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We conducted a 93-day experiment investigating the independent and com-

bined effects of acidification (28023300 matm pCO2) and warming (288C and

318C) on calcification and linear extension rates of four key Caribbean coral

species (Siderastrea siderea, Pseudodiploria strigosa, Porites astreoides, Undaria
tenuifolia) from inshore and offshore reefs on the Belize Mesoamerican

Barrier Reef System. All species exhibited nonlinear declines in calcification

rate with increasing pCO2. Warming only reduced calcification in Ps. strigosa.

Of the species tested, only S. siderea maintained positive calcification in the

aragonite-undersaturated treatment. Temperature and pCO2 had no effect

on the linear extension of S. siderea and Po. astreoides, and natal reef environ-

ment did not impact any parameter examined. Results suggest that S. siderea
is the most resilient of these corals to warming and acidification owing to its

ability to maintain positive calcification in all treatments, Ps. strigosa and

U. tenuifolia are the least resilient, and Po. astreoides falls in the middle.

These results highlight the diversity of calcification responses of Caribbean

corals to projected global change.

1. Introduction
Increasing carbon dioxide (CO2) from anthropogenic sources is of growing

concern as global average atmospheric pCO2 has now increased from a

pre-industrial level of 280 matm to 410 matm [1]. This rapid change has

resulted in negative and often irreversible impacts on both terrestrial and

marine ecosystems [2,3]. In terrestrial ecosystems, rising surface tempera-

tures pose serious threats to animals and plants that are unable to cope

with hotter, longer and more frequent thermal stress events [4,5]. Marine

ecosystems are under similarly intense pressure from ocean warming and

acidification [6], affecting everything from biogeochemical cycling to habitat

and population structure [7].

Ocean warming is a major concern for marine organisms, especially at lower

latitudes where sea surface temperature is predicted by the Intergovernmental

Panel on Climate Change (IPCC) to rise between 0.68C and 3.08C by the end of

the twenty-first century [8]. Reef-building corals in these low-latitude regions,

including the Caribbean, are already living within a degree of their thermal

maxima [9] and are therefore considered to be at particular risk [10]. Abnor-

mally high seawater temperatures disrupt the symbiosis between the coral

animal and its algal endosymbiont (Symbiodiniaceae) [11] through a process

known as ‘coral bleaching’ [12], resulting in deterioration of corals’ physio-

logical processes [9,13,14]. Mortality rates increase because of the strong

dependence of corals on their endosymbionts, which contribute up to 100%

of their daily metabolic requirements [15], impacting the corals’ ability to

withstand additional environmental stress.
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Table 1. Treatment conditions measured either every other day (T, pH, salinity) or every 10 days ( pCO2, TA, DIC, VA).

treatment T (88888C) pCO2 (matm) pH TA (mM) DIC (mM) VA salinity

1 27.9+ 0.04 311+ 18 8.30+ 0.01 2052+ 8 1708+ 15 4.0+ 0.1 31.7+ 0.02

2 28.0+ 0.04 405+ 17 8.20+ 0.01 2081+ 3 1788+ 10 3.4+ 0.1 31.8+ 0.02

3 28.1+ 0.05 701+ 17 8.01+ 0.03 2092+ 7 1901+ 8 2.4+ 0.1 31.7+ 0.02

4 28.1+ 0.02 3309+ 76 7.31+ 0.01 2131+ 5 2156+ 6 0.7+ 0.1 31.8+ 0.02

5 31.0+ 0.04 288+ 12 8.34+ 0.01 2101+ 6 1710+ 11 4.6+ 0.1 31.7+ 0.02

6 31.1+ 0.05 447+ 28 8.21+ 0.01 2077+ 6 1773+ 15 3.6+ 0.1 31.7+ 0.02

7 30.9+ 0.03 673+ 19 8.00+ 0.01 2082+ 6 1865+ 8 2.7+ 0.1 31.7+ 0.02

8 31.0+ 0.05 3285+ 99 7.29+ 0.01 2123+ 4 2135+ 5 0.8+ 0.1 31.7+ 0.02
Rising atmospheric pCO2 is not only warming surface

seawater, but also causing more CO2 to dissolve into

oceans, reducing carbonate ion concentration [CO3
22], pH

and aragonite saturation state (VA) of seawater—a process

known as ocean acidification [16]. The IPCC projects that

atmospheric pCO2 will surpass 600 matm by 2100, which

would cause surface ocean pH to decrease by 0.1–0.3 [8].

