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Abstract
Surrogate models are becoming increasingly popular for storm surge predictions. Using 
existing databases of storm simulations, developed typically during regional flood stud-
ies, these models provide fast-to-compute, data-driven approximations quantifying the 
expected storm surge for any new storm (not included in the training database). This paper 
considers the development of such a surrogate model for Delaware Bay, using a database 
of 156 simulations driven by synthetic tropical cyclones and offering predictions for a grid 
that includes close to 300,000 computational nodes within the geographical domain of 
interest. Kriging (Gaussian Process regression) is adopted as the surrogate modeling tech-
nique, and various relevant advancements are established. The appropriate parameteriza-
tion of the synthetic storm database is examined. For this, instead of the storm features at 
landfall, the features when the storm is at closest distance to some representative point of 
the domain of interest are investigated as an alternative parametrization, and are found to 
produce a better surrogate. For nodes that remained dry for some of the database storms, 
imputation of the surge using a weighted k nearest neighbor (kNN) interpolation is consid-
ered to fill in the missing data. The use of a secondary, classification surrogate model, com-
bining logistic principal component analysis and Kriging, is examined to address instances 
for which the imputed surge leads to misclassification of the node condition. Finally, con-
cerns related to overfitting for the surrogate model are discussed, stemming from the small 
size of the available database. These concerns extend to both the calibration of the sur-
rogate model hyper-parameters, as well as to the validation approaches adopted. During 
this process, the benefits from the use of principal component analysis as a dimensionality 
reduction technique, and the appropriate transformation and scaling of the surge output are 
examined in detail.
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Abbreviations
n  Total number of available synthetic storm simulations
.h  Characteristics pertaining to the hth storm (superscript)
.i  Characteristics pertaining to the ith node (subscript)
z  Vector with peak surge over the geographic domain of interest
nz  Total number of nodes considered (dimensionality of z)
ei  Elevation of the ith node
x  Vector with parameters used to characterize storm input
nx  Dimensionality of x
xlat, xlong, β, ΔP, Rmw, vf  Storm characteristics used as input
zi(�

h) = zh
i
  Peak surge for the ith node location and the hth storm

z
∼

h
i

 Surge estimate for zh
i
 based on kNN interpolation usingneigh-

boring nodes
Ah
k
[i]  Set of k closest nodes to the ith node for the hth storm

dij  Geo-distance between nodes i and j
w(dij)  Weight utilized for the weighted kNN implementation
Amc  Set of nodes that are misclassified as wet when it is known 

they are dry
Sc, Ss  Surrogate model for the classification of the node condition 

and surrogate model for surge prediction
y, ny  Output vector considered in the surrogate model development 

and its dimension
X  Database considered in the surrogate model development
X–h, �−Ah

  Database where the hth storm is excluded, and database where 
the storm subset Ah has been excluded

Αh  k-fold storm subset including the hth storm
zn  Normalized surge by pressure deficit ΔP
zt
i
= g(zn

i
), ci  Transformed surge using function g(.) and constant to facilitate

the transformation
zres  Surge residual after the subtraction of the surge corresponding

to the retained principal components
Ii(�)  Classification of the ith node condition (for storm input x),

corresponding to 1 if node is wet and to 0 if it is dry
Is
i
(�|�), Ic

i
(�|�), Icb

i
(�|�)  Surrogate model predicted classification of the ith node using 

the Ss, Sc, or combined surrogate model formulations
.̃  Surrogate model predictions
Y, F, R, Bf, �−  Matrix quantities for the surrogate model development
β*,α*, r(x|X)  Vector quantities for the surrogate model development
f(x), nb  Basis function vector for surrogate model and its 

dimensionality
δ, In  Nugget parameter and identity matrix of dimension n
R(xl,xm|s)  Correlation function for surrogate model
s  Hyper-parameter vector for the surrogate model correlation 

function
ms  Number of latent components retained in PCA process
u, uj  Vector of latent outputs and the notation for the jth individual 

component
μ  Mean surge vector for all nodes across the different storm 

simulations



P, U  Projection matrix and matrix of latent components
P(Ii(�

h) = 1|�i(�h))  Bernoulli distribution approximation of probability of the ith 
node being wet for the hth storm

�i(�
h)  Natural parameter for the ith node and the hth storm of the 

logistic function
np  Dimensionality for the output vector that contains all the nodes 

that have remained dry in at least one of the storms within the 
database

θ(x)  Natural parameter vector for all nodes for storm input x
t  Vector of latent logistic principal components
mc  Number of principal components retained in LPCA process
Θ, T, V, Δ, Δθ  Quantities for the LPCA development
pres  Classification residual vector after the Sc surrogate model 

development
p̃c
i
(�|�)  Probability of the ith node being wet for storm input x given 

by surrogate model Sc
MCh

i
, +MCh

i
, −MCh

i
 Misclassification for the ith node and the hth storm, and false 
positive (node predicted wet when dry) or false negative (node 
predicted dry when wet) counterparts

MC, MCh, MCi  Total misclassification across all nodes and storms, total mis-
classification across all nodes for the hth storm, total misclas-
sification across all storms for the ith node

NRMSEi NRMSE  Normalized root mean squared error for the ith node across all 
storms, and its average value across all nodes

NRMSEh  Normalized root mean squared error for the hth storm
SCh

i
SCh SCi SC  Surge score for the ith node and the hth storm, and average 

values, respectively, across nodes (for specific storm), storms 
(for specific node) and both storms and nodes.

JPM  Input parametrization according to Joint Probability Method
CARP  Input parametrization with respect to the representative point

1 Introduction

Surrogate models (also referenced as emulators or metamodels) have emerged as a versatile 
technique for predicting storm surge caused by tropical cyclones (Jia et al. 2016; Bass and 
Bedient 2018; Zhang et al. 2018; Al Kajbaf and Bensi 2020; Contento et al. 2020; Kyprioti 
et al. 2020; Plumlee et al. 2021). These models correspond to data-driven approximations, 
developed using a database of surge predictions for a properly selected suite of storms. 
Their objective is to describe the input/output relationship of the expensive, high-fidelity 
hydrodynamic model used to develop the storm surge database. Once trained, the surrogate 
model can substitute for the high fidelity simulation model, maintaining, similar predic-
tion accuracy at a dramatically lower computational cost. Different types of emulators have 
been examined in this context, ranging from surge response functions (Irish et  al. 2009) 
and response surfaces (Taflanidis et  al. 2012) to neural networks (Kim et  al. 2015) and 
kriging (Jia and Taflanidis 2013). The flexibility of these emulators has been demonstrated 
in a number of implementations over different regions of interest (Irish et al. 2009; Jia et al. 
2016; Al Kajbaf and Bensi 2020), for peak surge or surge time-series predictions (Jia et al. 



2016), and even for addressing sea level rise implications (Contento et al. 2020; Kyprioti 
et  al. 2020). Extensions have been recently considered for tide-, river- and atmosphere-
driven water levels as well (Parker et al. 2019). The versatility of surrogate models, along 
with the associated computational efficiency of accommodating multiple predictions in a 
short amount of time with a minimum requirement on computational resources, has also 
promoted them as effective tools to support comprehensive regional flood risk assessment 
or emergency response management during landfalling hurricanes (Kijewski-Correa et al. 
2020; Nadal-Caraballo et al. 2020; Plumlee et al. 2021).

In the majority of the aforementioned studies, especially the ones that adopted krig-
ing as emulator, the number of surge simulations informing the surrogate model develop-
ment was moderately large, whereas the surge predictions were commonly established for 
a small subset of save point locations within the geographical region of interest. Moreover, 
most of these studies focused on save point locations that were always wet across the storm 
simulations. Finally in those past studies, limited emphasis was placed on the appropriate 
parameterization of the storm features that serve as input for the surrogate model. This 
study investigates the development of a surrogate model for the peak storm surge con-
sidering the regional area around Delaware Bay, using a database of simulations estab-
lished recently for a FEMA coastal flood insurance study (Blanton et  a l. 2011; Hanson 
et al. 2013; Vickery et al. 2013), and offers critical improvements on the aforementioned 
four topics. The database consists of 156 synthetic storms, and predictions extend across 
all nodes (approximately 300,000) of the underlying numerical model (computational grid 
nodes) within the geographical domain of interest.

Kriging, also referenced as Gaussian Process regression, is adopted as the surro-
gate model of choice here. Instead of using as emulator input, the storm features at land-
fall, which has been the common implementation so far (Jia et  al. 2016; Al Kajbaf and 
Bensi 2020), the use of the storm features when the storm track is at closest distance to 
the domain of interest is investigated. For nodes that have remained dry in some of the 
storms simulations, an imputation process is considered to estimate the so-called pseudo-
surge (Shisler and Johnson 2020). In order to achieve computational efficiency in such a 
setting, a k nearest neighbor (kNN) (Dudani 1976) interpolation with distance-dependent 
weights is adopted here (making this approach similar to a kernel smoothing), with the 
interpolation characteristics calibrated using a cross-validation setting. This imputation 
may provide pseudosurge estimates that misclassify the node condition (node predicted 
wet when it is known to be dry). Instead of forcing the pseudosurge estimates to directly 
accommodate the correct classification (Taflanidis et al. 2013), and in an effort to facilitate 
higher accuracy predictions for such nodes, a secondary surrogate model is considered to 
classify the node condition (wet or dry). This secondary surrogate model couples logis-
tic principal component analysis (LPCA) (Schein et al. 2003) with a kriging emulator on 
the resultant natural parameters of the logistic process. The optimal coupling between the 
storm surge surrogate model and the surrogate model for the node condition classification 
is investigated in detail. Finally, challenges associated with the potential overfitting of the 
surrogate model due to the small size of the available database are examined. The focus is 
on the impact of dimensionality reduction tools on overfitting phenomena when the train-
ing database is small, and on the development of mitigation techniques in such cases. This 
constitutes one of the core advances offered in this article. Though dimensionality reduc-
tion tools, like principal component analysis (PCA) have been previously considered for 
storm surge surrogate models (Jia and Taflanidis 2013; Kyprioti et al. 2020), the pitfalls 
of overfitting h ave n ot b een explored i n d etail p reviously. To a ddress t his challenge, for 
both PCA and LPCA, the use of a small number of principal components, coupled with a 



supplementary surrogate model for the residuals of the prediction estimates, is examined. 
Two other issues related to the small size of the database are also discussed: the proper 
implementation of cross-validation in order to estimate the surge surrogate model accu-
racy, and the formulation of the hyper-parameter calibration.

The remainder of the paper is organized as follows. In the next section, an overview 
of the database used in this study is presented and the alternative storm parametrization 
is introduced. Section 3 describes the kNN imputation process and reveals the challenges 
associated with the classification of problematic nodes. Section 4 discusses the surrogate 
model development, distinguishing between the storm surge surrogate model, the surrogate 
model for the node classification, and the overall coupled implementation. Section 5 pre-
sents in detail the case study application and reveals critical trends related to the advances 
offered in Sects. 2, 3, 4.

