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Abstract
Tissue factor (TF) is induced in a variety of cell types during viral infection, which 
likely contributes to disseminated intravascular coagulation and thrombosis. TF- 
expressing cells also release TF- positive extracellular vesicles (EVs) into the circulation 
that can be measured using an EVTF activity assay. This review summarizes studies 
that analyze TF expression, TF- positive EVs, activation of coagulation, and thrombosis 
after infection with influenza A virus (IAV) and coronaviruses (CoVs), including severe 
acute respiratory syndrome coronavirus 2 (SARS- CoV- 2), SARS- CoV, and Middle East 
respiratory syndrome CoV (MERS- CoV). The current pandemic of coronavirus dis-
ease 2019 (COVID- 19) is caused by infection with SARS- CoV- 2. Infection of mice with 
IAV increased TF expression in lung epithelial cells as well as increased EVTF activity 
and activation of coagulation in the bronchoalveolar lavage fluid (BALF). Infection of 
mice with MERS- CoV, SARS- CoV, and SARS- CoV- 2 also increased lung TF expression. 
Single- cell RNA sequencing analysis on the BALF from severe COVID- 19 patients re-
vealed increased TF mRNA expression in epithelial cells. TF expression was observed 
in peripheral blood mononuclear cells infected with SARS- CoV. TF was also expressed 
by peripheral blood mononuclear cells, monocytes in platelet- monocyte aggregates, 
and neutrophils isolated from COVID- 19 patients. Elevated circulating EVTF activity 
was observed in severe IAV and COVID- 19 patients. Importantly, EVTF activity was 
associated with mortality in severe IAV patients and with plasma D- dimer, severity, 
thrombosis, and mortality in COVID- 19 patients. These studies strongly suggest that 
increased TF expression in patients infected with IAV and pathogenic CoVs contrib-
utes to thrombosis.
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1  |  INTRODUC TION

Infection with viruses, such as influenza A virus (IAV) and coronavi-
ruses (CoVs), activates the coagulation system and can lead to dis-
seminated intravascular coagulation and thrombosis.1 The current 
pandemic of coronavirus disease 19 (COVID- 19), which is caused 
by infection with severe acute respiratory syndrome coronavirus- 2 
(SARS- CoV- 2), is associated with a high rate of thrombosis.2,3

Single- stranded (ss) RNA respiratory viruses, such as IAV, SARS- 
CoV, SARS- CoV- 2, and Middle East respiratory syndrome CoV 
(MERS- CoV), are detected by a variety of receptors, including endo-
somal toll- like receptors (TLRs).4 For instance, ssRNA activates TLR7 
and TLR8 whereas double- stranded (ds) RNA formed during the 
replication of ssRNA viruses activates TLR3.1 The dsRNA mimetic 
polyinosinic- polycytidylic acid (poly I:C) is used experimentally to 
activate TLR3.

Tissue factor (TF) is the receptor for factor (F) VII/VIIa.5 It is con-
stitutively expressed by adventitial fibroblasts and pericytes around 
blood vessels and plays an essential role in hemostasis.6– 9 TF expres-
sion can also be induced in vascular cells, such as monocytes and 
endothelial cells.10,11 Indeed, the TF- FVIIa complex has been shown 
to contribute to the coagulopathy and mortality in a baboon model 
of sepsis.12 TF- expressing cells also release TF- positive extracellular 
vesicles (EVs) into the circulation that can activate coagulation and 
platelets.13– 15 EVs can be isolated from plasma and levels of EVTF 
activity can be measured using a functional assay called an EVTF 
activity assay.16 Interestingly, poly I:C induced TF expression in 
human endothelial cells but not in human monocytes in vitro.17 We 
also found that poly I:C induces TF expression in human endothe-
lial cells.18 Intraperitoneal injection of poly I:C into mice also acti-
vates coagulation in a TLR3- dependent manner17 (S Antoniak and N 
Mackman, University of North Carolina at Chapel Hill, unpublished 
data).