Scleractinian corals rely heavily on elevated pH and VA at

their site of calcification to form calcium carbonate skeletons

[17–20], making it harder for some species to maintain con-

ditions within these sites that are supportive of skeletal

formation under acidification [21]. However, previous

research has revealed inconsistencies in scleractinian corals’

response to acidification [22,23]. Simulations of past [24]

and future [25] pCO2 conditions in a natural reef system on

the Great Barrier Reef revealed a decrease in net community

calcification with increasing pCO2, while ex situ experiments

demonstrated negative [23,26,27], threshold [28], parabolic

[14] and no significant [26,27] response of corals to increased

pCO2. Numerous explanations for the wide array of

responses include differences in experimental design [29],

evolutionary divergence among corals with respect to mech-

anisms of calcification and/or resilience to acidification [30],

and differences among coral species’ physiological control

of calcifying fluid chemistry [19,31–33]. Moreover, although

studies have investigated the effects of increasing pCO2 on

coral calcification and health, few have investigated the

combined effects of temperature and pCO2.

In isolation, warming has been shown to more negatively

impact coral calcification than pCO2 [14,34–37]. However,

numerous studies have observed that the combination of

pCO2 and temperature causes a more severe negative response

in corals than either stressor alone [31,37–40], although few

studies report a truly synergistic interaction between warming

and acidification. This highlights the importance of studying

the response of multiple coral species to global change scen-

arios under a common suite of conditions. Using multiple

species in the same experiment minimizes differential out-

comes that arise from differences in experimental design,

allowing for direct comparison among species. The few studies

that have investigated multiple coral species have yielded

important insights into reef-community-level responses to

acidification and warming, including projecting rates of

whole-reef accretion under future IPCC scenarios [37].

Here, we investigate the independent and combined effects

of ocean acidification and warming on four abundant and

widespread Caribbean scleractinian coral species—Siderastrea
siderea, Pseudodiploria strigosa, Porites astreoides and Undaria
tenuifolia—in a 93-day laboratory experiment. These four

species were selected because they span a range of skeletal

morphologies (foliate—domical), possess similar life-history

strategies [41] and occupy similar depth and geographical

ranges [42]. Corals collected from the Belize Mesoamerican

Barrier Reef System (MBRS) were reared under projected

temperature and pCO2 stress with the aim of characterizing

the effects of future global change on a suite of genetically

and morphologically diverse Caribbean coral species.
2. Material and methods
(a) Experimental design
Six colonies of S. siderea, Ps. strigosa, Po. astreoides and U. tenuifolia
were collected from inshore and offshore reef environments

along the southern portion of the Belize MBRS (see the electronic

supplementary material for details of the coral collection and

figure S1). Forty-eight coral colonies were transported to North-

eastern University’s Marine Science Centre in Nahant,

Massachusetts and sectioned into eight comparably sized frag-

ments and placed into aquaria for a recovery period of 23

days. After recovery, temperature and pCO2 were adjusted

gradually over a 20-day interval until target experimental con-

ditions were approximately achieved for each treatment

(temperature: 288C and 318C; pCO2: 280, 400, 700, 2800 matm).

Coral fragments were acclimated to treatment conditions for 30

days and then maintained in each experimental treatment for

93 days. Four pCO2 treatments corresponding to pre-industrial

(311/288 matm), present-day ( pCO2 control; 405/447 matm),

end-of-century (701/673 matm) and an extreme (3309/

3285 matm) pCO2 were maintained at two temperatures corre-

sponding to the corals’ approximate present-day mean annual

temperature (288C; determined by over 10 years of in situ records

[43–45]) and projected end-of-century annual mean temperature

(318C) [8]. The extreme pCO2 treatment was formulated at a

value approaching that predicted for the year 2500 [8] and was

selected to push the corals closer to their physiological limits.