2  Database overview and storm input parametrization

2.1  FEMA Region 3 database

The synthetic storm surge simulations and associated storm parameters developed as part 
of the FEMA Region 3 Coastal Storm Surge Study (Hanson et al. 2013) are utilized as the 
training database for the surrogate model development, and in this section a brief descrip-
tion of the storms and their statistics are presented. Interested readers can find more details 
regarding the database in (Vickery et al. 2013). The storm population was defined based 
on regional hurricane characteristics using a joint probability method (JPM) optimal sam-
pling (JPM-OS) approach, though the JPM-OS methodology adopted differed notably from 
other variants of the same name published in literature [e.g., (Toro et  al. 2010)]. Three 
different sets of storms were considered: (1) storms making landfall in Virginia, Delaware 
and New Jersey, (2) storms making landfall in North Carolina, and (3) bypassing storms. 
Storm features are summarized in Table 1. The storm simulation population corresponds to 
nine different master tracks (MTs), each characterized by a different overall storm path and 
landfalling heading β. The total resulting 156 storms assigned to the nine different MTs, 
along with other details discussed later, are shown in Fig.  1. For the bypassing storms, 

Table 1  Summary details for the master tracks of FEMA Region 3 storm database

Master track classification Number of 
storms

β (o) ΔP (mbar) vf (m/s) Master 
Track (MT) 
ID#

Landfalling in Virginia, Delaware 
and New Jersey

18  − 75 34, 51, 65 4.0, 7.2 1
18 −45 4.7, 9.5 2
18 −30 4.7, 9.5 4
18 − 10 4.8, 10.5 5
18 15 5.0, 13 8

Landfalling in North Carolina 18 − 35 38, 56, 75 4.6, 11.5 3
18 0 6
18 22 9

Bypassing 12 12 42, 67 4.0, 11.4 7



the heading β is defined when the storm approaches latitude 35° N. The MT identification 
number, assigned in ascending order based on β, is also shown in Table 1. For each MT, 
different values for the forward speed vf and the central pressure ΔP were considered at 

3# DI TM2# DI TM1# DI TM

MT ID #4 6# DI TM5# DI TM

MT ID #7 MT ID #8 MT ID #9

track point closest to            
representative point

point ΔP starts decreasing 

representative point
storm track 

boundary for JPM            
x    and x     definitionlat long 

Fig. 1  Tracks for all 156 synthetic storms in the database, distinguished into the nine different MTs, along 
with (a) reference point (white location pin) and the landfalling points (green rectangular) based on CARP 
parameterization, (b) linearized boundary (magenta lines) used for JPM xlat/xlong selection (different for the 
landfalling and bypassing storms) and (c) for landfalling storms the point (red dots) along the storm track 
that post-landfall filling starts (indicating significant reduction for ΔP)



landfall based on JPM-OS, and both these characteristics varied along each storm track 
(Vickery et al. 2013). The radius of maximum winds Rmw and Holland-B were determined 
based on the track definition and ΔP characteristics using regression analysis results from 
Vickery and Wadhera (2008). Holland-B was restricted to its mean value only, and so it 
does not need to be considered as an additional input parameter for the surrogate model 
development (it is uniquely defined based on the remaining storm features), whereas three 
different values of Rmw, corresponding to mean and mean ± one standard deviation from 
the corresponding regression, were considered. Each combination of ΔP, vf and Rmw was 
assigned randomly to a unique landfalling/bypassing location, producing the total 156 
storm tracks. The storm parameter values considered for each MT, resulting from the 
combination of three values of Rmw, two values of vf and three values (for landfalling) or 
two values (for bypassing) of ΔP at reference locations, are also provided in Table 1. Each 
storm track was used to compute the storm surge and wind wave response on a high-res-
olution ADCIRC (Luettich et al. 1992) grid for the region, having approximately 1.5 mil-
lion computational nodes in the Region 3 area. Details for the computational model are 
included in (Blanton et al. 2011). A subset of the entire domain will be considered for the 
metamodel development, focusing on areas around Delaware Bay, constrained by latitude 
[38°, 40°] N and longitude [72°, 75.7°] W. Estimates are restricted to the peak-surge only.

Storm parameters are not constant along a storm’s track. The same is therefore true for 
the storm forcing in the hydrodynamic model simulations. The parameters presented in 
Table 1 are those at some particular point (typically near landfall). Pre-landfall parameter 
variations are relatively small and gradual, whereas post-landfall changes in ΔP (and Rmw) 
are large and abrupt. This is consistent with basic tropical cyclone physics, which states 
that a storm will weaken and widen when it moves inland where the warm, moist air it 
feeds upon is cutoff. The coastal storm surge study (Hanson et al. 2013) adopted the post-
landfall filling model of (Vickery 2005), corresponding to a generalized exponential decay 
model for central pressure, to define the post-landfall changes in ΔP (and Rmw). This storm 
behavior is highly important in this study because Delaware Bay is further to the north, and 
the local peak surges for many storms are likely to occur post-landfall. This means that the 
JPM parameter values may not be the most representative values defining the peak surge 
response. This issue is studied further in the next section.

2.2  Storm input parametrization

The surrogate model development requires an efficient parameterization of the synthetic 
storm database, to serve as the emulator’s input. This parameterization includes features 
of storm intensity (ΔP), size (Rmw) and translational speed (vf), as well as features for the 
storm track description corresponding to the storm heading (β), and the latitude and lon-
gitude of the track (xlat, xlong). As described in the previous section, storm parameters (and 
the corresponding water level response) vary in time, meaning that some reference fea-
tures need to be chosen. The common implementation when developing a surrogate model 
(Resio et  al. 2009; Kim et  al. 2015; Zhang et  al. 2018), is to utilize the characteristics 
at landfall, or at the crossing of a reference line for bypassing storms (reference landfall) 
(Nadal-Caraballo et al. 2015). For this study, this is equivalent to using the JPM optimal 
sampling parameters. But, given that landfall is far from the study area for many storms, 
this seems suboptimal. Typically, peak surge at a given location should occur when the 
shore-normal wind speed is the greatest, though this notion is confounded by the complex 
coastal geometry. A location undergoes peak wind speed when the storm is nearby (within 



tens of kilometers), though this is further complicated by the rapid weakening post-landfall 
and the variability in wind direction. Defining this relationship exactly is difficult for any 
arbitrary storm. So instead, the storm characteristics at the moment (time stamp) the storm 
track is closest to a representative point (CARP) centered in the study area are adopted as 
the set of reference storm parameters. Both parameterizations for the storm input will be 
investigated and referenced herein as (a) JPM input and (b) CARP input.

For the JPM input parameterization, the heading β, intensity ΔP, and speed vf charac-
teristics are the ones reported in Table 1, whereas the size Rmw is estimated using (Vickery 
and Wadhera 2008). For the reference landfall, xlat and xlong, different approaches are taken 
depending on the storm heading when the storm track crosses latitude  38oN. If that heading 
is less than  0ο, a simplified (piece-wise linear) US coast boundary is utilized to define land-
fall. The boundary simplification is chosen to avoid any ambiguous definition of landfall 
due to the existence of bays. For storms with heading greater than  0ο when the storm track 
crosses latitude  38oN, a boundary consisting of two segments is utilized to define the refer-
ence landfall: this boundary follows the previous linearized US coast up to latitude 35.2oN 
and then extends horizontally across 35.2°. Both these boundaries are shown in Fig. 1. The 
distinction of storm groups based on heading when a storm crosses 38°, instead of the 
original MT classification shown in Table 1, guarantees that similar storms are represented 
by similar parameterization with respect to reference landfall. Note that similar criteria for 
the distinction of North Atlantic storms based on heading around  38oN has been adopted in 
another recent flood study (Nadal-Caraballo et al. 2015).

For the CARP parameterization, the geographic domain of interest, that of the Dela-
ware bay, is represented by a point with coordinates 39° N and 75.25° W. As discussed 
above, the reference point for each storm is taken to correspond to the instance when the 
storm track is at closest distance to this representative point. This leads to the definition of 
xlat and xlong inputs. The storm heading and intensity/size/speed parameters are calculated 
using a time window of 4 hrs before and after the reference point. For ΔP and Rmw the max-
imum value over this time-window is adopted, while for vf and β the average value across 
the time-window is utilized. It should be noted that the exact choice for the representative 
point of the domain was determined to be of small importance as long as it lies inside the 
geographic domain of interest.

Figure  1 provides some details for the reference point locations for the two different 
parameterizations. For the CARP parameterization the points that are closest to the repre-
sentative point of the geographic domain and the representative point itself are shown. For 
the JPM parameterization the linearized boundary used for the xlat, xlong definition is also 
shown in the figure and, for landfalling storms, the point along the storm track that the post-
landfall filling starts (indicating a significant drop in ΔP) is marked. Note that the latter 
point is close (but not necessarily identical) to the farthest point along the storm track that 
the ΔP JPM-defined parameter value is attained. Comparisons indicate that the alternative 
storm parameterization considered here leads to fundamentally different characteristics for 
the storms making landfall in North Carolina, for which not only is the reference point loca-
tion significantly impacted, but also the strength of the storms is drastically reduced, since 
the reference point corresponds to a time substantially after the time of conventional landfall. 
Bypassing storms also have significant differences in terms of reference location, but their 
strength changes slightly along their track since these storms do not undergo post-landfall 
filling.



3  Dry node imputation

Inland nodes that have remained dry for some of the synthetic storms in the database pro-
vide incomplete information for the surrogate model development: for some storms the 
only information available is the fact that the node has remained dry, and for some other 
storms, when the node is wet, the exact surge is known. If the goal was to predict only the 
node condition, corresponding to a binary wet/dry classification, such incomplete informa-
tion would not pose any challenge, but for predicting the actual surge value, an adjustment 
of the database is needed. This ultimately defines an imputation process for the missing 
data, corresponding to predictions for the dry nodes, with values inferred from the remain-
ing database (Taflanidis et al. 2013; Shisler and Johnson 2020), and facilitates the devel-
opment of a single surrogate model for the entire set of nodes (Jia et al. 2016). The term 
pseudosurge (Shisler and Johnson 2020) will be also used herein to distinguish the imputed 
surge value.

