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ABSTRACT 

Leah M. Rader Bowers: It’s Good to be Flexible: Energy transport facilitated by conformational 

fluctuations in light-harvesting polymers 

(Under the Direction of John M. Papanikolas) 

We investigate the mechanism of energy transfer between Ruthenium (II) (Ru) and Osmium 

(II) (Os) polypyridyl complexes affixed to a polyfluorene backbone (PF-RuOs) using a 

combination of time-resolved emission spectroscopy and coarse-grained molecular dynamics 

(CG MD). While we can determine the total energy transfer rate within an ensemble of solvated 

PF-RuOs from time-dependent Os* emission spectra, system heterogeneity oand flexibility give 

rise to highly multi-exponential kinetics. We developed a three-part computational kinetic model 

to supplement our spectroscopic results: 1) CG MD model of PF-RuOs that simulates molecular 

motions out to 700 ns and reduces computational time by ~400x compared to all atom MD, 2) 

Energy transfer kinetic simulations in CG MD PF-RuOs, and 3) Computational experiments that 

interrogate the mechanisms by which motion aids energy transfer. Good agreement between 

simulated and experimental emission transients reveals our kinetic model accurately simulates 

the molecular motion of PF-RuOs during energy transfer. We find that pendant flexibility allows 

81% of the excited state to sensitize an Os trap compared to a 48% occupation when we treat 

pendants statically. Static pendants are only able to engage in local energy transfer. While 

flexibility enables pendants to swing in and out of the original domain spreading the excited state 

out to ± 30 away from the initial excitation. This work was made possible through extensive 

collaborations with the groups of Dr. John Reynolds and Dr. Kirk Schanze.
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Chapter 1: Introduction 

One approach to realizing artificial light-harvesting assemblies is the development of rigid 

multi-component systems where orientations and distances of the subunits are precisely 

controlled. Numerous dendritic designs rely on the rigidity of the dendrimer scaffold to pointedly 

study the directionality of energy transport (EnT) from higher energy peripheral chromophores to 

energy-sinks at the core.1-3 The shape4 and spatial arrangement of chromophores in most 

dendritic assemblies are critical to transfer energy efficiently along a desired energy gradient, or 

pathway.5-7 These pathways are best predicted in static structures that were synthesized with 

great control. Although these dendritic assemblies are well-defined, they are often difficult to 

synthesize. As more chromophores are added to the structure, their synthesis becomes even more 

demanding and investigatory challenges into their energy transport mechanisms result.  

Balzani et. al. was able to precisely control energy gradients in dendrimers containing 

Ru(bpy)3]
2+ (Ru) and Os(bpy)3]

2+ (Os) chromophores via a “small-upward” synthetic approach.2 

The absorption spectrum of [Ru(bpy)3]
2+ is shown below in Figure 1.1. 
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Figure 1.1. UV-visible absorption spectrum of Ru ([Ru(bpy)3]
2+) in acetonitrile. The electronic 

transitions are labeled, along with a depiction of the metal-to-ligand charge transfer (MLCT) 

transition in [Ru(bpy)3]
2+. 

Excitation of the metal-to-ligand charge transfer (1MLCT) transition in [Ru(bpy)3]
2+ results in a 

*d →  transition of an electron at the metal center to a bpy ligand (Figure 1.2). 

 



3 

Figure 1.2. Simplified molecular orbital diagram for [Ru(bpy)3]
2+. 

The populated 1MLCT excited states (ES) rattle down to the lowest energy 3MLCT within 

hundreds of fs.8-10 When Ru and Os chromophores are linked together in a supra molecular array, 

energy can be transferred from an excited chromophore to an unexcited one with a directionality 

that flows from the higher to lower level 3MLCT state. Given that the 3MLCT state of Ru* is 

greater than that of Os*, Balzani and coworkers are able to direct the excited state from Ru to Os 

with a high degree of control.2 The group is able to retain this control as they build their array out 

to incorporate more chromophores on the periphery. Since Ru complexes have an excited state 

lifetime of ~1 s, relaxation to the ground state does not limit EnT across multiple complexes in 

these systems. 

An alternative approach to Ru and Os-based dendritic assemblies is to create light-harvesting 

assemblies based on readily functionalized polymeric scaffolds where many chromophores can 

be loaded onto the backbone in a more facile manner.11-31 The relative ease of creating polymeric 

assemblies comes at the expense of reduced control over structural parameters and a greater 

degree of structural heterogeneity both of which provide additional challenges when studying 

energy transport. 

Polymeric assemblies present a particular challenge since the structure of the polymer backbone 

often affects overall system rigidity. When chromophores are affixed to the backbone via flexible 

pendant linkages, sterics, pendant length, structure of the backbone and its ability to twist and 

alleviate strain determines how proximal chromophores are to one another. This proximity 

largely determines whether the distance distribution between chromophore pairs is quasi-static or 
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dynamic. Both cases result in multiexponential energy transport kinetics that make spectroscopy-

based EnT investigations difficult to assess without use of computational modeling.  

Early work in our group focused on light-harvesting assemblies comprised of multiple Ru (II) 

and Os (II) polypyridyl complexes affixed to a polystyrene (PS) backbone (PS-RuOs) shown in 

Figure 1.3.15,14  

 

 

 

Figure 1.3. (A) Chemical structure of Polystyrene-Ruthenium (PS-Ru). (B) Coarse-grained 20 

complex representation of the polymeric assembly, [PS-Ru17Os3]
40+ (PS-RuOs) where Ru (red) 

and Os (purple) complexes are bound by a pendant linkage to the polystyrene backbone. 

In these investigations, the non-conjugated PS backbone acts solely as a scaffold. The 

backbone’s ability to twist in conjunction with the short tether that holds Ru and Os 

chromophores to it, pulls the metal complexes into close proximity to one another (Figure 1.3). 

This dense packing creates a quasi-static system where it is reasonable to neglect molecular 
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motion. As a result of its molecular immobility, EnT pathways in PS-RuOs are largely 

predictable and can be simulated using Monte Carlo modeling. Supplemented with experimental 

results, Monte Carlo simulations give us insight into the most probable hopping times between 

donor and acceptor complex pairs (1.6 and 0.4 ns-1), average peripheral distances between 

nearest neighbors and next nearest neighbors (1 and 16 Å, respectively) and the efficiency of 

EnT within the system (95%)15 Through-space Dexter EnT is the dominant mechanism in this 

system (Equation 1.1) 

( )0 expij ij

ijk k R= −     (1.1) 

, where ijk is the hopping rate between any donor and acceptor, 0

ijk represents the fastest possible 

hopping rate when the orbital pairs are perfectly overlapped,   signifies the donor and acceptor 

orbital fall off rate in space and ijR represents the distance between any pair.  

Given the small separation between chromophores and the long-lived excited state lifetime of 

Ru, it is not surprising that hopping times are fast and overall EnT efficiency is high. Compared 

to the static distance distribution observed in PS-RuOs, assemblies with more rigid polymer 

scaffolds and longer pendants introduce a dynamical conformational heterogeneity. Inherently 

flexible pendant chromophores affixed to rigid scaffolds allow those pendants to elongate and 

interact with the surrounding solvent25, resulting in a distribution of distances that changes on the 

ps timescale.  

Since pendant motions occur on same timescale as transfer rates,32 studies of flexible polymer-

pendant assemblies force investigation of rate constants that are more determined by motions 

than by electronic couplings, reorganization energies and driving forces.25 Flexibility presents an 
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especially difficult investigatory problem since intrinsic and extrinsic properties of the system 

are difficult to deconvolve from the experimental data without use of detailed simulations and 

dynamic modeling. 

In this work, we focus on the ultrafast dynamics of polymeric assemblies consisting of multiple 

Ru(II) and Os (II) polypyridyl complexes affixed to a polyfluorene (PF) backbone by flexible 

pendant linkages (PF-RuOs) (Figure 1.4).  

 

Figure 1.4. (A) Chemical structures of the Polyfluorene-Ruthenium (PF-Ru), Ru and Os Models. 

(B) A 20-complex representation of the polymeric assembly, [PF-Ru60Os10]
140+ (PF-RuOs) tested 

experimentally, where Ru (red) and Os (purple) complexes are bound by a pendant linkage to a 

conjugated polyfluorene backbone (pink). 
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Similar to studies conducted on PS-RuOs, the PF backbone acts only as a scaffold. The 

conjugated nature of the backbone causes it to remain relatively rigid and open, allowing the 

long pendants to separate from each other as they elongate into the surrounding solvent. 

Although highly conjugated, PF monomer units absorb far to the blue of the 450 nm pulse used 

to initiate EnT at a Ru complex. If treated quasi-statically, nearest neighbor metal complexes in 

PF-RuOs would be peripherally separated by ~12 Å on average, almost 12 times that average 

separations in PS-RuOs. Complex separations this large would result in near negligible hopping 

times and EnT kinetics (Equation 1.1); however, we estimate an 80-85% EnT efficiency for this 

system. Considering the potential aid of the inherent flexibility of PF-RuOs and its pendant 

chromophores in EnT, we develop a joint experimental and computational model that allows us 

to explore the role of these motions those transfer processes. 

1.1. Overview. 

This work is divided into three chapters. In Chapter 2, we focus on the experimental 

spectroscopy techniques used to characterize PF-RuOs and probe its EnT kinetics. By exciting 

one Ru complex on each assembly and monitoring the time-resolved Os* emission, we begin to 

explore the average total EnT kinetics of a PF-RuOs ensemble of assemblies. The resulting 

highly multi-exponential kinetic traces make intrinsic properties of the system difficult to 

deconvolve without addition of computational simulations that accurately treat the molecular 

motions of PF-RuOs. Chapter 3 details how we model those motions through coarse-grained 

(CG) molecular dynamic (MD) simulations. Compared to an all-atom approach, coarse-graining 

the PF-RuOs system reduces the number of particles involved in pairwise interaction calculations 

thus significantly reduces the computational cost of simulating motion. Chapter 4 discusses the 

EnT simulations we conduct on the CG MD PF-RuOs model resulting from Chapter 3. Our EnT 



 
 

8 
 

simulations probe kinetics in many structures of the CG MD PF-RuOs model in which the 

number of Os loaded (Os loading), how the complexes are distributed across the 70 sites (Ru/Os 

configurations) vary and which Ru complex is initially excited to accurately model the EnT 

kinetics occurring in our experimental ensemble of PF-RuOs assemblies.  

The combination of these chapters results in a description of a robust kinetic model that utilizes 

time-resolved emission spectroscopy with CG MD and EnT kinetic simulations to elucidate a 

microscopic view of how motions influence EnT kinetics in PF-RuOs.  
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Chapter 2: Experimental Methods 

2.1. Synthesis and Material. 

Our spectroscopic experiments focus on the polyfluorene-based system with mixed Ru and 

Os loading, PF-Ru60Os10 (PF-RuOs). The polymeric arrays of PF-RuOs and homopolymers PF-

Ru70 (PF-Ru) and PF-Os70 (PF-Os) (Figure 2.1) were synthesized via a Cu(I)-catalyzed “click” 

chemistry approach by reacting an azide-functionalized polyfluorene with an alkynyl containing 

Ru(II) and/or Os(II) polypyridyl complex. To obtain quantitatively functionalized hybrid 

assemblies, CuBr, PMDETA, and sodium ascorbate were employed as the catalyst, base/Cu-

coordinating ligand, and reducing agent, respectively. Additionally, an excess of NH4PF6 was 

added to the reaction mixtures to prevent iTMC counterion exchange and maintain solubility of 

the polymeric intermediates. Notably, PF-RuOs was designed to contain ca. 15 mol% of low 

energy Os(II) chromophores to report on excited state migration along the pendant iTMC units. 

The average 15% Os loading ration in PF-RuOs was obtained via a one-pot procedure using a 
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mixture of reactive Ru(II) and Os(II) chromophores (85%:15%) rather than their sequential 

addition. 

 

Figure 2.1. Synthetic routes to polymers PF-RuOs, PF-Ru, PF-Os, Ru and Os Models. In this 

study, PF-Ru, PF-Os, Ru and Os models serve as control systems. 

1H NMR measurements were used to determine the degree of metal site vacancies. This analytic 

technique along with UV-Vis absorption measurements confirmed the average 85%:15% loading 

ratio of Ru:Os an ensemble of PF-RuOs assemblies.30 1H NMR and UV-Vis absorption 

measurements were also used to characterize the homopolymers. More or less Os complexes can 

be loaded onto any assembly, but details of this statistical loading will be discussed later in the 

text. 

2.2. Spectroscopic Experiments 

2.2.1. Steady-State Absorption and Emission Methods.  

Steady-state absorption spectra were recorded using a UV-Vis-NIR absorption 

spectrophotometer. Steady-state emission spectra were collected using a photon-counting 

Edinburgh FLS920 spectrofluorimeter, where the Xe lamp light source was operating at 450 W. 

Optically dilute samples (less than 0.12 OD at the excitation wavelength) were purged with 



 
 

11 
 

Argon for 35 min prior to use. To confirm the absence of photoproducts, we took solution 

absorbances before and after all emission measurements. 

2.2.2. Time-Resolved Emission Methods.  

Time-resolved emission measurements were taken using a mode-locked Ti:Sapphire laser 

(Coherent-Chameleon) paired with a Hamamatsu streak camera.  

 

Figure 2.2. Schematic of the time-resolved emission set-up. Important optical components are 

labeled as follows M = mirror, BS = beamsplitter, AOM = acusto-optic modulator, L = lens, 

BBO = β-Barium Borate crystal, WP = waveplate, PC = polarizing cube, S = sample, HPF = 

high pass filters. 

As shown in Figure 2.2, we attenuate the 80 MHz laser fundamental to 28 nJ/pulse and use a 

Conoptics acusto-optic modulator (AOM) to pulse-pick the beam down to 127 kHz ( = 7.87 µs) 

- a frequency which is 3 times the natural lifetime of the emission detected at 670 nm and 5 times 

that of the emission detected at 800 nm. The beam goes through a  -barium borate (BBO) 
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crystal that frequency doubles the 900 nm output to 450 nm. Two lenses collimate the beam 

before it reaches the 1 cm quartz cuvette containing our sample of PF-RuOs. The light emitted at 

45 from the incident beam travels through a polarizing cube set to magic angle (54.7) before 

being focused and passed through a series of neutral density and high pass filters that decrease 

signal from ambient light and the 450 nm pump.  

The emitted photons focus into a single grating monochromator centered on wavelengths of 

either 670 or 800 nm (  50 nm) to observe Ru or Os emission, respectively. The monochromator 

connects to the streak camera, which is coupled to a multichannel plate-photomultiplier tube 

(MCP). For each experiment, we count 50,000 photons centered around the set observation 

wavelength over time windows of 5, 20, 200 ns, 2 and 10 µs to get time-dependent spectra of 

photon intensity. To get Ru emission transients, we integrate photons emitted across the entire 

wavelength window (620 to 720 nm) over time. For Os emission transients, we only integrate Os 

photons emitted between 790 to 850 nm to minimize contributions from Ru emissions. We 

repeat the experiment ten times and average the emission transients for each time window to 

increase the statistical accuracy of our results. We stich an average of the last few points in the 5 

ns window to those around the 5 ns mark in the 20 ns window and subsequently stitch in 

transients from the 200 ns, 2 and 10 µs time windows in order to observe kinetics at early and 

late times with optimal temporal resolution. To measure the instrument response for each time 

window, we reflect our pump off a scatter cell and monitor the scattered light at 450 nm as it hits 

our detector. The temporal resolution is 72 ps at full width half max (fwhm) for a 5 ns time 

window. 
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2.3. Experimental Results and Discussion. 

2.3.1. Structural Characterization of PF-RuOs.  

 

Figure 2.3. Absorption spectra of the PF-RuOs assembly; PF, Ru, and Os Model systems in 

room temperature acetonitrile. Spectra of Ru and Os Model systems are weighted by 0.85 and 

0.15, respectively, to represent the relative concentration of each complex within the assembly. 

The arrow identifies the excitation wavelength used for time-resolved emission experiments. 

The absorption spectrum of PF-RuOs is shown in Figure 2.3 as a superposition of composite 

PF, Ru and Os model spectra. The summation of the weighted component parts to comprise the 

PF-RuOs spectra indicates that the metal complexes are weakly coupled and retain their 

electronic properties after being loaded onto the polymer backbone; a characteristic that is not 

always present in ligh-harvesting arrays.13 Retention of these properties is important to tracking 

energy transport by observation of separate Ru* and Os* emissions (discussed later). Although 

previous studies follow EnT from the initially excited conjugated PF backbone to a pendant 
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ligand,23 this study focuses on excitation at 450 nm to incite metal-to-ligand charge transfer 

(1MLCT) state in Ru or Os. The probability of exciting Ru or Os at 450 nm is based only on the 

relative average mole fraction (85%:15%, Ru:Os) of the complexes in PF-RuOs, since the 

complexes have the same extinction coefficient at the excitation wavelength. Since the PF 

absorbs at 390 nm (Figure 2.3) the backbone acts solely as a scaffold.15,30  

Figure 2.4. Jablonski diagram of an EnT pathway in PF-RuOs. 

Figure 2.4  illustrates one example of an EnT pathway that can occur in PF-RuOs. This pathway 

follows the solid black arrows where the Ru complex at site 1 is photoexcited (Ru1
*) at 450 nm 

to create a 1MLCT state that rapidly cools  (  ~ 400 fs) to a long-lived 3MLCT state (  ~ 1 µs). 

33 10  The excited state (ES) hops from isoenergentic Ru1
* to Ru2

* (Ru1
*→ Ru2), with rates of Ruk , 

by a dominant through-space Dexter-style EnT mechanism25 and continues on to either sensitize 

a lower-energy Os trap (Ru4
*→ Os5), with a rate of Osk , or decay back to the ground state with a 

rate of 
Ru

emk (dotted red arrows) before reaching the trap. Since an Os*→ Ru transition is 
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energetically forbidden, the excited state decays after becoming trapped with a rate of 
Os

emk  (solid 

purple arrow). The total EnT pathway is complete once the excited state relaxes to the ground 

state and is the sum of all hopping and decay rates in the pathway.  

Figure 2.4 illustrates just one EnT pathway that can occur in this system. Given that the Os 

loading, Ru/Os configuration and initial excitation varies for each assembly in an ensemble, the 

excited state can travel by many other EnT pathways. Generally, time-dependent Dexter hopping 

rates between Ru* → Ru ( Ruk ) or Ru* → Os ( Osk ) are described here 

( )0 expRu Ru

Ruk k R= −     (2.1A) 

( )0 expOs Os

Osk k R= −     (2.1B) 

, where 0

Ruk or 0

Osk is the rate constant at optimal orbital overlap between any two Ru complexes 

or a Ru complex and Os trap (ns -1);   is an attenuation parameter (Å-1) that is approximated to 

be independent of complex identity,15 and time-dependent pendant separations between any two 

Ru complexes or a Ru complex and Os trap are represented by RuR  or OsR , respectively (Å).  

Equations 2.1 indicates hopping rates, Ruk  and Osk , are exponentially dependent on   and the 

time-dependent distance between two complexes, ijR . To achieve fast hopping kinetics and high 

EnT efficiency, a donor and acceptor complex must be in close proximity to one another, 

especially if   is large. Equation 2.2 illustrates the relationship between hopping rates and 

efficiency,  

*

Ru Os

EnT

em

 




+
=
 

    (2.2A) 
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, where EnT is the transfer efficiency and 
*

em  is the lifetime of an initially excited donor 

complex, 

1Ru

Ruk


 
=  

 
   (2.2B) 

1Os

Osk


 
=  

 
   (2.2C) 

, and 
Ru and 

Os  represent the sum of hopping lifetimes between any donor and acceptor 

within a total EnT pathway.  