Experimental tanks were illuminated on a 10 L : 14 D cycle

with photosynthetically active radiation of approximately

300 mmol photons m–2 s–1 (see the electronic supplementary

material for detailed experimental conditions and maintenance

and figures S2 and S3).

(b) Measured and calculated parameters
Temperature, salinity and pH were measured every other day

throughout the experiment (table 1). Water samples were obtained

every 10 days for measurement of total alkalinity (TA) and



ca
lc

if
ic

at
io

n 
ra

te
 (

m
g 

cm
–2

 d
–1

)

pCO2 (µatm)pCO2 (µatm)

S. siderea Ps. strigosa

Po. astreoides U. tenuifolia

0

1.0

2.0

(a) (b)

(c) (d )

–1.5

–1.0

–0.5

0

0.5

1.0

–1.0

0

1.0

2.0

–0.4

0

0.4

31°C lme modelled 95% CI
28°C lme modelled 95% CI

28°C rate
31°C rate

28007004002802800700400280

Figure 1. Net calcification rates (mg cm22 day21) for S. siderea (a), Ps. strigosa (b), Po. astreoides (c) and U. tenuifolia (d ) cultured over a range of pCO2 and
temperature conditions. Blue circles represent net calcification rates for fragments in the 288C treatments and orange triangles represent net calcification rates for
fragments in the 318C treatments. Blue and orange vertical bars represent modelled 95% confidence intervals (CI) for each pCO2 treatment at 288C and 318C,
respectively.
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Figure 2. Estimated random effects and 95% credible intervals of colony on calcification rate of all four species under the control treatment ( pre-industrial pCO2 at
288C) versus random effects of colony on calcification rate under stress treatments of present-day pCO2 at 288C (a), end-of-century pCO2 at 288C (b) and pre-
industrial pCO2 at 318C (c).
dissolved inorganic carbon (DIC) and analysed with a VINDTA

3C (Marianda Corporation, Kiel, Germany). Temperature, salinity,

TA and DIC were used to calculate carbonate parameters using

CO2SYS [46] with Roy et al. carbonic acid constants K1 and K2

[47], Mucci’s value for the stoichiometric aragonite solubility pro-

duct [48] and an atmospheric pressure of 1.015 atm (table 1;

electronic supplementary material, figure S4 and tables S2 and

S3). The two temperatures at a given pCO2 level exhibited slight

differences in carbonate chemistry because the solubility of CO2

in seawater varies with temperature.

(c) Quantification of calcification and linear extension
Net calcification rates were estimated from surviving coral frag-

ments using a buoyant weight method [49] performed at the

beginning of the pre-acclimation period and every 30 days through-

out the experiment (see the electronic supplementary material for

empirical derivation of buoyant weight–dry weight relationships

for all four coral species and for survivorship, figures S5 and S6).

Extension was quantified from vertical cross sections of the

corals as the total area of skeleton above the calcein dye line
incorporated into coral skeletons at the beginning of the exper-

iment, divided by the length of the region of active growth (see

the electronic supplementary material for detailed methodology

and figure S7). Linear extension was not quantified for

U. tenuifolia or Ps. strigosa because their irregular skeletal

morphologies rendered the method too inaccurate.