One potential imputation strategy is to estimate the pseudosurge for each node by 
explicitly optimizing the prediction accuracy of the surrogate model that is eventually 
established using the imputed surge values (Shisler and Johnson 2020). This approach may 
encounter challenges from overfitting the available data, especially for smaller size data-
bases like the one examined here. It also has a substantial computational burden, since it 
needs to be separately applied to each of the nodes that need to be imputed, in a setting that 
usually a good portion of the database nodes (> 30%) has remained dry for some storms. 
An alternative strategy is to use geospatial interpolation for each storm, utilizing informa-
tion from the wet nodes to infer the values for the neighboring dry ones (Taflanidis et al. 
2013). Various implementations (Furrer et  al. 2006; Cressie and Johannesson 2008) can 
be adopted in this geo-interpolation to accommodate the large dimensionality of the data 
(number of nodes in the database). Here a local interpolation is advocated to address this 
challenge, since it can additionally enforce the underlying hydraulic connectivity between 
the nodes: a node can provide useful information for a neighboring one, only if they both 
are connected within the ADCIRC grid. Here, a weighted k nearest neighbor interpolation 
(kNN) is specifically chosen.

3.1  Weighted kNN formulation

Let zh
i
 denote the surge for the ith node and the hth storm, and z

∼

h
i
 its estimate based on 

neighboring nodes. The weighted kNN interpolation is expressed as:

where Ah
k
[i] defines the set of k closest nodes to the ith node for the hth storm, dij is the geo-

distance between nodes i and j, and w(dij) is a distance-dependent weight taken as a power 
exponential expression with parameters d, q, p. Only nodes with known surge values are 
included in set Ah

k
[i] ; these may correspond to inundated nodes for the hth storm or nodes 

with already imputed values within the iterative formulation discussed next. A cutoff dis-
tance d is introduced in the definition of weights w(.) to avoid far-away nodes influencing 

(1)

z
∼

h
i

=

∑
j∈Ah

k
[i] w(dij)z

h
j∑

j∈Ah
k
[i] w(dij)

w(dij) =

�
e
−

�
dij

q

�p

if dij < d

0 if dij ≥ d



the kNN interpolation, used to accommodate any irregular parts of the grid. For such parts 
of the grid, where distances between nodes might be large, some of the k nearest neighbors 
can be far away from node i, and in those cases the use of d prevents such neighbors from 
impacting the interpolated surge for node i. It should be pointed out that the formulation 
of Eq. (1) can be viewed as a kernel smoothing implementation with w(dij) correspond-
ing to the chosen kernel function. The set of [k d q p] parameters of Eq. (1) correspond to 
the hyper-parameters of the weighted kNN interpolation that need to be calibrated. This 
calibration is performed using information for the wet-nodes as discussed in “Appendix A”.

3.2  Iterative surge imputation using kNN

Once the calibration is performed, the kNN interpolation scheme can be applied to impute 
the database for the dry nodes. As discussed earlier, accommodating hydraulic connectiv-
ity is very important in this imputation process. Unfortunately, this connectivity can be 
very localized and irregular due to coastal geometry. It is therefore difficult conceptually 
and computationally to perform efficiently the imputation at a very large number of points 
while taking this into consideration. Using relatively a few nearby points is desirable, yet 
hundreds or thousands of points may need to be imputed, which may not have any nearby 
wet points. Therefore, the kNN interpolation is done iteratively. At each iteration, imputa-
tion is done only on dry nodes that have at least k wet (imputed and genuine) neighbors, 
in a larger set of kc nodes. If fewer than k wet neighbors are available, no value is imputed 
in the current iteration; in other words, dry nodes whose closest kc neighbors are mostly 
dry (do not include at least k wet nodes) are left unadjusted in this step. This facilitates a 
gradual spatial imputation, promoting local connectivity. The value of kc was chosen to be 
twice the value of k in this study.

Computational efficiency for both the kNN calibration, discussed in the previous sec-
tion, and for the iterative kNN-based imputation for the dry nodes in each storm, is estab-
lished by pre-calculating the distances between each node and its kmax closest neighbors. 
Value of kmax needs to be larger than the kc value ultimately utilized, and since this is not a 
priori known, the use of an arbitrarily large value (for example 50) is suggested.

3.3  Correction of imputed surge values

The imputation process may lead to the misclassification of some nodes, with imputed 
surge (pseudosurge) z

∼

h
i
 projected higher than the node elevation (ideally all the dry nodes 

should be filled with surge values that are below their elevation so that they maintain their 
identity as “dry”). This ultimately yields a false classification of the node as wet based on 
the imputed surge. Two alternative paths are considered for addressing such misclassifica-
tion instances:

(1) Provide no correction for the misclassified nodes and address any false classification
information later in the development of the surrogate model for the surge predictions
(a remedy to directly address this will be discussed later). The corresponding database
for such an implementation will be denoted herein as “pseudo-s”. The set of nodes for
which the pseudo-s database includes erroneous information for their classification,



meaning classified as wet based on the pseudosurge estimate when known to be dry, 
will be denoted as Amc.

(2) Implement a final correction step for the misclassified nodes: if z
∼

h
i
 is estimated to be

larger than the node elevation, the pseudosurge predictions are modified to correspond
to the node elevation minus a threshold of 0.05 m. This adjusts the imputed value to
provide the correct characterization of the node condition. The corresponding database
that has sustained such a correction will be denoted herein as “corrected pseudosurge”.

Figure 2 illustrates the need of correcting the imputed surge, focusing here on a specific 
node. The surge is plotted in ascending order across the 156 storms and the node elevation 
(with a horizontal line) is also shown. The depicted blue circles correspond to surge pre-
dictions for the original database (node is wet), while the green squares and the red × cor-
respond to the kNN-based imputed surge for the storms for which the node was originally 
dry. Comparing these values to the node elevation, the following distinction can be made: 
the green squares correspond to correct classification where the imputed surge lies below 
the node elevation and therefore node is still predicted as dry, while the red × to an errone-
ous classification: imputed surge is above the node elevation and therefore the node is pre-
dicted as wet. For the “corrected pseudosurge” database approach, the erroneous classified 
values corresponding to red × would have been mapped below the node elevation, as shown 
in the figure with black × . This evidently creates an abrupt “jump” in the corrected pseu-
dosurge database for this specific node, which is expected to provide challenges later in the 
surrogate model development. This is the main reason that the pseudo-s database with no 
correction is also considered: though this database includes erroneous information for the 
nodes in set Amc (red × points), its use is expected to support a higher accuracy surrogate 
model, since for each node there exists continuous surge information. It should be pointed 
out that the case shown in Fig. 2 is carefully selected and it is an extreme one, chosen to 
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database is utilized



demonstrate the potential challenges associated with the pseudosurge correction. This large 
apparent jump should be also partially attributed to the small number of available storms in 
the investigated database.

4  Advances in surrogate model development

This section offers various advances in surge surrogate modeling, focusing mostly on 
two specific issues: (1) the classification of the wet/dry condition for nodes for which the 
pseudosurge database includes erroneous information, and (2) the various challenges that 
arise and are related to data overfitting. Finally, some additional advances are examined 
regarding functional transformations of the surge to accommodate higher surrogate model 
accuracy.

4.1  Surrogate modeling problem formulation

Let �h ∈ ℝ
nx be the nx-dimensional vector describing the input for the hth storm, estab-

lished according to the storm parameterization approach discussed in Sect. 2.2, and n be 
the total number of storms in the available database. This database provides for each of 
the n storms the nz dimensional surge vector �h ∈ ℝ

nz , whose ith component zh
i
 corre-

sponds to the peak surge for the ith node and the hth storm. For nodes that have remained 
dry in the original database, the imputed surge (pseudosurge), calculated as discussed in 
Sect. 3, is utilized. The notation z(x) will be also used to denote explicitly the relationship 
between input and output, with the surge for the ith node and the hth storm represented 
as zi(�h) = zh

i
 . The classification of the ith node condition for the hth storm is denoted by 

Ii(�
h) , with Ii(�h) = 1 corresponding to wet and Ii(�h) = 0 to dry.
Two different surrogate models will be considered, one for the prediction of the surge 

zi(�
h) and one for the prediction of the node classification Ii(�h) . These will be referenced 

herein as Ss and Sc, respectively. The consideration of a separate model for the classifica-
tion is necessary to accommodate the use of the pseudo-s database (without correction) 
and intends to address the erroneous information included in that database for set Amc. 
This can ultimately facilitate greater accuracy for the metamodel used to predict the storm 
surge, since it restricts its scope: its only objective is the correct prediction of the pseudo-
surge and not necessarily the additional classification of the condition of each node (wet/
dry). As discussed earlier, kriging is considered as the preferred surrogate modeling tech-
nique. Both metamodels Ss and Sc use x as input, and try to predict the respective outputs. 
“Appendix B” reviews the essential characteristics for the metamodel development. The 
details and advancements for each of the two metamodels are separately discussed in the 
next two sections, while the integrated formulation is reviewed in Sect. 4.4. In  the same 
section a schematic of the overall implementation is presented. Validation of the surrogate 
model formulation is examined in Sect. 4.5. The notation introduced in “Appendix B” is 
adopted herein, with lower case variables denoting characteristics for specific storms and 
upper case variables referring to characteristics across the entire database. For example, x 
denotes the input vector for a specific storm, and X the matrix having as columns the input 
for each of the n storms.

To accommodate the surrogate model implementation, some form of dimensionality 
reduction will be adopted for both Ss and Sc. Both  this dimensionality reduction  of the 
output and the  surrogate model calibration encounter challenges related to overfitting as 



it will be shown later on, since both of these tasks incorporate some form of explicit or 
implicit optimal selection of features (training) within the existing dataset. This overfitting 
can occur when the associated  optimization fits too closely or exactly to that particular 
dataset, failing to predict reliably new data if they differ from the existing observations. 
This can be equivalently considered as extracting too much information from the exist-
ing dataset or developing models that have too many parameters, more than justified by 
the available data. For the database considered here, the danger of overfitting is significant 
since the number of storms in the database is relatively small (only n = 156 storms), while 
the number of predicted outputs is large (nz = 297,460). This potential overfitting guides 
many of the advances discussed in the next two sections.

4.2  Surrogate model for surge predictions

4.2.1  Transformation of surge

The surrogate model for the surge predictions considers as input the imputed surge zi(�h) . 
To improve the metamodel accuracy two different transformations are considered. The first 
one (Al Kajbaf and Bensi 2020) is a scaling by the central pressure, a transformation moti-
vated by the physics of storm surge (Irish et al. 2009). This scaling is implemented here 
with respect to the mean sea level, as advocated in (Kyprioti et al. 2020), leading to the 
normalized surge:

where ΔPh is the central pressure deficit for the hth storm and st is any steric adjustment 
used in the coastal storm surge study. The second transformation is purely a functional one, 
and has as an objective to narrow the output variation across the database. Different invert-
ible functions may be considered for this transformation leading to the transformed surge:

with g representing the adopted function. Candidate choices for g(.) include 
g(zn

i
) =

√
zn
i
+ ci or g(zn

i
) = log(zn

i
+ ci) , denoted herein respectively as “g = sqrt” or 

“g = log”. Constant ci is chosen equal to the minimum of zn
i
 over the storm database, but 

not greater than 0, and is utilized to make the corresponding arguments positive across all 
storms.

