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ABSTRACT 
 

Matthew Joseph Satusky: ON AND OFF: FLUORESCENTLY TAGGING DNA AND 
COUNTING PROTEIN STOICHIOMETRY IN THE CELL 

(Under the direction of Dorothy Erie) 
 

Protein interaction with DNA is vital to cellular function and genome stability; protein-

mediated processes include gene regulation and DNA damage repair. These processes have been 

associated with conformational changes in DNA structures and recruitment of multiple proteins 

to a given site. Fluorescence microscopy is a powerful tool for measuring these interactions both 

in vitro and in vivo. In this thesis, I focus on two limitations of fluorescence microscopy: 

attachment of fluorescent dyes to oligonucleotides and analysis of fluorescence images in live 

cells.  

Oligonucleotides modified with fluorescent dyes are useful for techniques such as Förster 

resonance energy transmission (FRET) that measure conformational changes in DNA. When 

end-labeling is not an option, the dye must be placed internally through phosphoramidite 

backbone labeling or a modified thymine. Phosphoramidite dyes are sequence-independent, but 

incorporation may create a gap in the backbone. Cyanine dyes incorporated in this manner are 

anchored in two places, limiting the dipole orientation freedom and possibly affecting FRET 

values. When sequence specificity is necessary, a thymine in an appropriate location for FRET 

pairing may not exist. In this work, we characterize a new, cost-efficient method of sequence-

independent labeling of the DNA backbone using the common phosphorothioate modification
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Stoichiometry of proteins in an interaction is a fundamental characteristic of biochemical 

functions, however it remains difficult to determine in the nucleus of a live cell in real time. 

Stochastic photobleaching of fluorescently labeled proteins provides a means of counting 

molecules, as the loss of fluorescence is quantized and proceeds in a stepwise manner. This 

powerful method for determining stoichiometry is limited by the high background associated 

with nuclear proteins in live cells. Here we describe the creation of software pipeline that 

processes microscope movies to identify cells, locate fluorescent foci, extract pixel intensity 

information, and quantify photobleaching steps for fluorescently labeled nuclear proteins.
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Sometimes science is more art than science, Morty. 

-Rick Sanchez 
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CHAPTER 1: MONITORING PROTEIN-DNA INTERACTIONS IN REAL TIME 
THROUGH FLUORESCENCE MICROSCOPY 

 

1.1 Introduction 

Maintenance of genomic stability is critical to the survival of any living cell. Errors 

during replication can lead to misincorporation of nucleotides or insertion-deletion loops1,2. 

Exogenous sources of damage, such as ultraviolet radiation or chemical mutagens, can lead to 

breakage of one or both strands. The cell is equipped with repair mechanisms for these damage 

scenarios, but sometimes the functions of these proteins are interrupted, leading to increases in 

genetic mutations1 and tumorigenesis3,4. Furthermore, some chemotherapeutics work through 

activation of these repair cascades and decreased pathway function would lead to decreased 

efficacy1,5. It is therefore useful to understand the underlying mechanisms of repair pathways. 

One particularly useful technique for observing repair proteins and their interactions with DNA 

is fluorescence microscopy. The goal of my research has been to improve fluorescence methods 

both experimentally and computationally. 

The following sections outline the general methodology for fluorescence imaging as it 

pertains to observing protein-DNA complexes, beginning with a review of different imaging 

techniques and a brief introduction to in vitro and in vivo uses. I then introduce labeling methods 

for nucleic acids in vitro and proteins in live cells. Finally, I discuss the general procedure of 

analyzing microscope images. Later chapters will cover labeling and image analysis in greater 

depth.
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Figure 1.1. Fluorescence imaging techniques. (a) TIRF imaging uses angled illumination such 
that the excitation beam is reflected off of the slide surface, causing an evanescent wave to 
propagate through the sample at the surface of the slide, which produces low background. (b) 
Widefield microscopy illuminates the entire thickness of the sample, creating high signal but also 
high background. (c) Confocal microscopy uses two pinhole apertures, one to limit the 
illumination to a single focal plane and one to limit detection of diffused light, increasing the 
spatial resolution and decreasing the background. 
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1.2 Observing Protein-DNA Complexes with Fluorescence Microscopy 

1.2.1 Imaging techniques 

 Fluorescence microscopy can be used to monitor protein-DNA complexes both in vitro6,7 

and in vivo8. For in vitro experiments, total internal reflection fluorescence (TIRF) microscopy 

can be utilized to reduce background noise9. This technique uses illumination that strikes the 

slide at an angle such that the excitation beam is completely reflected, rather than passing  

through the sample. As a result, an evanescent wave propagates through the sample, but the 

evanescent field decays exponentially, penetrating only ~300 nm beyond the surface and exciting 

only those fluorophores close to the surface (Fig. 1.1a). This technique eliminates the majority of 

the signal contribution of molecules away from the slide surface, creating a high signal-to-noise 

ratio (SNR)10. 

TIRF imaging can be used for in vivo experiments as well, but the applications are 

limited to molecules in or on the membrane. The short decay length of the evanescent wave that 

makes TIRF ideal for in vitro applications prohibits the excitation of molecules beyond the 

surface, as the wave penetrates only approximately 250 nm. When examining complexes that 

reside in the nucleus, a method must be used that allows deeper excitation penetration. Although 

widefield microscopy can be used, the background is much higher and molecules that are closer 

together may not be differentiable due to the excitation of the whole sample; the width of 

illumination causes excitation of fluorophores outside of the focal plane and diffracted emission 

is collected (Fig. 1.1b). Alternatively, confocal microscopy can be employed to reduce the 

impact of some of these confounds. A confocal microscope uses two pinhole apertures: one for 

point excitation, which reduces off-target illumination, and one for emission capture, which 

removes the bulk of diffracted signal by limiting out of plane photons that can reach the 
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objective (Fig. 1.1c). Both of these improvements are important when trying to quantify 

fluorescence intensity: analysis of a variety of experiments is typically limited by the SNR and 

any contribution of nearby molecules that are within the resolution limit may contribute to the 

signal. The drawback of a confocal setup is that the apertures limit the strength of the captured 

signal11. 

 

1.2.2 In vitro fluorescence imaging of protein-DNA interactions 

While bulk quantification can give insight into the behavior of a population as a whole, 

single-molecule techniques allow for the capture of transient changes that otherwise would be 

masked1. The ability to quantitatively (or semi-quantitatively) observe these changes will help 

elucidate structure-function relationships and the underlying mechanisms of an interaction. One 

powerful technique for capturing rare or short-lived interactions within protein-DNA complexes 

is measuring Förster resonance energy transmission (FRET) between fluorophores. FRET occurs 

when a donor fluorophore transfers energy in a non-radiative fashion to an acceptor fluorophore. 

This energy transfer is dependent on the intermolecular distance and the Förster radius (R0) for 

that particular dye pair, the latter of which includes, among properties, the relative orientations of 

their dipole moments. If at least one of the dyes has full rotational freedom and the R0 for the dye 

pair is known, the distance between the dyes can be calculated from the FRET efficiency12. 

In most single-molecule FRET (smFRET) experiments, one component is affixed to a 

slide, the surface of which has been modified; when imaging protein-DNA complexes, the DNA 

is usually attached. This attachment is typically achieved through biotinylation of both the 

surface and DNA, using a streptavidin bridge between the two1,12. Immobilizing the substrate 

allows interactions to be located and monitored using a CCD camera. Organic fluorescent dyes 
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Figure 1.2. Labeling sites determine the information gathered by a FRET experiment. 
DNA-DNA labeling schemes show conformational change in the DNA, while protein-DNA 
labeling shows the position of the protein relative to the labeling site on the DNA. Protein-
protein can be between different subunits (shown) or at different sites within a single subunit. 

 

are used for in vitro smFRET experiments because they tend to be the brightest and most 

photostable fluorophores, which translates to a higher SNR and longer lifetimes for observation. 

There are three common labeling schemes for studying protein-DNA interactions: DNA-DNA, 

which shows conformational changes in the DNA; protein-DNA, which provides information 

about binding location and protein translocation; and protein-protein, which can illustrate 

binding of different subunits or conformational changes within the protein (Fig. 1.2)7,13,14. 

 
1.2.3 In vivo imaging of protein-DNA complexes 

While in vitro experiments provide invaluable information about the formation, 

mechanism, and stoichiometry of protein-DNA complexes, these experiments involve removing 

the components of the reaction from the cellular context. It is important, therefore, to investigate 

these complexes within their natural cellular environment. Labeling DNA-interacting proteins 

inside of living cells allows for monitoring of the formation of protein-DNA complexes. These 

complexes tend to appear as foci, or bright spots of concentrated and relatively stationary protein 
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that form at a binding site. Fluorescent foci can provide information about the stoichiometry of 

one or more proteins and colocalization of different proteins. 

 

1.3 Labeling for Fluorescent Imaging  

1.3.1 Labeling DNA with fluorescent dyes 

DNA synthesis has become cost-efficient and widely commercially available. Most 

vendors offer oligonucleotides modified with a variety of chemical moieties, including a number 

of attachment chemistries and dyes. There are currently two available avenues for dye labeling of 

DNA (or RNA): inclusion of a modified thymine residue (dT) with an organic linking arm 

containing a reactive group that extends from the 5-methyl group of the base into the major 

groove or incorporating a linker group into the sugar-phosphate backbone using 

phosphoramadite chemistry. In this latter method, the fluorophore mimics a 5’ phosphate and 3’ 

hydroxyl. There are several considerations to account for when designing a labeling scheme for a 

DNA substrate. 

Because FRET efficiency is indirectly proportional to r6, where r is the intermolecular 

distance between the dye pair, labeling site placement is crucial for measuring subtle changes in 

conformation; placing dyes too close or far from each other decreases the sensitivity of 

detection15. One common backbone incorporation involves anchoring cyanine dyes with two 

linker arms, which limits the rotational freedom of the dipole moment. If two dyes are attached 

in this fashion, the dipoles can be aligned in a manner that will yield unpredictable FRET signal 

with changes in conformation, due to changes in the relative postion of the donor and acceptor 

dipoles16. Recently, a phosphoramidite linker has become available that contains a single linking 

point (an amine group), which mitigates the dipole concerns, but phosphoramidite insertion in 
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the backbone may still raise concerns about secondary structure effects as there is a resultant gap 

in the backbone. 

Modified dT residues also contain only a single attachment point to the dye, which makes 

them an attractive alternative to backbone labeling. These linkers can contain several chemical 

moieties that allow for the use of a wide variety of available dyes. The caveat of this option is 

that there must be a thymine in the sequence at the labeling site; when sequence-specificity is a 

concern, the site must be amenable to an existing dT. Chapter 3 describes a new method for 

labeling oligonucleotides using a common and cost-efficient modification. 

 

1.3.2 Labeling proteins in vivo 

 Proteins can be labeled within a living cell through several methods. A widely used 

method is to use a fluorescent fusion protein, which involves insertion of the fluorescent 

protein’s gene at one end of the gene for the protein of interest, forcing the cellular machinery to 

create a covalently-linked fluorescent protein. The relative ease of DNA manipulation, combined 

with the variety of fluorophore colors and lack of further labeling steps, make fusion proteins an 

attractive option17–20. However, fluorescent proteins are much dimmer than organic dyes and 

there are potential functional effects of attaching large fluorescent proteins18,20. 

 Alternatively, proteins can be labeled with organic dyes. These dyes can be incorporated 

through fusion proteins that contain an active site designed to react with organic probes21,22, 

through chelation of reactive dye moieties to peptide tags23, or through the use of unnatural 

amino acid incorporation24. These methods allow for the use of brighter organic dyes, which  
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Figure 1.3. Workflow for an smFRET experiment. Individual molecules appear as isolated 
dots in a TIRF image. Data is collected in two channels, one for donor and one for acceptor, 
which are aligned to track the donor/acceptor pair together. The spots are located algorithmically 
using a threshold and time-intensity traces for the donor and acceptor signal are extracted over 
the length of the movie. Traces are smoothed using a non-linear windowed smoothing algorithm 
and edges are detected. Finally, FRET efficiency is calculated for the dye pair. 
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yield a higher SNR, but have accompanying drawbacks. Organic dyes tend to be hydrophobic, 

which leads to solubility and cell permeability issues, as well as cytoxicity25,26. Unnatural amino 

acids are sometimes difficult to synthesize and can lead to expression difficulties27,28.  

 

1.4 Analysis of Fluorescence Microscopy Images 

1.4.1 Spot picking for generation of time-intensity traces 

 Fluorescence microscopy experiments that monitor protein-DNA complexes both in vitro 

and in vivo (when complexes appear as foci) result in generation of a movie where complexes 

appear as bright spots (Fig. 1.3). The first analysis step that must occur is the identification of 

these spots. This step is either performed by hand29,30 or algorithmically by finding local 

maxima7,31,32. Once spots are identified, pixel intensities can be extracted, background-corrected, 

and summed to give the total intensity of the spot. Performed over the course of the experiment, 

the plot of fluorescence against time is a time-intensity trace and is used for analysis of FRET 

and stoichiometry, as described later. It should be noted that this process is significantly more 

difficult for in vivo experiments, because cells create inherently more background due to 

refraction and autofluorescence of intracellular molecules. While spot can be fitted to Gaussian 

distributions to determine pixel intensity contributions, this process has been shown to give 

nearly identical results as pixel summing at a significant computational cost33.  

 

1.4.2 Smoothing of time-intensity traces 

 Cameras used to record the low number of photons generated by fluorophore emission 

must be extremely sensitive and often include signal amplification. Shot noise from low photon 

counts, pixel read error, and the physical process of electronic signal amplification result in 
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systematic noise in time-intensity traces34. This noise must be removed to extract real changes in 

the intensity that correspond with state changes and is accomplished primarily by two methods: 

edge-preserving nonlinear windowed smoothing or reconstitution of the underlying signal 

through statistics.  

A popular edge-preserving smoothing algorithm was developed by Chung and Kennedy 

in 1991 to analyze patch-clamp data35. In this method, the smoothed value of a point is 

determined by the moving averages the forward and reverse context. The contributions of the 

upstream and downstream averages, however, are weighted by the standard deviation of 

windows ahead or behind the point, thereby reducing the contribution of context regions that 

contain an intensity level transition. Alternatively, probability densities and statistical 

information in the data can be used to algorithmically recapitulate an idealized trace of the 

underlying signal36,37. This method, which includes the commonly used Hidden-Markov 

algorithm38,39, uses robust statistical modeling that results in a completely smoothed trace, ideal 

for automation of later analysis steps. However, these methods are computationally more taxing 

than windowed smoothing, become less accurate when SNR decreases, and often require some 

knowledge of the underlying kinetic model or expected number of states37,40. 