Induction of TF expression is likely to contribute to the activation 
of coagulation and thrombosis during viral infections. For instance, 
Ebola virus induced TF expression in peripheral blood mononuclear 
cells (PBMCs) in vitro and TF was expressed by PBMCs isolated 
from Ebola- infected monkeys.19 We recently showed that plasma 
from monkeys infected with Ebola virus had elevated levels of EVTF 
activity.20 Based on earlier studies, we speculate that the majority 

of these TF- positive EVs are derived from monocytes. Importantly, 
inhibition of the TF- FVIIa complex reduced mortality in monkeys 
infected with Ebola virus.21 HIV infection is also associated with ac-
tivation of coagulation and increased monocyte TF expression.22,23 
One study found that inflammatory monocytes isolated from HIV 
patients expressed TF.24 Similarly, infection of pigtail macaques with 
Simian immunodeficiency virus induced TF expression in inflamma-
tory monocytes and a coagulopathy that was reduced by inhibition 
of the TF- FVII complex.24 These studies indicate that TF expression 
induced during viral infection plays a central role in the activation of 
coagulation.

2  |  TF E XPRESSION AND IAV

Influenza viruses cause seasonal and pandemic respiratory infec-
tions.25 IAV is an enveloped ssRNA virus. IAV/H1N1 patients with 
severe acute respiratory distress syndrome (ARDS) have an acti-
vated coagulation system and an increased risk of thrombosis. In 
hospitalized IAV/H1N1 patients, elevated D- dimer was associated 
with a higher risk of disease progression.26 One study found that 
5.9% of 119 hospitalized H1N1 patients had thrombotic vascular 
events.27 Another study found a higher rate of venous thromboem-
bolism (VTE) in hospitalized H1N1 patients with ARDS compared 
with non- H1N1 patients with ARDS (44% vs. 29%).28

We found that patients with primary IAV/H1N1 in the intensive 
care unit had increased levels of EVTF activity as well as markers 
of activation of coagulation and fibrinolysis (thrombin- antithrombin 
complexes and D- dimer) in their plasma compared with healthy con-
trols.29 Furthermore, EVTF activity was significantly higher in non-
survivor patients compared with survivors. At present, we do not 
know the cellular origins of the TF- positive EVs in the circulation of 
severe IAV patients. These data suggest that circulating TF- positive 
EVs may contribute to VTE in IAV patients and could be used as a 
prognostic marker in IAV/H1N1 patients in the intensive care unit.

Tissue factor expression has also been analyzed in mouse mod-
els of IAV infection (Table 1). An early study reported an increase in 
TF mRNA expression in the lungs of mice infected with IAV/1918 
H1N1.30 We found that infection of mice with IAV (mouse- adapted 
PR8/H1N1 strain) led to a transient increase in lung TF mRNA and TF 

TA B L E  1  Analysis of TF expression in samples from mice infected with different viruses

Virus Type of analysis Findings Ref

IAV Lung mRNA Increased TF 30

IAV Lung mRNA and BALF protein Increased TF mRNA and protein, Increased BALF 
EVTF

No increase in mice lacking TF in epithelial cells

31

MERS- CoV Lung mRNA Increased TF Unpublished data, T. Sheahan

SARS- CoV Lung mRNA Increased TF 30

SARS- CoV- 2 Lung mRNA Increased TF Unpublished data, L. Gralinski

Abbreviations: IAV, influenza A virus; MERS- CoV, Middle East respiratory syndrome coronavirus; SARS- CoV- 2, severe acute respiratory syndrome 
coronavirus 2; TF, tissue factor.



activity with a peak of expression 4 days after infection.31 In addi-
tion, bronchoalveolar lavage fluid (BALF) of infected mice contained 
high levels of EVTF activity and thrombin- antithrombin complexes 
compared with uninfected mice.31 Infection of mice with a high dose 
of virus led to an increase in EVTF activity in the plasma (K Tatsumi, 
S Antoniak and N Mackman, University of North Carolina at Chapel 
Hill, unpublished data 2015). Importantly, mice with the TF gene de-
leted in lung epithelial cells but not mice with the TF gene deleted in 
myeloid cells had significantly lower basal lung TF expression com-
pared with wild- type mice and no induction of TF expression after 
IAV infection.31 Mice with the TF gene deleted in epithelial cells also 
had reduced activation of coagulation after IAV infection.31 These 
results indicate that lung epithelial cells are the major site of both 
basal and induced TF expression in the lung after IAV infection.

IAV/H1N1 infection of mice with the TF gene deleted in lung 
epithelial cells had increased lung hemorrhage and death compared 
with infected controls.31 This indicated that TF expression in lung 
epithelial cells is also required for hemostasis. Therefore, TF has a 
dual role during respiratory virus infection. On the one hand, it pro-
tects from hemorrhage incurred during infection, but on the other 
hand excessive TF expression may cause thrombosis.