4.2.2  Surge output dimensionality reduction and surrogate model formulation

In order to accommodate the large dimension of the database two alternative approaches 
can be adopted: the first is to calibrate one surrogate model to offer predictions across 
the entire database, corresponding to a parallel emulator implementation (Gu and Berger 
2016), while the second one is to adopt principal component analysis (PCA) as a dimen-
sionality reduction technique (Jia and Taflanidis 2013) and consider separate surrogate 
models for the individual latent components. Both formulations are examined in this study, 
and a new one is introduced.

PCA identifies a smaller number (ms < n <  < nz) of latent outputs � ∈ ℝ
ms through 

a linear projection, with the exact selection of ms based on the percentage (%) of the 

(2)zn
i
(�h) =

zi(�
h) − st

�Ph

(3)zt
i
= g(zn

i
)



variability of the original database that is desired to be explained by the retained com-
ponents (Jolliffe 2002). Characteristics for the individual components will be denoted 
by subscript j herein, with uj denoting the jth element of vector u. Separate surro-
gate models can be then considered for each of the individual principal components 
{uj; j = 1, ...,ms} , or for groups of them. This calibration of separate surrogate models 
for each of the latent outputs may offer increased overall accuracy compared to a par-
allel emulator implementation. Unfortunately, though, this combination of PCA and 
surrogate modeling for the selected principal components carries the potential of over-
fitting the available data. Typically, the first few principal components can be predicted 
well by the corresponding surrogate model, but the accuracy for higher components 
drastically reduces. In previous storm surge studies, this pattern has been manifested 
as a saturation of the surrogate model accuracy as the number of principal compo-
nents increases (Jia and Taflanidis 2013). This ultimately means that the predictive 
capabilities of the surrogate model for higher principal components is lower. If such 
components become important for explaining unobserved data (when the metamodel is 
asked to make predictions for a new, unseen, storms), then the accuracy of the overall 
implementation (PCA and surrogate modeling) may decrease.

To address this challenge we introduce the following remedy: we  consider only a 
small number of principal components ms, and then complement these predictions with 
a surrogate model for the residuals. The reasoning is the following: the smaller num-
ber of significant latent components will still be accurately approximated by individual 
surrogate models (as it was before), while the surge residuals will be explained more 
accurately by a separate surrogate that will focus specifically on the entire residual, 
rather than the underlying components contributing to that residual.

The overall formulation is implemented through the following steps:

(a) Perform PCA for the transformed output {�t(�h); h = 1, ..., n} of the database and
retain ms principal components (Jia and Taflanidis 2013). Obtain the mean vec-
tor � ∈ ℝ

nz , whose ith component corresponds to the mean of {zt
i
(�h); h = 1, ..., n} , 

the projection matrix � ∈ ℝ
nz×mc , and for each latent component, uj , the PCA

coefficients, corresponding to the output vector of responses over the database
�j(�) = [uj(�

1) ... uj(�
n)]T ∈ ℝ

n for the storm surge surrogate model.
(b) Develop ms separate surrogate models based on the procedure described in “Appen-

dix B” for each of the principal components, setting Y(X) = Uj(X) and ny = 1. Note
that instead of individual surrogate models for each component, a grouping of the
components may be considered as an alternative implementation to facilitate higher
computational efficiency.

(c) Calculate the residual for the transformed output for each storm:

 where �̃�(𝐱h|𝐗) is the predicted latent output vector, with jth component provided by 
Eq. (30) for the respective surrogate model (ms such surrogate models exist).

(d) Develop an additional surrogate model for the surge residual zres [calculated
according to Eq. (4)] based on the procedure described in “Appendix B”, setting
� = [�res(�1|�) ... �res(�n|�)]T ∈ ℝ

n×nz and ny = nz. This ultimately corresponds to a
parallel emulator implementation on the surge residual (Gu and Berger 2016).

(4)𝐳res(𝐱h|𝐗) = 𝐳t(𝐱h) − 𝛍 − 𝐏�̃�(𝐱h|𝐗)



Selection of value of ms should be based on a parametric sensitivity analysis, examin-
ing the metamodel accuracy for an increasing ms value. This can be performed using 
the k-fold cross-validation setting discussed in Sect. 4.5.

4.2.3  Surge surrogate model predictions

The surrogate model predictions �̃�t(𝐱|𝐗) for a new storm input x are obtained by com-
bining the predictions �̃�(𝐱|𝐗) for each of the ms latent outputs and the predictions for the 
residual �̃�res(𝐱|𝐗) , all of them are obtained according to Eq. (30) for the corresponding, in 
each case, surrogate model formulation. This leads to:

The inverse transformations of Eqs. (3) and (2), are applied to obtain the median predic-
tions for z, leading to:

Note that as discussed in “Appendix B”, a functional dependence on the database X is uti-
lized in our notation to accommodate the easier description of the cross-validation predic-
tions made later in the manuscript.

The classification of the node condition (wet or dry) based on the Ss surrogate model is 
obtained by comparing the surge estimate to the node elevation. Denoting as Is

i
(�|�) that 

classification for the ith node and for a storm with input x, we have:

where ei is the ith node elevation and �[.] is the indicator function, corresponding to one if 
the expression inside the brackets is true and to zero otherwise.

4.3  Surrogate model for the classification of the node condition

The surrogate model for the node wet/dry classification, Sc, considers the binary output 
Ii(�

h) for near-shore nodes that have remained dry for some of the storms. Nodes that are 
inundated for all the storms are ignored in this classification problem, since they will be 
always predicted as inundated by a binary classifier. Additionally, the nodes considered 
for Sc can be further reduced to correspond only to the Amc set, which as discussed earlier, 
is the set that incudes erroneous information for the surrogate model Ss if the pseudo-s 
database (without correction) is utilized. This provides an output vector with dimension 
np composed of the nodes that remained dry in at least one storm within the database or of 
the nodes belonging in set Amc (np < nz). Since the original output is categorical (binary), a 
transformation is required in order to accommodate the approximation with a continuous 
(kriging) metamodel. This transformation is implemented simultaneously with the dimen-
sionality reduction, required to accommodate an implementation to large output databases, 
using logistic principal component analysis (LPCA) (Schein et al. 2003).

(5)�̃�t(𝐱|𝐗) = �̃�res(𝐱|𝐗) + 𝛍 + 𝐏�̃�(𝐱|𝐗)

(6)z̃i(�|�) = 𝛥Ph
[
g−1(z̃t

i
(�|�))] + st

(7)Is
i
(�|�) = �[z̃i(�|�) > ei]



4.3.1  Dimensionality reduction using logistic principal component analysis

LPCA is based on a multivariate generalization of the Bernoulli distribution, using the nat-
ural parameters (log-odds) θ and the canonical link function (logistic function). If �i(�h) 
is the natural parameter for the ith node and the hth storm, then the probability of a node 
being wet is given by the logistic function:

where P(.) stands for probability. For facilitating the dimensionality reduction, a compact 
representation is assumed for the log-odds matrix � = [�(�1) ... �(�n)]T ∈ ℝ

n×np , where θ 
is the log-odds vector for all considered nodes. Considering a total of mc < n number of 
principal components, the compact representation is (Schein et al. 2003):

where T is the n × mc matrix of coefficients, V is the np × mc matrix of projection vec-
tors, and Δ is a matrix with each row corresponding to the same bias vector �T

�
 ( 1 × np vec-

tor). The unknown matrices T, V and vector Δθ can be obtained by maximizing (locally)
the likelihood of the original binary observations given the representation of Eq. (9) for
the natural parameters of the Bernoulli distribution (Schein et al. 2003). Unlike PCA, the
results for all components of LPCA depend on the exact value adopted for mc. The LPCA
implementation ultimately provides the latent space of logistic principal components t
forming the matrix T, as well as the projection matrix V, and the bias vector Δθ, that are
used for the transformation from t tο θ. Denoting explicitly the dependence of t and θ to x,
this transformation is:

The average misclassification error for the compact LPCA representation within the 
original database is given by:

Even though this training error decreases as the number of principal components increases, 
LPCA is unfortunately known to be very prone to overfitting (Lee et al. 2010). Numerous 
approaches have been proposed to address this shortcoming (Lee et al. 2010; Song et al. 
2020), with most of them sharing a common characteristic: the importance of selecting 
a small value for mc. This challenge of overfitting the data is even greater for the imple-
mentation discussed here, since LPCA will be coupled with a surrogate model, forcing 
the selection of mc to focus on the overall combined implementation (LPCA and surrogate 
model), instead of solely trying to address the LPCA overfitting.

(9)P(Ii(�
h) = 1|�i(�h)) = 1

1 + e−�i(�
h)

(10)� = ��T + �

(11)�(�) = ��(�) + �
�

(12)

MCLPCA =
1

n

n∑
h=1

1

np

np∑
i=1

|Ii(�h) − P(Ii(�
h) = 1|�i(�h))|

=
1

n

n∑
h=1

1

np

np∑
i=1

|Ii(�h) − 1

1 + e−�i(�
h)
|



4.3.2  Classification surrogate model formulation

The overfitting of the coupled LPCA-surrogate model implementation is addressed adopt-
ing an identical approach to the one developed for the surge surrogate model Ss, explic-
itly examining the sensitivity with respect to the selection of mc. Similar to Ss, a surrogate 
model for the residual of the classification of the node condition may be considered to 
accommodate the use of smaller values for mc. The steps for the Sc surrogate model devel-
opment are:

(a) For a specific mc value perform LPCA and obtain the bias vector �T
�
 , the projection

matrix V and matrix T. Note that the hth row of T corresponds to the latent output for
the hth storm t(xh), and the entire matrix corresponds to the observations for the latent
components that will be used for the classification surrogate model.

(b) Develop mc different surrogate models based on the procedure described in “Appendix
B” for each of the LPCA components tj, setting Y(X) = Tj(X) and ny = 1, where Tj(X) is
the jth column of T. Similar to the Ss implementation, instead of developing individual
surrogate models for each component, a grouping of the components may be considered
to facilitate higher computational efficiency.

(c) Calculate the residual for node condition classification. First, the surrogate model
predictions for the natural parameter vector are obtained as:

where �̃�(𝐱h|𝐗) is the predicted latent output vector, with its jth component provided 
by Eq. (30) for the respective surrogate model (j = 1,…, mc such surrogate models 
exist). For the ith node for the hth storm the classification residual is then defined as:

(d) Develop an additional surrogate model for the residual pres [with each component
calculated according to Eq. (13)] based on the procedure described in “Appendix B”,
setting � = [�res(�1|�) ... �res(�n|�)]T ∈ ℝ

n×np and ny = np.

 Selection of mc should be based on parametric sensitivity analysis, as for ms, examining the 
metamodel accuracy for increasing number of mc. A k-fold cross-validation setting will be 
discussed in detail in Sect. 4.5 to accommodate this analysis.