(d) Colony-level effects of basal calcification rate on
calcification response to stress

Recent work has shown that coral species which calcify faster are

generally more vulnerable to the effects of ocean acidification

than slower calcifying species [50]—raising the possibility that

similar trends exist within species among colonies with differing

calcification rates. Colony-specific relationships between basal

calcification rate and response to pCO2 and thermal stress were

investigated by assessing correlation between the random effect

of colony on each colony’s calcification rate within the control

treatment (pre-industrial pCO2 at 288C) versus each colony’s

calcification response to pCO2 or thermal stress (i.e. change in
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Figure 3. Linear extension rates (mm day21) for S. siderea (a) and Po. astreoides (b) cultured over a range of pCO2 and temperature conditions. Blue circles
represent extension rates for fragments in the 288C treatments and orange triangles represent extension rates for fragments in the 318C treatments. Blue and
orange vertical bars represent modelled 95% confidence intervals (CI) for each pCO2 treatment at 288C and 318C, respectively.
calcification rate between the control treatment and the stress treat-

ments). Small sample size prevented fitting a frequentist model to

estimate these colony-level effects, so a Bayesian hierarchical

regression model was fitted to calculate credible intervals of the

corresponding extracted correlation coefficient using R package

brms (version 2.7.0) with default priors [51]. Random effects relat-

ing colony-specific relationships between basal calcification rate

and response to pCO2 and thermal stress were calculated for all

species together, as the study lacked the statistical power to assess

this correlation within individual species.

(e) Statistical analyses
Three-way mixed-model analyses of variance selected using

Akaike information criterion (electronic supplementary material,

table S4) were used to assess impacts of pCO2 and temperature

on calcification and linear extension (lme4 (1.1–12)) [52]. Para-

metric bootstraps were performed to model 95% confidence

intervals with 1500 iterations [53]. Significant differences between

treatments were defined as non-overlapping 95% confidence inter-

vals. Because reef environment was not a significant predictor of

any parameter, colonies were pooled across reef environments

and these effects were not further addressed (see the electronic

supplementary material for detailed analyses; tables S12 and

S13). To further evaluate the effects of acidification and warming

on U. tenuifolia, survival rates were assessed using a Kaplan–

Meier estimate of survival (survfit, survival, 2.39–5) [54]. Cox

proportional hazard models, with colony nested within the tank

as a random effect, were performed using coxme (2.2–5) [55].
3. Results
(a) Calcification rates
All four coral species exhibited nonlinear declines in calcifica-

tion rate with increasing pCO2 (figure 1). Notably, S. siderea
maintained positive net calcification across all temperature

and pCO2 treatments (figure 1a), while the other species

exhibited net dissolution in at least one treatment. Pseudodi-
ploria. strigosa maintained net calcification at 288C but

exhibited net dissolution in all but pre-industrial pCO2 at

318C (figure 1b). Porites astreoides yielded negligible net

calcification or net dissolution in all treatments except under

pre-industrial pCO2 at 318C (figure 1c), and U. tenuifolia
exhibited net calcification in all treatments except under

the extreme pCO2 treatment (figure 1d ). Temperature had
no significant effect on S. siderea or Po. astreoides calcification

rates; however, elevated temperature significantly reduced

calcification rate in Ps. strigosa under all pCO2 conditions

(figure 1; electronic supplementary material, tables S5

and S6). The effect of temperature on calcification rates of

U. tenuifolia could not be quantified owing to low survival

in the elevated-temperature treatments.

(b) Colony-level calcification response to stress
A negative slope of the correlation between random effects of

colony on calcification rate in the control treatment (pre-

industrial pCO2 at 288C) versus those in the stress treatments

(figure 2) would support the hypothesis that faster calcifying

colonies (relative to the treatment mean) under control con-

ditions calcify slower (relative to the treatment mean) under

pCO2 and thermal stress (figure 2). While the best estimates

of these correlations were negative, only the 75% credible

intervals, and not the 95% credible intervals, did not

always overlap zero (electronic supplementary material,

figure S8)—suggesting that the results of the current exper-

iment provide weak evidence for the inverse correlations

between basal calcification rate and calcification response to

pCO2 and thermal stress. However, the current study poss-

ibly lacked the statistical power to confirm the statistical

significance of this correlation owing to a combination of

low within-colony replication and high mortality rate.