3  |  TF E XPRESSION AND 
CORONAVIRUSES

3.1  |  MERS- CoV

MERS- CoV appeared first in 2012 in Saudi Arabia and is limited to 
the Middle East.32 Disseminated intravascular coagulation is one of 
the major complications in fatal MERS- CoV patients.33 Lung TF ex-
pression is increased in mice infected with mouse- adapted MERS- 
CoV 34 (Table 1) (T Sheahan, University of North Carolina at Chapel 
Hill, unpublished data 2020).

3.2  |  SARS- CoV

SARS- CoV emerged in 2002 and is associated with ARDS and 
death.35 Pathologic studies indicate that SARS- CoV infection results 
in denudation of airway epithelial cells and small vessel thrombo-
sis in the lung.36– 38 Infection with SARS- CoV is associated with in-
creased plasma D- dimer and thrombosis.39,40 One study found that 
SARS- CoV was able to infect and replicate in PBMCs.41 In addition, 
TF expression was increased in PBMCs infected with SARS- CoV 
compared with mock infection.41 This suggests that TF expression 
by PBMCs may contribute to thrombosis in patients infected with 
SARS- CoV. At present, there are no studies of TF expression during 
SARS- CoV infection of humans.

A mouse model was developed using a mouse- adapted SARS- 
CoV MA15. Mice infected with this virus reproduced many patho-
logic features of patients infected with SARS- CoV.42 Global lung 
gene expression patterns in mice infected with SARS- CoV MA15 

were analyzed for up to 7 days.30 TF mRNA expression was strongly 
increased at day 2 after infection and remained elevated at days 4 
and 7 after infection (Table 1).30 This result indicates that TF expres-
sion is increased in the lung after SARS- CoV infection.

3.3  |  SARS- CoV- 2

SARS- CoV- 2 infection is also associated with a high rate of thrombo-
sis.43 VTE was observed in 0.9% to 6.5% of noncritically ill COVID- 19 
patients versus 8% to 69% in critically ill patients.2,3 A recent study 
compared the rates of both VTE and arterial thrombotic events 
in 13,217 hospitalized influenza patients versus 579 hospitalized 
COVID- 19 patients.44 The rates of thrombosis were higher in in the 
COVID- 19 patients compared with the influenza patients (11% vs. 
3.3%). Interestingly, this difference was driven by differences in the 
rates of VTE; the rate of VTE in influenza patients was 3.6% (95% 
CI: 2.7– 4.6) compared with 23% (95% CI: 16– 29) in COVID- 19 pa-
tients. In contrast, arterial thrombotic events were slightly higher in 
influenza patients (7.5%; 95% CI: 6.3– 8.8) compared with COVID- 19 
patients (4.4%; 95% CI: 1.9– 8.8).

Levels of plasma D- dimer are highly elevated in COVID- 19 pa-
tients.45– 49 Several studies found an association between D- dimer 
and mortality.50– 52 D- dimer was also found to be associated with 
thrombosis.52

It is likely that increased TF expression contributes to thrombosis 
in COVID- 19 patients.3 TF is constitutively expressed by lung epithe-
lial cells, which are a primary target of SARS- CoV- 2.53 The effect of 
SARS- CoV- 2 infection on gene expression has been analyzed using 
transcriptomics. One study performed bulk RNA- sequencing anal-
ysis on BALF and PBMCs from 3 COVID- 19 patients from Wuhan 
and three controls.54,55 Another study performed single cell (sc) RNA 
sequencing analysis on BALF from three moderate and six severe 
COVID- 19 patients and three controls.55 FitzGerald et al.56 analyzed 
these datasets of SARS- CoV- 2 infection to identify changes in the 
expression of genes involved in coagulation. Analysis of bulk RNA- 
sequencing data of BALF revealed increased TF mRNA expression.56 
In contrast, another study with five COVID- 19 patients from Wuhan 
did not observe an increase in TF expression in bulk RNA- sequencing 
of BALF samples compared with controls.57 This difference may 
be due to the severity of disease in the COVID- 19 patients in the 
two studies. ScRNA sequencing analysis can be used to identify the 
cell type- specific mRNA expression profiles in BALF from COVID- 19 
patients and controls. Importantly, severe COVID- 19 patients had 
increased TF expression in epithelial cells in the BALF compared 
with epithelial cells present in BALF from moderate COVID- 19 pa-
tients and healthy controls.56 Interestingly, epithelial cells in the 
severe BALF of COVID- 19 patients but not monocyte- derived mac-
rophages were found to express increased TF.56 These data indicate 
that in severe COVID- 19 patients the major source of TF in BALF are 
epithelial cells.

