correcting for low frequency unresolved
drivers. The difference field is generally twice as large for the GB as the
OB and NB solutions, consistent with the increased bias noted above.

The substantial reduction of model bias (and accompanying other
error statistics) in the DA simulations provides strong evidence that
this approach is effectively correcting for the unresolved drivers in
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Fig. 5. Comparison of peak modeled and observed surges. Top: assimilation sites. Bottom: Validation sites. Left: colored lines are linear fits. Right: only gages whose observed
peak surge exceeded 1 m are displayed to filter out non-event data. A matching figure for the CON method is in Supplemental Figure 2.

Table 1
Simulation identification and skill metrics for peak and time series water level data at assimilation sites and for peak data at
validation sites, in meters. A matching table for the CON method is in Supplemental Table 1.

the water surface elevation. Comparison of the GB and NB simulations
suggests that approximately half the bias in the GB simulation may be
due to missing far field meteorology, and that DA is able to reasonably
compensate for this deficiency in model forcing. Comparison of the
OB and NB simulations suggests that the blended GAHM+NAM wind
and pressure fields provide a reasonable forecast-grade substitute for
the more detailed reanalysis OWI fields. Assuming that the OB and NB

reasonably capture the meteorological component of the water level
forcing, the remaining half of the bias in the GB run and the majority
of the bias in the OB and NB runs must be due to non-meteorological
unresolved drivers. Water levels are characteristically high in October,
with historical monthly average water levels ranging from 19 cm at
Daytona Beach, FL to 17 cm at Fort Pulaski, GA, to 12 cm at Beaufort,
NC. The area from southern Florida to Cape Hatteras is adjacent to
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Fig. 6. Difference fields (colors are in meters) along the U.S. Atlantic coast on Oct. 5, 2016 00:00 UTC for the three meteorological forcings, circles denote assimilation sites and
their differences. Note the different elevation scales for the panel corresponding to the GAHM forced solution and the other two solutions.

the Gulf Stream, which experienced a substantial decrease in transport
during Matthew’s passage (Fig. 4). Decreased Gulf Stream transport
has been associated with increases in coastal water level (Ezer and
Atkinson, 2017), and this may provide an additional unresolved driver
during the Matthew time period.

7. Data assimilation framework discussion

As presented above, we have found our DA approach to be an
effective tool for reducing a significant source of error in storm surge
simulations. Calculating a difference field (Eq. (6)) involves multiple
choices including the form of the gain matrix K, the time-averaging
used to calculate ⟨𝐝⟩𝑇 , and the m observation sites that form yo. Lastly,
there is the matter of selecting how data are manifested, or ‘‘ingested’’
back into the model, as was done via the PAP forcing alone (PAP
method) or the forcing paired with direct addition of water (CON
method). Each of these items will now be addressed, both in terms of
the proposed method and in terms of the techniques presented in the
meteorological and oceanographic DA literature.

7.1. Gain matrix K

The most challenging step in determining K is defining the first
guess error covariance matrix, typically denoted B or Pf (note the latter
does not denote the PAP field). It is common to partition B into a
diagonal variance matrix D (n × n) that can optionally be updated in
time and a stationary (i.e. time-independent) correlation matrix C (n ×
n), as 𝐁 = 𝐃1∕2𝐂𝐃1∕2. We expect strong anisotropy in the correlation
structure, with distinct characteristic scales in the cross- and along-
shore directions, which should evolve through estuaries, bays, and
further upstream. Therefore, presuming a single correlation length is
clearly suboptimal, as indicated in the following example.

In 1999, Hurricanes Dennis and Floyd dropped massive amounts
of rain in North Carolina within a few weeks of each other, leading
to record-breaking flooding across much of the state. This resulted in
differences in water levels on either side of the North Carolina barrier
island complex as high as 0.5 m. Fig. 10 shows the effect this had
on the water level anomaly surface, determined via OI using a 4-day
average water level prior to Floyd and a constant correlation length
of 1 degree. The open-coast gage at Duck shows a small anomaly in
the water level time series since it is not appreciably affected by the
rainfall, however the gage at Oregon Inlet shows a much larger, longer-
lasting anomaly due to the runoff filling up Pamlico Sound. The water
level anomaly surface using our simple correlation structure is unable
to match the 16 cm difference in the 4-day mean water level between

the two gages. Application of a more appropriate correlation matrix
would permit a sharp spatial gradient to be more faithfully3 represented
in the difference field.