(c) Linear extension
Siderastrea siderea and Po. astreoides exhibited positive linear

extension rates in all treatments. Neither temperature, nor

pCO2, nor their interaction had a significant impact on

linear extension rates of S. siderea or Po. astreoides (figure 3;

electronic supplementary material, tables S7 and S8).
4. Discussion
(a) Caribbean corals exhibit nonlinear calcification

responses to pCO2 and temperature
All four coral species exhibited nonlinear calcification

responses to pCO2 driven primarily by stability in calcifica-

tion rates across the three lowest pCO2 treatments and



major declines under extreme pCO2 (figure 1). One exception

to this trend was Ps. strigosa, which exhibited an abrupt

decline in calcification rate at present-day pCO2. Similar non-

linear calcification responses have been reported in previous

studies for several temperate [28,56] and tropical corals

[14,27,37], indicating that such pCO2 thresholds exist for a

diverse range of coral species. Interspecific differences in

corals’ calcification responses to pCO2 may be influenced by

differences in a coral’s ability to control VA at their calcifica-

tion site [18,19]. It has been proposed that corals transport

Ca2þ into the calcifying fluid from the surrounding seawater

in exchange for two protons using the enzyme Ca2þ-ATPase

[18], increasing the VA by elevating [Ca2þ] and by converting

HCO3
2 to CO3

22 [18,19,57]. However, this process requires

energy (1 mole ATP consumed per mole of Ca2þ-ATPase

[17]), which should increase under more acidic conditions

as more protons must be removed to deprotonate HCO3
2.

This suggests that the threshold pCO2 for maintaining

stable rates of calcification is determined, at least in part, by

the energetic costs of regulating ionic concentrations at the

coral’s site of calcification [19,36,57].

Increased temperature had no significant effect on calcifi-

cation rates of either S. siderea or Po. astreoides (figure 1a,c).

Similarly, in a prior study, S. siderea from the Florida Keys

demonstrated stability in calcification rates with a tempera-

ture increase from 278C to 30.38C [37]. However, two

studies on S. siderea from the Belize MBRS reported reduced

calcification rates with a temperature increase from 288C to

328C [14,38]. Other studies have also reported reduced calci-

fication for Po. astreoides under thermal stress [37,58],

although the present study found that an increase in tempera-

ture from 288C to 318C did not significantly impact

calcification rate of this species. These apparent discrepancies

in coral species’ calcification responses to warming may arise

from evaluating temperature effects across different portions

of these species’ thermal performance curves. Rates of bio-

logical processes, including calcification, are known to

increase with increasing temperature to a maximum before

declining with continued temperature increases, resulting in

a thermal performance curve [59], which is typically para-

bolic in shape. It is possible that the two temperatures

investigated in the present experiment are symmetrically dis-

tributed about this species’ optimal temperature, resulting in

equivalent calcifications rates at both temperatures.

Notably, only Ps. strigosa exhibited reduced calcification

rates under thermal stress (figure 1b), contrasting previous

work on this species showing no calcification response to

thermal stress [37]. Again, this discrepancy between studies

may result from assessing temperature effects across different

portions of this species’ thermal performance curve (28–318C
versus 27.0–30.38C in prior study). Differences in popu-

lations may also contribute to these discrepancies among

studies with respect to a species’ calcification responses to

temperature [60] and pCO2 [61,62].

The effect of temperature on U. tenuifolia calcification rate

could not be fully evaluated owing to low survival at 318C,

although these results highlight the thermal sensitivity of

this species—as previously observed on the Belize MBRS

after thermal bleaching events [63,64] (electronic supplemen-

tary material, figure S6d and tables S9–S11). Previous studies

suggest that the susceptibility of U. tenuifolia to thermal stress

arises from lack of compensatory stress responses [65–68],

including insufficient production of heat shock proteins to
protect against thermal events [66] and reduced endosym-

biont photosynthesis owing to oxidative stress induced by

warming [67]. Owing to its reliance on endosymbiont photo-

synthesis over heterotrophy for energy [65], oxidative

bleaching may effectively starve this species of nutrition.