 

1.4.3 FRET efficiency state analysis 

 Using the smoothed time-intensity traces, intensity levels and transitions between them 

can be identified. For FRET experiments, the smoothed donor and acceptor traces can be 

converted to FRET efficiencies using Eq. 1, where E is the FRET efficiency, IA is the acceptor 

intensity, and ID is the donor intensity.  
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Eq. 1.1.  𝐸	 = 	 !!
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With a known R0, E can be converted to the distance between fluorophores, r, by Eq. 2, which 

can then be used to infer conformational or relative location states. Mechanistic models can be 

established using the amount of time spent in each state6. 

 

Eq. 1.2.  𝐸	 = 	 $
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1.4.4 Measuring stoichiometry with fluorescence microscopy 

A useful option for stoichiometric measurement in vivo takes advantage of stochastic 

photobleaching of fluorescent molecules, or the irreversible loss of fluorescence through 

molecular rearrangement. Continual excitation results in a stepwise reduction in intensity as 

fluorophores bleach over the course of the experiment. Photobleaching of fluorescent foci has 

been used to evaluate stoichiometry of protein complexes in vivo30,41,42; however, it has 

traditionally been applied to prokaryotes or membrane proteins in eukaryotes, where TIRF can 

be utilized to increase the SNR. Imaging eukaryotic proteins within the nucleus presents a 

significant challenge because TIRF excitation cannot penetrate deeply enough and eukaryotic 

cells contain organelles, increasing potential sources of light scattering43, decreasing the SNR. 

While it may be possible to reduce background when imaging within nuclei using reduced 

labeling efficiency, this would not be useful for quantifying stoichiometry as unlabeled 

populations would not be observed. 
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1.5 Present Work 

 The bulk of this thesis aims to improve upon methodology for fluorescent microscopy, 

both in vitro and in vivo. In Chapter 2, I describe a new approach to computational analysis of 

stochastic photobleaching events to determine stoichiometry in vivo. Chapter 3 is a description of 

a method of labeling oligonucleotides in a cost-efficient and sequence independent manner using 

a previously described bifunctional linker. Chapter 4 describes our efforts to overhaul the upper-

level undergraduate biochemistry laboratory curriculum to bring graduate level research 

experience to undergraduate students. Finally, Appendix A contains a user guide to the software 

described in Chapter 2.
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CHAPTER 2: CREATING AN ANALYSIS PIPELINE FOR DETERMINING 
STOICHIOMETRY IN LIVE YEAST THROUGH STOCHASTIC PHOTOBLEACHING 
 

The data used for development of this software were collected by Dr. Jacquelyn Bower. The 
code for the smoothing and edge-detection algorithms was taken from software written by 
former lab members Dr. Jacob Gauer, Dr. Vanessa DeRocco, and Cherie Lanyi, with edits for 
computational efficiency and customized output for this specific application. 
 

2.1 Introduction 

Stoichiometry is fundamental to chemical reactions, but its measurement remains 

difficult in biological complexes, especially within living cells44. Fluorescence microscopy is an 

attractive option for stoichiometric quantification, as labeling methods can minimally perturb the 

target systems and advances in detection technology allow for observation on a single-molecule 

level19. Despite the current technological sophistication, hurdles to accurate quantification of 

stoichiometry remain in both imaging methods and data analysis. Living cells have inherently 

higher levels of background noise than in vitro imaging experiments. This effect is particularly 

pronounced in eukaryotic cells, which tend to be larger, have more complex internal cellular 

structure (serving as sources of light scatter)43,45, and have higher levels of autofluorescence46. 

Imaging nuclear proteins in Saccharomyces cerevisiae, for example, during the majority of the 

cell cycle requires photons emitted by a fluorophore to traverse the nuclear membrane, cytosol 

(containing organelles), cellular membrane, and cell wall. Traversing media with differing 

refractive indices results in diffraction at each interface. For this project, we will be 

enzymatically digesting the cell wall of the yeast to create spheroplasts in an attempt to reduce 

the background.
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2.1.1 Measuring stoichiometry in living cells 

For standard microscope setups, there are two main approaches for quantifying 

stoichiometry using fluorescence: ratiometric comparison to an internal standard and counting 

stochastic photobleaching events. Ratiometric analysis involves measuring the intensity of 

fluorescent foci, or volumes of concentrated fluorophores, from both a target of unknown 

quantity and a fluorescently labeled standard47,48. Since the standard has a known quantity, 

comparison to the target can reveal the number of molecules composing the experimental focus. 

Alternatively, photobleaching of dye molecules can be used to calculate stoichiometry47,48.  

When provided sufficient excitation over time, fluorophores will undergo irreversible chemical 

rearrangement, resulting in the loss of fluorescence. When monitoring the fluorescence intensity 

of a dye population over time, these events will appear as a step-like decline, with the height of 

each step corresponding to the loss of fluorescence of a single fluorophore. The primary 

challenge of this method is identifying those steps when the signal-to-noise ratio (SNR) is low. 

The focus of this chapter will be using photobleaching step quantification to determine 

stoichiometry. 

 A fluorescent standard must be employed for ratiometric comparison, to establish the 

intensity of a single fluorophore, or to assess analytical reliability41,47,48. Several common 

standards exist, including the yeast centromeric protein Cse4p47,49,50, the bacterial flagellar motor 

protein MotB30,41, and a number of membrane-bound protein complexes33,51,52. To ensure 

reliability of stoichiometric analysis, it is important to corroborate molecule counts using some 

other biochemical method53. Our long-term goal is to quantify DNA mismatch repair foci in 

cells. Studies from our lab using atomic force microscopy have demonstrated that DNA 

mismatch repair foci can be comprised of recognition protein counts ranging from a single 
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protein to possibly 10 or more bound to a lesion site54. Whether complexes on the larger end of 

that spectrum form in vivo or are anomalies created by in vitro conditions remains to be seen. 

One potential confound for in vivo analysis is that smaller complexes may not produce detectable 

foci and would therefore be excluded; this would be indistinguishable from lack of formation of 

small complexes. Therefore, it is important to first establish the limit of detection for our system.  

Fluorescently labeled E. coli lac repressor protein (LacI-eGFP) has been used as a 

chromosomal marker in yeast, where repeat arrays of its DNA binding sequence (LacO) were 

inserted into the genome. This is an intriguing standard because yeast contains no endogenous 

LacI, so all copies of the protein would theoretically be fused with eGFP; LacI binds tightly with 

the LacO site55, creating ideal foci for analysis; and the number of LacO sites can be controlled 

through genetic manipulation, creating custom array sizes. Using this system, a stoichiometric 

“ruler” can be created within the nucleus using decreasing LacO repeat numbers; the limit of 

detection can then be determined by the minimum number of LacO sites necessary to produce 

detectable foci. 

 

2.1.2 Extracting photobleaching steps from noisy time-intensity traces 

There are currently several methods for distinguishing a photobleaching event in a time-

intensity trace from background noise. A windowed-smoothing algorithm can be employed to 

reduce noise in plateau regions between event transitions but should contain an edge-preserving 

mechanism to prevent smoothing over transitions. The simplest approach is to use a windowed-

median method, which preserves edges better than using the mean56; however, when applied to 

in vivo stoichiometry applications, the method developed by Chung and Kennedy in 1991 for 

patch-clamp analysis35 was shown to create standard deviations (SD) ~30% closer to raw values 



 16 

than windowed-median smoothing57. In brief, the Chung-Kennedy (CK) algorithm calculates the 

mean for regions before and after the data point and uses the SDs of those regions to weight the 

contribution of the respective mean to the smoothed value. Input parameters for CK smoothing 

(such as window size, edge width, and equation variables) can be adjusted to optimize the 

performance7, but the drawback is that it requires user input and may include bias. 

A second approach is to use probability modeling to determine idealized traces 

containing discrete intensity states. This approach often assumes a hidden Markov model exists 

behind the noise38,58. Briefly, a Markov model is defined by states, each with an “emission 

probability,” and “transition probabilities” that describe the probability of transitioning from one 

state to the next59. This method is useful for applications where a number of expected states and 

the underlying kinetics of the system are understood but become less functional when these 

characteristics are unknown60. In situations where the SNR is low, such that state transitions are 

on the order of background noise, it becomes difficult to algorithmically resolve the number of 

intensity states. 

A third option is to use intrinsic statistical characteristics of the data to determine state 

changes. Algorithms can employ a sliding Student’s t-test61 or c2 test62 to determine state 

transitions, but require user-defined parameters and handle situational differences in data with 

mixed results. The c2 algorithm, for example, requires the number of steps as a parameter, which 

may be prohibitive depending on what is known about the target; the Student’s t-test algorithm 

tends to return unreliable results when steps that occur rapidly60. To avoid user bias, Kalafut and 

Visscher developed an automated algorithm that uses no user-defined parameters60, but only 

derived statistical characteristics of the data to determine non-uniform step sizes. While 

promising, this algorithm yielded error >25% below a SNR of 1.5. 
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 In this approach, we first employ a CK smoothing algorithm with two sets of forwards 

and backwards windows, one each for the mean and SD7. Multiple window sizes allow for fine 

tuning of the algorithm. Once the trace is smoothed, we test for state transitions by two methods: 

we convolve the trace with a Gaussian derivative kernel63 and use the SDs calculated by the CK 

filtering windows to determine when a point is between two plateau regions7. Once transition 

locations are defined, statistical analysis between the surrounding regions determines the degree 

of confidence; this procedure will be described in more detail later. 

 

2.1.3 Analysis of photobleaching steps to determine stoichiometry in vivo  

Currently, there are two approaches to finding stoichiometry from photobleaching steps. 

The first approach is to directly count the number of steps; this procedure is most applicable for 

low molecule counts47, as noise and the probability of multiple coincidental bleaching events 

increases as the fluorophore count increases33,36,48. The alternative method is to determine the 

size of a single photobleaching step and calculate the number of molecules present at the 

beginning of the experiment using the total loss of fluorescence intensity30,41,47. In either method, 

the size of a single photobleaching step must be established (for direct counting, multiple 

bleaches must be distinguished from a single event).  

The simplest approach is to smooth the time-intensity trace with an edge-preserving 

filter35,47,48 and choose steps manually30,64. The obvious downside of this method is that the 

definition of what passes for a real step is determined by the user, which introduces bias and 

variability between users. Recent advances in automated step-finding algorithms have applied a 

more robust statistical approach which uses probability density analysis and other statistical 

modeling to determine an idealized trace of the underlying signal. This analysis becomes 
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significantly less accurate and computationally taxing in situations where the signal-to-noise 

ratio is low31,36,38,51,62. The physical limitations of in vivo experiments where TIRF imaging is not 

an option lead to high noise that is on the same order as the signal, which makes it exceedingly 

difficult to accurately extract real photobleaching steps through an automated process, 

particularly when that noise is stepwise in nature. 

Our approach is similar to previous ones in that we look for plateaus between bleaching 

events, but rather than attempting to remove background steps through thresholding, as is 

standard for manual step identification, we collect all steps from background and bleaching 

events. We can then characterize background steps by collecting data from control sources, at 

which point we can isolate and remove the subset of steps within experimental data that belongs 

to the noise. This procedure allows us to employ statistical methods for background removal 

with high confidence, a hallmark of automated probability-based algorithms, while operating 

under noise levels that might otherwise be prohibitive. 

Here, I describe the development of a computational pipeline that allows for bulk analysis 

of photobleaching data, starting from identifying fluorescent foci in microscope movies of live 

yeast or purified protein in vitro, through time-intensity trace generation, and finally to step 

identification and photobleaching event quantification. The philosophy behind this pipeline is to 

minimize the processing time from image analysis through final data analysis. This goal is 

achieved through limiting the amount of user interaction, reducing the amount of data carried 

over from each step, and maximizing computational efficiency. There are currently still steps 

that require manual input, such as the determination of filter/edge-detection parameters, and as a 

rule of thumb we must manually review trace analysis output to ensure the data look “real” 

before proceeding to final analysis steps.  
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However, future directions (described later) will seek to reduce this interaction to a minimum. 

Secondary goals of the algorithm are to maximize memory-usage efficiency for use on local 

machines, optimizing file handling for use on the research computing cluster, and creating user-

friendly interfaces for steps where input is required. All code for this pipeline was written in 

Matlab (Mathworks).  

 

2.2 In Vivo Focus Identification and Time-Intensity Trace Extraction Pipeline 

2.2.1 Yeast imaging 

To determine stoichiometry of a protein-mediated function in vivo, a yeast strain is 

generated with the target protein tagged with a florescent fusion-protein. Living cells are 

converted to spheroplasts by digesting the cell wall with Zymolyase (Zymo Research, Irvine, 

CA) in an attempt to reduce refraction. Spheroplasts are deposited on plasma-cleaned quartz 

slides, which promotes flattening of the cells on the surface, and imaged on a microscope with 

laser illumination of a wavelength appropriate for the absorption spectrum of the fusion protein. 

Images are recorded until complete photobleaching is apparent and saved as a TIFF image stack. 

 

2.2.2 Cell identification and numbering 

 The first illuminated frame of the movie (i.e. the first image captured after the laser is 

turned on) is automatically calculated by finding the maximum mean frame intensity within the 

first 50 frames of the movie, which consistently chooses to the correct frame when corroborated  
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Figure 2.1. Cell finding algorithm overview. (a) A composite image is created from the sum of 
the first ten frames and background corrected. A binary mask is created over the identified cells, 
which are then numbered sequentially. All pertinent data is extracted for each cell and time-
intensity trace files are output. (b) Example composite image. (c) Example binary mask, prior to 
background removal. (d) Example output of numbered cells. 
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through manual frame-by-frame inspection. Composite images for pre- and post-photobleaching 

are created by summing the first 10 illuminated frames and final 10 frames of the movie, 

respectively. The post-bleaching image is subtracted from the initial composite to increase 

contrast between cells and slide background (Fig. 2.1b).  