We expect that the structure of the correlation matrix C will depend
on the unresolved driver(s) at work, and therefore it is unclear whether
a single covariance structure can fully account for distinct phenomena.
If a substantial portion of the to-be-assimilated model error d is pre-
sumed to come from physics absent from the model, and not errors due
to model forcing, initial conditions, etc., then along with the sparsity
of measurements, this means a substantial portion of the error covariance
structure is not identifiable.4 Put another way, the correlation (on all
time scales of interest) between the sheltered Oregon Inlet and open-
coast Duck locations (discussed in the previous paragraph) can only
be estimated with measured data or a model with the physics needed
to resolve all time and space scales of interest. So, one must either
rely on an incomplete estimate of C from the surge model’s correlation
structure, or else infer it from another source, such as altimetry data,
a more advanced model, or a parametric function. This difficulty in
revealing the full covariance structure motivates a generalization of
Eq. (6) to,

Δ𝜻a =
𝐽
∑

𝑗=1
𝐊𝑗 ⟨𝐝⟩𝑇 𝑗 (7)

where j is the index of J difference fields; note we will use 𝐝𝒋 as short-
hand for ⟨𝐝⟩ 𝑇 𝑗 . This permits accounting for different unresolved drivers
separately, each with its own correlation matrix 𝐂𝑗 . With this, we can
consider a series of spatiotemporal scales corresponding to different
unresolved drivers, whose covariance structures can be inferred using
one of the methods mentioned in the last paragraph. Eq. (7) is attractive
because it conforms nicely to one interpretation of the theoretical basis
for the forcing term, that it represents a closure scheme for a series of
unresolved drivers, discrete physical processes that the hydrodynamic
model’s governing equations and inputs do not explicitly account for.

While conceptually attractive, many physical processes have over-
lapping scales, making separation difficult to accomplish in practice.
Thus the approach of defining different correlation matrices for differ-
ent unresolved drivers may be most useful for separating out shorter
fluctuations (e.g., days to weeks) from those that affect seasonal- or
longer-term water levels, since correlation lengths for the latter pro-
cesses are substantially longer (e.g. Calafat et al., 2018).

3 The lowpass filtering of our data suggests brief, episodic changes in
correlation like the overtopping of a barrier island during a large storm surge
likely need not be accounted for in the correlation matrix.

4 This is closely related to the motivation for the ‘‘fixed basis’’ form of the
singular evolutive extended Kalman (SEEK) filter (Brasseur and Verron, 2006).
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Fig. 7. Error in peak surge at storm tide sensors, modeled minus observed, meters; left-to-right: GAHM winds, OWI winds, GAHM+NAM winds; top: baseline simulations; bottom:
simulations with assimilation. Red line is Hurricane Matthew’s track.

7.2. Sites m

Greater data density and quality generally results in improved esti-
mates. However, since the physical dynamics are not accounted for in
our implementation of OI, utilizing data which are not representative of
the coastal environment under consideration can be problematic if the
data are not handled with care: Preliminary tests utilizing water level
gages in rivers were found to produce lower quality difference fields
because our OI implementation does not resolve the pathway taken by
the water, and so the area of influence of these gages is exaggerated.
This, like the example in Section 7.1, may be alleviated through use of
proper correlation structure.

Being unbound by physical constraints, the difference field can
diverge when extrapolating, which is why we imposed the artificial
‘‘gages’’ (with their d set to zero) off the continental shelf break to
weakly constrain the difference toward zero in the offshore direction,
as discussed in Section 5.4. Physical constraints could be applied to deal
with such issues within the DA scheme, however the irrelevance of such
small offshore water level fluctuations on coastal water levels suggests
any technique may suffice. A similar issue arises in inland areas, where
the d at the coast may not be relevant. If inland gages are not available
or used, then in cases where the inland domain extent is large compared
to the correlation length, ways to constrain the difference field inland
may need to be devised.

10



T.G. Asher, R.A.L. Jr., J.G. Fleming et al. Ocean Modelling 144 (2019) 101483

Fig. 8. Time series of modeled and observed water levels (m MSL) at select gages; black (gray) titles denote gages in (not in) the assimilation set.