Given that the lifetime of most Ru complexes is ~1 s, the excited state may hop from site to site 

numerous times within its lifetime if hopping rates are fast compared to the rate of decay. The 

closely packed quasi-static complexes in PS-RuOs (average ~2-3 Å separation), give rise to 

hopping rates that are hundreds of ps and high EnT efficiencies. Conversely, nearest neighbor 

complexes in PF-RuOs that move about the solvent freely (static average ~12 Å separation) 

would lead to a slow hopping kinetics and small EnT efficiency overall. However, the system’s 

inherent flexibility may bring those complexes into close enough proximity to one another, to 

rapidly transfer energy. 

We can better approximate EnT efficiency by probing steady-state Ru* and Os* emission in 

PF-RuOs after largely exciting Ru complexes. 
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Figure 2.5. Steady-state emission spectra of PF-RuOs (black), Ru Model (PF-Ru, red), and Os 

Model (PF-Os, purple) after continuous excitation at 450 nm at 450 W. Shaded regions under 

PF-Ru and PF-Os curves indicate the spectral ranges at which time-resolved Ru* and Os* 

emissions in PF-RuOs are integrated. 

Steady-state excitation of PF-RuOs, or mixed polymer, at 450 nm gives rise to continuous Ru* 

and Os* emission centered around 670 nm and 800 nm, respectively (Figure 2.5). Shaded regions 

under the spectra for the Ru Model (PF-Ru) and Os Model (PF-Os), or Ru and Os 

homopolymers, indicate the spectral ranges in which Ru and Os time-resolved emissions in PF-

RuOs are integrated. Emission observed around 670 nm (620 – 720 nm) is mostly Ru* emission, 

and emission observed around 800 nm (790 – 850 nm) is mostly Os* emission. The steady-state 

emission spectra of PF-RuOs is overlayed here with superimposed spectra of Ru and Os Models 

scaled to reflect the relative amounts of Ru and Os in PF-RuOs. Given that the total area under 

each curve reflects the number of Ru and Os excited states in the mixed assembly, we can 
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estimate EnT efficiency, or how much of excited state makes it to an Os trap after selectively 

exciting Ru (Equation 2.3) 

Os
EnT

T

N

N
 =     (2.3) 

, where EnT , OsN , and TN  represent energy transfer efficiency, the number of emitted Os 

photons that result from Ru* → Os sensitization, and the total number of emitted photons, 

respectively.  

From the steady-state spectra of PF-RuOs, PF-Ru and PF-Os, it appears that Ru emission is five 

times more intense than that of Os, which would suggest a largely inefficient EnT process. 

However, when we scale Os* emission intensity by 30 to account for differences between Ru and 

Os quantum yields ( Ru = 7% and Os = 0.32%),15 the area under the curves now represents the 

number of photons, an intrinsic property of PF-RuOs. Based on relative integrated intensities we 

estimate EnT to be ~ 80-85%.  

Since the hopping rate betweeen donor and acceptor complexes is exponentially dependent on 

distance and orbital overlap between donor and acceptor complexes (Equation 2.1), it may be 

surprising that EnT in PF-RuOs yields such a high efficiency. To gain a better understanding of 

this system and of how flexibility plays a role in this its EnT processes, we employ time-resolved 

emission spectroscopy to determine excited state transfer kinetics in the homopolymer and mixed 

polymer assemblies. Comparing the dynamical differences between the two systems gives us 

good spectroscopic evidence that energy transfer occurs in PF-RuOs. 
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2.3.2. Evidence of Energy Transfer.  

Using the setup illustrated in Figure 2.2, we photoexcite a sample of solvated Ru Models with 

a single pulse at 450 nm, and observe the single-exponential decay of Ru* with a lifetime of 1112 

ns (
Ru

em ). We repeat the experiment for a sample of solvated Os Models and observe the single-

exponential decay of Os* with a lifetime of 40 ns (
Os

em ) (Figure 2.6). 

 

Figure 2.6. Time-resolved Ru* and Os* emission transients observed in the Ru Model (red) and 

PF-RuOs (purple) around 670 and 800 nm, respectively. All peak intensities are normalized to 1. 

The linear relationship between emission intensity and time reveals the uniformity of Ru* → 

Ru and Os* → Os hopping kinetics in PF-Ru and PF-Os, respectively. Since these 

homopolymers lack reporting molecules, we cannot get EnT kinetics from their emissions. 
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Unlike the linear homopolymer traces, we do not see the same kinetic uniformity for Ru* → Ru 

and Ru* → Os hopping kinetics in PF-RuOs (Figure 2.7). 

 

Figure 2.7. (A) Time-resolved Ru* (red) and Os* (purple) emission transients observed in PF-

RuOs around 670 and 800 nm, respectively, with peak intensities normalized to 1. (B) Os* 

emission plotted over the first 20 ns and overlayed with the instrument response function (inset). 

(C) Residuals from single and biexponential fits of delayed rise in Os* emission. 

Focusing solely on PF-RuOs, Figure 2.7A highlights the multi-exponential kinetic behavior in 

the mixed polymer system. Unlike the homopolymer systems, PF-RuOs has both isoenergetic Ru 

complexes and Os traps randomly affixed to sites along the polymer chain. After a single pulse, 

450 nm excitation excites a Ru complex in each assembly in the ensemble. The excited state can 
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proceed via any pathway outlined in Figure 2.4 to either yield Ru* (decay) or Os* emission 

(sensitization and decay). When the streak camera monochromator is centered around 670 nm, 

we observe Ru as the sole emitter (red trace). Emission detected around 800 nm (purple trace) 

reflects the appearance of Os excited states mostly by Ru* sensitization. The decay kinetics we 

observe in Figure 2.7A at 670 nm is the result Ru* emission after several Ru* → Ru hops which 

we fit to a biexponential to guide the eye. We observe Os sensitization and decay kinetics at 800 

nm with the delayed rise and decay emission kinetics, which are both fit to a single exponential. 

The delayed rise coincides with the decay of Ru* emissions in PF-RuOs and is not present in PF-

Os emission kinetics, which confirms Os sensitization by Ru*. 

The sensitization rate is determined by fitting the slow Os* growth that occurs after the ultrafast 

rise in emission (Figure 2.7B). The instrument response limited ultrafast component accounts for 

54% of the maximum intensity and arises from instantaneous Os emission (Figure 2.7B inset). 

Although an attempt was made to fit the growth to a single exponential, a biexponential function 

best fits the delayed Os growth (Figure 2.7C). This indicates that EnT largely occurs by two 

processes: immediate EnT from Ru to an Os one or two hops away ( 1

Os  = 1.2 ns, 1

Osk = 0.83 ns-

1) and EnT where the excited state must hop between multiple Ru before reaching an Os trap (

2

Os  = 8.0 ns, 2

Osk = 0.125 ns-1). Os traps are capable of being sensitized by ‘far away’ Ru* 

complexes after many Ru* → Ru hops as illustrated by the slow Os* decay in PF-RuOs ( 3

Os = 

120 ns) compared to that in PF-Os (
Os

em = 40 ns).  

When we compare the PF-RuOs multiple hopping time ( 2 = 8.0 ns) to the most probable Ru* → 

Os hopping time in PS-RuOs ( max

Os  = 0.4 ns), 15 the hopping rate is almost an order of magnitude 

faster in PS-RuOs. The difference here arises from the slightly larger nearest neighbor 
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separations we observe in PF-RuOs compared to those in PS-RuOs. Cavan et. al. performed a 

radial distribution of the nearest neighbor peak and estimated that each complex has 4-5 nearest 

neighbors with more than half being separated at the peripheries by less than 2 Å. We conduct 

our own distance distribution experiments and find average separations between nearest 

neighbors in PF-RuOs are 2.34 Å. 

The traces in Figure 2.7 represent the average kinetics for a variety of total EnT pathways that 

can occur within the PF-RuOs ensemble. Any given EnT pathway depends on the assembly’s Os 

loading, Ru/Os configuration, initially excited complex and how close that complex is to an Os 

trap. Fluctuations occurring on timescales similar to Ru* → Ru and Ru* → Os hopping times 

also affect ijR  in a way that can instantaneously change an EnT pathway to contain more or less 

hops. There are various extrinsic system properties affecting the pathway of excited state 

transport. Intrinsic properties such as hopping rates and pendant motions are difficult to 

deconvolve from the average total EnT kinetics we observe through time-resolved emission 

spectroscopy of the PF-RuOs ensemble. In order to observe the system’s conformational motions 

and understand how they affect EnT in in PF-RuOs, we turn toward computational modeling. 

 

 

 

 

 

 



 
 

23 
 

Chapter 3: Molecular Dynamic (MD) Simulations 

 

3.1. Introduction. 

   The inherent flexibility of PF-RuOs drastically complicates EnT kinetics in a way that was not 

present in studies of PS-RuOs. The ability of the polystyrene backbone to fold over on itself 

forces Ru and Os pendants to pack closely such that the larger system is quasi-static. Motions in 

PS-RuOs are irrelevant and Monte Carlo modeling can be used to track EnT kinetics in the 

assembly.15 

The fluctuations present in PF-RuOs pendant complexes force us to augment our experimental 

results with a time-dependent model that uses Newton’s Equations to describe the motion 

allowed by the system’s sparse chromophore packing. To obtain a microscopic view of how 

motions influence EnT dynamics we must use molecular dynamic (MD) modeling to accurately 

treat PF-RuOs as a flexible system.  

The majority of the cost incurred by MD simulations comes from calculating pairwise 

interactions between particles.19, 34 Simulating motion in a 20-complex version of all-atom (AA) 

PF-Ru (AA PF-Ru20) in a cell with its surrounding solvent and counterions requires that we 

calculate pairwise interactions between 15660 total atoms. Running AA MD simulations over the 

full extent of energy transport events in this system (700 ns) would take ~13 years on two nodes 

running in parallel on a high-performance computer (HPC). This steep computational cost forces 

us to reconsider our approach. Grouping atoms into beads, or coarse-graining (CG) the system, 
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greatly reduces the number of pairwise interaction calculations and, as a result, computational 

time required to simulate motion.35-41  

Figure 3.1 highlights the process for coarse-graining each of the system components into 

models that serve to accurately simulate the structure’s inherent motions at a low computational 

cost.  

 

Figure 3.1. (A) Coarse-graining procedure for the polyfluorene-ruthenium repeat unit (FRu2). 

(B) Coarse-graining procedure for the acetonitrile (MeCN) solvent. (C) Coarse-graining 

procedure for the hexafluorophosphate (PF6
-) counterion. From left to right, each panel depicts 

each component as a chemical structure, all-atom (AA), motion group (MG) and coarse-grained 

(CG) model.
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We create all-atom models of the components from their chemical structures (Figure 3.1). 

Groups of atoms are selected and designated as motion groups (MGs), which are displayed in 

Figure 3.1 as transparent spheres. The coarse-graining procedure converts each MG to a bead 

containing that same grouping of atoms. We group the solvent atoms into two MGs to treat 

MeCN as a dielectric solvent (Figure 3.1B). All atoms in the PF6
- counterion are grouped into 

one MG (Figure 3.1C). All motion groups are then converted into beads, or coarse-grained.  

Coarse-graining the Polyfluorene-Ruthenium repeat unit (FRu2), acetonitrile (MeCN) solvent 

and hexafluorophosphate (PF6
-) counterions results in a CG PF-Ru20 system with 4506 beads 

total – 71% fewer particles than the all-atom system. Running CG MD simulations over 700 ns 

takes ~12 days on two nodes running in parallel on an HPC – a near 400x speedup compared to 

the AA MD calculation.  

3.2. System Preparation. 

    Here, we go into great detail about how each component of the all-atom (AA) model system is 

constructed, partitioned into motion groups (MGs), coarse-grained (CG) and subsequently 

parameterized in preparation to run MD simulations on the CG PF-Ru80 assembly. Materials 

Studio is the primary modeling program we use to create AA and CG structures, run molecular 

dynamics simulations and conduct analyses on system structures and trajectories 

3.2.1. All-Atom (AA) System.  

We navigate first to the toolbox area and open a new 3D Atomistic Document ( ) in the 

visualization window. Materials Studio’s suite of drawing tools ( ) allows us to 

create an AA model of the repeat unit, solvent and counter ion (Figure 3.5). We can change the 
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drawn carbon atoms to other atoms ( ), add Hs where necessary ( ), and clean up the 

structure ( ) using Materials Studio tools. 

  

Figure 3.2. All-atom (AA) depiction of Polyfluorene-Ruthenium monomer unit (AA FRu2), 

acetonitrile (AA MeCN), and hexafluorophosphate (AA PF6
-). Grey atoms represent C atoms, Ru 

atoms are shown in teal, blue atoms are N, O atoms are represented by red, pink represents P 

atoms, F atoms are represented in light blue, and white indicates H atoms. 

 

Currently, all molecules in Figure 3.2 are comprised of atoms with no partial charges assigned. 

Each FRu2 monomeric repeat unit has a charge of +4 overall (+2 for each Ru), PF6
- has a charge 

of -1 and MeCN has a net neutral charge with electronegativity directed toward the nitrile group. 

We use a Gaussian calculation to assign partial charges in all three molecules by first navigating 

to ‘Modules’ then ‘Gaussian’ and ‘Calculation’ in the dropdown menu at the top of the display 

(Figure 3.3). The Gaussian calculation to determine charges on the FRu2 repeat unit contains a 

mixed basis set with B3LYP/6-311g for the light atoms and /LANL2DZ for the heavy Ru 

transition metal. We can input some of the basics in the MS calculation window, copy and paste 

the calculation into a text editor to make specific changes. For detail, the .gnif file is shown here 

with appropriate line spacing: 
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%chk=FRu2.chk 

%Mem=20GB 

%nprocshared=12  

#p RHF/B3LYP/GEN 

SCF=(MaxCycle=65)  

Density Pop(Regular,NPA)  

NoSymm  

 

FRu2 Energy 

 

4 1 

(Structure coordinates) 

 

H C N O 0 

6-311g 

**** 

Ru 0 

LANL2DZ 

**** 

 

Ru 0 

LANL2 

(At least four spaces) 

 

The Gaussian calculation to determine charges on the MeCN repeat unit contains a B3LYP/6-

311g basis set for all atoms. For detail, the .gnif file is shown here with all appropriate spacing: 

%chk=MeCN.chk  

%Mem=20GB 

%nprocshared=12 
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#p RHF/B3LYP/6-311G 

SCF=(MaxCycle=65)  

Density Pop(Regular,NPA)  

NoSymm  

 

MeCN Energy 

 

0 1 

(Structure coordinates) 

(At least four spaces) 

 

The Gaussian calculation to determine charges on the MeCN repeat unit contains a B3LYP/6-

311g basis set for all atoms. For detail, the .gnif file is shown here with all appropriate spacing: 

%chk=PF6.chk  

%Mem=20GB 

%nprocshared=12 

#p RHF/B3LYP/6-311G 

SCF=(MaxCycle=65)  

Density Pop(Regular,NPA)  

NoSymm  

 

PF6 Energy 

 

-1 1 

(Structure coordinates) 

(At least four spaces) 
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Running a Gaussian job on Longleaf requires the gaussian/16a03 module added, the FRu2.log 

and FRu2.gnif files in the same folder. Once we change the directory to the path in which those 

files exist, the following code is required to run the calculation: 

srun  -p  general  -N  1  n  1  –mem20g  -t  05-00:00:00  -o  FRu2.log g16  FRu2.gnif 

The .log file shows up in home window after the run is complete and at that point we can 

download it to workspace. We change the .log file to a .gof file and copy it into the Materials 

Studio project folder. The next step is to open the .xsd file used as input for the Gaussian energy 

calculation and go to ‘Modules’ then ‘Gaussian’ and ‘Analysis’ in the dropdown menu at the top 

of the display. Under ‘population analysis’, the results file should give the option of using the 

.gof file. Click on ‘assign NPA’ to assign charges to the atoms in the .xsd file. The final step is to 

check that the total charge is accurate. To do this, we select the entire structure and go to 

‘Modify’ then ‘charges’ and click ‘edit’ to make sure total charge is as expected (i.e. +4 for 

FRu2). Running the Gaussian job on Longleaf for the MeCN and PF6
- molecules follow the same 

steps as outlined above. The partial charges we assign to the atoms are most important for AA 

MD simulations.
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3.2.2. Motion Group (MG)-Defined System.  

     To lower the computational cost of MD simulations, we group together atoms that are 

considered relatively static (i.e. Ru complexes, triazole groups, C2H3NO and C2H4 segments, 

fluorene backbone units, and etc.).Modeling these groups as motion groups (MGs) is the first 

step toward decreasing the number of particles that participate in pairwise interactions. MGs are 

transparent spheres that offer a preview of the unique ‘beads’ that result from a coarse-graining 

process. 

We create a MG-defined AA FRu2 model by selecting the atoms we want to group together, 

choosing ‘Modify’ then ‘Motion Groups’ from the top menu and clicking on ‘create’ from 

selection. This is repeated for all atom groupings so that the repeat unit, solvent, and counter ion 

structure have their component atoms grouped into MGs of type A – I (Figure 3.3). 

 

Figure 3.3. Motion Group (MG) depiction of polyfluorene-ruthenium monomer unit (MG FRu2), 

acetonitrile (MG MeCN), and hexafluorophosphate (MG PF6
-). MGs are identified by their type 

A – I. Red transparent spheres illustrate atoms belonging to Ru complexes, darker blue spheres 

represent atoms belonging to the pendant ligands, and spheres in light blue illustrate polymer 

backbone atoms. Pink and green spheres represent the methyl and nitrile groups, respectively, 

and PF6
- is represented by a grey sphere. No atom belongs to two different MGs.  
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     To treat MeCN as a dielectric solvent, we use two motion groups to define the solvent 

molecule. Atoms in the methyl segment (Me) will be converted to a bead carrying a partial 

positive charge while those in the nitrile segment (CN) will become a bead that carries an equal 

but opposite partial negative charge. For the counterion PF6
-, all atoms are selected into one MG, 

which will become one bead with a -1 charge after the coarse-graining process. The PF6
- 

counterions are represented as single beads because its electronegativity has no net directionality 

and serves only to maintain electric neutrality with the solvated PF-Ru20 and its net charge of 

+40. Two counterions are required to balance the +2 charge at the center of each Ru complex in 

every FRu2 repeat unit. 

The MG FRu2 model depicted in Figure 3.6 is the result of multiple attempts to create a final 

CG PF-Ru20 model that most accurately simulates motions in a 40 ns trajectory of our AA PF-

Ru20 model at a low computational cost. The selected groupings are small enough that they do 

not restrict the inherent flexibility of FRu2 nor are there too many groupings that the CG model 

resembles the AA structure. Table 3.1 describes the atoms in each type of MG. These types 

remain the same for eventual model beads. 

Table 3.1. Bead type description of atoms. 