4.3.3  Classification surrogate model predictions

The Sc surrogate model implementation combines, ultimately, separate surrogate models for 
the mc LPCA components of the natural parameters of the logistic function representing the 
classification condition for each node, and, if deemed necessary, a surrogate model for the 
residual probability of each node being wet. The probability of the ith node being wet for 
storm input x according to the Sc model is ultimately given by:

(13)�̃�(𝐱h|𝐗) = 𝐕�̃�(𝐱h|𝐗) + 𝚫T
�

(14)pres
i
(�h|�) = Ii(�

h) − P(Ii(�
h) = 1|𝜃i(�h|�)) = Ii(�

h) −
1

1 + e−𝜃i(�
h|�)

(15)p̃c
i
(�|�) = P(Ii(�) = 1|𝜃i(�|�)) + p̃res

i
(�|�) = 1

1 + e−𝜃i(�|�)
+ p̃res

i
(�|�)



where p̃res
i
(�|�) corresponds to the mean predictions given by Eq. (30) in “Appendix B” for 

the surrogate model established for pres and 𝜃i(�) is given by Eq. (10) with t(x) replaced by 
�̃�(𝐱|𝐗). The classification prediction for node i according to surrogate model Sc can then be 
established by comparing value p̃c

i
 to threshold 0.5. Denoting that prediction as Ic

i
(�h|�) , 

we have:

4.4  Coupled surrogate model implementation

For classifying the node condition either the Ss [Eq. (7)] or Sc [Eq. (15)] surrogate models 
can be used, while the surge predictions can be provided only through Ss [Eq. (5)]. An 
integrated formulation is proposed for the classification, coupling predictions from both Ss 
and Sc surrogate models. For this coupling different strategies can be adopted, for exam-
ple combining the predictions from both Sc and Ss for all nodes. Model Ss is expected, 
though, to support higher accuracy classification predictions than model Sc, at least when 
pseudosurge is correctly approximated. The justification for this expectation is the fact that 
the binary classification presents higher challenges for any surrogate modeling technique, 
especially when dealing with small database sizes. Therefore, the Ss classification predic-
tions enjoy higher trustworthiness. To leverage the strengths of each of the surrogate mod-
els, Sc and Ss, the three following groups of nodes are distinguished:

(1) G1 group, containing nodes that remained inundated for the entire database (always
wet). For these nodes, only surrogate model Ss may be utilized to predict their condi-
tion.

(2) G2 group, containing nodes that were misclassified for at least one storm during the
kNN imputation. If the pseudo-s database (without correction) is utilized for the for-
mulation of Ss surrogate model, incorrect classification information is included on
purpose in the database. Predictions will tend to be misclassified as false positives
(nodes that are dry will be characterized as wet), since the database is biased that way.
This is also evident by the comparison discussed in Fig. 2 (focus on the depicted red
x markers). If Ss predicts nodes as dry, then its predictions should be trusted. If, on the
other hand, node is predicted as wet, then due to the propensity of Ss for false positive
misclassification, the Sc model should be used instead. If the corrected pseudosurge
database is utilized, then the  G2 group does not exist.

(3) G3 group, containing all the remaining nodes.  For these nodes, the classification can be
performed either using Ss or Sc. Since the classification using Ss is trusted more than the
Sc classification, then predictions for  G3 are formulated exactly as the  G1 predictions,
ignoring the Sc surrogate model.

Based on the expectation that Ss will benefit from higher surrogate model accuracy, the 
recommendation is to rely only on this metamodel and utilize Sc only as a safeguard against 
the false positive misclassification propensity in group  G2. The final node condition classi-
fication, by coupling the two different surrogate models, is denoted as Icb

i
(�|�) and for the 

ith node is given by:

(16)Ic
i
(�|�) = �[p̃c

i
(�|�) > 0.5]



For any node that is classified as inundated, Icb
i
(�h|�) = 1 , the surge is estimated by Eqs. 

(5) and (6).
The workflow for the overall implementation, including the database parameteriza-

tion, the surge imputation process, the development of Ss and Sc, and the combination of 
their predictions is reviewed in Fig.  3. It is important to stress that the surrogate model 
computational workflow starts with the available synthetic storm database, which includes 
both the synthetic storms themselves, as well as the storm surge computation (using some 

(17)Icb
i
(���) =

⎧⎪⎨⎪⎩

G1 ∶ Is
i
(���) = �[z̃i(���) > ei]

G2 ∶

�
Is
i
(���) = �[z̃i(���) > ei] if z̃i(���) < ei

Ic
i
(���) = �[p̃c

i
(���) > 0.5] else

G3 ∶ Is
i
(���) = �[z̃i(���) > ei]
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Fig. 3  The complete workflow for the database parameterization/imputation, the developments of the Ss and 
Sc surrogate models, and their coupling to get the final surge estimates. Solid arrows indicate the flow of 
computations and information, while dashed arrows show the secondary information utilized in the differ-
ent steps



appropriate numerical model) for these storms. The established surrogate model is contin-
gent upon this information, and more specifically upon the details of the numerical model 
for computing the storm surge, and the characteristics of the synthetic storm tracks, espe-
cially the adopted variability along the storm track evolution.

4.5  Surrogate model validation

Validation is important for obtaining a confidence metric for the surrogate model prediction 
accuracy as well as for selecting the number of retained components for the PCA (ms) and 
LPCA (mc) implementations. Cross-validation (CV) is adopted for this purpose, while differ-
ent statistical measures are utilized to quantify the surrogate model accuracy.

4.5.1  Cross‑validation formulation

Cross-validation is implemented through the following steps: the storm database is parti-
tioned to different groups; each group is sequentially removed from the database and the 
remaining storms are used to make predictions for the removed ones; accuracy statistics are 
estimated comparing these predictions to the actual storm output. The simplest implemen-
tation is the leave-one-out cross-validation (LOOCV), established by removing sequen-
tially a single storm at a time from the original database X. An alternative implementation 
is the k-fold cross-validation which partitions the database into k equal (or almost equal) 
size subsets to define the groups of storms that will be again sequentially removed.

LOOCV is typically implemented without repeating the PCA/LPCA or the hyper-
parameter calibration for each reduced database, since the opposite choice would substan-
tially increase the computational complexity, requiring a total of n repetitions of the entire 
surrogate model calibration. This further allows the use of closed form solutions (Dubrule 
1983) to obtain the leave-one-out (LOO) predictions without the need to explicitly remove 
each of the storms from the database. Following the notation of “Appendix B”, the LOO 
predictions for output component yj for storm xh are given by:

where X–h denotes the remaining database after the hth storm is removed and notation [.]pq 
is used to represent the entry on the pth row and qth column in a matrix. Unfortunately, 
such a LOO cross-validation implementation cannot explore in depth any challenges asso-
ciated with overfitting, since it does not repeat the PCA or LPCA and the associated hyper-
parameter calibration after the removal of each storm. This challenge can be addressed 
using a k-fold CV and specifically by repeating both the PCA or LPCA and the hyper-
parameter calibration, since in this case, depending on the number of groups that will be 
selected, the re-calibration is not as expensive as in a LOOCV setting. If Ah is the sub-
set containing the hth storm, the estimate ỹj(�h|�−h) is calculated directly from Eq. (30) 
by replacing in all relevant cases (on the right hand side of this equation) X with �−Ah

 , 
representing the database X after the removal of all the storms belonging in Ah subset. 

(18)

ỹj(�
h|�−h) = yj(�

i) −

n∑
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[
�f (�)

]
hp[

�f (�)
]
hh

yj(�
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�
−
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�(�)T �

]−1



Additionally, the projection (P PCA and V for LPCA) and observation (U for PCA and T 
for LPCA) matrices, are updated to correspond only to the retained database �−Ah

.
The CV setting ultimately provides for the hth storm predictions z̃i(�h|�−Ah

) from the Ss 
surrogate model, and p̃c

i
(�h|�−Ah

) from the Sc surrogate model, established by updating the 
surrogate model predictions in Eqs. (5) and (6) (for Ss) or in Eqs. (14) and (12) (for Sc) to 
correspond to the database �−Ah

 , as discussed above, including an update for the PCA and 
LPCA characteristics. Using these predictions the node classification can be also obtained: 
Is
i
(�h|�−Ah

) according to Ss utilizing Eq. (7) [using z̃i(�h|�−Ah
) ]; Ic

i
(�h|�−Ah

) according to 
Sc utilizing Eq. (15) [using p̃c

i
(�h|�−Ah

) ]; and the combined Icb
i
(�h|�−Ah

) according to Eq. 
(16) [using Is

i
(�h|�−Ah

) and Ic
i
(�h|�−Ah

) ]. For LOOCV �−Ah
 is replaced with �−h.

An alternative to CV is a test-sample approach, established by removing a single, large 
sample set of storms from X, and utilizing the remaining storms to develop a surrogate 
model and predict the removes ones. The proposed k-fold CV offers a more comprehensive 
implementation of this test-sample setting since it repeats this process multiple times, for 
different test-sample sets.

4.5.2  Validation metrics

A range of error metrics are considered for assessing the surrogate model accuracy, all esti-
mated based on the difference between the actual output and the CV-estimated output. For 
the node condition classification, the adopted metric corresponds to the node misclassifica-
tion percentage. For the Ss surrogate model, the total misclassification indicator for the ith 
node and the hth storm is given by:

We can further distinguish between the false positive, i.e., node predicted wet when dry, 
and false negative, i.e., node predicted dry when wet, indicators, given, respectively, by:

where max(a,b) is the function that provides the maximum between the two arguments a or 
b. Averaged statistics per storm, node, or across the entire database can be then obtained.
For the total misclassification these are denoted, respectively, as MCh, MCi and MC , and 
are given by:

The misclassification per node, MCi, is the standard validation metric utilized in sur-
rogate model studies, and it reflects the accuracy per output (node in this case) across the 
entire database. Since multiple outputs are considered, the global metamodel accuracy is 
characterized by averaging the results for the individual nodes (outputs), and is expressed 
by MC . The misclassification per storm MCh, provides, furthermore, a global accuracy 
measure for individual storms, expressing the average error across all the nodes, and it can 
be used to compare the surrogate model performance for individual simulations (or sets of 
them) within the database. Similar expressions as in Eq. (20) hold for the false positive or 
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false negative misclassification definitions, with the only adjustment that instead of averag-
ing by nz, the number of nodes that were dry (for false positive misclassification) or wet 
(for false negative misclassification) is utilized. For the Sc surrogate model the same statis-
tics are established by replacing Is

i
(�h|�−Ah

) with Ic
i
(�h|�−Ah

) and by restricting the com-
parison only across the np nodes utilized for Sc, whereas for the combined implementation 
by replacing Is

i
(�h|�−Ah

) with Icb
i
(�h|�−Ah

).
For the surge predictions, both normalized and unnormalized statistics should be uti-

lized. Unnormalized statistics reflect the absolute error, while normalized ones express the 
relative error, incorporating the response magnitude when assessing the size of the error. 
Each of them has its utility in identifying key trends in the surrogate model performance. 
For normalized statistics, the normalized root mean squared error (NRMSE) is adopted 
here as one of the popular choices, though it should be pointed out that other alternatives 
like the coefficient of determination or the correlation coefficient yield identical trends in 
the case study examined later. The NRMSE is unit less (as a normalized error metric), with 
values close to 0 indicating a better performance. For the ith node it is expressed by:

and reflects the accuracy across the entire database for a specific surrogate model output. 
Similar to the misclassification metric, the overall metamodel accuracy is quantified by the 
average error statistics across all output locations, given by:

For expressing accuracy per storm, the NRMSE for the hth storm across all nz locations 
can be utilized, given by:

As explained earlier such a validation measure, that  focuses on the normalized error per 
storm, can facilitate the comparison of error trends for specific simulations, or (as will be 
utilized in the case study implementation) for groups of them.