One small study analyzed TF mRNA and protein expression by 
in situ hybridization and immunofluorescence, respectively, in lungs 



of COVID- 19 patients with ARDS, patients with ARDS, and normal 
controls.58 TF mRNA expression was 2- fold higher in the lungs of 
COVID- 19 patients with ARDS compared with non- COVID- 19 pa-
tients with ARDS. The level of TF protein in the lungs of COVID- 19 
patients was 2.1- fold higher than non- COVID- 19 patients with 
ARDS and 11- fold higher than normal controls.58 TF expres-
sion was increased in endothelial cells but not in epithelial cells in 
COVID- 19 lungs compared with controls lungs. In contrast, another 
study reported upregulation of TF predominantly associated with 
the alveolar epithelium in a COVID- 19 patient.59 This finding is more 
consistent with data from animal models.

Bulk RNA- sequencing analysis on PBMCs from three COVID- 19 
patients from Wuhan and three controls was performed.54,55 
PBMCs from one of the three COVID- 19 patients exhibited higher 
TF expression compared with no TF expression in PBMCs from the 
three controls (Table 2).56 This suggests that PBMCs can express TF 
during SARS- CoV- 2 infection. Another study observed increased 
platelet- monocyte aggregates in severe COVID- 19 patients and 
TF expression on the monocytes but not platelets in these aggre-
gates.60 Interestingly, platelets from severe COVID- 19 patients 
induced TF expression in monocytes isolated from healthy con-
trols.60 Monocyte TF expression was associated with D- dimer in 
COVID- 19 patients. TF was also expressed by neutrophils isolated 
from COVID- 19 patients and associated with neutrophil extracel-
lular traps.61 Platelet- rich plasma from COVID- 19 patients induced 
TF expression in neutrophils from healthy individuals.61 One study 
reported a significant increase in TF- positive platelets and granu-
locytes and a trend toward increased TF- positive monocytes in 
COVID- 19 patients compared with healthy controls.62 One problem 
with this study is that it is unclear if platelets are expressing TF or 
simply acquiring TF- positive EVs from other cells.63 Similar to stud-
ies with Ebola virus and HIV, these studies suggest that circulating 
PBMCs are a major source of TF expression and activation of coagu-
lation during SARS- CoV- 2 infection.

Other studies have measured levels of circulating EVTF activ-
ity in COVID- 19 patients (Table 2). We found that two cohorts of 
COVID- 19 patients have elevated levels of EVTF activity compared 
with healthy controls.64,65 In the larger cohort of COVID- 19 pa-
tients, the level of EVTF activity correlated with D- dimer and was 
associated with severity and mortality.64 Another study also found 
an increase in EVTF activity in COVID- 19 patients compared with 
controls.66 Similar to our study, EVTF activity was higher in severe 
COVID- 19 patients compared with patients with moderate dis-
ease.66 Levels of EVTF activity were also correlated with D- dimer 
and were associated with an increased thrombotic risk.66 Another 
study reported an increase in TF protein on EVs and TF activity in 
COVID- 19 patients.67 Finally, a recent study found that EVTF ac-
tivity was increased in the plasma of severe but not moderate 
COVID- 19 patients compared with controls.59 This study used the 
commercial ZYMUPHEN MP- TF assay to measure levels of EVTF ac-
tivity, which is less sensitive than the EVTF activity assay.68 Taken 
together, these studies demonstrate increased levels of circulating 
TF- positive EVs in COVID- 19 patients. These TF- positive EVs may 
contribute to thrombosis in COVID- 19 patients and may be useful as 
a biomarker of thrombotic risk.

At present, we do not know the cellular origins of the TF- positive 
EVs present in the circulation of COVID- 19 patients. Although some 
investigators have used flow cytometry to determine the cellular 
origin of circulating TF- positive EVs, we feel that this technique is 
not sensitive enough to simultaneously measure levels of cell type- 
specific markers and TF on EVs because of the low levels of TF.69 
We speculate that a likely source of circulating TF- positive EVs is ac-
tivated monocytes because these cells have been shown to express 
TF in COVID- 19 patients. Indeed, depletion of leukocyte- derived 
EVs significantly decreased the level of EVTF activity in the plasma 
of COVID- 19 patients, which suggests that the majority of these 
TF- positive EVs are derived from activated monocytes (F Dignat- 
George, Aix- Marseille Universite, unpublished data 2021). However, 