7.3. Time scales T

Time-averaging in calculating 𝐝𝑗 acts as a boxcar filter on the
water level difference. It is not clear the choice of averaging method
is particularly important, and other analyses have shown that simple

filtering methods can be advantageous (Bloom et al., 1996; Oke et al.,
2002). However, the choice of averaging time scale T is key. The exact
choice of time scale represents a balance between which fluctuations
to remove and which to keep, and so can depend on the processes of
interest. Use of a (rather short) 24.84-h averaging period in this study
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Fig. 9. Time series of modeled and observed water levels (m MSL) at select gages, PAPs (units of meters water) denoted by dashed lines in matching colors; black (gray) titles
denote gages in (not in) the assimilation set.

permitted DA to correct for the surge error resulting from poor far-field
meteorology in the GAHM model, however no systematic study was
undertaken to evaluate whether this was the best choice of T. Review
of time series in Fig. 9 suggests an averaging period 1.5x or 2x this

length may have also produced similar results, though this question
may warrant further review under other conditions.

Our approach may create a lag in the modeled response since (1)
the difference field is based on data prior to the current point in time,
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Fig. 10. Water level anomaly around Hurricanes Floyd and Dennis. Left, the water level anomaly surface calculated for the 4 days prior to the landfall of Floyd, numeric labels
indicate the difference (in meters) between the OI water level anomaly surface and the observed mean water level at the site; white lines are coastline and county boundaries.
Right, water elevation time series at the two gages highlighted in the left panel.

and (2) there may exist some lag time in the model responding to the
forcing in the case of the PAP method. Lag due to the former should
be small unless d shifts rapidly compared to the assimilation interval.
Lag due to the latter is discussed in Section 7.4. Note that lag due to
the former issue could also be resolved by centering the assimilation
window in time.5

7.4. Ingestion method

Techniques for incorporating the water level correction back into a
model simulation, which we term ‘‘ingestion’’, are built into methods
like certain ensemble Kalman filters and 4DVar, one of their advan-
tages; there is no such prescribed method for OI. We proposed two
methods in Section 3. The Matthew case study did little to elucidate
differences, as the methods’ error statistics were nearly identical. There-
fore, we now present a simple test problem, and use it to distinguish
the methods and how they each modify the solution.

The GA simulation presented in Section 6 was repeated, with all
forcing disabled except for the assimilation to isolate its effects. The
GA simulation’s difference field was chosen because it is a realistic
test case with relatively large elevations, peaking at almost 0.7 m
in some regions, and rising/falling up to 20 cm/day. 9-day PAP and
CON simulations were conducted, with the initial elevation difference
ramped in over 31 days (prior to the beginning of the 9-day simulation)
to ensure both simulations start at the same equilibrium state. Note that
simulation days 31–40 here correspond to October 2–11, 2016 in the
Matthew case study.

Results are shown in Fig. 11. Across the entire study area, maximum
differences in the two simulations are less than 2 cm except for three
regions, ordered from north to south: The Pamlico-Albemarle Sound
complex in North Carolina, the St. Johns River in Florida, and the In-
dian River Lagoon system in Florida. In these areas, differences reached
5–20 cm. These areas are characterized by having tightly restricted
flows to the ocean. In all cases, the CON method’s water levels track
the difference fields more closely than the PAP’s. This is expected
given that the PAP method requires the elevation field to respond to
the imposed forcing whereas the CON method imposes the elevation
change directly. However, which result is preferable is situational.

In open coastal areas and areas with moderate connections to the
open coast, the propagation is fast and the difference between the
methods minimal (Fig. 11). However, the PAP method fills and empties

5 This would classify the approach a smoother, which utilizes both past and
future data, as opposed to a filter.

tightly restricted semi-enclosed waterbodies more slowly. For example,
the Pamlico-Albemarle Sound complex, a very large bay with very
narrow openings, filled at 8–15 cm/day during the PAP assimilated
simulations. Noting that the correction field is derived primarily from
coastal gages, during Matthew this may reflect a realistic damping of
the coastally-derived elevation correction. This suggests the relative
utility of the two methods is largely relegated to waterbodies with a
weak connection to the open ocean and is tied to the expected accuracy
of the difference field, i.e., does the difference field correctly represent
the water elevation difference inside these waterbodies (in which case
the CON method may be more accurate) or is it simply a landward
extension of the coastal water level difference (in which case the PAP
method may be more accurate).

One case of special note is a fully enclosed waterbody, such as a
coastal pond or gated waterway. The CON method would raise/lower
water levels in the waterbody whereas the PAP method would only
impose a gradient across the waterbody until the water level in an ad-
jacent coastal region rose to a level that caused it to become connected
with the enclosed waterbody. Here, again, which result is preferable
depends on one’s expectation of the true difference field.