Common candidates for unnormalized statistics include measures like the absolute 
mean error or the mean squared error. An alternative option, and the one chose here, is the 
surge score (Shisler and Johnson 2020; Plumlee et al. 2021) which for the ith node and the 
hth storm is described as:

where recall that the elevation of the node is denoted as ei. This surge score shares the units 
of surge (unnormalized) and provides a penalty function for the discrepancy between the 
predicted and actual surge, further incorporating the node classification: if node is pre-
dicted wet and is actually wet, then the absolute value of the predicted surge discrepancy is 
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used as penalty function; if node is predicted wet, but it is dry then the difference between 
predicted surge and node elevation is used as penalty; if node is predicted dry, but it is wet 
then the difference between actual surge and node elevation is used as penalty; if node is 
predicted dry and is dry then the penalty is zero. Averaged statistics per storm, node and 
for the total database can be then obtained, respectively, as:

For the combined Ss and Sc surrogate model implementation, the surge score statistics are 
established by replacing Is

i
(�h|�−Ah

) with Icb
i
(�h|�−Ah

) for the node condition classification. 
Evidently the surge predictions themselves z̃i(�h|�−Ah

) stem directly from the Ss surrogate 
model.

5  Case study implementation

Details  regarding the synthetic storm database were already summarized in Sect. 2. The 
weighted kNN interpolation described in Sect. 3 is first implemented to impute the data-
base. The calibration set (set At

w
 discussed in “Appendix A”) is based on nodes with depth 

less than 5  m, so that the interpolation hyper-parameters are selected by examining the 
accuracy on near-shore and overland nodes. The optimal number of k is estimated as 6, 
with corresponding accuracy (mean absolute error) 1.9 mm, which is considered satisfac-
tory. As mentioned earlier, for the surrogate model development, a subset of the entire 
domain is considered, constrained by latitude [38° 40°] N and longitude [72° 75.7°] W 
(Delaware Bay), with a depth of less than 30 m. The total number of nodes in this domain 
is 297,460 with 158,489 of them being dry for at least one storm within the database. The 
Amc set consists of 75,578 nodes that were misclassified at least once when using kNN to 
perform the surge imputation.

For the surrogate model formulation, the nx = 6-dimensional input is chosen as x = [xlat 
xlong β ΔP Rmw vf]. For the correlation function (detailed in “Appendix B”), an adjusted 
power exponential function is considered:

This function is using different exponents for the three defined storm input groups: the 
landfall location, the heading at landfall and the remaining (strength/intensity/translational 
speed) three inputs. For the remaining implementation characteristics, different variants are 
examined. These variants explore aspects that are the focus of this paper: the storm param-
eterization, the potential overfitting due to the small database size, and the impact of the 
correction of the imputed surge. The list of these variants, and the subsection they were 
first discussed in this paper (in parenthesis), is the following:

(1) The use of different number of principal components for the development of Ss (ms
value in Sect. 4.2.2) and Sc (mc value in Sect. 4.3.1) surrogate models. For the Ss meta-
model, an implementation without PCA is also considered. This case will be denoted
as ms = 0.

(26)SCh =
1

nz

nz∑
i=1

SCh
i
; SCi =

1

n

n∑
h=1

SCh
i
; SC =

1

nnz

n∑
h=1

nz∑
i=1

SCh
i

(27)

R(�l, �m|�) = exp[−

2∑
j=1

sj|�lj − �m
j
|snx+1 + sj|�lj − �m

j
|snx+2 +

nx∑
j=4

sj|�lj − �m
j
|snx+3 ] ; � = [s1 ⋯ snx+3]



(2) The potential of considering, or not, a secondary surrogate model for the residual of
the PCA or LPCA predictions for Ss (step (d) for the surrogate model formulation
in Sect. 4.2.2) and Sc metamodels (step (d) for the surrogate model formulation in
Sect. 4.3.2), respectively. When necessary these will be denoted as Res or NoRes,
respectively. In all instances the characteristics of the secondary surrogate model, such
as the selection of basis function and the type of calibration for the hyper-parameters,
are identical to the characteristics of the primary surrogate model.

(3) The use of MLE or LOOCV approaches for the hyper-parameter calibration of the
surrogate models (discussed in “Appendix B”). These will be denoted, respectively, as
MLE and CV (cross-validation). For LOOCV the formulation in (Zhang et al. 2018)
is adopted.

(4) The use of the JPM-based storm parameterization, or of the alternative one using
storm features at the moment the storm track, is closest to the representative point of
the domain of interest (Sect. 2.2). These will be denoted herein as JPM and CARP,
respectively.

(5) The use of the pseudo-s or the corrected pseudosurge database for the Ss metamodel
(Sect. 3.3). The first case consists of the Ss surrogate model with the pseudo-s database;
the second case uses the Ss surrogate model with the corrected pseudosurge database,
and the third case uses the Ss surrogate model with the pseudo-s database in combina-
tion with Sc for the set Amc containing the misclassified nodes (Sect. 4.4) These choices
result ultimately in the three variants shown in Table 2.

Additionally, in order to explore how other choices related to the surrogate model imple-
mentation may impact its accuracy and to compare that impact to the influence of the vari-
ants (1–5) discussed above, the following three variations will be also considered:

(6) The use or not of the normalization by ΔP for the Ss metamodel (Sect. 4.2.1). These
will be denoted herein as ΔP and NΔP, respectively.

(7) The use or not of the functional transformation g = sqrt (Sect. 4.2.1). These will be
denoted herein as Tr and NTr, respectively. The main transformation that will be dis-
cussed is g = sqrt, although some partial results for transformation g = log, which was 
found to considerably underperform, will be also reported. The latter case will be
denoted as TrLog.

(8) The use of linear basis functions f(x) = [1 x1 x2 x3 x4 x5 x6] or of a simpler constant basis
f(x) = [1] (“Appendix B”). These will be denoted herein as LB and NB, respectively.

Table 2  Summary of the variants related to the combination of Ss and Sc surrogate models and to the train-
ing database used for Ss

Surrogate model implementation Database used for Ss Reference name

Ss only pseudo-s Ss only
Ss only corrected pseudosurge Ss corrected database
Combination of Ss and Sc for node classifica-

tion, and Ss for surge
pseudo-s Ss and Sc combination



Two different validation implementations are considered, LOOCV without repeating the 
PCA (for Ss) or LPCA (Sc) and the hyper-parameter calibration, and k-fold cross-validation 
(Sect. 4.5). These will be denoted as LOOCV and k-fold, respectively, and, when appropri-
ate, they will be reported in parenthesis in the results to allow an easier distinction among 
the examined surrogate model variants. 19 different folds were used for the k-fold valida-
tion implementation, obtained by removing one storm from each of the nine MTs. This 
specialized k-fold implementation was selected to facilitate a consistent pattern of remov-
ing storms across the different k-folds. The number of removed storms ranged from 8 to 9 
among the 19 MT-based folds. It should be stressed that, as discussed in Sect. 4.5, k-fold 
corresponds to the proper cross-validation implementation, with PCA (or LPCA) and 
hyper-parameter calibration repeated after the removal of each set of storms, and as such, 
it will be considered as the reference in all comparisons  that will be established. Since 
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k-fold has, though, substantial computational burden, LOOCV is explored as a more effi-
cient alternative, provided that is does not encounter overfitting challenges associated with
the small database size.

5.1  Results for the node classification surrogate model

The comparison first focuses on the Sc metamodel, utilizing the average misclassification, 
MC (Eqs. 18–20), as a validation metric, examining the accuracy for an increasing number 
of latent components. For reference, if the implementation of (Song et al. 2020) was used 
to address the LPCA overfitting, the optimal number of principal components mc would 
have been equal to 12. As it was stressed earlier, this number needs to be adjusted appro-
priately while considering the coupling with the surrogate model error, something that 
is examined in detail next.

The results are presented in Figs.  4 and 5. Figure  4 investigates different metamodel 
calibration (CV or MLE) and validation (LOOCV and k-fold) settings, as well as the use 
of a surrogate model for the LPCA prediction residual. Figure 5 further explores the basis 
function and storm parameterization selections.

Looking at the results, it is evident that the consideration of the node condition classifi-
cation residual (Res) improves the final surrogate model accuracy for smaller values of mc, 
but becomes insignificant after mc > 5. For the optimal value of mc there seems to be some, 

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
0.22

ms 10 11 12 13 14 159876543210

CARP (k-fold)

JPM (k-fold) 
CARP (LOOCV)

Res 

 
 (m

)
SC

NoRes 

Cases

Line Type

0.04

0.06

0.08

0.1

0.12

0.14

N
RM

SE

CARP (k-fold)

JPM (k-fold) 
CARP (LOOCV)

Res 
NoRes 

Cases

Line Type

Fig. 6  Total normalized root mean squared errorNRMSE (top) and  surge score SC(bottom) validation 
metrics for different variants of the Ss surrogate model across different number of retained components ms. 
Metamodel cases correspond to either CARP or JPM for the storm parametrization and are integrating (solid 
lines) or not (dashed lines) a metamodel for the PCA surge residuals. Validation statistics shown for both 
LOOCV and k-fold implementations. Across all the variants in this figure the selected basis function is LB, 
the pseudo-s database is used, normalization by ΔP and transformation using g(.) = sqrt(Tr) are also utilized



very marginal, improvement. This means that the surrogate model for the residual could be 
in this case ignored, providing some considerable computational benefits. Another impor-
tant trend is that the LOOCV validation over-predicts the metamodel accuracy when com-
pared to the reference (k-fold) results. This demonstrates, as stressed earlier, the fact that a 
proper validation needs to consider the potential overfitting, and repeat the LPCA and sur-
rogate model calibration for the retained storm set. Though this approach has a larger com-
putational burden, the alternative simplified formulation (LOOCV) faces challenges for the 
small size database examined here. Finally, the CV calibration appears to provide worse 
performance when the metamodel accuracy is properly estimated (using k-fold validation), 
verifying the anticipated challenges related to overfitting at the hyper-parameter calibration 
stage. It is important to stress that the results of Fig. 4 show that the use of LOOCV as a 
validation approach could lead to the identification of a wrong value for mc for the case that 
CV calibration is utilized (observe the downward trend for larger values of mc after 10). So 
not only there is an over-prediction of the accuracy statistics when LOOCV validation is 
used, but more importantly, erroneously identified trends related to overfitting features of 
the problem could promote suboptimal choices. This should be attributed to the compound 
effect of overfitting both at the calibration and validation stages, and to the fact that the 
same approach (leave-one-out cross-validation) is implemented in both stages.