TA B L E  2  Analysis of TF expression in samples from COVID- 19 patients

Sample Type of analysis Findings Ref

BALF Bulk RNA- sequencing Increased TF 54,56

BALF Bulk RNA- sequencing No change in TF 57

BALF Single cell RNA- sequencing Increased TF in epithelial cells 55,56

PBMC Bulk RNA- sequencing Increased TF (1/3 samples) 54,56

Whole blood Protein Monocyte TF expression, not platelets 60

Whole blood Protein Platelet, granulocyte, and monocyte TF expression 62

Plasma Activity Increased EVTF activity associated with D- dimer, 
severity, and survival

64

Plasma Activity Increased EVTF activity 65

Plasma Activity Increased EVTF activity associated with D- dimer, 
severity, and thrombosis

66

Plasma Activity Increased EVTF activity in severe patients 59

Serum Protein + activity Increased EVTF activity 67

Abbreviations: COVID- 19, coronavirus disease 2019; EVTF, extracellular vesicle tissue factor; PBMC, peripheral blood mononuclear cell; TF, tissue 
factor.



it is possible that other cell types, such as endothelial cells, neutro-
phils, and epithelial cells, also release TF- positive EVs into the circu-
lation in COVID- 19 patients.

Tissue factor mRNA and protein expression has also been stud-
ied in primary normal human bronchial epithelial cells (NHBECs). TF 
mRNA expression was significantly increased in cells infected with 
SARS- CoV- 2 compared with mock- infected cells.56,70 In addition, 
SARS- CoV- 2 infection of NHBECs increased TF protein expres-
sion.56 Surprisingly, PR8 IAV infection of NHBEC did not increase 
TF expression.56,70 However, one must be cautious in interpreting 
results from NHBECs studies because these experiments were per-
formed with basal cells in submerged culture and not with differen-
tiated cells in air– liquid interface culture. The receptors of IAV and 
SARS- CoV- 2 are expressed in differentiated epithelial cells, includ-
ing goblet and ciliated cells.71– 73 Thus, the air– liquid interface culture 
system is a better model for studying pathologic processes during 
viral infection.71

A mouse model of COVID- 19 has been established using a 
mouse- adapted virus called SARS- CoV- 2 MA.74,75 Infection of 
mice with SARS- CoV- 2 increased lung TF expression (L Gralinski, 
University of North Carolina at Chapel Hill, unpublished data 2021). 
The model will enable future mechanistic studies to determine the 
protective and pathologic contribution of TF expression by different 
cell types, such as epithelial cells, monocytes, neutrophils, and endo-
thelial cells, in the setting of SARS- CoV- 2 infection.

Viral infection of cells releases sphingomyelinases into the outer 
leaflet of the plasma membrane that breaks down sphingomyelin.76 
Sphingomyelin maintains TF in an encrypted state.77 Interestingly, 
a recent study found that infection of human monocyte- derived 
macrophages with a pseudovirus expressing the SARS- CoV- 2 spike 
protein increased TF activity without increasing TF protein expres-
sion.78 Infection of the cells induced the translocation of acid sphin-
gomyelinase to the outer leaflet of the plasma membrane, where 
it degraded sphingomyelin and relieved the encryption of TF. The 
pseudovirus infection of the cells also increased the release of TF- 
positive EVs.78 This provides an additional mechanism to increase TF 
activity during viral infections.

4  |  CONCLUSIONS

Tissue factor expression is induced in the lungs of mice infected with 
IAV, MERS- CoV, SARS- CoV, and SARS- CoV- 2. In the case of IAV in-
fection, this induction occurs in epithelial cells. Similarly, BALF sam-
ples from severe COVID- 19 patients had increased TF expression in 
epithelial cells. In COVID- 19 patients, PBMCs, monocytes, and neu-
trophils express TF. Finally, the level of circulating EVTF activity was 
increased in severe IAV/H1N1 infection and SARS- CoV- 2 infection. 
EVTF activity was associated with D- dimer, severity, and thrombosis 
in COVID- 19. EVTF activity was associated with mortality in both 
IAV patients and COVID- 19 patients. These studies strongly suggest 
that increased TF expression in patients infected with IAV/H1N1 
and highly pathogenic CoVs contributes to thrombosis. Targeting 

pathologic TF expression in patients infected with respiratory vi-
ruses, including IAV and SARS- CoV- 2, may reduce thrombosis.
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