Bead Type Atoms 

A C31H25N6Ru 

B C2H3NO 

C C2HN3 

D C2H4
 or C2H5 

E C 

F Ph or PhC 

G CH3 

H CN 

I PF6 
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    With all MGs defined for the system, we polymerize the FRu2 segment. We first define the 

repeat unit by going to ‘Build’ then ‘Build Polymer’ in the top menu then click on ‘Repeat Unit’ 

to select head and tail carbons. After defining the repeat unit, we again use the ‘Build’ then 

‘Build Polymer’ menus in the dropdown to create a ten-unit isotactic ‘Homopolymer’ with 20 Ru 

complexes (MG 20mer), as shown in Figure 3.4.  

 

Figure 3.4. MG-depiction of PF-Ru20 (MG 20mer) after polymerizing FRu2 out ten units. 

The polymerization setup includes random ‘Torsion’ to give the structure freedom to relax. We 

relax the structure further by running optimization calculations on the MG 20mer model. 

Optimization and annealing calculations are run in the Forcite module of Materials Studio. The 

optimization calculation is setup with medium quality, ‘smart’ algorithm, with energy and force 

set to 0.001 kcal/mol and 0.5 kcal/mol/Å, respectively, and ‘current charges’ set on the atoms. As 

soon as the structure is optimized, we anneal the MG 20mer model with medium quality, apply 

five annealing cycles with a 300 K to 700 K ramp. There are five heating ramps per cycle each 

with 200 dynamic steps. The calculation optimizes the structure after each cycle. For each 

calculation, we apply a Universal energy forcefield with Ewald electrostatic and atom-based van 

der Waals interactions to the system with the calculation run on all eight cores of a desktop 

computer. The MG MeCN solvent and PF6
- counterion are optimized and annealed by the same 

process. 



 
 

33 
 

Relaxing all components of our MG-defined AA system is necessary step in setting up a cell for 

Molecular Dynamics calculations. Without the proper relaxation steps, it is challenging to pack 

the MG polymer in the simulation cell with solvent and counter molecules and equilibrate the 

system without exceeding energy limitations. 

With all components of the MG-defined AA system sufficiently relaxed, we construct a 

simulation cell to hold 40 counterions (Cell 1). We achieve this by going to ‘Modules’ then 

‘Amorphous Cell’ and ‘Calculation’ in the top menu. To run the construction calculation, we set 

the density to 1 g/cm3 and apply a Universal force field to the system. After annealing Cell 1 

under the same conditions as above, we make a copy of Cell 1, and label it Cell 2. In Cell 2 we 

delete the PF6
- counterions and place a copy of the annealed MG 20mer model into the empty 

cell. The polymer is oriented to align with cell length along axis A using translational keys (

). We make room for the MG 20mer, 40 counterions, and 8412 solvent molecules by 

changing the dimensions of Cell 2 (89 x 58 x 61 Å). When changing the ‘lattice parameters’ we 

uncheck ‘keep fractional coordinates’ under the ‘advanced’ tab (Figure 3.4C). The 40 annealed 

MG PF6
- counterions from Cell 1 are transferred into Cell 2 so that Cell 2 contains our annealed 

MG 20mer model and 40 PF6
- counterions. Figure 3.5 illustrates our system after the first stage 

of constructing our simulation cell is complete. 
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Figure 3.5. Simulation unit cell constructed with MG 20mer and MG PF6
- counterions. 

The polymer in Figure 3.5 does not yet represent the 70-complex system that we probed 

experimentally. From the periodic boundary conditions of the simulation cell, we can infinitely 

propagate the cell and its contents. We use the lattice display style window (Figure 3.4B) to 

propagate the lattice two units along the A axis - the axis in which our polymer is oriented. We 

connect the terminal Carbon atom of the polymer backbone in the first cell to the head Carbon 

atom of the polymer backbone in the second cell. The cell and its contents are further propagated 

to create a four-unit simulation cell that contains a MG-defined PF-Ru80 (MG 80mer) and 160 

PF6
- counterion models (Figure 3.6). 

 

Figure 3.6. Four-unit simulation cell with MG-defined PF-Ru80 (MG 80mer) and MG PF6
- 

counterions. 
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We navigate back to ‘Modules’ then ‘Amorphous Cell’ and ‘Calculation’ to pack the lattice with 

MeCN molecules. The ‘packing’ calculation is setup with a density of 0.786 g/cm3, which 

follows that of acetonitrile at 25 ºC,42 and an applied universal force field. The size of the unit 

cell lattice defined under the construction calculation ensures that 8412 MG-defined solvent 

molecules can be packed into the four-unit lattice (Figure 3.7). 

 

Figure 3.7. Four-unit simulation cell with the MG 80mer and PF6
- counterions and packed with 

MG MeCN solvent molecules. 

The simulation cell containing one MG 80mer, 8412 acetonitrile solvent molecules and 160 

[PF6]
- counterions undergoes optimization and annealing calculations under the same conditions 

previously described. We propagate our polymer in space using the periodic boundary conditions 

of the cell. The symmetry of the extended lattice simplifies calculations by mirroring motions 

that occur in a single unit cell to the remaining three. This results in a solvated 80mer MD 

simulation that will have the same computational cost as a solvated 20mer MD simulation. 

3.2.3. System Parameterization.  

UV-Visible absorption spectra were collected using a UV-Visible-NIR absorption 

spectrophotometer (Agilent Technologies, model 8453A) operated with tungsten and deuterium 

lamps lit. Air was used as the baseline and samples were placed perpendicular to the beam path. 

An integration time of 0.5 s was used. 
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Before we CG this system and perform MD simulations on the cell, we run a 40 ns MG-defined 

AA MD simulation on the cell (details in Section 5.2). The MGs visible in the resulting MD 

trajectory act as the centers of mass for each group of atoms, from which we are able accurately 

parameterize, or map, values for each interaction potential type onto our CG MD model.34, 35, 43-46 

Potentials used in our eventual CG MD simulations include bond stretching, angle bending, 

electrostatic, and van der Waals interactions (Equations 3.1A-D, respectively). The two bonding 

interactions are constrained by harmonic and cosine harmonic potentials, respectively, while the 

two non-bonding are defined by Coulombic and Lennard-Jones 12-6 potentials, respectively.38  
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    (3.1D) 

Equations 3.1 describe potential functions for (A) bond stretching, where ijR is the time-

dependent distance between two bound beads, 0R represents the equilibrium bond length and Bk  

is the bond bending force constant; (B) angle bending, where ijk represents the time-dependent 

angle between three bound beads, 0  is the equilibrium angle, and Ak represents the angle 

bending force constant; (C) electrostatic interactions, where iq and jq  are charges on a pair of 

beads, 1  is the  solution permittivity, resp., ijr  is the time-dependent distance between two non-

bonding charged beads; and (D) van der Waals interactions, where ij  is interaction energy, ij  is 
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the bead diameter under a soft sphere approximation, and ijr  is the time-dependent distance 

between two neutral non-bonding beads. 

From the MGs in our AA cell (Figure 3.8A), we can determine equilibrium bond lengths ( 0R ) 

and angles ( 0 ) by measuring distances from one MG to its neighbor (Figure 3.8B) and angles 

between three MGs (Figure 3.8C), respectively. Individual bead sizes ( ii ) are determined by 

measuring distances across MGs (Figure 3.8D).47 

 

Figure 3.8. (A) MG-defined AA simulation cell. (B) Process for measuring equilibrium bond 

length between two MGs. (C) Process for measuring equilibrium angle between three MGs. (D) 

Process for measuring bead size across bonds an MG are shown. 
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Taking measurements of the MG defined AA system allows us to effectively ‘map’ the AA 

structure onto our CG model to ensure the accuracy of our CG model. We complete these 

measurements for individual MGs and sets of MGs that are set to become beads. To explain how 

these measurements are conducted, we focus on sets A – B and A – B – C to describe the 

equilibrium bond length and angle determination, respectively, and type A to describe how bead 

size is determined.  

We measure the equilibrium bond length A – B by clicking on the distance measuring ( ) 

tool in the top menu then selecting MG of types A and B on the first monomer unit to measure 

the distance between them (Figure 3.8B). To get a statistically accurate measurement, all A – B 

distances are selected, averaged across the polymer in that frame and all others in the 40 ns AA 

MD trajectory. The average equilibrium bond length for set A – B is 7.72 Å. This type of 

measurement is repeated for each bead type set. Bond stretching force constants were already 

determined by Marrink et.al. and left alone.38 Table 3.2 lists equilibrium bond lengths, R0, and 

force constants, k0, for each set. 

Table 3.2. Bead type set equilibrium bond lengths, R0, and force constants, k0, for bond 

stretching potential. 

Bead Type Set Equilibrium Bond 

Length, R0, (Å) 

Force Constant, 

kB, (kcal/mol/Å2) 

A – B 7.72 2.99 

B – C 4.06 2.99 

C – D 3.26 2.99 

D – E 3.99 2.99 

D – D 3.08 2.99 

E – F 4.53 2.99 

F – F 4.22 2.99 

G – H 2.04 2.99 
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The charges on the Ru complex and counterion MGs are +2 and -1, respectively. Acetonitrile is 

defined by two MGs, where the partial charge on each ( ijq ) is determined from the dipole 

moment of the solvent (u ) and the equilibrium separation between MGs ( 0R ). 

0*iju q R=  (3.2) 

Given that acetonitrile has a dipole moment of 3.84 D at room temperature48 and its MGs (G 

and H) separated by 2.04 Å (Table 3.3), we calculate a partial charge of ± 0.406 using Equation 

3.2. Partial charges on MeCN, the charges on Ru complex bead and PF6
- counterion are listed in 

Table 3.3. 

Table 3.3. Bead type charges. 

Bead Type Charge, q 

A +2 

G +0.406 

H -0.406 

I -1 

 

For all beads except those that comprise the solvent (G and H), we measure bead sizes by 

physically summing the lengths across bonds, through cyclic structures, and adding the Lennard-

Jones radii of atoms at each end of that MG (Figure 3.11D). Sigma for each bead ( ii ) are listed 

in Table 3.4. 
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Table 3.4. Bead type sigmas, ii . 

Bead Type Set Sigma, σij (Å) 

A 13.06 

B 6.22 

C 5.46 

D 4.92 

E 3.34 

F 6.10 

G 4.18 

H 4.18 

I 6.36 

 

We measure the equilibrium angles between A – B – C by clicking on the angle measuring tool (

) in the top menu then selecting MG of types A, B, and C on the first pendant of the first 

monomer unit to measure the angle between them (Figure 3.11B). To get a statistically accurate 

measurement of A – B – C, we select all like angles along the polymer in that frame. When we 

propagate through the 40 ns AA MD trajectory, we collect angles A – B – C across all frames 

and save them as the excel file ABC.xlsx. This angle measurement is repeated for each bead type 

set and the angles of each set are stored in their own BeadTypeSet.xlsx file. We input each excel 

file into a home-written script (AngleAnalyis.m) that histograms these angles (Section 3.1.5).  

AngleAnalysis.m outputs an array of equilibrium angle population densities for any given bead 

type set. The script loops through all six bead type sets of interest to produce a 6 x 1 matrix of 

equilibrium angle population densities. For each bead type set, we adjust the equilibrium angle 

(θ0) and force constant (kA) values in the angle bending interaction potential function (Equation 

3.1B) until we best fit our population density of angles. An example of the fit for A – B – C is 

shown in Figure 3.12. 
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Figure 3.9. Angle Analysis Fitting. The population distribution of the equilibrium angles (teal) is 

fit by the angle bending interaction potential function (black). 

Table 3.5. Bead type set equilibrium angles, θ0, and force constants, kA, that provide best fits for 

angle bending potential. 

Bead Type Set Equilibrium 

Angle, θ0, (⁰) 

Force Constant, 

kA, (kcal/mol) 

A – B – C 126 60 

B – C – D 154 8 

C – D – E 140 7 

D – E – D 120 8 

D – D – E 180 60 

D – D – D 180 12 

 

Finally, we set parameters for Lennard-Jones 12-6 (LJ 12-6) interaction potential parameters 

between each non-bonded, neutral bead. Each bead type size, ii  , has already been determined 

and is listed in Table 3.5. When one bead interacts with a bead of different type, LJ sigma is the 

average sigma of those beads, ij . For example, the LJ 12-6 potential between A and B has an 

interaction energy of 1.20 kJ/mol and a LJ 12-6 sigma of 9.64 Å as calculated from the average 
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bead sizes of bead A ( ij , 13.06 Å) and B ( ij , 6.22 Å). Interaction energies between each bead 

type pairing were already determined by Marrink et. al. and left alone.38 Table 3.6 lists the 

interaction potential parameters for the LJ 12-6 sigma ( ij ) and interaction energy ( ij ) for all 

possible bead-bead interactions. 

Table 3.6. Bead type sigmas, ij . for Lennard-Jones 12-6 potential. 

 A B C D E F G H I 

A 13.06         

B  9.64 6.22        

C  9.26 5.84 5.46       

D  8.98 5.56 5.18 4.92      

E  8.20 4.78 4.40 4.12 3.34     

F  9.58 6.16 5.78 5.50 4.72 6.10    

G  8.62 5.20 4.82 4.54 3.76 5.14 4.18   

H 8.62 5.20 4.82 4.54 3.76 5.14 4.18 4.18  

I 9.72 6.28 5.90 5.64 4.78 6.22 5.26 5.26 6.36 

 

Table 3.7. Bead type interaction energies, ij , for Lennard-Jones 12-6 potential 

 A B C D E F G H I 

A 1.20         

B  1.20 1.08        

C  0.96 1.08 0.96       

D  0.48 0.65 0.65 0.84      

E  0.55 0.65 0.65 0.84 0.84     

F  0.65 0.74 0.74 0.74 0.84 0.84    

G  1.34 1.20 1.20 0.48 0.55 0.65 0.60   

H 0.48 0.65 0.65 0.84 0.84 0.74 0.24 0.42  

I 1.08 0.96 0.96 0.48 0.55 0.65 1.08 0.48 0.84 

 

Values from Tables 3.2 – 3.7 are later entered into the Forcefield Document (newbeads_ang.off) 

we use to simulate motion in our CG model.  
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3.2.4. Coarse-Grain (CG) System.  

      To convert MG versions of the polymer, solvent and counterion into CG structures, Materials 

Studio requires that we first create a Typing Document from our MGs. This document correlates 

each unique group of atoms to a bead type. From the top menu, we navigate to ‘Build’ then 

‘Build Mesostructure’ and ‘Coarse Grain’. We select ‘Motion Groups’ under Method and click 

on ‘Create’ to make the typing document that corresponds with our MG-defined cell. 

From our typing document, we can convert the MG-defined cell to a CG system by once again 

navigating from the top menu to ‘Build’ then ‘Build Mesostructure’ and ‘Coarse Grain’ then 

selecting ‘Build’ a coarse grain document with the typing document as our input. We can change 

the view of our coarse-grained (CG) lattice to space filling spheres (CPK) in the Display Style 

window. We can adjust the size of the beads to represent those calculated in Table 3.5 by 

navigating to ‘Build’ then ‘Build Mesostructure’ and ‘Bead Types’ in the top menu.  

The CG simulation lattice contains one CG 80mer, 8412 CG acetonitrile solvent molecules and 

160 CG [PF6]
- counterions, or 18024 total beads. We assign bead types and add charges in the 

Materials Studio properties panel (Figure 3.2C).  

 

Figure 3.10. Coarse grained (CG) depiction of FRu2, MeCN, and PF6
- with beads identified by 

their type A-I. 
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In the panel we assign all beads their unique type. As an example, we focus first on Ru complex 

beads, type A (Figure 3.13). We select all Ru complex beads, go to the properties panel, label 

that set of beads as type A, and add a +2 charge to the center of each bead. The only beads that 

require a charge besides the Ru complexes are PF6
- counterions (-1), the methyl (+0.406) and 

nitrile groups (-0.406) of acetonitrile. We make sure all charges balance out by going to 

‘Modify’ then ‘charges’ from the top menu, selecting all beads in the cell, and setting all charges 

to zero. If we select all Ru beads and set all of those charges to +2, the total charge in for the cell 

should be +40. Giving each bead a ‘type’, or identity, helps the forcefield document recognize 

the beads and will be used in our MD calculations to apply some combination of potentials to 

each bead based on that identity.  

Unlike how we determined size for all other beads in the system (Section 3.1.3), the bead size 

of MeCN depends on its dielectric partial charges and density. To determine the size of our 

MeCN beads, we place 2103 fully parameterized MeCN molecules into a single unit cell. The 

same number of solvent molecules fill each unit cell of our system lattice. With the correct 

partial charges applied the solvent beads, we run a series of 10 ns MD simulations on the MeCN 

cell with radii set from 3 to 4.4 Å. After each run, we check the cell density to see if it matches 

that of MeCN at room temperature (0.786 g/cm3). We find that a sigma of 4.18 Å achieves this 

density (Tables 3.5 and 3.8). 

3.3. Results and Discussion. 

      Before running a full MD trajectory on the CG cell, we must first equilibrate the cell. Since 

there exist no other ways to relax the CG system like there were for the AA cell (i.e. geometry 

optimization and annealing), we must equilibrate the cell for a longer period of time. After 

navigating to ‘Modules’ then ‘Mesocite’ and ‘calculation, we set the calculation to run for at 
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least 30 ns with 1 fs steps under the same conditions used for the AA MD equilibration. This can 

be done on a desktop computer. We must go to the final frame in the CG MD equilibration 

output and use it to set our ‘initial velocities’ as ‘current’. This way, we can either start our full 

CG MD calculation trajectory from the newly relaxed structure or run another equilibration to 

further relax the system.  

For both types of coarse-grained MD simulations, Verlet Integration summates the forces from 

bond stretching and angle bending interactions are constrained by harmonic and cosine harmonic 

potentials imposed on each bead every 8 fs. A cubic spline switching function truncates long-

range, non-bonding potentials at 12.5 Å, where interactions between bead pairs separated by 

more than this distance are not calculated. A Molecular Dynamics (MD) simulation cell is 

coupled to a Nose thermostat set to 298 K and a Berendsen barostat set to 1 atm, both of which 

operate with a relaxation time of 1 ps. Time steps occur every 8 fs and are saved every 5000th 

frame such that 8751 frames are produced for each 350 ns trajectory. Running the calculation on 

UNC’s high-performance computing cluster takes about 6 days to complete – 12 days to run the 

full 700 ns trajectory.  

      To increase the statistic accuracy of our eventual kinetic model, we make five more copies of 

the MG-defined AA system, re-anneal, CG, parameterize, and run MD simulations on each 

system using the same procedures described above. Code for the AA and MD simulation 

calculations can be found in section 5.1.  

3.3.1. CG MD Simulation Results.  

All six 700 ns CG MD trajectories that result highlight the prominence of pendant complex 

motions. The flexible pendant linkages elongate away from the backbone and make rapid 

stochastic fluctuations as the pendant beads come into contact with the surrounding solvent. The 
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backbone of the CG assembly, on the other hand, remains relatively rigid. We can probe the 

structural evolution of the assembly, with particular focus paid to the pendants by tracking 

pendant complex-complex distances over time. 

3.3.2. Nearest Neighbors (NNs) Analysis.  

Most of these distances result in near negligible EnT kinetics. Since we are most concerned 

with how energy is transferred within the system, we focus on structural fluctuations that affect 

distances between complexes and their nearest neighbors (NN) and next nearest neighbors 

(NNN). In Figure 3.14, the distances between each complex and its NN and NNN are plotted 

over time. 