The results in Fig. 5 show that the selection of basis function has a negligible effect (NB 
and LB behave similarly), while the use of the storm features when the storm is closest to 
the representative point of the domain of interest (CARP over JPM) strongly influences the 
recorded performance. Apart from the mc selection, the storm parameterization is the only 
variant that appears to have a strong influence on the metamodel predictive capabilities. 
This is a very important result and stresses the significance of the appropriate selection of 
the storm input compared to other surrogate model characteristics.

5.2  Results for the surge surrogate model

Moving on to the results for the Ss metamodel, emphasis is initially placed (Figs. 6–8) on 
the aspects that constitute the main topics of this paper: the storm parameterization, the 
number of principal components retained ms, the use or not of a surrogate model for the 
surge residuals, the selection of the database, and the combination or not with the Sc surro-
gate model predictions. For reference, in order for PCA to explain 99.99% of the variability 
of the original database, a total of ms = 123 latent components would have been retained as 
the appropriate ones to inform the subsequent surrogate model development.

Figure 6 shows the results for the average normalized RMSE, NRMSE (Eqs.  21–22), 
and surge score, SC (Eqs.  24–25), error metrics across the different number of retained 
components ms for the Ss surrogate model, examining the impact of the storm parameter-
ization (CARP compared to JPM), of the integration or not with a surrogate model for 
the PCA residuals (Res or NoRes), and of the appropriate validation process (LOOCV 
or k-fold). The results make evident that, similar to the Sc case, CARP facilitates a bet-
ter performance and that the LOOCV validation is potentially identifying some errone-
ous trends. The latter is evident by the continuous (though admittedly small) improvement 
in performance for larger values of ms, something that is not aligned with the estimates 
offered through the k-fold implementation. This stresses, similar to the Sc surrogate model 
implementation, the importance of a validation setting that examines the influence of the 
PCA itself on the observed accuracy trends in order to be able to identify any overfitting 
issues. Results in both subplots indicate that when the residual is not incorporated in the 



metamodel formulation (NoRes), an increase of ms leads to an increase in accuracy until 
a plateau is reached, a trend consistent with past studies for the number of retained PCA 
components (Jia and Taflanidis 2013). When, though, a surrogate model for the residual is 
incorporated (Res), then independently of the value of ms, similar performance is observed 
for lower values of ms, while for substantially larger values of ms a small, gradual deterio-
ration of the performance (looking at both NRMSE and SC ) is reported. Values of ms in 
range of 1–3 seem to offer similar level of optimality, with some slight preference toward 
ms = 1. Similar level of accuracy can be established for the NoRes implementation utilizing 
a larger value of ms. Note that implementation without PCA (ms = 0) established in this 
case yields also a very good accuracy.

These discussions show that, contrary to the Sc surrogate model, for the Ss there are 
alternative formulations that can promote similar degree of predictive accuracy: Res with 
small ms or NoRes with larger ms. This different trend compared to the Sc should be attrib-
uted to the fact that, as discussed in Sect. 4, unlike LPCA, PCA as a dimensionality reduc-
tion technique suffers to a smaller degree from overfitting concerns, and the  overfitting 
observed here should be primarily attributed to the coupling with a surrogate model. For 
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choosing the preferred formulation, given the aforementioned alternative choices, compu-
tational efficiency should be also considered beyond the demonstrated accuracy benefits. 
Looking at both the surrogate model predictions for the latent output (Eq.  30) and the 
transformation from that latent space to the original space through the projection matrix 
P (Εq. 5), and considering that nz >  > n > ms (number of nodes >  > number of storms in 
database > number of retained latent components), the computational burden and memory 
requirements are proportional to ms for the NoRes implementation and to n + ms for the Res 
implementation, with the limiting case equal to n if no PCA is utilized (ms = 0). Therefore, 
the use of a larger ms and the NoRes may be computationally optimal.

For the remainder of the results that will be presented, the implementation that con-
siders the residual (Res) metamodel is adopted that appears to be more robust regarding 
the ms selection with trends from Fig.  6 found to be consistent across all variants (not 
reported due to space limitations). Also unless otherwise specified, the validation statis-
tics discussed correspond to k-fold. We will now further examine the variants presented in 
Table 2, related to the combination of the Sc and Ss metamodels and to the prediction per-
formance when the corrected pseudosurge database is utilized for the Ss metamodel devel-
opment. Note that in the latter case, there is no combination with the Sc metamodel, since 
the envisioned implementation, as discussed in Sect.  4, relies on predictions that come 
only from the Ss surrogate model. The Sc metamodel corresponds in all cases to the best 
variant identified earlier in this section: mc = 3. Figure 7 shows the results for the SC vali-
dation metric, and Fig. 8 for the misclassification MC (left) and its decomposition (right 
subplot) to false positives +MC (predicted wet when known to be dry) and false negatives 
−MC (predicted dry when known to be wet). The results indicate that the combination of Ss
with Sc provides an improvement in the prediction accuracy, especially for the false posi-
tive misclassification rate; the Ss metamodel suffers from large values of +MC , a pattern
that is true even when the corrected pseudosurge database is utilized. These false positive
values are immediately reduced when the proposed combination with Sc is implemented,
which ultimately translates to better overall misclassification predictions (Fig. 8) and better
surge score predictions (Fig.  7). Improvement in accuracy is significant when compared
against the use of only Ss for the imputed surge without correction (Ss only case). These
results indicate a preference for the combined metamodel implementation of Ss with Sc,
with the use of metamodel Ss based on the corrected pseudosurge database also being a
viable option, though at a reduced overall accuracy. Comparison between LOOCV and
k-fold validation implementations depicted in Fig. 7 further stresses the potential problems
that may arise for any validation that does not examine in detail the impact of PCA: as ms
increases, an erroneous trend of continuously improved performance is identified. As dis-
cussed earlier, this should be attributed to some (admittedly small) overfitting induced by
the combined PCA and surrogate model implementation.

Figure 9 examines the different variants for the surrogate model with respect to the char-
acteristics that were not exhaustively examined in detail in the previous figures. Validation 
is performed in a k-fold fashion, with the surrogate model implementation corresponding 
to Res for the optimal ms in each case and, when appropriate, to the combination of Ss with 
Sc (apart from the case that Ss uses the corrected database), since all these selections were 
already shown to be the recommended ones. The baseline implementation corresponds to 
the use of the pseudo-s database (for Ss), MLE optimization for the hyper-parameter cali-
bration, CARP storm parameterization, linear basis function (LB), the normalization by ΔP 
and the use of transformation g = sqrt(Tr). The rest of the variants modify one or two of 
these selections and are denoted by the already established terminology. Only the modi-
fied choices are explicitly denoted for each of the examined metamodel variants in Fig. 9. 



Some of the previously examined variants are repeated here to facilitate an easier com-
parison of their optimal selections. The results indicate that most of the variations have 
minimal impact on the prediction accuracy. Only the use of the logarithm as transforma-
tion for g(.), or the adoption of an implementation without both the scaling by ΔP and the 
transformation with g(.), provide a notably worse performance. The storm parameterization 
is by far the most impactful choice, with the transformation of g = sqrt and the scaling by 
ΔP also offering some benefits. Comparison of the performance for NRMSE between the 
two different database implementations also shows that use of the corrected pseudosurge 
database does not substantially impact the quality of the established metamodel. Note that 
the comparison of these two implementations for the SC and MC statistics is not entirely 
consistent, since the predictions for one of the metamodels (the one corresponding to the 
pseudo-s database without corrections), are in this case combined with the Sc metamodel 
predictions.

5.3  Examining error trends across nodes and storms

Discussions in the previous sections focused on the average error statistics across all nodes 
and storms. This section examines a decomposition of this error to different nodes and 

0.0471

0.0653

0.05030.0497 0.0496 0.04880.04990.0484
0.0534

0

0.02

0.04

0.06

0.08

0.0697

0.0973

0.07170.0708 0.0723 0.06980.07080.0717 0.0739

0.0215

0.0308

0.02190.0217 0.0219 0.02160.0216

0.0302

0.0223

Baseline*

Corrected

database JPM NB
NΔP NTr

TrLogNΔP

NTr
CV 

Calibration

0.05

0.07

0.09

0.11

0.01

0.02

0.03

 
 (m

)
SC

 M
C

N
RM

SE

CARP, LB, ΔP, Tr
*Baseline: MLE, pseudo-s database,

Fig. 9  Statistics for NRMSE , SC and MC error metrics for different variants of the surrogate model imple-
mentation. Results correspond to k-fold validation, and in all instances the optimal number of components 
for PCA/LPCA implementation is used



storms. In all instances, validation metrics are calculated using k-fold. The baseline surro-
gate model examined in this section (identical to the one considered in Fig. 9) corresponds 
to: Res implementation with optimal selection for ms and mc, CARP storm parameteriza-
tion, use of pseudo-s database for the Ss and its combination with Sc, adoption of MLE for 
the hyper-parameter calibration, LB for basis function, normalization by ΔP and the use 
of transformation g = sqrt(Tr). All other variants considered here will modify one of these 
choices.

Figure 10 shows the spatial distribution of the surge score per node SCi (Eq. 25). Results 
are presented for the baseline surrogate model [part (a)], as well as for three additional 
variants: the same surrogate model but relying on predictions only from Ss [part (b)], the 
Ss surrogate model utilizing the corrected pseudosurge database [part (c)] and the surro-
gate model (combining Ss and Sc) utilizing the JPM storm parameterization [part (d)]. The 
results in all subplots show that the storm surge errors are larger, as expected, for near-
shore and overland nodes. Comparison between parts (a) and (b) shows that the combina-
tion of Ss and Sc offers the greatest improvements in specific near-shore regions, indicating 
that the benefits stemming from this combination are, ultimately, related to the database 
characteristics. Looking at parts (a) and (c), an improvement in certain near-shore regions 
is observed by using the metamodel that relies on the pseudosurge database. Finally, com-
paring parts (a) and (d) shows that the use of JPM storm input parameterization provides 
significant deterioration of the predictive metamodel capabilities for a substantial part of 
the domain, extending well beyond just the near-shore points.