The interaction between pCO2 and temperature did not

significantly impact calcification rates for any of the coral

species. Absence of an interactive effect of pCO2 and tempera-

ture on coral calcification rate is relatively common and has

been observed for multiple species [37,40,69]. A previous

study that exposed S. siderea to elevated temperature (328C),

elevated pCO2 (approx. 900 matm) and the combination of

these two stressors found calcification rates were most nega-

tively affected by the combined high-pCO2/high-temperature

treatment, resulting in additive, but not synergistic, effects on

calcification rates [38]. Thus, the evidence to date suggests

that scleractinian corals exposed to both pCO2 and thermal

stress rarely experience effects that are truly synergistic.

Finally, calcification rates in the present study were generally

comparable to those reported for corals from the Florida Keys

[37] and Belize [38].

(b) Faster-growing colonies may be more vulnerable to
pCO2 and thermal stress

Colonies that exhibited faster calcification in the control treat-

ment (pre-industrial pCO2 at 288C) tended to exhibit slower

calcification in the elevated pCO2 and elevated-temperature

treatments, suggesting a trade-off in which faster calcifying

colonies may be more vulnerable to the negative impacts of

pCO2 and thermal stress on calcification. Unsurprisingly,

this correlation was weakest when comparing pre-industrial

to present-day pCO2 treatments—the two most similar treat-

ments. This variation in calcification rates was evident across

the four coral species, which is consistent with previous

literature suggesting that divergent calcification strategies

exist across populations [70–74]. Our analysis provides

preliminary support for two end-member strategies of calcifi-

cation: (i) fast calcifying colonies that divert more energy

towards flourishing during favourable environmental

regimes but flounder during periods of environmental

stress (potentially owing to lack of energetic reserves); and

(ii) slower calcifying colonies that store more energy during

environmentally favourable conditions, yet are able to con-

tinue calcifying under environmentally stressful conditions

(potentially owing to their ability to tap energy stored

during environmentally favourable times).

These divergent calcification strategies within coral popu-

lations may confer stability to populations faced with

environmental stress over both short and long timescales.

Over short timescales, these strategies increase the probability

that at least some colonies (faster calcifiers) flourish when

conditions are favourable, while ensuring that there are also

survivors (slower calcifiers) during unfavourable times that

allow populations to persist [75]. Over longer timescales,

these divergent strategies may provide a high degree of

genotypic variability upon which natural selection can act,

thereby facilitating the evolution of the population towards

optimal weightings of these calcification strategies [74],

depending on the magnitude and duration of the environ-

mental perturbation (e.g. short-term anthropogenic cycles

[76] versus medium-term glacial cycles [77] versus longer-

term secular trends in pCO2 associated with tectonics [78]).



Although populations of coral species that exhibit these

divergent calcification strategies could become more tolerant

of anthropogenic stressors in the future, they would also

become slower growing through time. Although our current

study was not designed to specifically address colony-level

calcification responses, our analysis demonstrates a potential

trade-off within species that may allow populations to persist

under projected global change. This apparent relationship

between a colony’s basal calcification rate and its response

to pCO2 and thermal stress merits further investigation

given its potentially far-reaching implications for corals’

response to global change.

(c) All coral species, except Siderastrea siderea, exhibited
net skeletal dissolution under the highest pCO2

Specimens of S. siderea maintained positive net calcification

under all treatments (figure 1a), suggesting greater resilience

to pCO2 and thermal stress compared to the other species

examined [28,31,57]. Indeed, correcting net calcification rates

with empirically derived gross dissolution rates [79] yields

high rates of gross calcification for S. siderea even in undersatu-

rated seawater conditions (electronic supplementary material,

figure S9a), providing support for the assertion that S. siderea
is able to maintain conditions supportive of aragonite precipi-

tation at its site of calcification, despite external seawater

supporting dissolution of its aragonite skeleton [14,37,38].