 

Figure 3.11. Histogrammed distances of all NN (green) and NNN (blue) pairs in the CG MD PF-

Ru 70mer over 350 ns.  
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The plot indicates NN and NNN have average center-center separations of 17 and 23 Å, 

respectively. Given that the Lennard-Jones radius of the Ru complex bead is 7.33 Å, NNs and 

NNNs are peripherally separated by an average of 2.34 and 7.34 Å, respectively. The average 

NN separation would yield a 0.027 ns-1 hopping rate by Dexter EnT. However, given that 0.8 % 

of NN peripheral distances are under 1.34 Å, hopping rates could reach 0.12 ns-1 or up to 48.6 ns-

1 at a minimum NN separation of -2.66 Å, since orbitals are permitted to overlap. These rates 

agree with the EnT lifetimes we observe for the Os sensitization for a single hop ( 1

Os  = 1.2 ns, 

1

Osk = 0.83 ns-1 ) and multiple hops ( 2

Os  = 8.0 ns, 2

Osk = 0.125 ns-1) in Figure 2.7. 

3.3.3.  Follow Original NN and NNN Analysis.  

To determine how the flexible structure evolves, we label the original NN and NNN of each 

complex at t = 0 ns and track the distances between those pairs over time (Figure 3.12). 

 

Figure 3.12. Histogrammed distances of original NN and NNN pairs in six different CG MD PF-

Ru 70mer trajectories and multiple starting structures (T0s) recorded at times t. 
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We can quantify the evolution of this distribution by tracking the percentage of bin counts 

over 60 Å over time (Figure 3.13). 

 

Figure 3.13. Total bin counts of original NN and NNN distances above 60 Å over time. 

The percentage of original NN and NNN pairs separated by more than 60 Å increases 

exponentially over 350 ns. At t = 350 ns, 6 – 6.5 % of distances are separated by 60 Å or more 

and the average distance a NN pair surpasses that of a NNN pair. The 1068% and 340% increase 

in respective NN and NNN pair average distances we observe indicates the presence of large-

scale pendant fluctuations. We can get a sense for what these motions look like by tracking a 

single complex and its NN and NNN from one of our CG MD models (Figure 3.14). 
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Figure 3.14. Molecular diffusion of NN (orange) and NNN (green) of Ru35 (yellow) in 

Trajectory 7 at times t. 

A central complex, Ru35 (yellow), and its NN (orange) and NNN (yellow) are separated by 18.9 

and 23 Å, respectively, at t = 0 ns. Out to t = 1 ns, the group remains in close proximity. The NN 

and NNN drift to become a respective 48.3 and 25.0 Å away from Ru35 by t = 10 ns. At t = 350 

ns, Ru35 and its NN and NNN are separated by 40.1 and 40.2 Å, respectively. When we visualize 

the simulated motion of this labeled CG MD trajectory with a 0.04 ns temporal resolution, the 

fluctuations we observe directly correlate the trends in Figure 3.15. Motions out to 1 ns are 

localized about the Ru35, its NN and NNN. At short timescales, few fluctuations cause Ru35 to 

venture far from its original grouping and thus it ‘remembers’ its original NN and NNN. This is 

evidenced by the distinct distance distributions for the NN and NNN pairs in Figure 3.14. Over 

time, many more fluctuations occur and move Ru35 further from its original NN and NNN such 

that Ru35 ‘forgets’ its original grouping by 100 ns. It is at this point that NN and NNN distance 

distributions become indistinguishable.  

Structural analyses of the CG MD PF-Ru model uncover the characteristic motions of the 

system. Distances between complexes and their NN ranging from -2.66 to 1.34 Å (Figure 3.14) 

would give rise to Os sensitization kinetics similar to those we observed in our time-resolved 

emission experiments. These pendant complexes diffuse via small and rapid fluctuations such 
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that the average complex becomes separated from its NN and NNN by 25 Å over 350 ns. TO 

discern how these structural fluctuations influence EnT dynamics, we must simulate that EnT in 

our model system.  
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Chapter 4: CG MD Energy Transfer (EnT) Simulations 
 

4.1. Ru Coordinate Extraction. 

      Since our main focus is the through-space transfer of the excited state from complex to 

complex, we only need to extract the time-dependent XYZ coordinates of the Ru complexes 

from our CG MD trajectories to incorporate our model into the EnT simulations. To extract these 

coordinates, we select Ru complex pairs in order of monomer fragments in the first half of the 

700 ns CG MD trajectory and label the pairs as sets “A1-40”, or simply as sets “A” (Figure 4.1).  

 

Figure 4.1. The 80mer CG PF-Ru model with sets “A” labeled. The cell is shown without 

solvent for clarity. 

We repeat the same selection and set identification for the second half of the 700 ns trajectory. 

These trajectories with defined sets “A” serve as input files for a script that extracts the XYZ 

complex coordinates of Ru beads in sets “A”. We create an Excel document from the 

coordinates-only text files for both halves of each six 700 ns trajectory. The Ru XYZ coordinates 

we extract from the 700 ns CG MD PF-Ru80 trajectories are used as inputs for the EnT 

simulation. 
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4.2. EnT Simulations. 

      Experimentally, EnT kinetics in an ensemble of PF-RuOs assemblies are observed via time-

resolved emission spectroscopy through the rapid decay of Ru* intensity and subsequent growth 

and eventual decay of Os* intensity. Although the extended CG MD PF-Ru model can replicate 

the size of the experimental assembly, it does not yet represent a statistically accurate ensemble 

of PF-RuOs assemblies. It would be too computationally costly to simulate motions out to 700 ns 

in extended CG PF-RuOs assemblies that modeled all possible Ru/Os configurations for each Os 

loading scenario. Instead, we incorporate statistical Os loading into our EnT simulation script so 

we can more accurately model the experimental PF-RuOs ensemble of assemblies and retain the 

computational efficiency gained upon coarse-graining the system. 

      The statistical Os loading we use here comes from the synthetic process of PF-RuOs. Egle et 

al. synthesized the 70mer experimental [PF-Ru60Os10]
140+ assemblies with a 85%:15% Ru to Os 

ratio, on average. Os complexes are loaded onto the polyfluorene backbone followed by an 

excess of Ru complexes to generate an ensemble of [PF-Ru(N-n)Osn]
140+ assemblies, where N 

represents the total number of complexes on the assembly (N = 70, 70mer) and n is the number 

of Os that can be loaded onto the backbone (n = 0-17). On average, n = 10 ([PF-Ru60Os10]
140+), 

but more or less Os complexes can be loaded onto any given assembly such that n = 15 ([PF-

Ru55Os15]
140+), n = 2 ([PF-Ru68Os2]

140+) or n = 0 ([PF-Ru70]
140+), to provide a few examples. 

Newton’s binominal formula allows us to calculate the probability of any Os loading scenario: 

( )
( )!

! !

N n n

n Ru Os

N
P P P

N n n

−
=  

−
    (4.1A) 

( )0

1

1 7
OsP

A
=

− 
    (4.1B) 
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Where nP  represents the probability of loading n Os complexes onto the polymer backbone, RuP  

 (85%) and OsP  (15%) are the set probabilities that a given site is Ru or Os, respectively, and 0A  

represents the probability of creating a PF-Os homopolymer. From Equation 4.1, there are 3.9%, 

0.0009%, and 0.0003% probabilities [PF-Ru55Os15]
140+ , [PF-Ru68Os2]

140+ and [PF-Ru70]
140+, or 

the PF-Ru homopolymer, are created, respectively. For every Os loading scenario, many 

different Ru/Os configurations can result since n Os complexes are randomly loaded onto any 

site along the backbone.  

     Our EnT simulations incorporate Os loading by extracting 80 time-dependent, Ru complex 

coordinates from the extended CG MD PF-Ru model (CG MD PF-Ru 80mer). Since we probe a 

70-complex system experimentally, we select only the center 70 complex coordinates to run EnT 

simulations on a true 70mer. We then select an Os loading scenario and artificially “load” those 

Os complexes onto random sites of the CG MD PF-Ru 70mer to create the simulation’s first 

Ru/Os configuration (CG MD PF-RuOs 70mer).  

In a solution of PF-RuOs assemblies, our low energy high rep rate laser only excites one 

complex per assembly (450 nm, 28 nJ/pulse), which suppresses triplet-triplet annihilation (TTA) 

processes eliminating higher-order processes and allows for a network of first-order EnT events 

to occur in PF-RuOs. To simulate EnT under these experimental conditions, the first metal 

complex in the selected Ru/Os configuration is excited to initiate an EnT simulation (Figure 4.2). 
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Figure 4.2. Description of EnT simulation steps. 

Unlike in PS-RuOs where static complex-complex distances allow rate constants to be averaged 

over the entire EnT process, inherent fluctuations in PF-RuOs result in time-dependent changes 

in Ru – Ru and Ru – Os separations. To reflect the system’s flexibility, we update the 

coordinates of all complexes at each Frame, separated by t  (40 ps). 

We use the distance formula to calculate separations between all complex pairs at each Frame 

and compile them into 70 x 70 time-dependent distance matrices, ( )R t . Dexter style EnT 

functions (Equation 2.1) are then used to calculate hopping rates between any two complexes at 

each Frame, ( )k t , which are organized into 70 x 70 time-dependent rate matrices, ( )K t . 

The kinetic matrices reflect the probability of the excited state hopping to any other site Ru* → 

Ru or Ru* → Os, at rates given by Ruk  or Osk  or decaying to its ground state; a rate that follows 

the emission lifetime of excited state Ru,
Ru

emk . Once energy is transferred to an Os site, the 
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excited state is trapped and Os* decays to the ground state at a rate given by its emission lifetime,

Os

emk . The parameters
Ru

emk and
Os

emk are derived from the PF-Ru and PF-Os homopolymer lifetimes 

and are constants of value 1.01x10-3 and 2.00x10-2 ns-1, respectively (Figure 2.6).  

By closely following the procedure outlined by Berbaran-Santos et. al.,49 we construct a general 

set of rate equations that describe these events.  

n
NN n

dX
k X

dt
=     (4.2A) 

Ru
RuGS
em Ru

dX
k X

dt
=     (4.2B) 

Os
OsGS
em Os

dX
k X

dt
=     (4.2C) 

nX  is the excited state population on complex, n and NNk  is located along the diagonal and is the 

sum of the excited state decay to all other complexes and ground states  

( )
70

1

Ru Os

NN nn em em

n

k k k k
=

= − + +  (4.3) 

, where nnk hopping rate between metal complexes n and n.  

We express these rate equations in matrix form 

( ) ( )
dX

K t X t
dt

=     (4.4) 
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Where ( )X t (state vector) and ( )K t (kinetic matrix) are 
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    (4.5) 

and t  represents the time between steps (40 ps); ( )0X  are the initial excited state concentrations 

for the metal complexes ( X = Ru or Os) at sites n at t =  0 ns.  

( )K t  is a 72x72 time-dependent kinetic matrix where EnT rates occupy the first 70 rows and 

columns and decay from excited state Ru or Os occupy the final two rows. We diagonalize the 

kinetic matrix at each time frame, ( )D t , to calculate the sum of rates for a given initial 

excitation of nX  in a selected Ru/Os configuration.  

( ) ( )
dX

D t X t
dt

=     (4.6) 

The solution of the differential in Equation 4.6 is similar to the corresponding scalar 

interpretation 

( )( ) ( )( ) ( )1exp *X t P D t t P X t −=       (4.7) 
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, where P  and 1P−  are the eigenvector and inverse eigenvector of the diagonalized rate matrix, 

respectively, ( )X t  is the updated initial population vector at time t, and ( )( )X t  represents the 

sum of updated Ru* and Os* final populations at time t. 

If complex n = 1 were initially excited n our selected Ru/Os configuration, the excited state 

would fully occupy 1X , such that 1X  = 1, at t = 0 ns. From the derivative of the first order rate 

law (Equation 4.7), we use our initial populations and the diagonalized rate matrix at t = 0 ns, 

( )X t and ( )D t respectively, to calculate sum of Ru* and Os* final population at t = 0 ns, 

( )( )X t . We use this final population vector as our new initial population vector and calculate 

a new final population for Frame 2. We continue to update the initial and final population vectors 

like this at each frame out to 700 ns (17502 frames) for the selected Ru/Os configuration and 

initial excitation. The result are population vectors for total Ru* and Os* population over time 

after initial excitation of 1X in the selected Ru/Os configuration. 

Running an EnT simulation on just one Ru/Os configuration is not a statistically accurate 

representation of EnT dynamics that occur in an ensemble of PF-RuOs assemblies. No matter 

what  , 0

Ruk , or 0

Osk  values we choose for our rate equations (Figure 4.3, Step 1), our simulated 

EnT kinetics would yield a poor fit to the experimental results. 
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Figure 4.3. Flow chart for running EnT simulations on an ensemble of CG MD PF-RuOs 70mer 

models to accurately fit experimental EnT kinetic traces. 

To increase the accuracy of our EnT simulations, incorporate five additional CG MD PF-Ru 

trajectories (Figure 4.3, Step 2). EnT simulations are looped over each MD trajectory, where 

each system can be loaded with 0 – 17 Os complexes (Figure 4.3, Step 3). EnT simulations are 

run on each Os loading scenario, each of which have 20 different Ru/Os configurations (Figure 

4.3, Step 4). Finally, the EnT simulations loop over an initial excitation of each complex in all 20 

Ru/Os configurations (Figure 4.3, Step 5). EnT simulations are run on each initial excitation in 

the selected Ru/Os configuration (Figure 4.3, Step 6) and the resulting Ru and Os excited and 

ground state populations are averaged across initial excitations and Ru/Os configurations. A 

weighted average is applied to the Ru and Os excited and ground state populations resulting from 

EnT simulations run for each Os loading scenario based on probabilities calculated in Equations 

4.1 (Figure 4.3, Step 7). We run a total of 133,000 EnT simulations. This increases the statistical 

accuracy of our calculations, and allows our averaged simulated Ru and Os excited and ground 
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state population kinetics over time, ( )( )X t  to more closely resemble the experimental traces 

(Figure 4.3, Step 8). 

4.3. Comparing Simulation to Experiment. 

4.3.1. Model Accuracy. 

Atomic layer under ambient conditions at 450°C for 30 minutes with a 45 minute ramp to 

temperature and left to cool for multiple hours. 

4.3.2. Sample Preparation for Transient Absorption. 

      We design our EnT simulations to accurately represent the ensemble of PF-RuOs assemblies 

we probe by time-resolved emission spectroscopy. In order to fit our experimental results 

properly, we must parameterize the kinetic constants of the simulated data (Figure 4.3, Step 1). 

The through-space Dexter EnT functions in Equation 2.1 explicitly define kinetics for single EnT 

hops from Ru* → Ru or Ru* → Os. Five parameters from these functions are utilized in our EnT 

simulations: 
Ru

emk , 
Os

emk ,  , 0

Ruk , and 0

Osk .We give parameters 
Ru

emk  and 
Os

emk  their inherent values 

of 1.01x10-3 and 2.00x10-2 ns-1, respectively, and make guesses for the attenuation parameter ( 

), the rate constant at closest approach for two Ru complexes ( 0

Ruk ), and that for a Ru complex 

and Os trap ( 0

Osk ) in an effort to best fit our experimental results. Good initial guesses for these 

parameters come in part from the set of   and corresponding 0k values Fleming et. al. used to 

simulate EnT kinetics in PS-RuOs and from our fitting of time-resolved emission traces at early 

times (Figure 2.7B).15  

Since we cannot identify a single value for the attenuation parameter, we complete 

simulations for a range of   values between 1.2 and 1.9 Å-1. For a given   value, we adjust 0

Ruk
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 and 0

Osk  to simultaneously fit simulated Ru* and Os* transients to those of the experiment. We 

keep 0k values for a given   when the simulated and experimental results align and run the entire 

EnT simulation script again with different 0k values when the fitting is poor. Table 4.1 lists the 

0k values that provide the best fits for each  . 

Table 4.1. EnT simulation rate constants at closest approach ( 0

Ruk  and 0

Osk ) that yield best 

agreement between simulation and experiment for different attenuation parameter values,  .  

β (Å-1) Ru

0k , (ns-1) 
Os

0k , (ns-1) 
Efficiency 

1.2 0.37 2.86 0.83 

1.3 0.3 4.0 0.81 

1.5 0.9 6.6 0.81 

1.7 1.6 9.5 0.82 

1.9 6.6 16 0.82 

 

There is good agreement between our experimental data and simulations when    is set to 1.6 

- 2.0 Å-1. Simulations using    values outside of this range do not elicit good fits no matter 

which 0k values are used in the combination. As   increases, 0k values, or rate at closest approach, 

must also increase to compensate for the faster falloff rate between donor and acceptor 

complexes. We are unable to eliminate any of the   values listed in Table 4.1 since the fitting 

obtained with the other   values are all qualitatively similar to each other. Here, we present 

simulation data only for   = 1.5 Å-1, since it is the center of the range. 

Figure 4.4 features a plot that overlays our 70mer simulation results with the experimental 

data. 



 
 

61 
 

 

Figure 4.4. Overlayed fitting with flexible CG MD PF-RuOs simulated kinetics for parameter 

set with   = 1.5 Å-1. Plot depicts Os* emission (purple) fit with the simulated Os* time-

dependent population (black) overlayed with Ru emission (red) fit with the simulated Ru* time-

dependent population (grey). The simulated ground state Os population population intensity after 

700 ns reaches 81% (wine). 

The “goodness of fit” was determined by eye with strong emphasis placed on the rise and 

rollover part of the transient since a large portion of sensitization events occurs within this time 

window. The time axis is plotted on a log scale to better represent the short- and long-time 

components of the data. Simulation-generated Ru and Os EnT kinetics show excellent qualitative 

agreement with the experimental results. The agreement shown in Figure 4.5, along with the 

similarity between simulated and experimental EnT efficiencies (81% and 80-85% respectively), 

gives us enough confidence in our kinetic model to use it to investigate the role of flexibility in 

EnT within PF-RuOs. 
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The fits in Figure 4.5 result from EnT simulations in which pendants in our CG MD 70mer 

model remain flexible (flexible case). Using the same   = 1.5 Å-1 parameter set and similar 

ensemble sampling method, we simulate EnT in a CG MD 70mer model where pendants are 

forced to be static (static case). We attempt to fit our experimental data with simulated transients 

produced by the same range of   values (Table 4.4). Unlike in the flexible case, we find that 

simulated kinetics in systems with static pendants do not agree well with the experimental results 

no matter how small we set   (Figure 4.5). 

 

Figure 4.5. Overlayed fitting with static CG MD PF-RuOs simulated kinetics for parameter set 

with   = 1.5 Å-1. Plot depicts Os* emission (purple) fit with the simulated Os* time-dependent 

population (black) overlayed with Ru emission (red) fit with the simulated Ru* time-dependent 

population (grey). The simulated ground state Os population population intensity after 700 ns 

reaches 48% (green). 
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     Although rates of simulated Ru excited state decay and Os sensitization remain concurrent at 

early times, the simulated EnT that does occur between static pendants gives rise to faster Ru 

excited state decay at short times and slower Ru decay at long times while the simulated growth 

and decay of the Os kinetics are faster overall. In systems with static pendants, the hopping rates 

depend exponentially on fixed distances between pendants, 
ijR . Ru complexes already positioned 

close enough to Os in static CG MD PF-RuOs have excited states that decay rapidly to sensitize 

those traps, giving rise to the fast Os sensitization and emission kinetics we observe.  