8. Operational considerations

Operational forecasts carry substantially different priorities from
those of other modeling studies. In the former, a critical requirement is
getting an answer in a timely fashion. To the degree the quality of the
answer can be improved, it should be, but subject to the constraints
that the improvement can be computed quickly enough to allow the
result to be timely and that the process does not cause the forecast to
fail (e.g., introduce model instability).

The need to perform two simulations, one with and one without
assimilation means that this method roughly doubles the computational
requirements for a hindcast study; calculation of the difference field
itself takes minimal time. However, in an operational forecast setting,
this doubling only applies to the simulation period going from past to
present (Supplemental Figure 1), typically a 6-h window. The result of
the assimilation is the creation of an improved initial condition for the
impending forecast(s). Assuming a 6-h assimilation-forecast cycle, the
computational burden increases by 7.6% for a single 3-day forecast or
4.6% for a single 5-day forecast. This small computational burden de-
creases even further if a multiple forecast ensemble is computed using
the same initial condition (e.g., to 1.6% for a 3-day, 5-member ensem-
ble forecast). Since computing the difference field does not require the
forecast meteorology, it is possible to run the unassimilated simulation
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Fig. 11. Differences in simulated water levels between the CON and PAP methods. Left, the difference in water level (CON minus PAP, meters) at 37.25 days (corresponding to
6:00 AM UTC October 8th). Top right, water level time series (meters MSL) in Albemarle Sound and at the nearby open ocean. Bottom right, water level time series (meters MSL)
in the St. Johns River and at the nearby open ocean.

and compute the difference field concurrent with the generation of the
meteorological forecast. If this is done, the additional computational
time required to implement DA in the storm surge model would not
delay the surge forecast (which must wait for the forecast meteorology
to become available).

The reliability of the difference field is a function of the quality
of the input data as well as the choices made in computing it. It
is therefore important that any observation data stream be quality-
controlled. The failure of the Springmaid Pier gage during Matthew
is an example of the loss of a real-time data stream. The OI surface
in this case study did not change markedly after the gage failed and
was removed from the data used to determine the difference field, as
seen in the time series in Fig. 9 at the nearby Oyster Landing gage. The
Charleston SC and Wrightsville Beach NC gages are the two nearest
to Springmaid Pier, each roughly 1 degree away. This indicates the
1-degree correlation length is reasonably chosen, given the density of
available observations and the smoothness of the assumed Gaussian
covariance. Operational applications will need to choose sites and
covariance structure in a way that ensures loss of a gage (or gages)
does not lead to physically unrealistic difference fields.

When carrying out a true forecast, some assumption must be made
about how the difference field transforms into the future. In our initial
use of this approach in forecast applications we have held the dif-
ference field constant through the forecast cycle. More sophisticated
approaches could be proposed incorporating expected growth/decay
times implied by the characteristic time scale of the dominant unre-
solved driver(s).

9. Conclusions

Storm surge modeling systems have grown in complexity and ac-
curacy, and have reached a state where unresolved drivers are major
contributors to model errors. Several such drivers are well known to
cause appreciable coastal water level variations. Changes in large-scale
currents like the Gulf Stream are of particular curiosity, since they
have been shown to be affected by passing storms, and there is recent
evidence suggesting this could be an important component of multi-
day water level fluctuations not reproduced by surge models. Hurricane
Matthew appears to be one example of this.