A watershed algorithm set for a gradient background is applied to create a binary mask 

(Fig. 2.1c), which is then eroded and dilated with a “disk” structural element to remove small 

regions identified in the background but not associated with cells. The mask is then queried for 

connected regions using an 8-directional filter. The standard deviation of the pixel intensities 

within each connected component is calculated and any regions with a standard deviation below 

an arbitrary threshold of 1.5x the standard deviation of the entire image are discarded. This 

threshold was determined through trial and error and consistently removes regions manually 

identified as background without removing visible cells, which have much higher standard 

deviations independent of the presence of fluorescent foci. Any regions on the border of the 

image are also discarded. The remaining regions are cells, which are numbered sequentially, and 

a map is generated where the pixel values within each cell are equal to the number generated for 

that particular cell (Fig. 2.1d). 

 

2.2.3 Fluorescent focus detection and data architecture 

 Each cell found in the composite image is subjected to thresholding to determine whether 

a fluorescent focus is present. The threshold is set by default to 3 standard deviations above the 

median of the cell, although this can be adjusted as necessary. If any pixels are found to have 

intensity values above threshold, the cell undergoes further processing; any cells without pixels 

above threshold are removed from the dataset, reducing the computational time and power for  
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Figure 2.2. Focus and background pixel selection in an example cell. (a) Fluorescence 
intensity map of a single cell with a defined focus from the composite image. (b) Focus pixels 
found above threshold are highlighted. (c) A two-pixel border around the spot, including any 
pixels within the bounds not detected as a focus, is taken for backgrounding (highlighted). (d) 
Threshold mapping for the same cell is shown, scaled from 0-3 standard deviations above the 
cell median. (e) The focus pixels chosen highlighted on the threshold map. (f) The background 
pixels highlighted on the threshold map. 
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downstream analysis. A new binary mask is created for pixels above threshold in each cell with a 

detected focus (Fig. 2.2b,e) and the mask is tested for connected components to determine the 

number of foci within the cell. Each focus is then determined to have a minimum number of 

pixels (set by the user) or it is removed from further processing. 

 The user has the option to process foci by two methods. The default method is to find the 

maximum intensity value within the focus and draw a 3-by-3-pixel box around the point of 

maximum intensity (the “box method”; Fig. 2.3a, center); alternatively, the entire list of pixels 

found above threshold is used (Fig. 2.3a, right). In both methods, the algorithm ranks the pixels 

by intensity value and takes the top number of pixels set by the user, with a default value of 4 

pixels. A rectangular box around each focus, extending two pixels in all directions beyond the 

bounds of the focus, is taken for frame-by-frame background correction of each individual spot, 

excluding pixels contained by any foci or outside of the cell (Fig. 2.2c,f).  

 A “struct” object is created for the movie, where each index position corresponds to the 

cell number found in the cell map. Those indices for cells without pixels above threshold or a 

focus of sufficient pixel size remain empty to reduce the memory footprint while maintaining the 

integrity of the numbering system from the cell map. Each index in the struct contains arrays of 

cell pixel indices and binary indications of whether each pixel is part of the background 

calculation or a focus. The binary designations are structured as “cell” arrays, where each pixel 

contains an array where the column number is the number of the focus (if multiple spots are 

discovered in a single cell). Each pixel’s binary array can then be converted to an integer, which 

allows them to be saved as a foci map and parsed during later processing. 

 Only retaining data from those cells that have fluorescent foci in them provides a 

significant computational advantage. Early iterations of the pipeline processed the entire image 
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for each frame of the movie; this procedure was feasible for smaller movies that were used in 

initial benchmarking (512 x 512 images, 1000 frames, ~500 MB file size), but when used to 

analyze confocal images (1024 x 1024 images, 2000 frames, ~4 GB file size) the program would 

crash the Matlab environment. Taking advantage of vectorization and indexing only those pixels 

in cells containing foci results in a dramatic increase in computational efficiency; the initial 

program could process a 500 MB movie in approximately 3 minutes, while the updated script 

can process a 4 GB movie in 30 seconds.  

 

2.2.4 Generation of time-intensity trace information  

Photobleaching analysis requires the fluorescence intensity of a focus to be monitored 

throughout the course of a movie; the plot of intensity against time is referred to as a time-

intensity trace. As the algorithm generates a trace, the movie frames are iterated through and all 

calculations are done frame-by-frame, adding the results to the respective struct index 

corresponding to each cell. Intensity values for all pixels within each cell with at least one focus 

are saved for reproduction of movies cropped around the cell, while excluding extraneous data 

from regions of bare slide and cells that lack a focus (reducing computational time and power). 

For each focus, the pixel intensities for the selected number of focus pixels and the surrounding 

background pixels are recorded. The median background intensity is calculated and subtracted 

from each focus pixel, after which the corrected focus intensities are summed. This process 

results in two matrices within the struct, one each for the corrected foci and their respective  

background median, where each row corresponds to a separate focus and each column is a frame. 

As a result, each row in the corrected foci matrix is a time-intensity trace for that particular 

focus. 
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Figure 2.3. Pixel selection methods. (a) A focus contains pixels above the threshold (left; 
lighter pixels signifying higher intensity). Pixels can be selected using two methods. In the “box 
method” (center), a 3x3 box (blue outline) is drawn around the pixel with maximum intensity 
and the included pixels are ranked in descending order of intensity (shown by pixel numbers). 
Alternatively, all pixels above threshold can be ranked (right, blue outline). In this example, the 
top four pixels are selected for analysis (yellow highlight). In this case the box contains two 
pixels not included in the focus (black with red numbers), and these would be excluded outright. 
(b) Step size distribution comparison of the box method using 4-6 pixels for analysis. (c) Step 
size distribution when taking the top overall 4-6 pixels from the entire spot. The box method and 
top overall pixel distributions look identical to each other and the number of pixels taken does 
not seem to significantly effect step size. 
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Figure 2.4. Output image maps. All image maps are output in both PNG and binary format. (a) 
The thresholds are scaled from 0-3 standard deviations above the median of each respective cell. 
(b) The region map uses the default colormap for the cell numbers. (c). The spot map is the 
contrast-adjusted composite image with the chosen background boxes overlaid in color. This 
allows the spot pixels to not be obscured. Overlapping regions of background are displayed as 
different color than either of the individual regions. 
 

2.2.5 Output files 

 Image maps are generated for spots found, cell numbering, and threshold values. Each 

map is output in both PNG and binary format (with the “.erie” file extension), for user viewing 

and use during the transition analysis step later in the pipeline, respectively. The cell number 

map is a direct output of the region map, using the default “parula” colormap for the PNG file 

(Fig. 2.4b). To identify the chosen spots, the integer-converted background pixel map is 

superimposed on the composite image, using an arbitrary colormap for contrast, since any 

background overlap between foci within a cell will have a different value than either of the 

individual background designations (Fig. 2.4c). Finally, the threshold map is a heatmap scaled 

from 0 to 3 standard deviations above the median of each respective cell, with all values below 
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the median are set to 0 (Fig. 2.4a). This map allows the user to easily see how large the spot is 

and how high the surrounding pixels are relative to the spot. 

 The Chung-Kennedy and Gaussian kernel smoothing and edge-detection algorithms were 

developed during prior single-molecule Förster-resonance energy transmission (FRET) work in 

our lab7,65. To avoid writing redundant code, time-intensity traces are saved in the same format 

as in the FRET analysis pipeline, modified to exclude the differentiation of “donor” and 

“acceptor” data. The binary output file is a 16-bit integer matrix, where the first row consists of 

frame numbers and each subsequent row is the corrected frame-by-frame focus intensity for each 

spot identified. This format allows the data to be fed into a modified version of the batch trace 

analysis portion of the FRET pipeline. 

 

2.3 Image Background Selection Application 

 The initial analysis of yeast images is automated and based on the detection of 

fluorescent foci in each cell. To correct for any systemic background interference from the 

camera, laser, or cellular autofluorescence, data must be collected from locations not including a 

fluorescent focus. To this end, I created an application that performs the same analysis as the cell 

image analysis pipeline in a standalone environment. In lieu of region identification and 

thresholding, pixels are taken using the coordinates of user mouse clicks on the composite image. 

If the coordinate is close to the interface between a cell and the slide background, the algorithm 

determines which region comprises the most pixels within the nine-pixel box around the click 

coordinate (using the cell number map, where the slide background has a value of 0) and only 

takes spot and background pixels from that associated region, so as not to skew the background 

correction. The trace output from this application is the same format as those generated from the 
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automated script, but there are no associated map outputs. The filenames automatically reflect 

that these traces are background. This procedure not only allows us to determine if background 

noise generates “steps” in our analysis, but also allows us to determine the source of the noise 

(i.e. camera noise or cellular autofluorescence). 

 

2.4 Adapted Script for Analysis of In Vitro Control Imaging 

 While the generation of time-intensity traces and localized backgrounding remains the 

same for in vitro experiments, the identification of foci to be analyzed from in vivo images is 

dependent on first identifying the cells. Thus, the same script cannot be used to identify 

fluorophores deposited directly onto a slide. Furthermore, the software currently used by the lab7 

to analyze FRET is able to handle neither the TIFF format of the images captured by the imaging 

suite used by the confocal microscope setup nor the resolution and single-channel nature of the 

acquired images. 

 To accommodate these images, the initial methods of the analysis script were modified to 

locate molecules in a fashion similar to the FRET analysis software32,66. A composite image is 

created as previously described, at which point the image is block-processed using 16-pixel-by-

16-pixel regions. The median and standard deviation of each block is calculated, creating a new 

matrix for each with dimensions of m/16 x n/16, where m and n are the width and height of the 

image, respectively. These dimensions are then expanded to the original image dimensions using 

a bicubic extrapolation. For each pixel coordinate in the composite image, a threshold is created 

using the corresponding values from the standard deviation and median matrices; the default 

threshold is 5x the standard deviation over the median, but the multiplier is user-adjustable. Only 

those pixels found above this threshold that are also the maximum value in the surrounding 3-by-
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3-pixel window are identified for further processing. To reduce contribution of intensity from 

neighboring molecules, identified maxima within 5 pixels of another are eliminated. 

 Following identification of maximum spot pixels, the script continues in the same manner 

as the background identification application. The 3-by-3-pixel box around each local maximum 

in the composite image are sorted by intensity and the coordinates of the top intensity pixels are 

converted to linear indexing and recorded into a structural element with the same format as the in 

vivo processing script. The number of pixels taken is adjustable and should be the same as the 

number taken for the other analysis methods to maintain background fidelity; by default, 4 pixels 

are recorded. Background pixels are taken from a 2-pixel border around the box and conversion 

to time-intensity traces occurs using the same algorithm as the in vivo pipeline.  

 

2.5 Filter Sliders Application 

 In contrast to TIRF imaging, time-intensity traces generated from in vivo images have an 

inherently low signal-to-noise ratio. Parameters for the Chung-Kennedy smoothing algorithm 

and both the Chung-Kennedy and Gaussian kernel edge-detection methods must therefore be 

tuned to ensure the accuracy of detected step intensity levels and edges. The current FRET 

pipeline does not include a means of real-time testing of these parameters; users are required to 

enter parameters, run the batch trace analysis script on some or all of the traces, review the 

results using a separate application, and then refine and rerun until desired results are achieved.  

There are two major drawbacks beyond the recognizable inefficiency of this method. 

First, the effects of changing each parameter are not entirely obvious, leading to a mostly blind 

guess-and-check characteristic to the process. Second, there is a tendency of the user to refine 

parameters using the best-looking trace from the dataset, one that may not be representative of 
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the set as a whole. To improve ease and accuracy, I created a Matlab application that allows the 

user to adjust the filter parameters and monitor the effects in real-time. The user interface allows 

for display of up to three traces, selected manually by the user or at random. Each parameter has 

an associated value slider that, when changed, updates the displayed traces to reflect all changes 

in smoothing and detected edges. To add to the robustness of the statistical analysis, I included a 

Wilcoxon Rank-Sum in addition to the Student’s t-test already being performed on the regions 

around each transition. The p-values used to accept a transition are also included in the 

adjustable sliders. 

To add additional confidence, I implemented a scoring system for the detected 

transitions. One point is allotted for each of the following criteria, up to a maximum of six 

points. Transitions receive one point each for detection by the Chung-Kennedy algorithm and 

through Gaussian kernel convolution. Any overlap of the 95% confidence intervals for regions 

flanking a transition are determined using both smoothed and raw data, each worth a point in the 

event there is no overlap. Finally, a point is awarded if the smoothed surrounding regions pass 

each of the Student’s t or Wilcoxon Rank-Sum checks. The p-value of the statistical tests 

required for positive scoring can be adjusted separately of those included in the edge-detection, 

so that less-confident edges can be included in the detection method and filtered later. This 

capability is particularly useful when the data are noisy and/or the changes in intensity are small. 

In addition, I included a minimum score filter to remove those edges detected with lower 

confidence. It is important to note that edges with scores lower than this cutoff may still appear; 

when edges are removed, the edge-detection algorithm then creates average regions between the 

remaining edges. This procedure may change the scoring of those edges, because the 95% 

confidence intervals and statistical tests will be affected. If the score threshold is applied again, it 
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could further remove transitions that previously were above threshold, again potentially altering 

the scores of the remaining transitions. This iteration could conceivably repeat ad absurdum until 

no transitions remain; therefore, the score cutoff is only applied once when the transitions are 

initially detected. Each smoothed trace can be saved individually in the same format as the 

output of the batch analysis software if the user wishes to view the results in downstream 

applications. Alternatively, the user can save the current values of all parameters into a 

configuration text file that is automatically read by the modified batch analysis algorithm. 

 

2.6 Step Analysis Application 

 A key step to determining stoichiometry is to establish the loss in fluorescence intensity 

associated with the photobleaching of a single fluorophore. If one can confidently determine this 

value, then the number of fluorophores initially present can be calculated from the total intensity 

of the spot. Alternatively, the number of photobleaching steps can be counted directly, but the 

intensity loss from the bleaching of a single fluorophore is required for differentiating events 

where multiple bleaches occur simultaneously. 