      Far away Ru* complexes in static systems do not possess the motion necessary to overcome 

the large attenuation parameter and/or hopping distances necessary to sensitize an Os trap. 

Instead of being quenched by Os, excited states on far away Ru will more often emit, resulting in 

smaller population in the Os ground state after 700 ns (48%). Rapid Os excited state decay and 

relatively small GS Os population buildup suggests that Os is a less ineffective quencher of far-

away excited state Ru in static systems compared to systems where pendants are flexible.  

Our kinetic method – CG MD and EnT simulations – allows us to incorporate the inherent 

motion of our 70mer by periodically updating the rate matrix to simulate Ru* and Os* 

populations over time and fit them to our experimental results. Our ability to turn the motion of 

the system’s pendants off or on enables us to probe the role of these fluctuations in EnT. Given 

that only simulated kinetics from the flexible model agree well with experimental kinetics and 

that there exists a large difference in Os GS populations for the flexible and static cases (81% 

and 48%, respectively), pendant flexibility seems to aid EnT in this system. 
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4.4. Computational Experiments and Discussion. 

     The fitting agreement we achieve in the flexible case gives us enough confidence in our 

kinetic model and a good indication that flexibility is beneficial for the system. From that 

confidence, we can validate our predictions that structural change or immobility influence EnT 

kinetics through several computational experiments that utilize our kinetic model as a 

framework.  

     The structural NN and NNN analyses we conducted on our CG MD PF-Ru model (Section 

3.2) and comparisons of the fitting and GS Os population between the flexible and static cases 

gives us some indication that these motions aid EnT in PF-RuOs. However, we must utilize 

computational experiments that compare excited state diffusion in systems where pendants are 

flexible to those that are static to confirm this. 

4.4.1. Diffusion. 

     Excited state diffusion is initiated by exciting a central Ru complex, Ru35. We can observe the 

population of the excited state on Ru out to ± 30 away after 350 ns in flexible and static systems 

for six different 350 ns trajectories in Figure 4.6. 
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Figure 4.6. (A) ES diffusion after initial excitation of Ru35 in Trajectories 1-6 with flexible 

pendants at t = 350 ns. (B) ES diffusion after initial excitation of Ru35 in a system with static 

pendants at t = 350 ns. 

For all trajectories, ES diffusion in the flexible case is largely Gaussian after 350 ns (Figure 

4.6A). This is not the case when pendants are static (Figure 4.6B). Each trajectory is ‘frozen’ at t 

= 0 ns, positioning Ru35 close to some complexes and far from others. When we simulate 

excitation of Ru35, the excited state cannot rely on molecular diffusion of the pendants to venture 

out along the backbone but must rely on its proximity to other complexes to achieve EnT. For 

example, the ES diffusion plot for Trajectory 5 at 350 ns reports significant population on Ru35 

and on neighboring complexes Ru34, Ru31, Ru30, Ru27, Ru26 and Ru25. Over 350 ns, the initially 

excited Ru35 distributes 62% of its ES population equally amongst these six neighboring 

complexes so that each carries ~9% of the ES population.  

We initially excite Ru35 and plot the ES diffusion in Trajectory 5 at times t in flexible and 

static systems to track the time-dependent distribution of the ES population (Figure 4.7).  
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Figure 4.7. (A) Averaged time-dependent ES diffusion plots after initially exciting Ru35 in 

Trajectory 5 with flexible pendants at times t. (B) Averaged time-dependent ES diffusion plots 

after initially exciting Ru35 in Trajectory 5 with static pendants at times t. 

At early times, the flexible case possesses a sharp peak similar to that in the static case. The 

sharp peak of the ES diffusion trace slowly evolves into broad band over time and shows full 

Gaussian behavior by 200 ns as shown in Figure 4.7A. The static case maintains a spiky profile 

with a majority of the ES population settled on the initially excited Ru35 and the remaining 

fraction dispersed evenly amongst its neighboring complexes. Over time, the ES transfers from 

Ru35 to its neighboring complexes, eventually matching the profile for Trajectory 5 observed in 

Figure 4.6. We can observe the molecular diffusion of Ru35 and its neighboring complexes, or its 

primary domain, from this CG MD PF-Ru trajectory over time (Figure 4.8).  
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Figure 4.8. Molecular diffusion of primary domain (orange) after excitation of Ru35 (yellow) in 

Trajectory 5 at times t. 

The primary domain of Ru35 at t = 0 ns is compact (~ 18.28 Å average separation) and will 

remain that way as the ‘frozen’ structure for the static case. Without pendant motion, the ES is 

only able to populate complexes in its primary domain. The ES population growth is only 

evidenced on complexes based in this domain (Figure 4.7B). 

     In the systems with flexible pendants, the primary domain molecularly diffuses in a way that 

is similar to that of a single pendant. Over time and after many naturally-occurring motions, the 

primary domain falls apart into its individual component pieces with pendants separated by an 

average of 35.31 Å by 350 ns. At short times, the pendants in the flexible case have not 

undergone enough motions to break out of their primary domain, restricting the ES to those 

complexes much like in the static case. The sharp peak in the ES diffusion plot broadens as 

pendants molecularly diffuse away from their original domain and move as individual pendants 

that can transport the ES across all polymer pendants. This diffusive behavior ultimately results 

in a gaussian ES diffusion curve by ~t = 200 ns (Figure 4.7A). 
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We investigate a different trajectory, Trajectory 2, to see how starting structure affects time-

dependent ES diffusion from an initially excited Ru35 in flexible and static systems (Figure 4.9). 

 

Figure 4.9. (A) Averaged time-dependent ES diffusion plots after initially exciting Ru35 in 

Trajectory 2 with flexible pendants at times t. (B) Averaged time-dependent ES diffusion plots 

after initially exciting Ru35 in Trajectory 2 with static pendants at times t. 

Similar to Trajectory 5, the sharp peak at t = 0 ns in the ES diffusion plot for the flexible 

Trajectory 2 case evolves into a broad peak over 350 ns (Figure 4.9A). The diffusion plot for the 

static case has multiple peaks like it did for Trajectory 5. The peaks in Trajectory 2, however, are 

two-tiered. At t = 50 ns, the initially excited Ru35 and Ru36, Ru40, Ru41, Ru44 each carry about 

15% of the ES population. By t = 350 ns, the ES population is distributed more broadly amongst 

Ru42, Ru46, Ru47, Ru48, Ru49, Ru50, Ru52, Ru58. Since the ES first flows from Ru35 to the group 

containing Ru36, it is the primary domain of Ru35 and the latter is its secondary domain. From 

Trajectory 2 of the CG MD PF-Ru model, we can observe the molecular diffusion of these 

domains over time, as shown in Figure 4.10. 
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Figure 4.10. Molecular diffusion of primary (orange) and secondary (green) domains after 

excitation of Ru35 (yellow) in Trajectory 2 at times t. 

At t = 0 ns, the primary and secondary domains of Ru35 each have small average separations 

between complexes in their respective groups (17.27 Å and 16.97 Å, respectively) with the 

primary domain as a whole situated closer to Ru35 than the secondary domain. Absent pendant 

motion, the ES is only able to travel amongst pendants in its primary domain. The ES must reach 

the periphery of the first domain before it can diffuse into the second. According to the plot in 

Figure 4.9B, the ES population in the primary domain begins to populate that of the to the 

secondary domain after ~50 ns. 

The mobility of the pendants in the flexible system causes both domains to break down over 

time. At t = 50 ns, we already observe heavy overlap between primary and secondary domains 

(Figure 4.10). These domains disassociate into pendants separated by an average of 42.51 Å and 

49.30 Å, respectively, by 350 ns. Compared to ES diffusion in Trajectory 5 (Figure 4.7A), there 

exist subtle differences in which complexes the ES populates around t = 1 ns. In both cases, the 

ES populates complexes that were close to the initially excited Ru35 at t = 0 ns, where the static 

system is ‘frozen’. This indicates that the flexible system retains a somewhat strong memory of 
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its original domains at 1 ns. This memory fades as molecular fluctuations allow pendants to 

diffuse further from those groups, resulting in the slow broadening of the sharp ES diffusion 

peak over time (Figure 4.9A). At around ~t = 175 ns, the pendants have fluctuated to the extent 

that the system is no longer confined by its original domains. This gives the ES freedom to move 

across the entire system and results in an entirely gaussian ES diffusion curve. In this work, we 

only elaborate on the domain structures of one Ru complex in the first 350 ns of Trajectories 2 

and 5. Multiple domains could exist for any given trajectory and/or initially excited Ru that may 

give the ES more ability to bleed out and explore a greater length of the polymer. 

To get a better understanding of the ES diffusion within the ensemble, we can excite each 

centrally localized Ru (Ru31 – Ru40), average the ES populations for all ten different initial 

excitations and six 350 ns CG MD trajectories and overlay those plots after the ES is allowed to 

diffuse over times t to extract the ES diffusion coefficient (Dcoeff ) of the flexible system (Figure 

4.11). 
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Figure 4.11. (A) Averaged time-dependent ES diffusion plots on Ru out to ± 30 away from the 

initial excited Ru at time t in systems with flexible pendants. (B) Distribution ( 2 ) plotted over 

times t in systems with flexible pendants. 

     The ES Diffusion in Figure 4.11A looks very similar to that in Figures 4.7A and 4.9A. By 

increasing the statistical accuracy of the plot we get a gaussian curve that is slightly more smooth 

at long times, while the same sharp peak at early time remains. This indicates that the 

fluctuations and domain evolution across trajectories and initial excitations result in very similar 

ES diffusions. Plotting 2  of the average ES diffusion over time results in a Dcoeff of 9.52x10-5 

complexes2/ns for the flexible case (Figure 4.11B). The ES illustrates diffusive behavior 

throughout the trajectory given that the trend line passes through y0 = 0.  

     We can compare these results to those in static systems by similarly averaging ES populations 

in all initial excitations and six 350 ns CG MD trajectories and plotting over times t. We 

calculate 2  at each time to extract the ES diffusion coefficient, Dcoeff of the static system 

(Figure 4.12). 
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Figure 4.12. (A) Averaged time-dependent ES diffusion plots on Ru out to ± 30 away from the 

initial excited Ru at time t in systems with static pendants. (B) Distribution ( 2 ) plotted over 

times t in systems with static pendants. 

Averaging ES populations across static systems and initial excitations results in a slightly 

more gaussian profile; however, we lose the description of the unique domain(s) each individual 

trajectory provides (Figure 4.12A). Plotting 2  of the average ES diffusion over time, alludes to 

an ES that only shows diffusive behavior after 50 ns (Figure 4.12B). If we fit only these values, 

y0 = 0 and Dcoeff = 9.20x10-6 complexes2/ns – a diffusion coefficient an order of magnitude less 

than that of the flexible case. The non-diffusive behavior observed before 50 ns can likely be 

explained by the restriction thet ES feels in its primary domain shortly after initial excitation. No 

matter how large the primary domain is or how many domains are accessible to the ES, the ES 

seems unable to populate any of them fully until after 50 ns. At t = 50 ns and beyond, the ES can 

occupy a substantial portion of a large primary domain or bleed into its secondary domain – in 

either case, taking on a modest ES diffusion compared to that observed in the flexible case. 
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4.5. Conclusion. 

Averaging ES populations across static systems and initial excitations results in a slightly 

more gaussian profile; however, we lose the description of the unique domain(s) each individual 

trajectory provides (Figure 4.12A). Plotting 2  of the average ES diffusion over time, alludes to 

an ES that only shows diffusive behavior after 50 ns (Figure 4.12B). If we fit only these values, 

y0 = 0 and Dcoeff = 9.20x10-6 complexes2/ns – a diffusion coefficient an order of magnitude less 

than that of the flexible case. The non-diffusive behavior observed before 50 ns can likely be 

explained by the restriction thet ES feels in its primary domain shortly after initial excitation. No 

matter how large the primary domain is or how many domains are accessible to the ES, the ES 

seems unable to populate any of them fully until after 50 ns. At t = 50 ns and beyond, the ES can 

occupy a substantial portion of a large primary domain or bleed into its secondary domain – in 

either case, taking on a modest ES diffusion compared to that observed in the flexible case. 
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APPENDIX A: MD TRAJECTORY CODE 
 

A.1. Job Submission. 

     Full length AA and CG MD simulations are run on 2 parallel nodes of Dogwood, one of 

UNC’s high-performance computing (HPC) clusters. The following programs and accounts are 

required in order to submit jobs to Dogwood: 1) A Dogwood account that can be obtained 

through UNC’s (ITS), 2) SSH Secure Shell Client or another terminal program, which allows 

user to type necessary commands, and 3) SSH Secure File Transfer Client or another file transfer 

program, which holds all input and output files of job. The file transfer program will ask for the 

connection type, hostname, port number, and username which are SFTP (SSH File Transfer 

Protocol), longleaf.unc.edu, 21 (Mac) or 22 (PC), and the user’s onyen, respectively. To submit a 

job, users may log into their dogwood account with the following command: ssh 

onyen@dogwood.unc.edu and enter onyen password when prompted. The user can navigate to 

their home directory (cd /nas/longleaf/home/onyen) or to whichever path their submission files 

exist.  

     All coded scripts and functions for this project are saved on the AD backup under the 

following paths: 

1) ad.unc.edu/cas/chemistry/share/PapanikolasGroup/Workspace (Current)/Bowers(LMRB)/PF-

RuOs_MDSimulations/Code_LMRBMac/Matlab 
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2) ad.unc.edu/cas/chemistry/share/PapanikolasGroup/Workspace (Current)/Bowers(LMRB)/PF-

RuOs_MDSimulations/Code_LMRBMac/Cluster.  

3) /nas/longleaf/home/mbalu 

     Path 1 holds a copy of all the original files and make edits to the code. The finalized files used 

to run those jobs are kept on Path 2. Path 3 is the longleaf home directory that contains scripts 

ready to be run. 

A.2. AA and CG MD Trajectory. 

     We run a 10 ps molecular dynamics (MD) equilibration with a 1 fs timestep on the system to 

relax the system components after packing them together into the simulation cell. All Molecular 

Dynamics (MD) simulations are performed using a set of programs in Biovia’s Materials Studio, 

version 8 [Marrink, 2007], on a high-performance computing cluster. To setup this calculation, 

we go to ‘Modules’ then ‘Forcite’ and ‘Calculation’ in the top menu.  

     For equilibration calculations, the simulation cell is coupled to a Velocity Scale thermostat set 

to 298 K and a Berendsen barostat set to 1 atm, both of which operate with a relaxation time of 1 

ps. For the all atom MD simulation, we utilize a universal forcefield that summates forces 

imposed on each bead every 1 fs via Verlet Integration. A cubic spline switching function 

truncates long-range, non-bonding potentials at 12.5 Å, where interactions between bead pairs 

separated by more than this distance are not calculated. The equilibration calculation is run on all 

8 cores of a desktop computer. Once the cell equilibrates, we run our full-length molecular 

dynamics calculation under mostly the same conditions. Unlike the equilibration calculation, 

however, we couple the cell to a Nose thermostat, take the trajectory out to 40 ns, and run the 

calculation on an HPC.  
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     Table A.1 defines the filenames required to run a 40 ns MG-defined AA MD trajectory 

(Chapter 3.1.3). 

Table A.1. Files required to run a 40 ns AA MD trajectory. 

Filename Description 

AAPFRu80.xtd MG-defined AA MD Trajectory 

ForciteScript.pl Copied MS MD script that simulates motion in 

CG-defined AA model out to 40 ns 

submit.sh Submission command designating specific 

Dogwood partition to run MD script 

script.x Sets up communication between Dogwood and 

Materials Studio 18.1 

 

Files for editing can be found under the following path: 

PapanikolasGroup/Workspace/Bowers/PFRuOs_CGMDSimulations/Code_LMRBMac/Matlab/C

luster /CGMDTraj (1)_Dogwood. Files to run can be found under the following path: 

/nas/longleaf/hom/mbalu/AA. 

The equilibrated 80mer MG-defined AA model (AAPFRu80.xtd) serves as input for the 

ForciteScript.pl script defined below. 

ForciteScript.pl 

#!perl 

 

use strict; 

use Getopt::Long; 

use MaterialsScript qw(:all); 

 

my $doc = $Documents{"AAPFRu70_1.xtd"}; 

 

my $results = Modules->Forcite->Dynamics->Run($doc, Settings( 

 ChargeAssignment => "Use current",  



 
 

77 
 

 Ensemble3D => "NPT",  

 Pressure => 0.0001,  

 NumberOfSteps => 10000000,  

 TimeStep => 1,  

 Thermostat => "Nose",  

 EnergyDeviation => 1e+006,  

 InitialVelocities => "Current",  

 StressXX => -0.0001,  

 StressYY => -0.0001,  

 StressZZ => -0.0001)); 

my $outTrajectory = $results->Trajectory; 

 

submit.sh 

#!/bin/sh 

 

#SBATCH -J AA70_1 

#SBATCH -o my_output.%j 

#SBATCH -n 80 

#SBATCH -N 2 

#SBATCH -t 7-00:00:00 

#SBATCH --mem=200g 

#SBATCH -p skylake 

#SBATCH --mail-type=END,FAIL 

#SBATCH --mail-user=mbalu@live.unc.edu 

./script.x ForciteScript 

 

script.x 

#!/bin/sh 

 

export WORKDIR=`pwd` 
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export DSD_QUEUED_RUN=1 

export TASKS_PER_NODE=`expr $SLURM_NTASKS / $SLURM_NNODES` 

scontrol show hostnames $SLURM_JOB_NODELIST|sed 

s/\$/:$TASKS_PER_NODE/g > machines.LINUX 

export DSD_MachineList=$WORKDIR/machines.LINUX 

export DSD_NumProc=$SLURM_NTASKS 

/nas/longleaf/apps/materialstudio/2018/MaterialsStudio18.1/etc/Scripti

ng/bin/RunMatScript.sh -np $DSD_NumProc $1 

 

To submit the job, the following command prompts are required: 

cd /nas/longleaf/home/CGMDTraj/AA (change directory) 

chmod a+x submit.sh script.x (allow Dogwood to read scripts) 

sbatch submit.sh (submit job) 

squeue -u mbalu (check on job progress) 

 

Table A.2 describes the files required to histogram angles selected for a particular bead set type 

in a 40 ns MG-defined AA MD trajectory (Section 3.1.3)
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Table A.2. Files required to run a histogram analysis angles between a specific set of beads. 

Filename Description 

BeadTypeSet.xlsx All angles of BeadTypeSet saved across 40 ns 

MG-defined AA MD trajectory 

AngleAnalysis.m Matlab script that provides population densities 

as a function of equilibrium for all bead set 

types 

Histogram.m Matlab function that histograms angles 

extracted from AA MD simulation and plots 

population density as a function of wavelengths 

0 – 360° (AngA) 

 

Files to edit and run can be found in the following path: 

PapanikolasGroup/Workspace/Bowers/PFRuOs_CGMDSimulations/Code_LMRBMac/Matlab/A

ngleAnalysis. 

The Signal Processing Toolbox for Matlab must be installed before running. Codes for the files 

listed in Table A.2 are outlined below.  