The combination of resilient calcification responses to thermal

and pCO2 stress with the high survival exhibited by S. siderea
in the present study (electronic supplementary material, figure

S6a and tables S9–S11), as well as in prior studies [14,37,38],

suggests that S. siderea possesses unique physiological mechan-

isms for maintaining basic life processes under pCO2 and

thermal stress, and may contribute to its abundant distribution

on reefs throughout the Caribbean [80].

Specimens of Ps. strigosa, Po. astreoides and U. tenuifolia
exhibited net skeletal dissolution in at least one pCO2–tempera-

ture treatment, with the greatest net dissolution observed under

the highest pCO2 treatment (figure 1; electronic supplementary

material, figure S9b–d). Pseudodiploria strigosa exhibited the

highest rates of net dissolution at the elevated temperature,

probably owing, at least in part, to the loss of algal symbionts

(i.e. partial bleaching; electronic supplementary material,

figure S10) from which corals obtain a significant portion of

their energy [15]. Thus, under thermal stress, reduced symbiont

densities may lead to diminished photosynthate, reducing

the energy available for calcification and eventually leading

to thermally induced mortality as observed in the present

study (electronic supplementary material, figure S6b and

tables S9–S11) and previous experiments on juvenile corals

[81]. Under these conditions, corals may be unable to produce

enough new skeleton to counter the effects of skeletal

dissolution in undersaturated conditions [79].

(d) Siderastrea siderea and Porites astreoides maintain
constant rates of linear extension under pCO2 and
thermal stress

Increasing pCO2 had no significant effect on linear extension

rates of either S. siderea or Po. astreoides (figure 3), providing

support for prior assertions that symbiotic corals exert

strong control over the chemical milieu at their site of
calcification [18–21]. This constant rate of extension (i.e.

volume addition) combined with the threshold decrease in

net calcification (i.e. mass addition) with increasing pCO2

suggests that both species produce less-dense skeletons and/

or that the gain in skeletal mass associated with the new

linear extension is offset by the loss of previously formed skel-

etal mass via dissolution under extreme pCO2 (figure 3;

electronic supplementary material, figure S9a). Additionally,

the observation that Po. astreoides exhibited net dissolution at

both temperatures under several pCO2 treatments, yet main-

tained constant rates of linear extension, suggests that

dissolution, rather than decreasing skeletal density, is driving

the decline in calcification rate of this species under increasing

pCO2—as the addition of new, less-dense skeleton alone could

not cause a net decrease in skeletal mass (i.e. net dissolution).

Linear extension of S. siderea and Po. astreoides did not

differ significantly across temperatures (figure 3). This con-

trasts previous reports linking historical ocean warming to

reductions in the extension of wild specimens of S. siderea,

although this decrease was observed only for forereef

colonies along the southern MBRS [44]. Extension rates of

S. siderea observed in the present study were generally com-

parable to those reported for wild specimens in Belize [44].

Conversely, the lack of temperature effect on the extension

of Po. astreoides is consistent with the measured calcification

response, supporting prior observations that rates of net cal-

cification within this species is driven by the rate of linear

extension, rather than by changes in skeletal density [34,82].

(e) Experiments reveal corals’ differential resilience to
future oceanic change

Diverse responses to pCO2 and warming exhibited by the

corals investigated here reveal a spectrum of resilience to

future global oceanic change. We confirm the relatively high

resilience of S. siderea to thermal and pCO2 stress [37], the mod-

erate sensitivity of Po. astreoides and the relatively high

sensitivity of Ps. strigosa [80,83] and U. tenuifolia [64,66,67].

The results also highlight the relative resilience of the investi-

gated species (excluding Ps. strigosa) to moderate pCO2 stress,

while revealing their high sensitivity to extreme pCO2. Faster-

growing colonies tended to exhibit increased vulnerability to

pCO2 and thermal stress, suggesting variability in tolerance

of pCO2 and thermal stress within populations of these

corals—a potential pathway for evolutionary resilience. Collec-

tively, these results reveal the wide spectrum of responses

exhibited by four common Caribbean corals in response to

changes in ocean pH and temperature, a necessary step in

understanding and forecasting the response of coral reef

systems to future global change.
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