 

2.6.1 Step size determination 

 The smoothing and transition-finding algorithms provide edge locations with mean 

values for the regions between edges (Fig. 2.5). When these mean values are plotted, the 

transitions between different intensity levels become clearly visible. We can calculate the 

difference between the mean intensity levels around each transition to define a step size; this 

method is, however, inherently noisy because there is error in the calculation of each regional 

mean. The uncertainty in the value of the regional means results in steps of different magnitude 
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when the trace contains transitions of fluorescence recovery (Fig. 2.5a). Alternatively, we take an 

approach that draws a series of horizontal lines to define “step levels.” Beginning with the 

highest mean intensity region, the program checks for any regions whose standard error of the 

mean (SEM) overlaps with the SEM of this region (Fig. 2.5b). Any overlapping states are 

statistically indistinguishable and are therefore considered to be part of the same step level. A 

weighted mean for the step level is calculated, weighted by the SEM and number of points of 

each constituent region (Fig. 2.5c). We then move to the next highest region that is not already 

included in a defined step level and repeat this process. After iterating through all regions in this 

manner, we finally adjust any regions that overlap with multiple steps by determining the step 

level to which the mean of the region is closest, recalculating the weighted means of the steps as 

necessary. This process is repeated three times to ensure these multi-overlap regions are 

classified to the appropriate step level. 

 

2.6.2 Step size data analysis 

Now that steps are defined by changes from one step level to another, rather than the raw 

differences between regional means, step sizes can be binned for analysis. Typical time-intensity 

traces from in vivo images contain steps both increasing and decreasing in fluorescence intensity 

due to noise or fluorophore blinking, resulting in two distributions centered around 0 intensity. 

For real fluorescent foci, the negative (down) step population is larger than that of the positive 

(up) steps. The up-steps represent a combination of blinks, rebinding events, and background 

noise; the down-steps are comprised of blinks, dissociation events, background noise, and 

photobleaching events. 
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Figure 2.5. Conversion of regional means to “step levels.”  (a) Using the smoothed time-
intensity trace (solid black line), means (green lines) are calculated for the regions between 
transitions (vertical dashed lines). Using the difference between consecutive regional means as a 
step size would lead to three different magnitudes for the first three transitions (highlighted in 
pink) in this example trace. (b) A 95% confidence interval for each region is calculated around 
the mean. Regions with overlapping confidence intervals can be grouped together (shown by 
matching colors). (c) Weighted means are calculated for each region group (horizontal dashed 
lines). Each line represents a “step level;” a step is then defined as a transition from one step 
level to another and the weighted means are used to calculate the magnitude of the step.  
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 We can remove known blinks from the population by finding any down-step followed 

immediately by an up-step of the same magnitude. This logic may theoretically include quick 

dissociation and rebinding, but both are functionally the same for our analysis as we are looking 

to count molecules through photobleaching and not glean binding information. Dissociation 

would appear identical to bleaching events (in our particular case, it would appear as two 

simultaneous bleaches since the LacI-eGFP binds as a dimer), but any subsequent rebinding 

would remove these events from the net reduction in intensity over the course of the movie. 

Background noise should create equivalent populations of up- and down-steps. 

 Based on these assumptions, we can identify photobleaching step populations by 

summing the positive and negative populations, creating a corrected population of net down-

steps. We can fit the plot of histogram bin counts as a function of bin center value to a combined 

series of Gaussian curves or binomial distributions. After removing blinks and background 

population curves, the up-steps should contain only rebinding events; the down-steps should 

contain a prominent peak at the size of a single photobleach, with sequential peaks of decreasing 

height at multiples of the single step size. Importantly, the size of a single photobleaching step 

above the background is found using an entire dataset for increased statistical power. The 

calculated step size can then be applied to either of the two counting methods. The individual 

photobleaching steps can be counted directly, discerning simultaneous bleaches from single 

events, or the total intensity drop over the course of a movie can be divided by the size of a 

single step to calculate the number of molecules initially present. 
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2.7 Benchmarking with Initial Data 

Testing of the analysis pipeline was performed on a test dataset from a LacO4 strain 

(containing four LacO sequence repeats). At full occupancy, foci in this strain will be comprised 

of eight LacI-eGFP molecules. Notably in this case, binding/unbinding events will be comprised 

of two molecules, assuming both fluorophores are in the “on” state.  

 

2.7.1 Determining optimal pixel count for time-intensity trace generation 

The optimum number of pixels to use in time-intensity trace generation needs to be 

determined before downstream analysis can take place. Inclusion of a pixel results in the 

collection of the background noise intrinsic to that pixel. Pixels that are around the edge of a 

focus are likely to contain more diffused signal from the focus fluorophores than those pixels at 

the center. The result is a lower SNR in pixels around the periphery of the focus; excluding these 

noisier pixels from analysis should increase the SNR of the included data. 

Using both the box method and ranking all focus pixels, an inclusion range of 1 to 9 

pixels (the maximum available when using the box method) were compared to determine the 

optimal number; previous TIRF analysis optimization from the Weninger lab suggested that after 

4 pixels the returns were diminished (personal communication). Higher pixel counts (7-9) 

yielded greater noise, especially for the box method; when a focus is asymmetric and the pixel of 

maximum intensity is near the edge, pixels outside of the focus would fall within the box and 

included (Fig. 2.3a, center). Using data from 1 and 2 pixels resulted in inability to detect loss of 

fluorescence due to photobleaching from stepwise background noise. The dataset was ultimately 

tested for 4- to 6-pixel inclusion and propagated through the completion of the step analysis 

pipeline. The step-size data appear to have identical distributions for equivalent pixel counts 



 36 

using both methods (Fig. 2.3b,c). Within both methods, the increase in pixel count appears to 

affect the data only in that it shifts the calculated step sizes to larger intensities; this effect 

appears to be true for both the identified background and apparent photobleaching populations. 

The reduction in cumulative step counts with increasing pixel count (Fig. 2.3b,c)  is due 

to a reduction in the number of foci analyzed when using higher pixel counts. To illustrate why 

foci with fewer pixels above threshold than the number of pixels taken for analysis must be 

rejected, we can consider a hypothetical focus containing 4 pixels above threshold. A 3x3 box 

including the 4-pixel focus contains 5 non-focus pixels; taking the 5 pixels with highest intensity, 

for example, would include one non-focus pixel. Using the alternative method of taking the most 

intense pixels from the entire focus, taking 5 pixels from a 4-pixel focus is impossible, so 

including a focus with only 4 pixels in a dataset of 5-pixel foci would not be appropriate as it 

contains intensity information from a different number of pixels. 

 

2.7.2 Background steps are distinguishable from “real” steps 

Analysis of traces collected through the background selection application indicate that 

background steps appear smaller than “real” steps and fit to a single Gaussian for each 

population (positive and negative), with small standard deviations and peak locations for up- and 

down-steps that have absolute values within error of each other (Fig. 2.6a). Interestingly, these 

background steps appear in spots selected from both regions of empty slide (Fig. 2.6a, blue, n = 

20,464) and in cells where foci don’t exist (Fig. 2.6a, red, n = 18,262), suggesting that the noise 

results from the microscope/camera system, as opposed to cellular autofluorescence. This result 

is consistently reproducible across imaging experiments and collection days, giving us high 

confidence that the noise is systemic. When comparing the background distributions to 
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intensities from cellular foci across all strains, prominent peaks are present in both the positive 

and negative distributions at higher intensity magnitudes than those seen in background traces 

(Fig. 2.6a, green, n = 3,140). Shoulders on the major peaks (both positive and negative) appear to 

be of similar size to the background steps, suggesting we can distinguish between “real” and 

background steps within the foci data. 

 

2.7.3 A single photobleaching step size can be calculated 

The step size data were fit to multiple Gaussian distributions to determine the size of a 

single photobleaching step. The distributions fit to two and three Gaussians for the positive and 

negative intensity changes, respectively. Populations of down- and up-steps with centers close to 

those measured as background were found (Fig. 2.6b, purple, -101 AU and Fig. 2.6b, red, 127 

AU for LacO4, compared to approximately +/- 100 AU in background traces) and removed. The 

remaining population is comprised of three distributions. Two of these distributions 

approximately mirror each other in the negative and positive domains, centered at -222 AU (Fig. 

2.6b, green) and 250 AU (Fig. 2.6b, orange), respectively. The final peak is found at -450 AU 

(Fig. 2.6b, cyan), which is close to double the intensity loss of the other negative peak. From 

these observations, it is likely that the two peaks of smaller intensity (-222 AU and 250 AU) 

correspond to intensity changes associated with single fluorophores. The positive distribution 

would be comprised of fluorescence recovery following blinks, which explains why it contains 

fewer events; the negative peak would contain both blinks and bleaching events. A negative peak 

at twice the step-size corresponds to multiple bleaches or dissociation of a single LacI-eGFP 

dimer. It is reasonable that this peak has a lower amplitude as these events would occur less 

frequently. 
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With a single-molecule step size value, we can iterate back through the individual foci to 

determine the number of molecules in each focus using Eq. 3, where N is the total number of 

bins.  

 

Eq. 3.   𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑡𝑒𝑝𝑠 = ∑ ()*+	,-+.-/'	∗)*+	,12+.3')(
')*

3*+56-	3.-7	3*8-	
 

 

Specifically, we multiply the counts of each bin by the central value of the bin and sum all the 

products. This process removes up-steps – consisting of blinks, binding/dissociation events, and 

background steps – leaving only the contribution of photobleaching steps. This net total can be 

divided by the calculated single-molecule photobleaching step size, giving the total number of 

molecules present at the start of the movie in a particular focus. Alternatively, we can apply the 

same analysis used for a single focus to the entire dataset, creating a net loss of fluorescence 

across the entire set of foci. Dividing this net loss by both the size of a single photobleaching 

step and the total number of foci would provide an average number of molecules for all foci. 

The yeast strain used for preliminary analysis contains 4 LacO sites; each LacO site can 

accommodate a single LacI-eGFP dimer containing two fluorophores for a total of 8 

fluorophores (assuming all are in an “on” state). Using the focus-wise calculation method, the 

distribution of the number of molecules in the foci of this movie displays a major peak at 

approximately 6 molecules, which represents 75% occupancy by molecules in the “on” state. 

Peaks at 2 molecules (25% occupancy) and 8 molecules (100% occupancy) are also present, but 

to a lesser extent (Fig 2.4e). Observing across all foci gives an average of 6.2 molecules, which 

is close to the main peak in the per-trace analysis. The observed distribution contains reasonable 

molecule counts (at 100% occupancy and lower) and is an interesting preliminary result in  
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Figure 2.6. Step-size analysis methods using initial data. (a) Backgrounds for slide (blue, n = 
20,464) and cells (red, n = 18,262) compared to the total population of spot steps (green, n = 
3,140). Background distributions are smaller in step size than the major peaks from the spot 
steps. (b) Analysis of a LacO4 movie. Raw step sizes are represented by a gray staircase plot, 
with constituent distributions for best fit analysis plotted in color (R2 = 0.9921). (c) Calculated 
molecules per LacO4 focus trace using the step size from (b) (green, -222 AU). 
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respect to the use of relative intensity, because there does not appear the be full occupancy, 

possibly due to unoccupied binding sites or to the presence of molecules in an “off” state. 

Some confounds are present in this dataset. There are some foci that have significantly 

higher pixel counts than others, but exhibit step-wise decay indicative of molecular 

photobleaching with step sizes equivalent to those exhibited by loss of eGFP fluorescence. 

Similar foci appear in all strains expressing LacI-eGFP, regardless of the presence of LacO 

binding sites, but are absent in strains without the labeled protein. These observations suggest 

that these are aggregates of LacI-eGFP, which would account for the presence of photobleaching 

steps of similar (but slightly larger) size, as well as the increased molecule count. It may be 

necessary to tune the expression levels to eliminate these aggregates physically or to provide a 

means of removal through the analysis pipeline. 

  

2.8 Conclusion and Future Directions 

The methodology used in this software package shows that what appear to be real 

photobleaching steps can be separated from background noise in live yeast nuclei. While the data 

used to benchmark each portion of the pipeline were limited, the preliminary results suggest that 

we can identify fluorescent foci containing less than eight molecules using the automated focus-

finding algorithm. We can process a substantial amount of data quickly, although some steps in 

the process are still labor-intensive.  

Further data analysis is currently in progress using the range of strains from LacO1 – 

LacO16, at which point we can start to see the limitations of the application of stepwise 

photobleaching analysis. We would like to determine the minimum number of molecules present 

in a focus necessary for detection as well as accurate step-size determination. From these data, 
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we can begin to make computational refinements to optimize data capture and step analysis. We 

will also be able to observe the calculated occupancies of the different strains and relative 

abundance of fluorescent aggregates, giving insight into expression tuning for these fluorescent 

standards as well as potentially unknown targets. These occupancies will need to be corroborated 

through chromatin immunoprecipitation and TIRF imaging, allowing us to get snapshots of the 

occupancy in the low-background in vitro environment where photobleaching is easily 

quantifiable. Finally, we can begin to use this same analysis for the myriad other strains 

containing LacI fused with other fluorescent proteins, providing standards for a wide variety of 

applications, including colocalization and stoichiometry for multiple labeled participants. 

In the future, I would like to optimize this pipeline in several ways. I would like to adapt 

a machine-learning component to computationally determine ideal parameters for the Chung-

Kennedy smoothing and the edge-detection methods. Such implementation would eliminate one 

point of user interaction and prevent missed transitions caused by user bias, which in turn would 

create more accurate mean regions for step-level determination. The background selection 

application can also be incorporated into the automated cell selection script; automating 

background selection would drastically reduce the amount of time needed for collection of these 

data, not only by eliminating the manual selection of spots, but because the stand-alone Matlab 

application environment runs much less efficiently. Further, scripting background selection 

would allow the entire pipeline to be run on the Research Computing cluster and the time-saving 

benefits would be compounded. 

I have created a software suite that can perform photobleaching analysis of fluorescent 

foci in live cells, from identifying cells, through extraction of pixel intensity information, and 

ending with quantification of photobleaching steps. While the pipeline requires some user input, 
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user-interfaced programs have been designed to reduce processing time and increase ease of use. 

Most importantly, these interfaces allow users real-time feedback to tune statistical parameters, 

which serves to eliminate the user-bias concerns associated with choosing photobleaching events 

“by eye.” This approach applies similar statistical methods that many automated algorithms 

employ but can be applied to low-SNR data. Using the pipeline, we can distinguish systematic 

step-like noise derived from the microscope/camera system from “real” photobleaching steps; 

this distinction may not be possible using other automated step-detection analysis platforms. 