AngleAnalysis.m 

clear; 

%Read each excel file containing Bead Set Type angles across the 40 ns 

AA MD trajectoryprominence = .001; 

x = {xlsread('ABC.xlsx') xlsread('BCD.xlsx') xlsread('CDE.xlsx') 

xlsread('DED.xlsx') xlsread('DDE.xlsx') xlsread('DDD.xlsx')}; 

files = numel(x); 

  

POPANG = cell(files,1); 

PEAKNUM = cell(files,1); 

ANGA = cell(files,1); 

BEGANG = cell(files,1); 

ENDANG = cell(files,1); 

BW = cell(files,1); 

DATA = cell(files,1); 

%loop over all excel files 

for i = 1:files 

    Data = x{i}; 

    [POPAng,peaknum,AngA,BegAng,EndAng,bw] = 

Histogram(Data,prominence); 

    POPANG{i} = POPAng; 

    PEAKNUM{i} = peaknum; 
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    ANGA{i} = AngA; 

    BEGANG{i} = BegAng; 

    ENDANG{i} = EndAng; 

    BW{i} = bw; 

    DATA{i} = Data; 

end 

 

Histogram.m 

function 

[POPAng,peaknum,AngA,BegAng,EndAng,bw]=Histogram(Data,prominence) 

    [y,ang,bw] = ksdensity(Data,0:1:180); 

    [peaks,POPAng,~,~] = 

findpeaks(y,ang,'MinPeakProminence',prominence,'Annotate','extents'); 

    peaknum = numel(peaks); 

    histogram(Data); 

    histfit(Data,[],'kernel'); 

    y = y'; 

    ang1 = ang'; 

    BegAng = ang1(1); 

    EndAng = ang1(end); 

    ang2 =360-ang1; 

    ANG = vertcat(ang1,ang2); 

    Y = vertcat(y,y); 

    AngA = horzcat(ANG,Y); 

end 

 

The final frame of the equilibrated CG MD model (CGPFRu_M_1.xtd) serves as input for the 

first part of the 700 ns MD trajectory. Table A.3 defines the filenames required to run our first 

350 ns CG MD trajectory. 

Table A.3. Files required to run the first part of a 700 ns CG MD trajectory over 350 ns. 

Filename Description 

CGPFRu_M_1.xtd (M = 1 – 7) Part 1 of 80mer CG MD Trajectory M 

MesociteScript.pl MD script from MS with equilibrium trajectory 

and forcefield document as inputs 

newbeads_ang.off Forcefield document 

submit.sh Submission command designating specific 

Dogwood partition to run MD script 

script.x Sets up communication between Dogwood and 

Materials Studio 18.1 
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Files for editing can be found in the following path: 

PapanikolasGroup/Workspace/Bowers/PFRuOs_CGMDSimulations/Code_LMRBMac/Cluster 

/CGMDTraj (1)_Dogwood. Files to run can be found under the following path: 

/nas/longleaf/hom/mbalu/N_1. 

Codes for the files listed in Table A.3 are defined below. 

MesociteScript.pl 

#!perl 

 

use strict; 

use Getopt::Long; 

use MaterialsScript qw(:all); 

 

my $doc = $Documents{"CGPFRu70_M_1.xtd"}; 

 

my $results = Modules->Mesocite->Dynamics->Run($doc, Settings( 

 CurrentForcefield => "/newbeads_ang",  

 Ensemble3D => "NPT",  

 Pressure => 0.0001,  

 NumberOfSteps => 43750000, 

 TimeStep => 8,  

 EnergyDeviation => 100000,  

 InitialVelocities => "Current",  

 StressXX => -0.0001,  

 StressYY => -0.0001,  

 StressZZ => -0.0001)); 

my $outTrajectory = $results->Trajectory; 

 

newbeads_ang.off 

[See Tables 3.3 – 3.7] 
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submit.sh 

#!/bin/sh 

 

#SBATCH -J CG70_M_1 

#SBATCH -o my_output.%j 

#SBATCH -n 80 

#SBATCH -N 2 

#SBATCH -t 7-00:00:00 

#SBATCH --mem=200g 

#SBATCH -p skylake 

#SBATCH --mail-type=END,FAIL 

#SBATCH --mail-user=mbalu@live.unc.edu 

 

./script.x MesociteScript 

script.x 

[same as above] 

To submit the job, the following command prompts are required: 

cd /nas/longleaf/home/CGMDTraj/M_1 (change directory) 

chmod a+x submit.sh script.x (allow Dogwood to read scripts) 

sbatch submit.sh (submit job) 

squeue -u onyen (check on job progress) 

 

The resulting .xtd file represents the first half of the 700 ns motion simulation 

(CGPFRu_M_1.xtd). We add this file to our Material Studio project, save the trajectory at its last 

frame (CGPFRu_M_2.xtd), and use it as input for the second part of the MD Trajectory. Table 

A.4 outlines the filenames required to run the second 350 ns CG MD trajectory. 
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Table A.4. Files required to run the second part of a 700 ns CG MD trajectory over 350 ns. 

Filename Description 

CGPFRu_M_2.xtd (M = 1 – 6) Part 2 of 80mer CG MD Trajectory M 

MesociteScript.pl MD script from MS with end of Part 1 trajectory 

and forcefield document as inputs 

newbeads_ang.off Forcefield document 

submit.sh Submission command designating specific 

Dogwood partition to run MD script 

script.x Sets up communication between Dogwood and 

Materials Studio 18.1 

 

The files for editing can be found in the following path: 

PapanikolasGroup/Workspace/Bowers/PFRuOs_CGMDSimulations/Code_LMRBMac/Cluster 

/CGMDTraj(1)_Dogwood. Files to run can be found under the following path: 

/nas/longleaf/hom/mbalu/N_2. 

Scripts from Table A.4 are defined below. 

MesociteScript.pl 

#!perl 

 

use strict; 

use Getopt::Long; 

use MaterialsScript qw(:all); 

 

my $doc = $Documents{"CGPFRu70_M_1.xtd"}; 

 

my $results = Modules->Mesocite->Dynamics->Run($doc, Settings( 

 CurrentForcefield => "/newbeads_ang",  

 Ensemble3D => "NPT",  

 Pressure => 0.0001,  

 NumberOfSteps => 43750000, 

 TimeStep => 8,  
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 EnergyDeviation => 100000,  

 InitialVelocities => "Current",  

 StressXX => -0.0001,  

 StressYY => -0.0001,  

 StressZZ => -0.0001)); 

my $outTrajectory = $results->Trajectory; 

 

newbeads_ang.off 

[See Tables 3.3 – 3.7] 

 

submit.sh 

#!/bin/sh 

 

#SBATCH -J CG70_M_2 

#SBATCH -o my_output.%j 

#SBATCH -n 80 

#SBATCH -N 2 

#SBATCH -t 7-00:00:00 

#SBATCH --mem=200g 

#SBATCH -p skylake 

#SBATCH --mail-type=END,FAIL 

#SBATCH --mail-user=mbalu@live.unc.edu 

 

./script.x MesociteScript 

 

script.x 

[Same as above] 

To submit the job, the following command prompts are required: 

cd /nas/longleaf/home/CGMDTraj/M_1 (change directory) 

chmod a+x submit.sh script.x (allow Dogwood to read scripts) 
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sbatch submit.sh (submit job) 

squeue -u onyen (check on job progress) 
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APPENDIX B: ENT SIMULATIONS CODE 

 

B.1. Ru Coordinate Extraction.  

Table 6.1 outlines the files required to extract the desired XYZ complex coordinates. 

Table B.1. Files required to extract the XYZ coordinates of the Ru complexes in the 80mer CG 

MD model. 

Filename Description 

CGPFRu_M_N.xtd (M = 1 – 6, N = 1 or 2) Part N of 80mer CG MD Trajectory N with sets 

“A” defined 

extractXYZ.pl Extracts XYZ coordinates of Ru bead sets “A” 

in order 

script.x Sets up communication between Dogwood and 

Materials Studio 18.1 

submit.sh Submission command designating specific 

Dogwood partition to run MD script 

 

Perl files for editing can be found under the following path: 

PapanikolasGroup/Workspace/Bowers/PFRuOs_CGMDSimulations/Code_LMRBMac/Matlab/C

luster/ExtractCoord (2)_Dogwood/80mer_Ru. Files for running on Dogwood can be found under 

the following path: /nas/longleaf/home/mbalu/ExtractCoord. 

The scripts and embedded functions from Table B.1 are defined below. 

extractXYZ.pl 

#!perl 

 

use strict;  
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use MaterialsScript qw(:all); 

 

#open the multiframe trajectory structure file or die  

my $doc = $Documents{"./CGPFRu_M_N.xtd"};  

 

if (!$doc) {die "no document";} 

 

my $trajectory = $doc->Trajectory; 

 

if ($trajectory->NumFrames>1) { 

    # Open new report file 

    my $report=Documents->New("CGPFRu70_Ru_M_N.txt"); 

    $report->Append("Found ".$trajectory->NumFrames." frames in the 

trajectory\n"); 

    $report->Close; 

    # Open new xmol trajectory file 

    my $xmolFile=Documents->New("CGPFRu70_Ru_M_N_coords.txt"); 

    my $xmolFile_simple=Documents-

>New("CGPFRu70_Ru_7_2_coords_simple.txt"); 

     

    # loops over the frames  

    for (my $frame=1; $frame<=$trajectory->NumFrames; ++$frame){ 

    $trajectory->CurrentFrame = $frame; 

    #get beads in the structure 

    for (my $q=0; $q<=39; ++$q){ 

        my $beads=$doc->UnitCell->Sets->Item($q); 

        my $Nbeads=@$beads; 

        #write header xyz 

        $xmolFile->Append(sprintf "%i \n\n", $Nbeads); 

        # write bead symbol and x-y-z- coordinates 

        foreach my $bead (@$beads){ 
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            $xmolFile->Append(sprintf "%s %f  %f  %f \n",$bead-

>BeadTypeName, $bead->X, $bead->Y, $bead->Z);  

            $xmolFile_simple->Append(sprintf "%s  %f  %f \n", $bead-

>X, $bead->Y, $bead->Z); 

        }  

    } 

    }  

    #close trajectory file 

    $xmolFile->Close; 

 

}  

else {  

    print "The " . $doc->Name . " is not a multiframe trajectory file 

\n";  

} 

 

submit.sh 

#!/bin/sh 

 

#SBATCH -J XYZ70_M_N 

#SBATCH -o my_output.%j 

#SBATCH -n 88 

#SBATCH -N 2 

#SBATCH -t 3-00:00:00 

#SBATCH --mem=200g 

#SBATCH -p 528_queue 

#SBATCH --mail-type=END,FAIL 

#SBATCH --mail-user=mbalu@live.unc.edu 

 

./script.x extractXYZ 

 

script.x 
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[same as above] 

To submit the job, the following command prompts are required: 

cd /nas/longleaf/home/CGMDTraj/M_1 (change directory) 

chmod a+x submit.sh script.x (allow Dogwood to read scripts) 

sbatch submit.sh (submit job) 

squeue -u onyen (check on job progress) 

The output text files contain the XYZ coordinates of Ru beads in sets “A” across all frames in 

each of our CG MD trajectories (Table B.2). 

Table B.2. Main output files of the extractXYZ.pl script. 

Filename Description 

CGPFRu80_Ru_M_N.txt (N = 1 – 7, M = 1 or 

2) 

Number of frames in Part N of 80mer CG MD 

trajectory M 

CGPFRu80_Ru_M_N_coords.txt Lists coordinates of all Ru beads, identifies 

bead type and number that exist in in each 

frame (incl. spaces between frames) 

CGPFRu80_Ru_M_N_coords_simple.txt Lists coordinates of all Ru beads in each 

frame (no spaces between frames) 

 

Files can be found under the following path: 

PapanikolasGroup/Workspace/Bowers/PFRuOs_CGMDSimulations/Code_LMRBMac/Matlab/C

luster/ExtractCoord (2)_Dogwood/80mer_Ru.  

B.1.1. EnT Simulation Code. 

     EnT simulations are run on Longleaf, another one of UNC’s HPCs. A Longleaf account that 

can be obtained through ITS. Similar to jobs submitted to Dogwood, users may use SSH Secure 

Shell Client or another terminal program to log into their longleaf account with the following 

command: ssh onyen@longleaf.unc.edu and enter user onyen password when prompted. SSH 

Secure File Transfer Client holds all input and output files of a job. The user’s home directory 

still exists at the following path: /nas/longleaf/home/onyen.  
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Along with the other files listed in Table B.3, our ENT_SIMULATION_PARFOR.m function 

simulates EnT between those complex beads as they move around from frame to frame (Section 

4.2). 

Table B.3. Files required to run EnT simulations on 70mer CG MD models. 

Filename Description 

CGPFRu_M_N.xlsx (n = 1 – 7) Extracted XYZ Ru coordinates from Part N of 

the 80mer CG MD Trajectory M 

ENT_SIMULATION_PARFOR.m Parallel-computing enabled EnT Simulation 

function 

DISTANCE_MATRIX.m Uses distance function to calculate time-

dependent distances between all Ru-Ru and Ru-

Os complex pairs 

KINPOP.m Function containing KINETIC_MATRIX.m, 

POPULATION.m, and 

STATIC_POPULATION.m 

KINETIC_MATRIX.m Calculates time-dependent kinetic matrices from 

the distance matrices and diagonalizes each 

kinetic matrix 

POPULATION.m Calculates time-dependent populations of Ru* 

and Os* in systems where pendants remain 

flexible 

STATIC_POPULATION.m Calculates time-dependent populations of Ru* 

and Os* in systems where pendants are treated 

statically 

OS_WEIGHT.m Calculates probability of each Os loading 

scenario 

submit.sh Submission command designating specific 

Dogwood partition to run EnT Simulation 

function 

 

Matlab files for editing can be found on the following path: 

PapanikolasGroup/Workspace/Bowers/PFRuOs_CGMDSimulations/Code_LMRBMac/Cluster/E

nTSim (3)_Longleaf. Files for running on Longleaf can be found under the following path: 

/nas/longleaf/home/mbalu/EnTSim. 

The scripts and embedded functions from Table B.3 are defined below. 

ENT_SIMULATION_PARFOR.m. 
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clear; 

tic; 

  

%set up calculation with 24 processors on parallel computer 

myCluster = parcluster('local');                                            

myCluster.NumWorkers = 24; 

saveProfile(myCluster); 

parpool(24);                                                                

%--------USER DEFINED PARAMETERS-----% 

%%%select files of different PF-RuOs CG MD trajectories%% 

TrajRu = transpose({xlsread('CGPF-Ru70_3_1.xlsx') xlsread('CGPF-

Ru70_3_2.xlsx') xlsread('CGPF-Ru70_4_1.xlsx') xlsread('CGPF-

Ru70_4_2.xlsx') xlsread('CGPF-Ru70_5_1.xlsx') xlsread('CGPF-

Ru70_5_2.xlsx') xlsread('CGPF-Ru70_6_1.xlsx') xlsread('CGPF-

Ru70_6_2.xlsx') xlsread('CGPF-Ru70_7_1.xlsx') xlsread('CGPF-

Ru70_7_2.xlsx') xlsread('CGPF-Ru70_10_1.xlsx') xlsread('CGPF-

Ru70_10_2.xlsx')});  

trajRu = {cat(1,TrajRu{1:2}) cat(1,TrajRu{3:4}) cat(1,TrajRu{5:6}) 

cat(1,TrajRu{7:8}) cat(1,TrajRu{9:10}) cat(1,TrajRu{11:12})}'; 

%number of Ru coordinates actually extracted (4 unit cells, each 

containing one 20mer) 

PolyCount = 80;                                                             

%Ru coordinates in 70mer 

RuCount = 70;     

%each trajectory in trajRu has 17502 frames 

FramesPerTraj = 17502;   

%each trajectory in trajRu is 700 ns 

TrajTime = 700;  

%number of Ru/Os Configurations for each Os loading scenario 

configurations = 10; 

%rates of closest approach and decay (ns^-1) and attenuation parameter 

(A^-1) 

ConstantArray = [k0Ru k0Os kemRu kemOs B]';  

%probability Os will be loaded with given fraction of homopolymer 

p_os = [0.144300144 0.146520147 0.148809524 0.151975684 0.158730159 

0.162337662];    

%Fraction PF-Ru70 homopolymer..Mostly at 0.06 but may readjust  

f_hp = [0.01 0.025 0.04 0.06 0.1 0.12];                                     

p_os = p_os(4);                                                             

f_hp = f_hp(4); 

%number of Os loading scenarios...up to this many Os can be loaded 

Trials = 17; 

%LJ Ru bead radius used for calculating periphery-periphery separation 

RuRadius = (2^(1/6))*6.53325;                                               

% %----END USER DEFINED PARAMETERS-----% 

r = length(trajRu);                                                         

TotalFrameCount = FramesPerTraj*r;                                          

T = TrajTime*r;                                                             

timestep = T/TotalFrameCount; 

times = 0:timestep:T-timestep; 

times = times'; 
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%create Time variable with 40 ps time steps (MS has 8 fs steps saved 

every 5000th frame)  

Time = times(1:FramesPerTraj);                                              

%structure loaded with N Os (N = 0-17)  

x = [0:Trials]';                                                            

%%Variable Set up%% 

S = cell(length(x),1); 

I_o = cell(length(x),1); 

GS_Os = cell(length(x),1); 

I_o_static = cell(length(x),1); 

GS_Os_static = cell(length(x),1); 

I_r = cell(length(x),1); 

I_r_static = cell(length(x),1);  

IO = cell(length(x),r); 

IR = cell(length(x),r); 

GSO = cell(length(x),r); 

GSR = cell(length(x),r); 

IO_static = cell(length(x),r); 

IR_static = cell(length(x),r); 

GSO_static = cell(length(x),r); 

DIFF3D_ = cell(length(x),r); 

%loop over six 700 ns  CG MD trajectories 

for j = 1:r  

    Ru = trajRu{j}; 

    Coord2DRu = mat2cell(Ru,PolyCount*ones(FramesPerTraj,1),3);  

    %calculate time-dependent distance matrices and discount 5 complex 

coordinates at each end to create true 70mer %% 

    [Dist3D,Coord2D_Ru_R] = 

DISTANCE_MATRIX(Coord2DRu,RuRadius,FramesPerTraj,RuCount); 

    %use time-dependent distance matrices to calculate time dependent 

kinetic matrices  

    %for all possible initial excitations for one Ru/Os Configuration 

in one 

    %Os loading scenario...Loop over all Os loading scenarios%% 

    for i = 1:18         

        [~,Ios,Iru,GSOs,GSRu,Ios_static,Iru_static,GSOs_static,DIFF3D] 

= 

KINPOP(RuCount,j,i,x,configurations,Dist3D,FramesPerTraj,timestep,Cons

tantArray); 

        IO{i,j} = mean(horzcat(Ios{:}),2);                                  

        IR{i,j} = mean(horzcat(Iru{:}),2);                                    

        GSO{i,j} = mean(horzcat(GSOs{:}),2);  

        IO_static{i,j} = mean(horzcat(Ios_static{:}),2); 

        IR_static{i,j} = mean(horzcat(Iru_static{:}),2); 

        GSO_static{i,j} = mean(horzcat(GSOs_static{:}),2);  

        DIFF3D_{i,j} = mean(horzcat(DIFF3D{:}),2); 

    end 

end 

%calculate weighting for each Os loading scenario 

[x_,check] = OS_WEIGHT(RuCount,Trials,p_os,f_hp);                    