Tropical cyclone-driven surge itself is often a rapid response that
is not well suited for DA in forecasts and seems better handled by
the physics of the model itself. In particular, there appears to be a
limit to how much DA can improve tropical cyclone surge forecasts
because guidance is often needed earlier than meaningful water level
data can be assimilated. Conversely, many unresolved drivers typically
vary over spatial and temporal scales longer than that of storm surge,
and are therefore good candidates for DA to allow allocation of com-
putational resources elsewhere. To this end, a system for assimilating
water level data into a surge prediction system has been constructed,
based around the principle of low-cost, continuous sequential data
assimilation. It was implemented as a pseudo atmospheric pressure
forcing term with and without a direct correction to the water elevation
term in the ADCIRC surge model, and was evaluated for the case of
2016’s Hurricane Matthew using multiple meteorological data sources.
Comparing results from the GAHM parametric vortex model with the
blended GAHM+NAM model suggests that approximately half of the
low bias in the GAHM simulation was due to missing far field winds.
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Counter to prior experiences, high-grade assimilated reanalysis winds
(OWI) did not appreciably improve model performance compared to
the blended GAHM+NAM meteorology for Matthew. Calculated water
level differences ranged from 0.2 to 0.6 m, and were typically twice
as large for the GAHM simulations as for the GAHM+NAM and OWI
simulations. Results from the DA simulations were very favorable, with
measures of model surge bias changing from −0.22 to −0.79 m in
the unassimilated simulations to −0.06 to 0.01 meters in assimilated
simulations. Mean absolute errors were also reduced by 48% to 66%
at assimilation sites and 16% to 45% at validation sites. Further,
surge error statistics with the GAHM and GAHM+NAM meteorological
fields were indistinguishable from those with the OWI reanalysis fields
once DA was performed. Thus, the DA was able to account for the
effect of far-field winds on water levels, absent in the simple GAHM
parametric vortex model. It is not clear to what degree this accounted
for antecedent conditions vs. remote forcing, though time series suggest
both were at play. The ability to compensate for some of the error in
the meteorological forcing is particularly useful for forecasting because
high-quality, reanalysis meteorological fields are not available. The
small increase in computational effort (typically a few percent) makes
this method highly amenable to forecast applications.

The performance difference between the two assimilation methods
for Matthew was equivocal, with both methods showing nearly identi-
cal error metrics. A simplified test case illustrated conditions in which
solutions diverge, with differences being largely relegated to semi-
enclosed waterbodies weakly tied to the open ocean. The merit of each
method in such cases was argued to be case-dependent and tied to the
expected accuracy of the difference field.

A generalized framework for assimilating water level data into
storm surge models using continuous sequential DA has been proposed.
Care has been taken to discuss implementation details as they pertain
specifically to surge, and to provide recommendations on how to
navigate these issues. In particular, discovery of the first guess error
covariance due to unresolved drivers is intrinsically impaired by their
absence from the model. This may support the use of multiple discrete
difference fields corresponding to distinct scales of unresolved drivers.

9.1. Future work

Limitations of the proposed methodology are chiefly imposed by
the need to specify the error covariance used in the assimilation. We
were pleased that a very simple error covariance worked well and
greatly reduced the water level errors in our case, but recognize the
potential value of more sophisticated approaches. These should be able
to address the current method’s largest shortcomings, while allowing
for more observed data to be used. Ensemble optimal interpolation
or EnOI (Oke et al., 2002; Evensen, 2003; Oke et al., 2009) may
be a promising candidate here. EnOI is effectively a hybridization of
ensemble Kalman filter and OI methods, whereby a stationary ensemble
(e.g. a set of historical simulations) is used to prescribe the covariance,
which can be made to vary over long (seasonal) time scales (Brasseur
et al., 2006). Ideally, such an ensemble would come from a more
complex model that includes our unresolved drivers, although even a
2D barotropic model should be able to recover first-order structures
such as the disconnect between open-ocean and estuarine waterbodies.
The combination of multiple discrete difference fields, corresponding
to distinct scale of unresolved drivers, may provide useful aid as well.
A better specification of the spatial structure of the elevation difference
field may help determine the robustness of the PAP and CON methods.

Additional data sources would help constrain the DA. Satellite
altimetry coverage is not guaranteed on the time scale of a storm surge
event, and there are substantial difficulties in getting quality measure-
ments within ∼50 km of the coast. However, continued improvements
have allowed for measurements of storm surge increasingly close to the
coast (Fenoglio-Marc et al., 2015; Madsen et al., 2007, 2015). Efforts to
bring online airborne measurements of water surface elevation (Wright

et al., 2009) could also lead to more comprehensive water surface data
in the immediate nearshore. Better data on offshore water levels will
also allow for more physically-realistic closure of interpolated surfaces.
This text has not discussed how velocity data might be incorporated
in this system, nor their utility, though Peng and Xie (2006) indicated
little gains in assimilating both compared to assimilating only water
elevation in storm surge forecasting.

Improvements in knowledge of the system physics can aid the DA
analysis. To this end, research into how hurricanes affect large-scale
fluctuations such as the Gulf Stream (e.g. Todd et al., 2018) is of
use. Comparison to a 3D ocean model’s water surface topography may
help inform the structure of the error covariance. Improvements in
model physics to reduce the need for the DA correction should also be
pursued to whatever degree possible while maintaining compatibility
with available computational resources.
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