Finally, the programs have been optimized to minimize memory usage and computational time, 

allowing users to process large datasets that would normally take weeks in a few days. 
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CHAPTER 3: USING PHOSPHOROTHIOATE DNA FOR CHEAP, SEQUENCE-
INDEPENDENT INTERNAL FLUORESCENT LABELING 

 

3.1 Introduction 

Protein interaction with DNA is vital to cellular function and genome stability. 

Conformational change in DNA structures often accompanies protein-mediated processes like 

gene regulation67 and DNA damage repair1,7. DNA oligonucleotides modified with fluorescent 

dyes are useful for techniques measuring DNA bending and protein-DNA interactions, such as 

Förster resonance energy transmission (FRET)6, bulk anisotropy68, single-molecule protein-

induced fluorescence enhancement (PIFE)69, and electrophoretic analysis of nuclease activity70.  

Dye location is an important component of these methods, as FRET and PIFE are 

determined by inter-fluorophore and fluorophore-protein distance, respectively, and are sensitive 

to minute changes. Furthermore, dye attachment might perturb protein binding or cause 

unintended PIFE effects that might confound FRET analysis. Thus, multiple labeling sites may 

need to be tested for optimal results. For substrates where end-labeling is not an option, dyes 

must be attached internally. There are currently two commercially available methods for 

modification: backbone incorporation and functionalized thymine residues. 

Commercial backbone labeling employs phosphoramadite chemistry, where chemical 

linkers mimicking a 5’ phosphate and 3’ hydroxyl allow an organic linker to be synthesized 

directly into the oligo. This method has the advantage of being sequence-independent and allows 

for interrogation of the full sequence space. Traditionally, backbone incorporation involves using 

cyanine dyes with the chemical moieties directly attached to opposite sides of the dye, the 
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drawback of which is that the dual-anchoring of the dye limits the rotational freedom of the 

dipole. Rigid dipole moments could yield inconsistent FRET efficiencies when using multiple 

dyes incorporated in this manner, as FRET efficiency is dependent upon the relative orientations 

of the donor and acceptor fluorophore dipoles16. Recently, a new phosphoramadite linker became 

commercially available that incorporates a single-linker into the backbone with a free amine 

group, which eliminates the dipole moment concerns. Alternatively, thymine residues can be 

included in the oligo which contain an attachment modification on the C6 position of the 

nucleobase. These modifications can contain a number of attachment chemistries, thereby 

maximizing the compatible dye library, and the singular nature of the attachment does not limit 

the orientation of the dipole moment. This method, however, limits the accessible sequence 

space as it requires a dT, rendering it less feasible for applications where sequence specificity is 

paramount. 

For all three currently available commercial labeling methods, creation of a library of 

attachment sites can become expensive quickly. Even when labeling in-house, the cost of a 

modified dT oligo is essentially the same as commercial incorporation of dye prior to shipment. 

To find a more cost-effective means of incorporation, we looked to the catalog of commercially-

available DNA modifications. Phosphorothioate (PS) nucleotides are inexpensive modifications 

commonly used to inoculate oligos from nuclease degradation71, where an oxygen on the 5’ 

phosphate is replaced with a sulfur. Previous studies have shown that various attachment 

chemistries can be incorporated into DNA substrates containing PS nucleotides using 

bifunctional linkers72,73. One such linker, N,N′-bis(α-iodoacetyl)-2-2′-dithiobis(ethylamine) 

(BIDBE), is particularly interesting as it requires minimal synthesis and functionalizes the oligo  
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Figure 3.1. Scheme for labeling phosphorothioate DNA. The bifunctional linker BIDBE is 
attached to the sulfur moiety in an internal phosphorothioate linker through an SN2 reaction. The 
disulfide within the linker is reduced using TCEP, producing a reactive thiol, which can then be 
coupled with a maleimide-functionalized fluorescent dye. 
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with a free thiol74, allowing coupling with the wide spectrum of maleimide-functionalized dyes 

used for cysteine labeling in proteins (Fig. 3.1). 

Incorporation of a single PS would create a specific labeling site that is sequence-

independent and the attachment chemistry would not limit dipole orientation for FRET 

applications. Furthermore, the low cost of PS modifications and BIDBE starting materials would 

increase accessibility to site probing. Here we describe a method for incorporation of fluorescent 

dyes using PS-BIDBE attachment chemistry. 

 

3.2 Results and Discussion 

3.2.1 BIDBE can be synthesized with high purity 

BIDBE was initially synthesized as previously described74; however, a high quantity of 

iodoacetate byproduct remained. Residual iodoacetate will compete with BIDBE for PS 

attachment sites, thereby hindering labeling efficiency. To overcome this issue, we added several 

steps that do not extend the purification time or difficulty significantly, but yield product with 

high purity. After the initial synthesis and subsequent centrifugation step, we washed once with 

0.1 M NaOH to ensure reaction completion. Following the post-wash centrifugation, the 

iodoacetate was carefully recrystallized from a smaller volume of acetone, rather than dissolving 

in 1 ml of hot acetone as described in the literature74. Upon solvent evaporation, the remaining 

powder was noticeably more uniform; the iodoacetate appears whiter than the yellow BIDBE 

product. Finally, one more wash with deionized water was added, as iodoacetate is moderately 

soluble in water, while BIDBE is insoluble. The high purity of product was confirmed by liquid 

chromatography/mass spectrometry (LC-MS) (Fig. 3.2). Notably, the full mass of BIDBE was  
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Figure 3.2. LC-MS analysis of BIDBE synthetic product. (a) BIDBE retention on a C-18 
column with a water/acetonitrile gradient. Only a single peak is present. (b) Ion density of the 
single retained peak in positive mode. The major peak at m/z = 488.86 matches the mass of 
BIDBE (MW = 487.86 g/mol) with a +1 charge from an added proton. No iodoacetate (MW = 
185.95 g/mol) was observable. 
 

predominant with the modified procedure, while it was undetected in previous studies74 (Fig. 

3.2b). 

 

3.2.2 PS oligos can be labeled with fluorescent dyes with limited effect on stability 

To test the properties of PS-labeled oligos, a 24-mer containing a single PS (24mer-PS) 

was modified with BIDBE and reduced (24mer-PS-BIDBE), and the free thiol coupled with 

maleimide-functionalized Alexa Fluor 647 (24mer-PS-BIDBE-Alexa647). Samples from each 

step were separated using anion-exchange high-performance liquid chromatography (HPLC) to 

determine the extent to which the products could be separated (Fig. 3.3). 24mer-PS displays as  
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two diastereomer peaks (Fig. 3.3a), consistent with previous studies75. Upon reaction with 

BIDBE, a broad peak appears at an earlier elution time and coincides with a significant drop in 

signal from the unmodified PS oligo, suggesting BIDBE incorporates with high efficiency (Fig. 

3.3b). Addition of the fluorescent dye shifts the peak down the gradient (Fig. 3.3c). It should be 

noted that Alexa Fluor 647 has a number of sulfate groups for increased solubility, which causes 

the labeled substrate to elute later; more hydrophobic dyes (e.g. ATTO dyes) display peak 

migration in the opposite direction.  The elution differences show that purification of the dye-

labeled oligo can be achieved through this method, as well as recycling any unmodified sample if 

desired. 

The dye-conjugated PS oligo was annealed to its reverse-complement and the melting 

temperature (Tm) was compared to that of a homoduplex (24mer) and an oligo with Cy5 

commercially incorporated in the backbone using phosphoramidite synthesis (24mer-Cy5) using 

UV/Vis spectrophotometry (Fig. 3.4). The measured Tm for the unmodified 24mer is 66.2 ± 0.2 

°C, close to the theoretical Tm of 67 °C. While dye conjugation introduces some instability and 

lowers the Tm values, there is no significant difference between 24mer-PS-BIDBE-Alexa647 

(60.3 ± 0.3 °C) and 24mer-Cy5 (59.9 ± 0.3 °C), suggesting the PS labeling does not incur a 

stability penalty over the traditional method.  

 Interestingly, there appears to be a biphasic melting curve for the PS-labeled 

oligo. This observation is likely due to the presence of the two stereoisomers. One phase of the 

curve appears to show a higher melting temperature than the commercially-labeled oligo at 

~65°C, while the other seems to melt about 10°C lower (~55°C). When using this labeling 

method for applications with higher experimental temperature conditions, the fraction with the  
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Figure 3.3. HPLC separation of a 24mer containing a single phosphorothioate throughout 
the labeling process. Elution time was converted to NaCl concentration to normalize retention 
times from different gradient starting points; elution buffer was increased at the same rate in all 
traces. (a) commercially synthesized 24mer-PS. (b) 24mer-PS after reaction with BIDBE linker. 
(c) 24mer-PS-BIDBE coupled with Alexa Fluor 647 maleimide dye. 
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Figure 3.4. Melting temperature comparison of backbone labeling methods. Unmodified 
24mer (red), 24mer-Cy5 (yellow), and 24mer-PS-BIDBE-Alexa Fluor 647 (blue) were annealed 
to the reverse compliment oligo. The absorbance at 260 nm was measured at 1°C intervals. 
Values were normalized as described in 3.4.6. 50% melting is denoted by the dashed line. 
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lower melting temp may alter results. However, the impact of this may be minimal when used at 

37°C , where no apparent denaturing occurs, or when using an oligonucleotide longer than 24nt. 

 

3.2.3 Labeled Holliday junctions provide a proof of concept for PS labeling 

An interesting example substrate for this labeling method is the Holliday junction (HJ). 

Holliday junctions (HJ) are complex, multimeric DNA structures formed during homologous 

recombination76 and double-strand break repair77; synthetic HJs are formed by annealing four 

compatible oligos into a cruciform structure that can adopt multiple conformations (Fig. 3.6a), 

the dynamics of which have been explored using single-molecule FRET. Previous collaboration 

between the Erie and Sekelsky labs focused on the ability of Drosophila melanogaster Gen 

(dmGen), a structure-specific endonuclease, to cleave HJs in vitro78. dmGen requires longer arms 

(24-25 bp) for binding, necessitating internal labeling to maintain a FRET-capable inter-dye 

distance79.  

To test the efficacy of bulk-fluorescence applications, two PS oligos were labeled with a 

FRET dye pair (Alexa Fluor 546 and Alexa Fluor 647) without HPLC purification following 

BIDBE attachment. The oligos were included in an HJ substrate (Fig. 3.5a) and treated with 

dmGen. Native polyacrylamide gel electrophoresis (PAGE) analysis (Fig. 3.5b) showed that 

dmGen cleaves the PS-labeled HJ with a similar rate to previous studies (Fig. 3.5c), indicating 

the label does not interfere with binding. All cleavage products with dye incorporation are 

identifiable; when attempting the same analysis using 32P-labeled substrate, this result can only 

be achieved by performing electrophoresis under both native and denaturing conditions78. 

Interestingly, a band of smaller size than intact HJ appears in the green channel that is absent in 

the red (Fig. 3.5b, left). Incubation with dmGen results in the disappearance of this species, along 
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with the full HJ, and subsequent appearance of a product band of larger size than the products of 

HJ cleavage. We surmise that the original species is comprised of three of the four component 

oligos where the strand containing the acceptor dye is absent, likely the result of dissociation 

during the electroelution step of HJ purification. This substrate would have both a 5’ and 3’ flap 

available for cleavage (Fig. 3.5b, center), of which only the former is cleaved by dmGen78. The 

resulting product would be larger than any of the observable HJ cleavage products, which is 

consistent with our PAGE results. 

For single-molecule FRET experiments (Fig. 3.6), identical HJs were made using Alexa Fluor 

555 and Alexa Fluor 647 as donor and acceptor dyes, respectively. Following dye incorporation 

and prior to substrate annealing, component oligos were purified using anion-exchange HPLC to 

reduce the presence of substrate without an active donor/acceptor fluorophore. A 5’ biotin 

present on an unlabeled strand was utilized to conjugate the substrate to a modified quartz slide 

bound with streptavidin. Total internal reflection imaging in physiological-salt conditions was 

performed, with Ca2+ present as a divalent cation, in the absence and presence of dmGen. The 

majority of traces observed in the absence of dmGen display rapid transitions between FRET 

states (Fig. 3.6b), while addition of dmGen tends to reduce the number of state transitions (Fig. 

3.6c). In the absence of dmGen, there is a predominant distribution around 0.3 FRET, with 

smaller populations at higher FRET efficiencies near 0.45 and 0.65. (Fig. 3.6d). This main 

distribution persists upon addition of dmGen, however the higher FRET populations are not 

present; there appears to be a shift to a lower FRET state (0.10 – 0.15). 
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Figure 3.5. Electrophoretic analysis of cleavage and product formation of PS-labeled 
Holliday junctions. a, schematic of cleavage orientations and respective products. b, 
pseudocolor images of native PAGE gels filtered for donor (left, 570 nm filter) and acceptor 
(right, 670 nm filter) channels with illustrations of cleavage products for each identified band 
(center). Lanes reflect timepoints collected at 0s, 10s, 30s, 1m, 2m, and 10 min from left to right. 
c, plot of reduction in intact HJ as a percentage of total lane fluorescence (b) for donor (cyan) 
and acceptor (magenta) at each timepoint compared to cleavage kinetics determined by Bellendir 
et al. (14).  
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Figure 3.6. smFRET applications of Holliday junctions containing PS-labeled oligos. a, 
schematic of relative dye locations in various conformations of synthetic HJs. b, example 
smoothed time-intensity traces for donor (cyan) and acceptor (magenta) dyes (top) and calculated 
FRET trace (bottom) in the absence of dmGen. Identified state transitions are shown by dashed 
lines, with donor and acceptor bleaches denoted. c, example smoothed time-intensity (top) and 
FRET (bottom) traces in the presence of 20 nM dmGen. d, distribution of timepoint percentages 
by FRET efficiency value (bin size = 0.02 FRET) in the absence (blue, n = 60 molecules) and 
presence (red, n = 9 molecules).  
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3.3 Conclusion and Future Directions 

We have demonstrated that DNA oligonucleotides can be fluorescently labeled using a 

single PS modification. A single BIDBE synthesis as described here yields approximately 10 

reactions and PS-oligos can be modified in parallel to create a library of maleimide-compatible 

labeling sites. The process from BIDBE synthesis to dye incorporation can be done in as little as 

2-3 days if no HPLC purification is required. The synthetic route is accessible, requiring no 

special equipment and performed in a microcentrifuge tube with inexpensive starting materials. 