%%average excited state (ES) populations across trajectories for each 

Os loading scenario  
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%%- avg across rows in opened cells from above%%  

for m = 1:18 

    I_o{m} = mean(horzcat(IO{m,:}),2);                                      

    I_r{m} = mean(horzcat(IR{m,:}),2); 

    GS_Os{m} = mean(horzcat(GSO{m,:}),2); 

  

    I_o_static{m} = mean(horzcat(IO_static{m,:}),2); 

    I_r_static{m} = mean(horzcat(IR_static{m,:}),2); 

    GS_Os_static{m} = mean(horzcat(GSO_static{m,:}),2); 

end 

%%Weighted average of ES populations across Os loading scenarios with 

%%weights x%% 

I_o__ = horzcat(I_o{:}); 

I_o_w_ = sum(x_'.*I_o__,2)./sum(x_',2); 

I_o_w_ = real(I_o_w_); 

     

I_r__ = horzcat(I_r{:}); 

I_r_w_ = sum(x_'.*I_r__,2)./sum(x_',2); 

I_r_w_ = real(I_r_w_); 

     

GS_Os__ = horzcat(GS_Os{:}); 

GS_Os_w_ = sum(x_'.*GS_Os__,2)./sum(x_',2); 

GS_Os_w_ = real(GS_Os_w_); 

%normalize peaks to 1   

I_o_wnorm = I_o_w_ ./ max(I_o_w_);                                          

I_r_wnorm = (I_r_w_ ./ max(I_r_w_));  

%%MAIN OUTPUT VAR: Measure Os ES population in flexible case                                       

OsPOP_norm = horzcat(Time,I_o_wnorm);                                                

RuPOP_norm = horzcat(Time,I_r_wnorm);                                       

GSOsPOP = horzcat(Time,GS_Os_w_);                                           

     

%%STATIC%%% 

I_o_static__ = horzcat(I_o_static{:}); 

I_o_static_w_ = sum(x_'.*I_o_static__,2)./sum(x_',2); 

I_o_static_w_ = real(I_o_static_w_); 

     

I_r_static__ = horzcat(I_r_static{:}); 

I_r_static_w_ = sum(x_'.*I_r_static__,2)./sum(x_',2); 

I_r_static_w_ = real(I_r_static_w_); 

  

GS_Os_static__ = horzcat(GS_Os_static{:}); 

GS_Os_static_w_ = sum(x_'.*GS_Os_static__,2)./sum(x_',2); 

GS_Os_static_w_ = real(GS_Os_static_w_); 

%normalize peaks to 1 

I_o_static_w_norm = I_o_static_w_ ./ max(I_o_static_w_);                    

I_r_static_w_norm = (I_r_static_w_ ./ max(I_r_static_w_));       

%%MAIN OUTPUT VAR: Measure Ru ES population in static case            

RuPOP_static_norm = horzcat(Time,I_r_static_w_norm);                                      

OsPOP_static_norm = horzcat(Time,I_o_static_w_norm);                        

GSOsPOP_static = horzcat(Time,GS_Os_static_w_);                             

  

%save all main output variables 
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save('70mer_B15_RuSets.mat','OsPOP_norm','OsPOP_static_norm','GSOsPOP'

,'GSOsPOP_static','RuPOP_norm','RuPOP_static_norm','Time','check','DIF

F3D_'); 

  

clear; 

%document calculation time 

toc; 

timerVal = tic; 

 

DISTANCE_MATRIX.m. 

function [Dist3D,Coord2D_Ru_R] = 

DISTANCE_MATRIX(Coord2DRu,RuRadius,FramesPerTraj,RuCount) 

Dist3D = cell(FramesPerTraj,1); 

Coord2D_Ru_R = cell(FramesPerTraj,1); 

RuRu = zeros(RuCount,RuCount); 

%loop over all frames 

for m = 1:FramesPerTraj 

    Coord2D_Ru_f = Coord2DRu{m}; 

    %choose coordinates to create true 70mer CG MD model 

    Coord2D_Ru_frame = Coord2D_Ru_f(5:74,:);    

    %loop over all complex pairs 

    for k = 1:RuCount 

        for i = 1:k 

            Xk = Coord2D_Ru_frame(k,1); 

            Xi = Coord2D_Ru_frame(i,1); 

            Yk = Coord2D_Ru_frame(k,2); 

            Yi = Coord2D_Ru_frame(i,2); 

            Zk = Coord2D_Ru_frame(k,3); 

            Zi = Coord2D_Ru_frame(i,3); 

            %distance formula 

            distance = sqrt((Xk-Xi)^2+(Yk-Yi)^2+(Zk-Zi)^2);                 

            if Xk == Xi&&Yk == Yi&&Zk == Zi 

                distance = inf; 

            end  

            %calculate periphery-periphery distances between complexes 

            RuRu(k,i)= distance-(2*RuRadius);                               

            RuRu(i,k)= distance-(2*RuRadius);                                

        end 

    end 

    %save 70mer coordinates and distances 

    Coord2D_Ru_R{m} = Coord2D_Ru_frame;                                 

    Dist3D{m} = RuRu;                                                     

end 

end 

  

KINPOP.m.  

function 

[ST,Ios,Iru,GSOs,GSRu,Ios_static,Iru_static,GSOs_static,DIFF3D] = 
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KINPOP(RuCount,j,i,x,structures,Dist3D,FramesPerTraj,TS_,ConstantArray

) 

InitialArray = zeros(RuCount+2,1); 

%excite all complexes 

InitialArray(1:RuCount) = 1;                                                

%%variable setup%% 

Iru = cell(structures,1); 

Ios = cell(structures,1); 

GSOs = cell(structures,1); 

GSRu = cell(structures,1); 

Ios_static = cell(structures,1); 

Iru_static = cell(structures,1); 

GSOs_static = cell(structures,1); 

DIFF3D = cell(structures,1); 

%loop over number of Ru/Os configurations for each Os loading scenario                                                                                                   

for s = 1:structures  

    ST = zeros(RuCount,1); 

    %x = Os loading scenario and x indices randomly given 1 are "Os" 

and 0 are "Ru" 

    ST(randperm(numel(ST),x(i))) = 1;  

    %calculate time-dependent, diagonalized kinetic matrices from 

time-dependent distance matrices 

    [khop3D_d,Q_,khop3D_dM,Q_M] = 

KINETIC_MATRIX(Dist3D,FramesPerTraj,RuCount,TS_,ST,ConstantArray);  

    %display calculation status - which trajectory, Os loading 

scenario and Ru/Os configuration 

    A = [j i s];                                                            

    disp(A) 

    %calculate ES population over time for given Ru/Os configuration 

in systems with flexible pendants 

    [Iru_a,Ios_a,GSRu_a,GSOs_a,Diff3D] = 

POPULATION(FramesPerTraj,RuCount,InitialArray,ST,khop3D_d,Q_);  

    %calculate ES population over time for given Ru/Os configuration 

in systems with static pendants 

    [Iru_a_static,Ios_a_static,~,GSOs_a_static] = 

STATIC_POPULATION(FramesPerTraj,RuCount,InitialArray,ST,khop3D_dM,Q_M)

; 

    %collect time-dependent Ru and Os ES and GS populations for each 

Ru/Os 

    %configuration in flexible and static cases 

    Iru{s} = Iru_a;                                                         

    Ios{s} = Ios_a; 

    GSOs{s} = GSOs_a; 

    GSRu{s} = GSRu_a;  

    DIFF3D{s} = Diff3D; 

     

    Ios_static{s} = Ios_a_static;                                            

    Iru_static{s} = Iru_a_static; 

    GSOs_static{s} = GSOs_a_static; 

end 

end 
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KINETIC_MATRIX.m. 

function [khop3D_d,Q_,khop3D_dM,Q_M] = 

KINETIC_MATRIX(Dist3D,FramesPerTraj,RuCount,TS_,ST,ConstantArray) 

%PendantCount+2 to include GSRu and GSOs 

khop = zeros(RuCount+2,RuCount+2);                                          

khop3D_d = cell(FramesPerTraj,1);                                           

Q_= cell(FramesPerTraj,1);  

%%loop over distance matrices at each time frame and input into Dexter 

EnT equation%% 

for i = 1:FramesPerTraj 

        Dist = Dist3D{i}; 

        %Ru to Ru, k0Ru and B 

        khop(ST==0,ST==0) = ConstantArray(1)*exp(-

ConstantArray(5)*(Dist(ST==0,ST==0)));  

        %Ru to Os, k0Os and B  

        khop(ST==1,ST==0) = ConstantArray(2)*exp(-

ConstantArray(5)*(Dist(ST==1,ST==0))); 

        %Os ES cant go to Ru 

        khop(ST==0,ST==1) = 0;  

        %no ES transfer between any Os 

        khop(ST==1,ST==1) = 0;  

        %GS population by Ru, ES decay 

        khop(end-1,ST==0) = ConstantArray(3); 

        %GS population by Os, ES decay 

        khop(end,ST==1) = ConstantArray(4); 

            %loop over diagonal elements - each Ru* can decay by 

multiple pathways, Os* decays to GS 

            for x = 1:RuCount 

                khop(x,x) = -(sum(khop(:,x)));                              

            end 

        %Q returns the eigenvector matrix, D is the eigenvalue matrix 

        [Q,D] = eig(khop); 

        %Calculate matrix exponential of diagonalized kinetic matrix * 

timestep (40 ps) at each frame 

        khop3D_d{i} = expm(D*TS_); 

        %Save eigenvector matrix at each frame 

        Q_{i} = Q;                                                          

end 

%Save diagonalized kinetic matrix and eigenvector matrix at Frame 1 

for static population calculations 

khop3D_dM = khop3D_d{1};                                                    

Q_M = Q_{1}; 

end 

 

POPULATION.m. 

function [Iru_a,Ios_a,GSRu_a,GSOs_a,Diff3D] = 

POPULATION(FramesPerTraj,RuCount,InitialArray,ST,khop3D_d,Q_) 

    Iru_a = zeros(FramesPerTraj,1); 

    Ios_a = zeros(FramesPerTraj,1); 
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    GSRu_a = zeros(FramesPerTraj,1); 

    GSOs_a = zeros(FramesPerTraj,1); 

    Diff3D = zeros(FramesPerTraj,1); 

    %loop over frames to open kinetic matrix  

    for j = 1:FramesPerTraj   

        Q = Q_{j}; 

        khop3D = khop3D_d{j}; 

        %khop3D is diagonalized,D,72x72 matrix at Frame 

j...expm(D*TS_) 

        soln = (Q*khop3D/Q);  

        %kinetics * initial population gives final population at each 

time step  

        pop_f = soln*InitialArray;   

        %along 72 rows (single column), get sum of all Ru and Os ES 

and GS populations at each time point 

        %divide by RuCount because exciting all 70complexes at once 

        Iru_a(j) = sum(pop_f(ST==0,1))/RuCount;                             

        Ios_a(j) = sum(pop_f(ST==1,1))/RuCount;                             

        GSRu_a(j) = pop_f(RuCount+1,1)/RuCount; 

        GSOs_a(j) = pop_f(RuCount+2,1)/RuCount; 

        %propagate ES population - let final population become new 

initial population 

        InitialArray = pop_f;  

        %total population should be conserved (1)...checking to see 

how 

        %far off the sum is at the end and difference should be ~0 

        if sum(pop_f) ~= RuCount 

            Diff3D(j) = abs(RuCount - sum(pop_f));                             

        else 

            Diff3D(j) = 0; 

        end  

    end 

end 

 

STATIC_POPULATION.m. 

function [Iru_a_static,Ios_a_static,GSRu_a_static,GSOs_a_static] = 

STATIC_POPULATION(FramesPerTraj,RuCount,InitialArray,ST,khop3D_dM,Q_M) 

    Iru_a_static = zeros(FramesPerTraj,1); 

    Ios_a_static = zeros(FramesPerTraj,1); 

    GSRu_a_static = zeros(FramesPerTraj,1); 

    GSOs_a_static = zeros(FramesPerTraj,1); 

    %use kinetic matrix at first frame of selected range and use that 

for all time steps...static 

    %khop3D is diagonalized,D,72x72 matrix at Frame 1 

    soln = (Q_M*khop3D_dM/Q_M); 

    %loop over all frames  

    for j = 1:FramesPerTraj 

        %kinetics * initial population gives final population at each 

time step 

        pop_f = soln*InitialArray;                                          
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        %propagate ES population - let final population become new 

initial population 

        InitialArray = pop_f; 

        %along 72 rows (single column), get sum of all Ru and Os ES 

and GS populations at each time point 

        %divide by RuCount because exciting all 70complexes at once 

        Iru_a_static(j) = sum(pop_f(ST==0,1))/RuCount;                      

        Ios_a_static(j)= sum(pop_f(ST==1,1))/RuCount; 

        GSRu_a_static(j) = pop_f(RuCount+1,1)/RuCount; 

        GSOs_a_static(j) = pop_f(RuCount+2,1)/RuCount; 

    end 

end 

 

submit.sh. 

#!/bin/sh 

 

#SBATCH -J PEnT_Bkk 

#SBATCH -o my_output.%j 

#SBATCH -n 24 

#SBATCH -N 1 

#SBATCH -t 3-00:00:00 

#SBATCH --mem=250g 

#SBATCH -p general 

#SBATCH --mail-type=END,FAIL 

#SBATCH --mail-user=mbalu@live.unc.edu 

matlab -nodesktop -nosplash -singleCopThread -r ENT_SIMULATION_PARFOR 

-logfile ENT_SIMULATION_PARFOR.out 

 

To submit the job, the following command prompts are required: 

cd /nas/longleaf/home/CGMDTraj/M_1 (change directory) 

chmod a+x submit.sh script.x (allow Dogwood to read scripts) 

sbatch submit.sh (submit job) 

squeue -u onyen (check on job progress) 
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APPENDIX C: COMPUTATIONAL EXPERIMENTS CODE 

C.1. Ru Coordinate Extraction.  

Along with the other files listed in Table C.1, our NNsAnalysis.m function histograms 

distances between all complexes and their updated NNs and NNNs over 350 ns (Section 3.2.1). 

Table C.1. Files required to run NN distance calculations on 70mer CG MD models. 

Filename Description 

NNsAnalysis.m Histograms distances between all complexes 

and their updated NNs and NNNs over 350 ns 

NNsDIST.m Calculates NN and NNN distances every 0.2 ns 

and averages over 350 ns intervals in six 

different 700 ns MD trajectories 

 

Matlab files can be found on the following path: PapanikolasGroup/Workspace/Bowers/PF-

RuOs_CGMDSimulations/Code_LMRBMac/Matlab/NNsAnalysis. 

Scripts and embedded functions from Table C.1 are described below. 

NNsAnalysis.m 

clear; 

tic; 

%--------USER DEFINED PARAMETERS-----% 

%%%select files of different PF-Ru CG MD trajectories%% 

TrajRu = transpose({xlsread('CGPF-Ru70_3_1.xlsx') xlsread('CGPF-

Ru70_3_2.xlsx') xlsread('CGPF-Ru70_4_1.xlsx') xlsread('CGPF-

Ru70_4_2.xlsx') xlsread('CGPF-Ru70_5_1.xlsx') xlsread('CGPF-

Ru70_5_2.xlsx') xlsread('CGPF-Ru70_6_1.xlsx') xlsread('CGPF-

Ru70_6_2.xlsx') xlsread('CGPF-Ru70_7_1.xlsx') xlsread('CGPF-

Ru70_7_2.xlsx') xlsread('CGPF-Ru70_10_1.xlsx') xlsread('CGPF-

Ru70_10_2.xlsx')});  
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trajRu = {cat(1,TrajRu{1:2}) cat(1,TrajRu{3:4}) cat(1,TrajRu{5:6}) 

cat(1,TrajRu{7:8}) cat(1,TrajRu{9:10}) cat(1,TrajRu{11:12})}'; 

PolyCount = 80; 

RuCount = 70; 

FramesPerTraj = 17502;    

TrajTime = 700; 

timestep = round((TrajTime/FramesPerTraj),2,'significant'); 

times = [0:timestep:TrajTime]';  

%skip timeframes to get 0.2 ns spacing between frames 

timeframes = 5;                                                             

timeintervals = timeframes*timestep;                                        

FramesPerSection=350/timeintervals;                                         

endFPS = timeframes*FramesPerSection; 

TimeSection = times(1:timeframes:endFPS); 

T0 = 5; 

% %----END USER DEFINED PARAMETERS-----% 

r = length(trajRu);                                                          

M = [T0:timeframes:(endFPS+T0)-timeframes]';                                             

%%Calculate time dependent NN and NNN distances  

[DIST3D_NN_traj] = 

NNsDIST(trajRu,FramesPerTraj,FramesPerSection,M,r,PolyCount,RuCount);        

NNs = 30; 

DIST3D_NNs = cell(NNs,1); 

%loop over all NN# 

for i = 1:NNs 

    %rows = NNs, columns = #t0s*FramesPerSection 

    DIST3D_NNs{i} = horzcat(DIST3D_NN_traj{i,:});                             

end 

DIST3D_NNS = zeros(735000,NNs); 

%loop over all trajectories 

for j = 1:NNs 

    DIST3D_NNs_ = DIST3D_NNs{j}; 

    DIST3D_NNS(:,j) = reshape(DIST3D_NNs_,[735000,1]); 

end 

save('NNsAnalysis_6T_350ns.mat','timeframes','TimeSection','m','DIST3D

_NNS'); 

  

toc; 

timerVal = tic; 

 

NNsDIST.m 

function [DIST3D_NN_traj] = 

NNsDIST(trajRu,FramesPerTraj,FramesPerSection,M,r,PolyCount,RuCount) 

RuRu = zeros(RuCount,RuCount); 

Dist3D = cell(FramesPerTraj,1); 

Dist3D_nn_ = zeros(RuCount,FramesPerSection); 

DIST3D_NN_ = cell(RuCount,1); 

DIST3D_NN= cell(r,1); 

%%loop over all trajectories%% 

for j = 1:r 
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Ru = trajRu{j}; 

%organize 70mer coordinates into frames 

Coord2DRu = mat2cell(Ru,PolyCount*ones(FramesPerTraj,1),3);

%loop over all frames 

for m = 1:FramesPerTraj 

Coord2D_Ru_f = Coord2DRu{m};  

%choose coordinates to create true 70mer CG MD model 

Coord2D_Ru_frame = Coord2D_Ru_f(5:74,:); 

%loop over all complex pairs 

for k = 1:RuCount 

for i = 1:k 

Xk = Coord2D_Ru_frame(k,1); 

Xi = Coord2D_Ru_frame(i,1); 

Yk = Coord2D_Ru_frame(k,2); 

Yi = Coord2D_Ru_frame(i,2); 

Zk = Coord2D_Ru_frame(k,3); 

Zi = Coord2D_Ru_frame(i,3);   

distance = sqrt((Xk-Xi)^2+(Yk-Yi)^2+(Zk-Zi)^2);

if Xk == Xi&&Yk == Yi&&Zk == Zi 

distance = inf; 

end  

%calculate center-center distances between complexes 

RuRu(k,i)= distance; 

RuRu(i,k)= distance;

end 

Dist3D{m} = RuRu; 

end 

end 

%loop over all Ru complexes 

for NN = 1:RuCount 

%loop over all starting times, T0, in M 

for frame = 1:length(M) 

RuRu = Dist3D{M(frame)}; 

%loop over each complex pair of NN 

for NNPair = 1:RuCount 

%sort RuRu distances for each complex from least to 

greatest 

M_ = sort(RuRu(:,NNPair));   

%save NN in first row, NNN in second,etc for each 

frame 

%(columns) 

Dist3D_nn_(NNPair,frame)= M_(NN);

end 

end 

%save all NN# at each frame for each complex 

DIST3D_NN_{NN} = Dist3D_nn_;

end 

%save for each trajectory 

DIST3D_NN{j} = DIST3D_NN_; 

end 

DIST3D_NN_traj = horzcat(DIST3D_NN{:}); 

End 
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C.1.1. Follow Original NN and NNN Analysis.  