Error statistics for each storm are examined next, utilizing the SCh (Eq. 25) and NRM-
SEh (Eq. 23) metrics. In order  to better examine the influence of the storm input param-
eterization, statistics per MT (master track) group (as defined in Sect. 2) are presented in 
Fig. 11 for NRMSEh (top row) and SCh (bottom row). Results for both the baseline surro-
gate model with CARP storm parameterization (white boxplots) and the surrogate model 
using the JPM storm parameterization (shaded boxplots) are shown. Note that the normal-
ized statistics (top row) also allow a comparison of the behavior between the MTs, since 
for the surge score (bottom row) the reported values are also influenced by how large the 
surge actually is for the storms belonging in the specific MT group. Both statistics, though, 
facilitate a comparison between the two different storm parameterizations across the differ-
ent storm groups. It is evident that the CARP offers better median behavior and smaller dis-
persion across all MTs, especially for master tracks 6 and 9, and secondarily also for mas-
ter track 3. These are the master tracks that were identified earlier to have fundamentally 
different surrogate model input definition for the two storm parameterization approaches 
(Fig. 1). Even for the remaining tracks, though, the CARP definition has an overall consist-
ent positive influence. Observations validate our intuition for suggesting the CARP storm 
parameterization: selecting as surrogate model input the features of the storms when their 
track is further away from the geographic domain of interest provides erroneous informa-
tion to the emulator, and does not confer the strength of the storm to the experienced surge.

Comparing across the different MTs, bigger challenges are identified for master tracks 
1, 3 and 7 based on normalized accuracy measures. As can be seen in Fig. 1, these tracks 
have a combination of landfall and heading characteristics that fall near the boundary of 
the input domain for the given storm database (compare the landfall and heading for these 
cases to other MTs). As such, the lower accuracy for these storms is somewhat anticipated.



6  Conclusions

This paper offered various advancements in storm surge surrogate modeling. Krig-
ing (Gaussian Process regression) was adopted as the surrogate model technique, and all 
advancements were demonstrated within a specific case study, examining 156 synthetic 
storms for Delaware Bay. Surge predictions across the entire geographic domain of interest, 
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including close to 300,000 nodes, were considered. The advancements can be grouped into 
five different themes:

• For the appropriate parameterization of the synthetic storm database, it was shown
that substantial benefits are achieved in this case study by defining the surrogate model
input for the storm features when the storm track is closest to a representative point
of the geographic domain of interest. The traditional, alternative parameterization
using the storm features at landfall can be problematic when that landfall location is
further away from the geographic domain of interest. Though trends will depend on
application-specific topics, such as how large the geographic domain of interest is, how
far tracks are from the point of interest, and more nuanced characteristics of the storm
structure, this result stresses the importance of examining alternative input definitions
for the metamodel development.

• For nodes that remained dry for some of the database storms, imputation of the surge
using a weighted k nearest neighbor (kNN) interpolation can provide complete infor-
mation, the so-called pseudosurge, for the development of the storm surge surrogate
model. An optimization of the interpolation scheme hyper-parameters can be efficiently
performed using a cross-validation setting on the near-shore wet nodes. For problem-
atic nodes that this imputation process falsely identified as wet (imputed surge larger
than node elevation), two alternatives were examined. Either correcting the imputed
surge by assigning a value lower than the node elevation, or considering a secondary
surrogate model for the classification of the node. The combination of logistic principal
component analysis (LPCA) and Kriging was proposed here for the node classifica-
tion surrogate model. It was shown that a better accuracy for the node classification,
and for the overall surrogate model performance, can be accomplished by coupling the
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surge and classification metamodels considering two key facts: (i) the binary condition 
classification surrogate model is expected to have lower accuracy overall, and (ii) the 
surge surrogate model has a propensity for false positive predictions for the problem-
atic nodes. This means that the classification surrogate model should be used only for 
problematic nodes for which the surge surrogate model classifies nodes as wet. In all 
other cases, the classification based on the surge surrogate model predictions should be 
utilized.

• For small size databases, like the one considered in this study, the potential overfitting
introduced by any selections that rely on some optimization process across the storm
database needs to be carefully examined. The number of principal components for PCA
and LPCA should be chosen considering the total error when these techniques are cou-
pled with a surrogate model. A parametric analysis should be performed, measuring
the surrogate model accuracy for an increasing number of retained principal compo-
nents. Validation schemes that explicitly examine the impact of this selection should
be adopted for this purpose. The same remark applies for the schemes of the surrogate
model hyper-parameter optimization.

• It was shown that the use of a surrogate model for the residuals of the principal com-
ponent analysis can decrease the number of principal components that need to be used
in order  to establish the same predictive accuracy. The overall computational ben-
efits from using a reduced number of principal components in such a setting should
be examined in each specific application and compared against the offered improve-
ment in accuracy. In the case study examined here, for the node classification surrogate
model, an optimal number of principal components was clearly identified, whereas the
use of a surrogate model for the classification of the node condition residuals was not
recommended. For the surge surrogate model, selecting a smaller number of principal
components and combining it with an emulator for the surge residuals offered a slightly
improved accuracy, but increased also the associated computational burden, compared
to the implementation using a larger number of components without a supplemental
emulator for the surge residual. It is important to note that the computational burden
considered in this study focused on the surrogate model mean predictions only. Consid-
erations about addressing the variability in these predictions were not examined.

• Scaling of surge by either ΔP or by an appropriate functional transformation can offer
an improvement in the prediction accuracy and should be explored. The exact degree of
improvement or preference for a specific transformation cannot be a priori known.

Appendix A: weighted k nearest neighbor (kNN) calibration

The calibration of the weighted kNN interpolation is performed by examining its cross-
validation accuracy for the always wet nodes. To formalize the implementation, denote by 
A
f
w the set of nfw always wet nodes within the database, and by At

w
 a subset of that set, with 

nt
w
 nodes that the calibration is based upon. At

w
 may be chosen identical to Af

w , though it 
should be further restricted to nodes corresponding to smaller depths, so that the calibra-
tion is based on predictions for near-shore nodes only. The surge for the ith node in At

w
 is 

predicted using Eq. (1) by considering its neighbors that belong in set Af
w , excluding the 

ith node. This ultimately corresponds to a leave-one-out kNN prediction of the surge. As 



an accuracy measure for the corresponding predictions, the average mean absolute error 
across all wet nodes and storms is used, given by:

The calibration is finally expressed through the optimization of the hyper-parameters:

Calibration of Eq. (29) corresponds to a non-convex optimization with integer variables 
that is solved through a genetic algorithm (GA) implementation. To facilitate the non-con-
vex optimization, additional box-bounded constraints are incorporated in the other hyper-
parameters within the optimization, whereas k is constrained to be smaller than the kmax 
value discussed in Sect. 3.

Appendix B: Review of surrogate model formulation

This appendix reviews the kriging surrogate model formulation. This formulation is com-
mon for the different implementations examined in Sects. 4.2 and 4.3. Input for all cases is 
the storm parameterization, � ∈ ℝ

nx , whereas the output definition depends on the specific 
implementation. This output will be denoted here as an ny-dimensional vector �(�) ∈ ℝ

ny 
and may correspond to the individual PCA components, or the surge residuals for the Ss 
surrogate model (Sect. 4.2), or to the LPCA natural parameters, or to the condition clas-
sification residuals for the Sc surrogate model (Sect. 4.3). The respective input and output 
matrices for the metamodel development will be denoted as � = [�1 ... �n]T ∈ ℝ

n×nx and 
�(�) = [�(�1) ... �(�n)]T ∈ ℝ

n×ny , respectively.
Kriging approximates the true response as a realization of a stationary stochastic Gauss-

ian process (GP) that can also include a linear regression term (Sacks 1989), character-
ized by an nb-dimensional basis vector, denoted as f(x), multiplied with coefficient vector 
β. Typical choices for f(x) is either a constant basis or some low order polynomial. The 
fundamental building block of Kriging is the GP correlation function R(xl,xm|s), with s 
denoting the hyper-parameter vector that needs to be calibrated. Specifics on the selection 
of the correlation function and the basis function will be discussed in the case study imple-
mentation. Let �(�) = [� (�1)… � (�n)]T denote the n × nb basis matrix over database X, 
r(x|X) = [R(x,x1|s) … R(x,xn|s)]T the n-dimensional correlation vector between x and each 
of the elements of X, and �(�) the n × n correlation matrix over database X with the lm-
element defined as R(xl,xm|s), l,m = 1, …, n. To improve the surrogate model’s numerical 
stability or even its accuracy when fitting noisy data (Sacks 1989; Gramacy and Lee 2012; 
Bostanabad et al. 2018), a nugget is incorporated in the formulation of the correlation func-
tion �

−
(�) = �(�) + ��n , with δ being the nugget value and In an identity matrix of dimen-

sion n. The kriging prediction (given as row vector), corresponding to the GP predictive 
mean, is finally given by (Sacks 1989):

(28)AMEw =
1

nnt
w

n∑
h=1

∑
i∈At

w

|||z
h
i
− z

∼

h
i

|||

(29)

[k, d, q, p]∗ = argmin(AMEw)

k ∈ ℕ, 1 ≤ k ≤ kmax

0 < d ≤ dmax, 0 < q ≤ q
max

, p
min

≤ p ≤ p
max



 where �∗(�) ∈ ℝ
nb×ny corresponds to the weighted least squares solution:

and �∗(�) ∈ ℝ
n×ny is defined as �∗(�) = �

−
(�)−1(�(�) − �(�)�∗) . Kriging predictions can 

be efficiently facilitated (Lophaven et al. 2002) by keeping in memory both matrices �∗(�) 
and �∗(�) , and for each new input x multiply them by vectors f(x) and r(x|X). Note that the 
dependence on database X is explicitly denoted herein, to accommodate the cross-valida-
tion discussions within the manuscript. For quantities, like �̃�(.) and r(.) that are a function 
of x, this dependence is expressed through the conditioning on X, denoted as “|X”.

The quality of the surrogate model predictions is dictated by its calibration, correspond-
ing to an optimization of the surrogate model hyper-parameters [s, δ]. This is typically 
done using maximum likelihood estimation (MLE) (Sacks 1989; Lophaven et  al. 2002). 
An alternative implementation is to use cross-validation (CV) techniques (Sundarara-
jan and Keerthi 2001) in order to identify the optimal hyper-parameters. In the latter case 
leave-one-out cross-validation (LOOCV) is preferred, since analytic expressions exist for 
estimating the leave-one-out (LOO) error with no need to sequentially remove each storm 
from the database (Dubrule 1983; Schobi et al. 2015). These analytic expressions greatly 
improve the computational efficiency for the LOOCV hyper-parameter calibration com-
pared to alternative CV formulations.
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