DNA labeled in this manner exhibits stability similar to that of commercial backbone labeling, 

but the cost-efficiency allows for moving dye locations and interchanging dyes for different 

applications, while avoiding potential FRET impacts or sequence space limitations of traditional 

methods. 

Currently, BIDBE is used at 200-fold excess to ensure complete conjugation. Preliminary 

tests suggest that labeling still occurs at a similar efficiency when using slightly less linker, 

although a titration of linker amounts would be needed to assess the optimum concentration; 

using less linker would further increase the cost differential between our method and commercial 

phosphoramidite synthesis. Furthermore, incubation time and temperature optimization would 

shorten the process and potentially allow for labeling of degradation-sensitive substrates. We 

would like to optimize the different steps of this protocol to provide a shorter, more efficient 

procedure. This labeling method will then be deployed to create substrates for smFRET 

structure-function studies of dmGen-HJ interactions. 
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3.4 Methods 

3.4.1 Materials 

 Iodoacetic anhydride, cystamine di-hydrochloride, and fluorescent dyes were 

purchased through Sigma-Aldrich (St. Louis, MO). Oligonucleotides were ordered from 

Integrated DNA Technologies (Skokie, IL). The sequences used can be found in Table 3.1, with 

incorporation of a phosphorothioate nucleotide denoted by an asterisk. Commercial oligos were 

dissolved in 10 mM Tris pH 8 to 1mM concentration. 

 

Table 1.1. Oligonucleotide sequences for PS labeling experiments 
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3.4.2 Synthesis of BIDBE 

Iodoacetic anhydride was dissolved in dichloromethane in a 1.5 mL microcentrifuge tube, 

to which was added cystamine di-HCl dissolved in 0.1 M NaOH. The resultant biphasic solution 

was vortexed for one minute, forming a thick white precipitate consisting of iodoacetate and the 

bifunctional liker BIDBE. The suspension was centrifuged at 13,000 RCF for 10 min, the 

aqueous layer removed, and the organic layer dried in vacuo. The pellet was resuspended in 0.1 

M NaOH to ensure completion of the reaction and the centrifugation repeated and supernatant 

removed. With the tube submerged in a hot water bath, boiling acetone was added dropwise and 

periodically vortexed until the pellet dissolved. The remaining iodoacetate was then 

recrystallized at room temperature and the slurry centrifuged at 13,000 RCF at 4°C for 15 min. 

The supernatant was removed and blown dry with air. The resulting solid was resuspended in 

deionized water, centrifuged at 13,000 RCF for 10 min, and the pellet was allowed to dry 

overnight at room temperature. The purity of BIDBE was assessed by dissolving 1 mg in 

acetonitrile and analyzing with an Agilent 6520 Accurate Mass QTOF LC-MS ESI positive in 

high-resolution mode, equipped with a Thermo Scientific Acclaim RSLC 120 C18 column (2.2 

µm particle size, 120 Å pore diameter, 2.1 x 150 mm). 

 

3.4.3 Thiol-modification of phosphorothioate DNA oligonucleotide 

24mer-PS (10 nmol) was added to 36 µl 50 mM phosphate buffer pH 7. BIDBE (1 mg, 

100 nmol) dissolved in dimethylformamide was added and the reaction was incubated at 50°C 

for 6 hr. A five-fold molar excess of TCEP was added to reduce the disulfide for 1 hr at room 

temperature and the reaction cleaned up using a Zymo Oligo Clean and Concentrate kit (Zymo 

Research), eluting in 10 mM Tris pH 7.5. 
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3.4.4 Fluorescent dye labeling 

Maleimide-functionalized fluorescent dye was dissolved in dry DMSO and mixed at a 

10:1 molar ratio with thiol-modified oligo in 50 mM Tris pH 7.2. The reaction was either 

incubated at room temperature for 2 hours or at 4 °C overnight. For endonuclease assays, the 

mixture was passed through a G50 microcentrifuge spin column to remove excess dye; for HPLC 

purification, no further cleanup was used. 

 

3.4.5 HPLC purification 

Chromatography was performed using a 1260 Infinity binary liquid chromatography 

system equipped with a Waters Gen-Pak Fax anion-exchange column (2.5 µm, 4.6 x 100 mm) 

equilibrated in 90% Buffer A (50 mM Tris-HCl pH 8.0) and 10% Buffer B (50 mM Tris-HCl pH 

8, 1M NaCl) with a flow rate of 0.5 mL/min. To establish elution concentrations of NaCl, test 

samples from each stage of the process were injected and allowed to equilibrate for 5 minutes, 

followed by increasing Buffer B (1%/min, 10 mM NaCl/min) to 75% Buffer B (750 mM NaCl). 

Subsequent purifications were adjusted based on the elution times for the test samples, which 

depend on the length of the oligo and the hydrophobicity of the dye used, such that the initial 

equilibration was at least 100 mM NaCl (10% Buffer B) below elution concentration and ramped 

to 100 mM NaCl above elution of the final peak using the same gradient rate. The eluent was 

monitored at 260 nm, 555 nm, and 636 nm and elution fractions collected at 30 second intervals. 

Fractions containing labeled DNA were pooled and concentrated using a Zymo Oligo Clean and 

Concentrate spin column, eluting in 10 mM Tris pH 8. 
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3.4.6 DNA melting curves 

Absorbance measurements were recorded using a Cary 100 UV/Vis spectrometer with a 

Peltier attachment (Agilent). Modified oligos were combined with equimolar reverse compliment 

to a final concentration of 500 nM in degassed 10 mM Tris pH 8 and 100 mM NaCl. The oligo 

mixtures were transferred to sealed quartz cuvettes, heated to 90°C for 5 min, cooled slowly to 

room temperature, and equilibrated for 30 minutes. The absorbance at 260 nm was monitored at 

1°C increments from 25°C to 80°C with a heating rate of 1°C/min. The absorbance was then 

plotted against temperature and the regions before and after the transition region were fit linearly 

to correct for small changes in hyperchromicity, as well as the steepest part of the major 

transition. The intersection of the transition line and those of the pre- and post-transition regions 

were then set to 0% and 100% of the total DNA melted, respectively, to normalize for 

differences in total absorbance values. The melting temperature was then calculated for the 

temperature at which the transition line is equal to 50% melting. 

 

3.4.7 HJ purification 

Care was used throughout to protect the fluorescent dyes from light to limit 

photobleaching. HJ oligos (888-Biotin, 891-C16-PS, 990-A34-PS at 2 nmol each; 991_SPB at 6 

nmol, 3-fold excess) were mixed in 65 µl annealing buffer (50 mM Tris pH 7.5, 50 mM NaCl, 5 

mM DTT), heated to 95°C for 5 min, and cooled slowly to room temperature. The solution was 

mixed with an equal volume of 2X loading buffer (20 mM Tris pH 8.0, 2 mM EDTA, 10% 

glycerol), loaded onto an 8% native Tris-borate-EDTA (TBE) PAGE gel, and electrophoresis 

was performed with 200 V for 2 hr. The gel was imaged using a Typhoon Trio+ fluorescence 

imager (GE Healthcare), overlayed on the image, and the HJ band excised. The gel slice was 
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placed in dialysis tubing (45 kDa cutoff) containing 2mL TBE electrophoresis buffer. The tubing 

was placed in a gel box containing TBE and electroeluted with 200 V at 4°C for 2 hr, at which 

point the current was reversed for 15 minutes. The gel slice was removed and the eluted HJ 

dialyzed at 4°C against 4 L storage buffer (10 mM Tris pH 8, 50 mM NaCl), refreshing the 

buffer every 24 hours for 72 hours. The buffer was removed from the tubing and concentrated 

using a 14 kDa Microcon microcentrifuge filter (MilliporeSigma) and stored at 4°C wrapped in 

aluminum foil. 

 

3.4.8 HJ endonuclease activity 

Purified HJ (20 nM) was incubated with dmGen (200 nM) in 40 µl reactions (50 mM Tris 

pH 8, 100 µg/mL BSA, 1 mM DTT, 10% glycerol, 50 mM KCl, 5 mM MgCl2). Reactions were 

initiated upon addition of dmGen and 5 µl aliquots were removed and quenched with 10 µl 2.5 

mg/mL Proteinase K and 125 mM EDTA for 15 min at each timepoint (10 s, 30 s, 1 min, 2 min, 

5 min, 10 min). The samples were diluted 1:2 with 2X loading buffer and electrophoresis was 

performed with an 8% native PAGE gel. Amounts of substrate cleavage and product formation 

were determined by the fraction of total lane fluorescence. 

 

3.4.9 Surface preparation for TIRF imaging 

Imaging was performed using quartz slides drilled to create multiple flow channels80. 

Slides and glass coverslips were bath-sonicated in anionic detergent, acetone, ethanol, and KOH 

(in that order), using deionized water to rinse between steps and for final storage. Aliquots of 

methoxy-poly(ethylene glycol)-silane (mPEG-silane, 20 mg, Laysan Bio, MW 2000) and biotin-

poly(ethylene glycol)-silane (bPEG-silane, 2 mg, Laysan Bio, MW 3400) were measured in a 
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glove box. Slides and coverslips were blown dry under compressed air. Single aliquots of 

mPEG-silane and bPEG-silane were dissolved in 80 µl and 10 µl of deionized water, 

respectively, and 1 µl bPEG-silane was added to the mPEG-silane to create a 1:100 

biotinylated/non-biotinylated ratio, vortexed, and briefly centrifuged to remove bubbles. For 

each slide, ~40 µl of PEG-silane mixture was applied to the channel area and covered by a 

coverslip, removing any air bubbles. The slide/coverslip combination was then suspended in a 

box partially filled with water to maintain humidity and allowed to react overnight. Upon 

completion, the slide and coverslip were separated, the treated surfaces rinsed thoroughly with 

deionized water, and blown dry with compressed air. A second treatment of mPEG-silane was 

then applied to fill any potential functionalization gaps, followed by rinsing and drying when 

sufficient reaction time had elapsed. Strips of double-sided tape were adhered to the slide 

between the channel holes and the coverslip attached to create flow channels. 

 

3.4.10 Sample treatment for TIRF imaging 

Functionalized flow channels were rinsed 5x with loading buffer (10 mM Tris-HCl pH 8, 

50 mM NaCl, 10 mM CaCl2). A streptavidin solution was diluted to 0.1 mg/ml in loading buffer, 

added, and allowed to react for 15 min, followed by rinsing 3x with loading buffer. Labeled and 

biotinylated HJ substrate was diluted to 40 pM with loading buffer and applied to the channel for 

15 min. The channel was then rinsed 2x with imaging buffer (50 mM Tris-HCl pH 8, 50 mM 

NaCl, 10 mM CaCl2 for low salt conditions; 50 mM Tris pH 8, 100 µg/mL BSA, 1 mM DTT, 

10% glycerol, 100 mM KOAc, 10 mM CaCl2 for endonuclease conditions). Immediately prior to 

imaging, an oxygen scavenging and triplet state quenching system (100 U/ml glucose oxidase, 
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1000 U/ml catalase, 0.05 mg/ml cyclooctatetraene, 143 mM 2-mercaptoethanol, 2% w/v glucose) 

prepared in the corresponding imaging buffer was added6,7.  

 

3.4.11 Single-molecule TIRF image collection 

Donor and acceptor fluorophores were excited using 532 and 640 nm lasers, respectively, 

and imaged on a through-prism total internal reflection microscope with a 60X, 1.2 NA water 

immersion objective. Donor and acceptor channels were split using a DualView optical splitter 

with a 645 nm dichroic mirror and captured by an emCCD camera using 585/70 bandpass and 

655 longpass filters at a 100 ms framerate for 800-900 frames. Acceptor fluorophores were 

excited during the first 10 frames to locate substrate molecules, followed by 790 frames of donor 

excitation, at which point acceptor fluorophores were excited for >10 frames to determine the 

extent of acceptor photobleaching. 

 

3.4.12 FRET data analysis 

TIRF image analysis was performed using custom software in Matlab7. Fixed fluorescent 

bead images were used to determine any offset between the donor and acceptor halves of the 

images and acceptor molecules were located using the initial 10 frames. Intensity traces were 

generated for each acceptor (IA) and its corresponding donor (ID). Raw FRET efficiency (E) was 

calculated by E = IA / (IA + ID) and smoothed using a modified Chung-Kennedy edge-preserving 

filter. Only those molecules exhibiting nonzero FRET and intensity consistent with a single 

donor/acceptor pair were considered for analysis. Traces containing at least one donor and 

acceptor blinking or photobleaching event were corrected for background and bleedthrough 

while the remainder were discarded, after which FRET efficiency was recalculated.
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CHAPTER 4: MAKING AN UNDERGRADUATE LABORATORY COURSE FROM A 
GRADUATE RESEARCH PROJECT 

 

The groundwork for the development was performed with Hunter Wilkins. This included initial 
test experiments, examination and activity design, lecture design, preparatory work, and in-
course data analysis. Survey data analysis was performed by Bryant Hutson in the UNC Office 
of Institutional Research and Assessment. The instruction and course development were 
overseen by Dr. Thomas Freeman and Dr. Dorothy Erie. 
 

4.1. Introduction 

For decades, the standard of undergraduate physical and life science labs has been an 

expository approach, where students are guided to a known outcome by instructors in order to 

provide experience in the broad techniques of biochemical research81. While this “cookbook” 

approach is well-established and easily implemented across undergraduate institutions, it is 

inadequate as a realistic model of research in a graduate or professional environment82,83. These 

common pitfalls in traditional laboratory curricula have led to prescriptions by the American 

Association for the Advancement of Science (AAAS)84 and the President’s Council of Advisors 

on Science and Technology (PCAST)85, among others, to update undergraduate laboratory 

methodology to incorporate more research-based instruction.  

Traditionally, undergraduate research experience is gained through independent research 

overseen by a research faculty member, typically through joining the research group86,87. While 

this provides an excellent resource for undergraduates, this experience is often pursued outside of 

the course load86; furthermore, the number of available research positions limits the number of 

students who can participate87. The effect of these limitations is that most students may not have 
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the opportunity to experience research in a realistic setting, the impact of which is particularly 

pronounced within underrepresented minority (URM) student communities88. 