Along with the other files listed in Table C.2, our FollowOrigNN.m function histograms 

distances between all complexes and their original NNs and NNNs over 350 ns (Section 3.2.2). 

Table C.2. Files required to run original NN and NNN distance calculations on 70mer CG MD 

models. 

Filename Description 

FollowOrigNN.m Histograms distances between all complexes 

and their original NNs and NNNs over 350 ns 

FollowOrigNN_DIST.m Calculates NN and NNN distances every 0.2 ns. 

Averages over 350 ns intervals and 13 different 

starting structures in six different 700 ns MD 

trajectories 

 

Matlab files can be found on the following path: PapanikolasGroup/Workspace/Bowers/PF-

RuOs_CGMDSimulations/Code_LMRBMac/Matlab/FollowOrigNN. 

Scripts and embedded functions from Table C.2 are described below 

FollowOrigNN.m 

clear; 

tic; 

%--------USER DEFINED PARAMETERS-----% 

%%%select files of different PF-Ru CG MD trajectories%% 

TrajRu = transpose({xlsread('CGPF-Ru70_3_1.xlsx') xlsread('CGPF-

Ru70_3_2.xlsx') xlsread('CGPF-Ru70_4_1.xlsx') xlsread('CGPF-

Ru70_4_2.xlsx') xlsread('CGPF-Ru70_5_1.xlsx') xlsread('CGPF-

Ru70_5_2.xlsx') xlsread('CGPF-Ru70_6_1.xlsx') xlsread('CGPF-

Ru70_6_2.xlsx') xlsread('CGPF-Ru70_7_1.xlsx') xlsread('CGPF-

Ru70_7_2.xlsx') xlsread('CGPF-Ru70_10_1.xlsx') xlsread('CGPF-

Ru70_10_2.xlsx')});  

trajRu = {cat(1,TrajRu{1:2}) cat(1,TrajRu{3:4}) cat(1,TrajRu{5:6}) 

cat(1,TrajRu{7:8}) cat(1,TrajRu{9:10}) cat(1,TrajRu{11:12})}'; 

PolyCount = 80; 

RuCount = 70; 

FramesPerTraj = 17502;                                                      

TrajTime = 700;                                                             

timestep = round((TrajTime/FramesPerTraj),2,'significant'); 

times = [0:timestep:TrajTime]';   

%skip timeframes to get 0.2 ns spacing between frames 

timeframes = 5;                                                             
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timeintervals = timeframes*timestep;                                        

FramesPerSection= 350/timeintervals;                                        

endFPS = timeframes*FramesPerSection; 

TimeSection = times(1:timeframes:endFPS); 

%starting frame,T0, @~0:25:300 ns 

T0 = [5 630 1250 1875 2500 3125 3750 4375 5000 5625 6250 6875 7500]';                                                    

% %----END USER DEFINED PARAMETERS-----% 

r = length(trajRu);  

DIST3D_NN_t0 = cell(r,1); 

DIST3D_NNN_t0 = cell(r,1); 

%%Follow original NN and NNN pairs to see how their distances evolve 

over time 

[~,DIST3D_NN,DIST3D_NNN] = 

FollowOrigNNDIST(trajRu,timeframes,endFPS,T0,r,FramesPerTraj,FramesPer

Section,PolyCount,RuCount); 

%loop over each trajectory 

for j = 1:r 

    DIST3D_NN_t0{j} = horzcat(DIST3D_NN{j}{:}); 

    DIST3D_NNN_t0{j} = horzcat(DIST3D_NNN{j}{:}); 

end 

% horz cat framecount x (RuCount*r) of all traj 

DIST3D_NN_ = horzcat(DIST3D_NN_t0{:})';                                         

DIST3D_NNN_ = horzcat(DIST3D_NNN_t0{:})'; 

  

DIST3D_NN_TIME = horzcat(DIST3D_NN_(:,1), DIST3D_NN_(:,2), 

DIST3D_NN_(:,3), DIST3D_NN_(:,4), DIST3D_NN_(:,5), DIST3D_NN_(:,6), 

DIST3D_NN_(:,10), DIST3D_NN_(:,50), 

DIST3D_NN_(:,500),DIST3D_NN_(:,1750)); 

DIST3D_NNN_TIME = horzcat(DIST3D_NNN_(:,1), DIST3D_NNN_(:,2), 

DIST3D_NNN_(:,3), DIST3D_NNN_(:,4),DIST3D_NNN_(:,5), DIST3D_NNN_(:,6), 

DIST3D_NNN_(:,10), DIST3D_NNN_(:,50), DIST3D_NNN_(:,500), 

DIST3D_NNN_(:,1750)); 

  

save('FollowOrigNNAnalysis_6T_350ns.mat','timeframes','TimeSection','D

IST3D_NN_','DIST3D_NNN_','DIST3D_NN_TIME','DIST3D_NNN_TIME'); 

  

toc; 

timerVal = tic; 

 

FollowOrigNNDIST.m 

 
function [DIST3D,DIST3D_NN,DIST3D_NNN] = 

FollowOrigNNDIST(trajRu,timeframes,endFPS,T0,r,FramesPerTraj,FramesPer

Section,PolyCount,RuCount) 

RuRu = zeros(RuCount,RuCount); 

NN = zeros(1,RuCount); 

NNN = zeros(1,RuCount); 

Dist3D_NN = zeros(FramesPerSection,RuCount); 

Dist3D_NNN = zeros(FramesPerSection,RuCount); 

Dist3D_NN_t0 = cell(length(T0),1); 

Dist3D_NNN_t0 = cell(length(T0),1); 
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Dist3D = cell(FramesPerTraj,1); 

DIST3D_NN = cell(r,1); 

DIST3D_NNN = cell(r,1); 

DIST3D = cell(r,1); 

%%loop over all trajectories%% 

for j = 1:r 

    Ru = trajRu{j}; 

    Coord2DRu = mat2cell(Ru,PolyCount*ones(FramesPerTraj,1),3);  

    %loop over all frames 

    for m = 1:FramesPerTraj 

        Coord2D_Ru_f = Coord2DRu{m}; 

        %choose coordinates to create true 70mer CG MD model 

        Coord2D_Ru_frame = Coord2D_Ru_f(5:74,:); 

        %loop over all complex pairs 

        for k = 1:RuCount 

            for i = 1:k 

                Xk = Coord2D_Ru_frame(k,1); 

                Xi = Coord2D_Ru_frame(i,1); 

                Yk = Coord2D_Ru_frame(k,2); 

                Yi = Coord2D_Ru_frame(i,2); 

                Zk = Coord2D_Ru_frame(k,3); 

                Zi = Coord2D_Ru_frame(i,3);    

                distance = sqrt((Xk-Xi)^2+(Yk-Yi)^2+(Zk-Zi)^2);             

                if Xk == Xi&&Yk == Yi&&Zk == Zi 

                    distance = inf; 

                end  

                %calculate center-center distances between complexes  

                RuRu(k,i)= distance;                                        

                RuRu(i,k)= distance;                                        

            end 

        end  

        Dist3D{m} = RuRu;                                                   

    end 

    %loop over all starting times, T0 

    for t = 1:length(T0) 

    M = [T0(t):timeframes:(endFPS+T0(t))-timeframes]';                       

    %%find orig NN and NNN pairs at each t0%% 

    Dist3D_t0 = Dist3D{M(1)}; 

    [~,NNInd] = sort(Dist3D_t0); 

    NN(1,:) = NNInd(1,:); 

    NNN(1,:) = NNInd(2,:); 

    %save original NN and NNN pairs 

    NN_FIXED = horzcat([1:RuCount]',NN(1,:)');                              

    NNN_FIXED = horzcat([1:RuCount]',NNN(1,:)');                            

    %%track distances between those orig NN and NNN pairs over time%%  

    for k = 1:length(M) 

        for n = 1:RuCount 

            Dist3D_ = Dist3D{M(k)}; 

            Dist3D_NN(k,n) = Dist3D_(NN_FIXED(n,1),NN_FIXED(n,2));           

            Dist3D_NNN(k,n) = Dist3D_(NNN_FIXED(n,1),NNN_FIXED(n,2));        

        end     

    end 
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        Dist3D_NN_t0{t} = Dist3D_NN; 

        Dist3D_NNN_t0{t} = Dist3D_NNN; 

    end 

%save original NN and NNN pair distances over time for all T0 and traj 

DIST3D_NN{j} = Dist3D_NN_t0;                                                

DIST3D_NNN{j} = Dist3D_NNN_t0; 

DIST3D{j} = Dist3D; 

end   

end 

 

C.1.2. Excited State Diffusion.  

Along with the other files listed in Table C.3, our RU_DIFFUSION.m function initially 

excites a central Ru bead and tracks ES population on Ru beads out to ± 30 away over 350 ns 

(Section 4.3.1). 

Table C.3. Files required to run diffusion calculations on 70mer CG MD models. 

Filename Description 

CGPFRu80_N_M.xlsx (n = 1 – 7) Extracted XYZ Ru coordinates from Part M of 

the 80mer CG MD Trajectory N 

RU_DIFFUSION.m Initially excites central Ru bead and tracks ES 

population on Ru beads out to ± 30 away over 

350 ns 

DISTANCE_MATRIX_DIFF.m Uses distance function to calculate time-

dependent distances between all Ru-Ru and Ru-

Os complex pairs 

KINETIC_MATRIX_DIFF.m Calculates time-dependent kinetic matrices from 

the distance matrices and diagonalizes each 

kinetic matrix 

POPULATION_DIFF.m Calculates time-dependent populations of Ru* ± 

30 away from the initially excited Ru in flexible 

systems 

STATIC_POPULATION_DIFF.m Calculates time-dependent populations of Ru* ± 

30 away from the initially excited Ru in static 

systems 

 

Matlab files can be found on the following path: PapanikolasGroup/Workspace/Bowers/PF-

RuOs_CGMDSimulations/Code_LMRBMac/Matlab/Diffusion. 

Scripts and embedded functions from Table C.3 are described below 

RU_DIFFUSION.m 
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clear; 

tic; 

%--------USER DEFINED PARAMETERS-----% 

trajRu = transpose({xlsread('CGPF-Ru70_3_1.xlsx') xlsread('CGPF-

Ru70_3_2.xlsx') xlsread('CGPF-Ru70_4_1.xlsx') xlsread('CGPF-

Ru70_4_2.xlsx') xlsread('CGPF-Ru70_5_1.xlsx') xlsread('CGPF-

Ru70_5_2.xlsx') xlsread('CGPF-Ru70_6_1.xlsx') xlsread('CGPF-

Ru70_6_2.xlsx') xlsread('CGPF-Ru70_7_1.xlsx') xlsread('CGPF-

Ru70_7_2.xlsx') xlsread('CGPF-Ru70_10_1.xlsx') xlsread('CGPF-

Ru70_10_2.xlsx')});  

%number of Ru coordinates actually extracted (4 unit cells, each 

containing one 20mer) 

PolyCount = 80;                                                             

%Ru coordinates in 70mer 

RuCount = 70; 

%each trajectory in trajRu has 8751 frames 

FramesPerTraj = 8751; 

%each trajectory in trajRu is 350 ns 

TrajTime = 350; 

%initially excite complexes 31:1:40 

excite = [31:1:40]';                                                        

%rates of closest approach and decay (ns^-1) and attenuation parameter 

(A^-1) 

ConstantArray = [k0Ru k0Os kemRu kemOs B]';                                     

RuRadius = (2^(1/6)) * 6.53325;   

%Freezing frame for static case 

T0 = 1; 

%Time allowed for diffusion (ns) 

LFIn = 50;                                                                 

% %----END USER DEFINED PARAMETERS-----% 

r = length(trajRu); 

timestep = round((TrajTime/FramesPerTraj),2,'significant'); 

times = [0:timestep:TrajTime]'; 

LastFrame = LFIn/timestep; 

%%Variable setup%% 

IR = cell(length(excite),r); 

IR_static = cell(length(excite),r); 

IR_end = cell(length(excite),r); 

IR_static_end = cell(length(excite),r);  

KHOP_TRAJ = cell(FramesPerTraj,1);  

KHOPstat_TRAJ = cell(FramesPerTraj,1); 

KHOP_TRAJ_TIME = cell(r,1); 

%loop over trtajectories 

for j = 1:r 

    Ru = trajRu{j}; 

    Coord2DRu = mat2cell(Ru,PolyCount*ones(FramesPerTraj,1),3); 

    %%Calculate time-dependent distance matrices%% 

    [Coord2D_Ru_R,Dist3D] = 

DISTANCE(Coord2DRu,RuRadius,FramesPerTraj,RuCount); 

    %%calculate time-dependent, diagonalized kinetic matrices from 

time-dependent distance matrices 
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    [khop3D_d,Q_,KHOP] = 

KINETIC(Dist3D,FramesPerTraj,RuCount,timestep,ConstantArray); 

    %loop over initial excitations 

    for s = 1:length(excite) 

        EXCITE = excite(s); 

        InitialArray = zeros(RuCount,1); 

        InitialArrayStatic = zeros(RuCount,1); 

        %create matrix of initial ES populations with single 

excitation    

        InitialArray(EXCITE) = 1;                                         

        InitialArrayStatic(EXCITE) = 1; 

        DiffRu = [(EXCITE-30):1:(EXCITE+30)]'; 

        %observe time dependent ES Diffusion to complexes +- 1:30 

complexes from inital excitation in flexible and static polymers 

        [Iru,Iru_end,Iru_static,Iru_static_end] = 

POPULATION(FramesPerTraj,T0,LastFrame,InitialArray,InitialArrayStatic,

DiffRu,khop3D_d,Q_); 

        IR{s,j} = Iru; 

        IR_end {s,j} = Iru_end; 

        IR_static{s,j} = Iru_static; 

        IR_static_end{s,j} = Iru_static_end; 

    end 

    KHOP_TRAJ(:,j) = KHOP; 

    KHOP_TRAJ_TIME{j} = horzcat(KHOP_TRAJ{:,j});  

end 

IR_end_ = cell(r,1); 

IR_static_end_ = cell(r,1); 

%Organize populations at end frame by initial excitations 

for j = 1:r 

    IR_end_{j} = horzcat(IR_end{:,j}); 

    IR_static_end_{j} = horzcat(IR_static_end{:,j}); 

end 

save('RU_DIFFUSION_B15_12T_Time.mat','ConstantArray','T0','r','IR_end'

,'IR_end_','IR_static_end','IR_static_end_','KHOP_TRAJ','KHOP_TRAJ_TIM

E'); 

  

toc; 

timerVal = tic; 

 

DISTANCE.m 

function [Coord2D_Ru_R,Dist3D] = 

DISTANCE(Coord2DRu,RuRadius,FramesPerTraj,RuCount) 

RuRu = zeros(RuCount,RuCount);   

Coord2D_Ru_R = cell(FramesPerTraj,1); 

Dist3D = cell(FramesPerTraj,1); 

%loop over all frames 

for m = 1:FramesPerTraj 

    Coord2D_Ru_f = Coord2DRu{m}; 

    %choose coordinates to create true 70mer CG MD model  

    Coord2D_Ru_frame = Coord2D_Ru_f(5:74,:);  
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    %loop over all complex pairs 

    for k = 1:RuCount 

        for i = 1:k 

            Xk = Coord2D_Ru_frame(k,1); 

            Xi = Coord2D_Ru_frame(i,1); 

            Yk = Coord2D_Ru_frame(k,2); 

            Yi = Coord2D_Ru_frame(i,2); 

            Zk = Coord2D_Ru_frame(k,3); 

            Zi = Coord2D_Ru_frame(i,3);    

            distance = sqrt((Xk-Xi)^2+(Yk-Yi)^2+(Zk-Zi)^2);                 

            if Xk == Xi&&Yk == Yi&&Zk == Zi 

                distance = inf; 

            end  

            %calculate periphery-periphery distances between complexes  

            RuRu(k,i)= distance-(2*RuRadius);                               

            RuRu(i,k)= distance-(2*RuRadius);                               

        end 

    end 

        %save 70mer coordinates and distances 

        Coord2D_Ru_R{m} = Coord2D_Ru_frame;                                 

        Dist3D{m} = RuRu; 

end 

end 

 

KINETIC.m 

 
function [khop3D_d,Q_,KHOP] = 

KINETIC(Dist3D,FramesPerTraj,RuCount,timestep,ConstantArray) 

KHOP = cell(FramesPerTraj,1);  

khop3D_d = cell(FramesPerTraj,1);                                           

Q_= cell(FramesPerTraj,1);  

%%loop over distance matrices at each time frame  

for i = 1:FramesPerTraj 

        Dist = Dist3D{i}; 

        % Dexter EnT equation for Ru to Ru hopping...input values for 

k0Ru and B 

        khop = ConstantArray(1)*exp(-ConstantArray(5)*(Dist));  

        %loop over diagonal elements - each Ru* can decay by multiple 

pathways    

            for x = 1:RuCount 

                khop(x,x) = 0; 

                khop(x,x) = -(sum(khop(x,:)));                                

                KHOP_ = diag(khop(:,:)); 

            end     

        KHOP{i} = KHOP_; 

        %Q returns the eigenvector matrix, D is the eigenvalue matrix. 

        [Q,D] = eig(khop);    

        %Calculate matrix exponential of diagonalized kinetic matrix * 

timestep (40 ps)  
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        khop3D_d{i} = expm(D*timestep);   

        %Save eigenvector matrix  

        Q_{i} = Q;                                                          

end 

end 

 

POPULATION.m 

 
function [Iru,Iru_end,Iru_static,Iru_static_end] = 

POPULATION(FramesPerTraj,T0,LastFrame,InitialArray,InitialArrayStatic,

DiffRu,khop3D_d,Q_) 

    Iru = zeros(length(DiffRu),FramesPerTraj); 

    Iru_static = zeros(length(DiffRu),FramesPerTraj);  

    solnstatic = (Q_{T0}*khop3D_d{T0}/Q_{T0}); 

    %loop over all frames 

    for j = 1:FramesPerTraj   

        %khop3D_d is diagonalized,D,70x70 matrix, time-dependent Q 

called at 

        %each frame 

        soln = (Q_{j}*khop3D_d{j}/Q_{j}); 

        %kinetics * initial population give final population 

        popflex = soln*InitialArray; 

        %Get Ru populations +- 1:30 pendants away from initial 

excitation 

        Iru(:,j) = popflex(DiffRu(:));   

        %Propagate ES population - let final population become new 

initial population  

        InitialArray = popflex;                                               

        popstatic = solnstatic*InitialArrayStatic; 

        Iru_static(:,j)= popstatic(DiffRu(:)); 

        InitialArrayStatic = popstatic; 

    end 

    Iru_end = Iru(:,LastFrame); 

    Iru_static_end = Iru_static(:,LastFrame); 

End 
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