In recent years, course-based undergraduate research experience (CURE) courses have 

been increasingly incorporated to address some of these shortfalls89. Numerous studies have 

shown that such inquiry-based approaches result in greater internalization of scientific concepts; 

increased self-confidence in physical skills, data analysis and interpretation; and critical thinking 

skills involved in synthesizing scientific hypotheses and assertions87,90–93. Completion of 

research-based courses have also shown lower rates of STEM student attrition91,94, while 

increased access to scientific mentorship95 and quality research experience96 correlates closely 

with increased self-identification as a scientist by URM students and, in turn, higher likelihood 

of persistence of students from those social backgrounds within STEM careers97. 

In an effort to broaden participation in authentic research experiences, the University of 

North Carolina at Chapel Hill (UNC) adopted a Quality Enhancement Plan (QEP) beginning in 

2017 designed to incorporate a research-based model for undergraduate laboratory experiences. 

A key component of the Southern Association of Colleges and Schools Commission on Colleges 

(SACSCOC) reaccreditation requirements, the QEP is specified as a focused course of action 

that addresses a well-defined issue related to student learning. As a leading research university, 

UNC-Chapel Hill has identified providing meaningful research experiences to undergraduates as 

an institutional priority. Included in this QEP are CURE programs for the physical and life 

sciences, with the prescription that these CURE courses incorporate certain core characteristics 

(Table 1) into their curriculum outlined in the literature98,99.  

We have created an undergraduate biochemical curriculum that aims to provide a 

research experience comparable to a graduate-level project to be carried out over the course of 



 65 

multiple successive semesters by different student cohorts. In this study, we explore how to best 

offer students an authentic research experience through CUREs and examine how implementing 

a CURE model impacts student research outcomes, including sense of research project 

ownership and research skill development. We describe a CURE approach implemented with a 

course focused on biochemistry laboratory techniques. We delineate the CURE project structure 

as well as the instructional strategies employed in the course. In addition to describing student 

research outcomes, we report the impact the CURE project had on students’ perceptions and 

attitudes toward engaging in scientific work as well as the class itself. Our specific research 

questions for this study include: 

 

1) To what degree was the CURE model successful implemented in the biochemistry 

course (as measured by the Laboratory Course Assessment Survey, or LCAS)? 

2) What is the impact of implementing a CURE model in a biochemistry laboratory 

techniques course on students’ research skill development in the discipline? 

3) What is the impact of implement a CURE model in a biochemistry laboratory 

techniques course on students’ perceptions and attitudes toward engaging in scientific 

work, including sense of project ownership, research skill development, etc. 

 

4.2 Course Development 

 At UNC, the biochemistry lab is a three-credit-hour lab primarily taken by third- and 

fourth-year biochemistry majors. The traditional aims of the course have been to introduce 

students to the skills involved in the biochemical study of enzymes and scientific reporting of the 

findings. The class is divided into two sections of a maximum of 16 students per section. Each 
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section meets twice weekly for four-hour periods, as well as a single hour-long recitation period 

attended by both sections. In addition to a faculty instructor, there are four graduate teaching 

assistants (TAs), where each section has two assigned to it. 

 

4.2.1. Rationale for choosing a research project 

 The initial motivation for moving away from a cookbook-style laboratory was to provide 

students with a shared research experience that more readily translates to a career in biochemical 

research. The previous target protein, alkaline phosphatase, has been rigorously studied for 

decades. As such, the outcomes of the experiments performed in the course are known. 

Conversations with students in the past provided anecdotal feedback that this bred a lack of 

interest in students; the feeling was that they were doing work for the sake of work. 

The aim of this course is two-fold. The first aim is for students to come away with 

realistic expectations of what a career in science will entail. The second aim is for the research 

the students perform to be included in a peer-reviewed publication. Contributing to the body of 

knowledge allows students to feel ownership of the project and a sense of real accomplishment 

beyond completion of the course.  

In pursuing these aims, we decided that choosing a novel target for the class at the outset 

was the best option, allowing the class to learn the techniques with initial direction from the 

instructors. This approach creates a controlled environment for students to practice the critical 

thinking, analysis, and experimental design skills necessary for a career in research beyond those 

taught in a traditional laboratory course. 

 When choosing a novel target to study, it is pertinent to find something that is feasible for 

novice scientists to approach. With this in mind, we looked for an uncharacterized homolog of a 
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previously studied enzyme familiar to us through our academic research. This approach means 

that the instructor has intimate knowledge of the process of purification and assay design that are 

crucial to timely progression. Students can also recapitulate the results from the characterized 

homolog in parallel, providing a built-in control to compare with the novel results. For our pilot 

study, we selected Thermus aquaticus (Taq) UvrD, a DNA helicase whose homolog is a key 

component in nucleotide excision repair in Escherichia coli. The E. coli homolog serves as a 

control for DNA unwinding and ATPase activity. 

 

4.2.2. Course progression 

The updated curriculum emphasizes the development of what we have termed the 

“biochemist’s toolkit.” We want students to understand, in both theory and practice, the array of 

experimental techniques at their disposal to investigate any problem that they might encounter in 

a research career. This toolkit includes those molecular biology techniques standard to the 

isolation of any enzyme – PCR, primer design, plasmid vectors, bacterial strains, separation 

methods – while also including more advanced experiments that may not be covered by other 

courses and lectures. The overarching aim of this approach is to have students work through the 

development of a research project as they would in a graduate environment: using the resources 

available (e.g. software, literature sources) to understand the limitation of the current knowledge 

base, design experiments using the techniques available to them, and collect and analyze data to 

test their hypotheses. While the scope of these experiments is naturally limited to the techniques 

presented to them in the course, the process is broadly applicable to identifying and solving 

research problems in a professional research environment. 
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It is not feasible to complete the vast majority of graduate-level research projects in a 

single semester. Furthermore, it is virtually impossible to predict a priori which novel targets 

would fall into that minority. Thus, the aim of this new curriculum is not to design a stand-alone 

project to be completed by a particular cohort, but rather to build each successive semester’s 

experimental workflow upon the results obtained by previous students. The result is a dynamic 

syllabus that attempts to answer those questions that remain previously uncompleted or 

unaddressed. The adaptability of this curriculum provides the opportunity to reinforce those 

techniques that the students find particularly challenging and introduce more non-traditional 

experimental design that might otherwise be precluded by the constraints of traditional course 

design. 

 At the inception of our new curriculum, emphasis was initially placed on determining 

optimal conditions for purification of Taq UvrD and enzyme assays. Students performed initial 

induction tests using isopropyl-b-D-thiogalactoside (IPTG), which yielded limited soluble UvrD; 

this provided an opportunity to introduce the concept of autoinduction, a technique unfamiliar to 

the majority of the class. To reduce the protein load during column chromatography, an 

ammonium sulfate precipitation was employed, the optimal concentration of which was 

unknown for our homolog. Finally, all groups performed identical affinity chromatography. 

Results were monitored for each step using polyacrylamide gel electrophoresis (PAGE).  

We chose to test two facets of Taq UvrD activity: DNA unwinding (helicase activity) and 

ATP hydrolysis (ATPase activity). The extent of helicase activity is determined by incubating 

UvrD with DNA substrate where one strand is labeled for visualization and the opposite strand 

contains a 3’ overhang for enzyme binding. To prevent reannealing of the labeled strand, an 

equivalent, unlabeled “trap” oligo must be included in excess. Single- and double-stranded 
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substrate are subsequently separated using native PAGE, and relative amounts calculated. 

ATPase activity can be measured using a colorimetric Malachite Green assay, which measures 

the concentration of inorganic phosphate following hydrolysis. 

Assay conditions for both helicase and ATPase activity needed to be defined before 

meaningful results could be acquired, as the literature procedures for both involved use of 

radioactivity. The helicase substrate was modified to include a fluorescent dye, which is 

considerably safer but reduces the sensitivity of the assay. The concentrations for substrate, 

enzyme, and trap oligo needed to therefore be determined. The conditions for the Malachite 

Green assay were unknown from the outset. After conditions for all of the experiments were 

established, the structure of subsequent semesters shifted to focus on producing enzymatic 

results and introduction of techniques like mutagenesis. 

 

 4.2.3. Collaboration  

At the start of each semester, students complete a pre-course survey conducted by the 

course instructors to establish each student’s experience background. Students are sorted by 

experience and divided into groups of four so that each group contains students with diverse 

levels of experience. This allows students to help teach their group about techniques they’ve 

used in other settings, which helps students reinforce their knowledge and frees teaching 

assistants to assist those who need more instruction. 

The aims of the group structure are to facilitate cooperative progression through lab 

activities, promote collaborative writing and peer review, and to efficiently perform 

experimentation. Students are expected to divide work duties amongst themselves for 
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experimental preparations (e.g. making buffers, pouring gels), reducing the setup time for the 

more laborious experiments. 

The nature of novel research necessitates troubleshooting and optimization of the various 

steps in the process. This is perhaps the largest departure from a traditional curriculum where the 

procedure is more concrete, but it serves to provide a realistic experience in graduate-level 

research. We can take advantage of the group structure to tackle this challenge in an efficient 

manner; each group can run an internal control, whether to compare a specific condition using 

the target enzyme or results from the characterized homolog, along with differing test conditions 

between groups. This method allows for many conditions to be tested simultaneously so that all 

members get experience with the techniques and systematic error can be distinguished from 

negative results. We can then compare the results of all groups to determine which conditions are 

optimal. 

In this vein, the weekly recitation period has been converted to a lab-meeting-style 

discussion involving both sections. Each group performs analysis of the previous week’s results 

and presents their conclusions, determining what the next experimental step should be. If the 

prior experiments were determined to have failed, the students hypothesize what possible 

explanations of the outcomes exist and how to experimentally troubleshoot those sources of 

error. This environment allows the instructors to introduce analysis techniques and software to 

the class as a whole, as well as incorporation of the same information as would be provided by a 

traditional lecture-style recitation. 

For Taq UvrD, there were many unknowns in the procedure that would normally take a 

significant amount of time to establish. In purification, differing IPTG and ammonium sulfate 

concentrations were compared between groups, as were relative amounts of enzyme, substrate, 
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and trap oligo in helicase and ATPase assays. By dividing the work among the groups, we were 

able to test a wide variety of conditions in just a few lab periods, more than would likely be 

feasible for groups to test individually in an entire semester. All groups were still exposed to the 

conditions they didn’t test through the recitation meeting, which allows all groups to interpret the 

gamut of results and design future experiments. 

 

4.2.4. Computational techniques 

 We have included an introduction useful to computational techniques not previously 

included in this course, inserted during periods of downtime during points in the workflow where 

downtime is unavoidable (e.g. incubation periods). These lessons include crystal structure 

modeling in PyMol (Schrödinger, New York, NY), basic local-alignment search tools (BLAST, 

National Center for Biotechnology Information), and the molecular biology software suite 

SnapGene (GSL Biotech, San Diego, CA). 

Through multiple-sequence alignment, students identify those residues that are conserved 

throughout homologs identified in other species. If no crystal structure exists for the target 

enzyme, the sequence can be submitted to protein-fold-modeling algorithms. Students can then 

determine those conserved residues and structural elements of functional importance that model 

closely to available structures, as well as major differences that may affect function. 

Visualization of these characteristics provide an opportunity to discuss amino acid side chain 

properties and the impact of changing residues to alter function, allowing students to formulate 

hypotheses about differences in binding or kinetics and to define change- or loss-of-function 

mutants that might be interesting to further pursuit. Finally, students can use molecular biology 

tools to design a mutagenesis experiment. 
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4.2.5. Presentation of experimental results 

 Students are required throughout the semester to present their findings in multiple 

formats. During the weekly recitation, groups are asked to annotate figures from recent 

experiments and describe their interpretation of the outcome. This requires defending those 

interpretations through the data and allows instructor feedback in real time. This can be 

presented within a particular group, between groups who tested similar conditions, or to the 

entire class. 

 We have shifted to a single, collaborative written report for each group, as opposed to 

multiple reports written by each individual throughout the semester. This approach more closely 

resembles real-world scientific writing, where multiple scientists contribute to a single body of 

work, a process that students likely have not participated in previously. The students are again 

responsible for holding each other accountable; an adjustable rubric can be established that 

considers the differing contributions of each member. We opt for gradual submission of 

components following completion of major sections of the procedure (i.e. purification, assays) so 

that students can have incremental feedback. 

 At the completion of the course, groups are required to present a poster at the UNC-wide 

undergraduate research symposium. For many students, this is their first experience in presenting 

an original research project to an external audience. The abbreviated format of a poster 

presentation also provides experience in distilling their results to the essential information. 

 

4.2.6. Course materials 

 Novel research precludes the availability of a formal lab manual. Students are instead 

required to turn to literature sources, local lab protocols, and internet searches to find  
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Table 4.1. Overall LCAS results 

 

  

experimental methods. This enforces skills in literature interpretation and self-sufficiency that 

are valuable in professional settings. Students are also provided with commercially produced 

video tutorials for different techniques. 

In lieu of hard copies of pertinent protocols and background information, we take 

advantage of cloud-based services so that students have access to course-related information, 

literature references, and group results from each experiment. We worked in conjunction with 

UNC Information Technology Services to create a course site using Microsoft OneNote, as all 

students have access to the software the university site license for Microsoft Office 365. Student 

notebooks were access-limited to the student themselves and those with instructor permissions. 

This ensures individual responsibility for contemporaneous notetaking while allowing for 

periodic review by instructors. The option was given for electronic recordkeeping or for a 

physical notebook with the requirement that digital images of any notes taken should be 

uploaded within an hour of the end of a laboratory period. Each group has an associated 

collaboration page, where experimental data are posted. Access to all of these pages are 

universal, which allows students to access sources and data from anywhere, provides a space for 

writing and figure annotation within each group, and allows students to compare results to those 

of other groups. 
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4.3 Outcomes 

In order to explore the impact of integrating these CURE elements, survey data has been 

collected, analyzed and examined with each iteration of the course. This allows for monitoring 

trends over time. One major benefit of collecting this data is that we can use the previous 

feedback to improve the next iteration, so it never gets stale and always improves, theoretically. 

For example, instead of using overall lab experience to group, assign students so that each group 

has someone who has experience with each of the general activities (gel, protein prep, etc). 

Several scales have been adapted from published instruments to measure the impact of the course 

on students’ experiences with authentic research.  

 

4.3.1. Laboratory Course Assessment Survey results 

The LCAS is used to differentiate CUREs from other laboratory courses by measuring 

students’ perceptions of three design features including: 1) collaboration, 2) discovery and 

relevance, and 3) iteration. The Collaboration subscale addresses the degree to which students 

are encouraged to work together and provide and respond to feedback. The subscale incorporates 

a four-point scale that asks respondents how often they were encouraged to engage in 

collaborative activities (i.e., 1=Never, 2=One or Two Times, 3=Monthly, 4=Weekly). The 

Iteration subscale describes the degree to which students have opportunities to revise their work 

to address problems or new questions as well as to improve validity of their own and others’ 

results; this subscale incorporates a six-point Likert scale that runs from Strongly Disagree to 

Strongly Agree. The Discovery subscale, also using a six-point agreement scale, addresses the 

extent to which students have opportunities to generate new  
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Table 4.2. Student responses for Collaboration 

 

 

knowledge in the discipline. Responses on items across the three scales are aggregated to create 

overall scores for Collaboration, Discovery and Relevance, and Iteration, and a total LCAS score 

is comprised of the three combined scores. The possible range of scores for Collaboration is 6-

24, for Discovery and Relevance is 5-30, and for Iteration is 6-36, while the overall LCAS score 

may range from 17 to 90.  

Over time, LCAS responses (Table 4.1) have been collected and reviewed to establish 

how students perceive the “CUREness” of the course (Sathy, et al., under review). The overall 

mean LCAS score was 72.91 (SD = 8.91). The LCAS scores for this course were similar to those 

from the original Corwin et al. (2015) study99, with students scoring Collaboration and Iteration 

slightly higher and Discovery somewhat lower. Overall, these data suggest we delivered what we 

intended to in terms of a departure from a traditional cookbook structure, but there are areas 

where improvements can be made.  

The Collaboration survey results (Table 4.2) suggest students felt strongly that they were 

encouraged to contribute to class discussions (4.00 ± 0.000) and seek input for addressing 

problems they encountered in the lab (3.84 ± 0.603). These positive responses are likely due to 

our recitation structure, where student groups were encouraged to draw their own experimental 
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conclusions and report back to the class, or the low student-to-TA ratio during lab sessions. The 

lowest scores were in response to assisting classmates in data collection and analysis (3.36 ± 

1.206) and providing criticism (3.36 ± 0.924). The latter result is unsurprising, as our current 

curriculum does not incorporate much peer review, but the low score for assisting others is 

interesting. Our group structure and the length of the experiments necessitate students to help 

each other collect data; furthermore, the writing assignments, figure generation, and 

experimental analysis are all performed as a group. Taking these course elements together, we 

would expect a stronger response to this question. A possible explanation is that students may 

have interpreted the question as assisting students from other groups, which we currently do not 

emphasize. Since Collaboration received the lowest response score of the three LCAS categories, 

future iterations should incorporate more emphasis on research as a collaborative effort, 

including inter-group interactions and peer review. 

Discovery responses (Table 4.3) were uniformly higher than those for Collaboration, with 

no mean values falling below 4.00. Students rated the expectations for data explanation (5.09 ± 

0.831) and argument development (4.73 ± 0.786) highest, which aligns with our focus on 

analysis and data interpretation. Students felt expectations were lower for delivering results of 

interest to the community or unknown to the instructors (4.09 ± 0.944). It is impossible to parse 

if this score results from the students’ lack of perception that their results would be of import to 

the scientific community or if they assumed the instructors knew the experimental outcomes 

beforehand, but generally we could aim to emphasize the fact that while we as instructors have 

some expectation of the results, the exact outcomes are unknown to anyone and would therefore 

be important to expanding the knowledge base. The low score for student formulation of 
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Table 4.3. Student responses for Discovery 

 

 

research projects (4.09 ± 1.136) is to be expected at this stage in the course development. We are 

still troubleshooting and streamlining the experiments and course structure, including assessing 

what experimental volume and degree of technical difficulty the students will be able to handle 

within the scheduling constraints. There will at some point be a shift in design that incorporates 

student-led hypothesis generation and experimental design, which should improve this metric. 

The category with the strongest ratings was Iteration (Table 4.4), which is the most 

predictable result as the students repeated most of the experiments threefold or more during 

troubleshooting. This point is most evident from the fact that the highest rating was given to 

repeating work to address experimental problems (5.27 ± 0.786). A secondary effect of multiple 

rounds of troubleshooting was that students were tasked with deciding which facets of the 

experiments to alter; the time spent in this process is reflected by the strong response to the 

available time to change methods (5.00 ± 1.183). The lowest score was in regard to testing new 

questions and hypotheses that arose over the course of the experiments (4.18 ± 1.250). This is 

understandable from the standpoint that the focus was on getting usable results from the 

prescribed assays before pursuing other avenues; we hope that as we learn more and progress  
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Table 4.4. Student responses for Iteration 

 

 

through the more difficult initial stages of this curriculum, we can begin to address these 

shortcomings. 

 

4.3.2. Skill development 

The skills development scale incorporates student ratings of their comfort level with 

various lab techniques. This is assessed in a pre/post manner on a five-point scale. Statistically 

significant increases were reported for all skills (Table 4.5), the largest growth being in enzyme 

activity assays (mean difference of 2.27) and working with restriction enzymes (mean difference 

of 1.78). Perhaps more importantly the standard deviations for each decreased. Together, these 

results suggest that the experimental design and iterative nature of this CURE not only 

accomplished the underlying goal of teaching the students an array of widely-applicable 

biochemical techniques, but also led to more uniform confidence in laboratory abilities among 

the cohort. 
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4.4. Limitations, Challenges, and Opportunities for Improvement 

Creating a curriculum of this nature involves significant challenges. Instructor experience 

is of particular import; progressing smoothly through the course and providing an optimal 

learning experience necessitates familiarity with the methods and associated troubleshooting 

points. This is especially important when the main point of instructor contact is through graduate 

teaching assistants. We have been fortunate to have late-career graduate students to serve in a 

leadership role for younger teaching assistants. When this is not possible, extensive training will 

be required. It is imperative to have open channels of communication for planning; we scheduled 

TA meetings immediately following the weekly recitation so the results of both sections could be 

included in planning each week’s experiments. The student-instructor ratio should be considered 

when deciding the expectations for the semester’s progression and the scope of the research 

project as a whole. 

The institutional resources available are also limiting factors when choosing a project to 

pursue. The structure of the UNC Chemistry departmental curriculum allows us to meet with 

students for three sessions each week, including two in the laboratory. Other universities may 

have significantly less face-to-face student with students and reinforcing concepts and techniques 

may be difficult. At UNC, we have access to departmental cores that allow us access to 

numerous analytical techniques, such as plate readers, fluorescence imagers, refrigerated cell-

culture shakers, etc. This course also takes advantage of university-wide software licensing 

agreements to implement notebooks, collaboration, and data analysis. Not all institutions can 

offer similar access, so a project must be chosen such that it is feasible to perform any necessary 

experiments to produce publishable results. 
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Table 4.5. Change in self-confidence with laboratory techniques 

 

 

The dynamic nature of the syllabus means that some semesters will focus more on some 

techniques than others. As the course shifted from optimization of purification and assay 

conditions to enzymology results, students spent less time on the process of enzyme production 

than the previous cohort. Likewise, the initial cohort got more experience in enzyme production 

and troubleshooting than enzymology data analysis and interpretation. It is pertinent to include 

some activities that reinforce those techniques that might be stressed less at any point in the 

overall project, so as not to create a knowledge gap. 

Finally, pursuing an unknown outcome means that the “safety nets” available in a 

traditional curriculum aren’t available in the event of experimental failure. This has less of an 

impact after successive semesters, as samples of purified protein, PCR products, and cell stocks 

can be stored; however, for initial implementation, this can stall the project. To prevent this, we 

did some initial test purifications and assays with an undergraduate the summer prior to the first 

semester. We also embrace the unpredictability as a means of teaching students that in research, 

the answer is not known beforehand; repetition and troubleshooting may be frustrating, but 

students quickly become proficient in understanding and performing those techniques. 

Class size presents a challenge for drawing broad conclusions about the success of our 

CURE. While maximum enrollment can accommodate 32 students across two sections in each 
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semester, our actual enrollment numbers are below this ceiling. Furthermore, recent departmental 

changes in degree requirements have shifted students toward other tracks, leading to a decline in 

enrollment numbers. Our present sample size should still allow for meaningful analysis of the 

entire cohort, but it remains to be seen how this decrease will shift student demographics. 

It is also important to note that the student surveys were implemented in conjunction with 

the CURE curriculum, resulting in a lack of data for students preceding the change. The result is 

a lack of a clear control group for comparing the initial effects of CURE establishment. Further, 

another CURE program was established within UNC Chemistry that students in later cohorts 

would have taken prior matriculation into this course. It is too early to determine how prior 

experience with a CURE might affect student outcomes, but this could potentially influence the 

trends in the data. While Corwin et al.99 serves as a general comparison for our CURE instance, 

the appropriateness of using survey metrics designed for a biology course to evaluate our 

biochemistry CURE remains to be determined. The specific activities and structure of a 

biochemistry course may differ significantly enough that survey wording or emphasis might 

cause variations in student responses. 

 

4.5. Implications 

One of the most important aspects of our CURE is the inclusion of the pre- and post-

course surveys. The pre-course survey allows us to distribute laboratory experience between the 

lab groups, which helps create a more uniform learning environment where group members can 

learn from each other and TA interaction could be directed towards the most pressing concerns. 

Tracking the changes in student beliefs following the semester is vital to adjusting the curriculum 

to address shortfalls that would otherwise go unnoticed through standard course evaluations. 
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While the LCAS is widely used as a measure of the degree to which a class has attributes 

associated with CUREs – or it’s “CUREness” -- the range of ratings for items on the LCAS 

scales may be more reflective of how the course is structured and what aspects are emphasized. 

For example, the high scores in data explanation and argument development most likely reflect 

the emphasis that our course structure placed on these aspects of the scientific process. With 

guidance from the instructor, students were asked to assess weekly results in their recitations and 

prescribe follow-up experiments to address those results, activities that require robust analytical 

effort. This approach meant less time was allocated to hypothesis generation. Furthermore, as the 

course is still early in iteration, we chose to be more guiding of the students’ research goals as 

we are still becoming more comfortable operating within the intrinsic uncertainty of the 

curriculum; further iterations will include more student-led hypothesis generation and testing. 

The increased student ownership of the project may also improve the students’ views on how 

they are impacting the scientific community. 

Survey and anecdotal feedback from the students suggest that one of the biggest 

challenges was dealing with the seeming ambiguity of an open-ended scientific inquiry. This is 

the first experience many of the students had with approaching a question in a laboratory setting 

without a concrete endpoint or outcome and is starkly different compared to the binary correct or 

incorrect nature of standard knowledge testing. This is a challenge that persists for scientists at 

every level and is particularly difficult to cope with early in a career. We don’t currently have a 

built-in mechanism to directly address why students feel the way they do about this mercurial 

aspect of science or discuss the metacognitive or affective aspect. In future iterations, we can do 

a better job of introducing the concept of succeeding through failure and providing support for 

students who struggle. 
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While multiple attempts to complete an experiment are valuable in skill development and 

provide a realistic expectation of a science career, they may diminish the students’ sense of 

contribution to the scientific landscape. Our results suggest that this is a shortcoming of our 

current CURE implementation, although the trend could be explained by a lack of emphasis of 

the project on a big-picture scale or an intrinsic doubt of the veracity of an undergraduate 

research project in a classroom setting. The latter alternative could be addressed by introducing 

students to other CURE application in the literature and resulting publications. 

Our results suggest that our CURE approach to the biochemistry course is delivering a 

worthwhile research experience to those students who might otherwise not be exposed to such an 

opportunity. We have created an environment of collaboration, self-teaching, and rigorous 

drilling of those skills and concepts necessary for a career in science. This course is still 

relatively young and will continue to evolve, expand, and balance to supplement those areas 

indicated through student surveys. Ultimately, we believe that our work can be used as a 

template for expanding biochemical CUREs to other institutions. 
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APPENDIX A: USER GUIDE FOR THE IN VIVO IMAGE ANALYSIS PIPELINE 

 

A.1 Overview 

 This pipeline is designed to process single-channel movies in TIFF format. The general 

workflow for an experiment proceeds as shown in Figure A.1. CellMovieAnalysis and 

InVivoBatchTraces are compatible for running on the UNC Research Cluster, as they do not 

require user input. All scripts are compatible with Matlab 2017b or newer, while the applications 

require 2019a or newer. Current versions for each component are: 1.7 for CellMovieAnalysis, 

0.1 for InVitroMovieAnalysis, 1.1 for InVivoBackgroundChooser, 1.6 for FilterSliders, 1.6 for 

InVivoBatchTraces, and 2.5 for TransitionAnalysisApp. All software files are available from the 

Erie Lab GitHub repository.  

 

A.2 CellMovieAnalysis Matlab script 

1. Set initialization parameters (located at top of main function) 

a. threshold (default = 3) – number of standard deviations above median used for 

spot thresholding. 

b. spotPixelNumber (default = 4) – number of top-intensity pixels taken from any 

spot found. 

c. minimumSpotSize (default = 4) – any spots found with less pixels above 

threshold than this number are discarded. NOTE: If the program is not in “box 

method” mode and this is less than spotPixelNumber, the program defaults this 
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Figure A.1. Software pipeline workflow. Analysis begins by collecting a TIFF image stack. If 
the movie contains cells, the cells are found and those with spots are extracted; if the movie is in 
vitro data, the spots are found. The background application can be used to generate background 
traces. Traces are then extracted, smoothed, and edges are detected. Parameters for smoothing 
and edge-detection can be refined using the sliders application. Analyzed traces are then 
analyzed for step sizes using the step-finding application. Finally, output histograms are analyzed 
and background subtracted. 
 

value to spotPixelNumber to avoid throwing errors (i.e. not having enough pixels 

to take). 

d. spotBoxMethodOn (default = true) – when on, a 3-by-3-pixel box is drawn 

around the maximum-intensity pixel of the spot and the number of pixels 

designated by spotPixelNumber are taken. If this is turned off, all pixels in the 

spot are ordered by intensity and the designated number of pixels are taken. 

2. Set up the directory 

a. The script queries the folder in which it resides for any TIFF files. This allows the 

user to place all movies into a single folder and the script will cycle through them 

all. 
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b. All other TIFF images should be removed from the folder to avoid throwing 

errors. 

3. Call the script 

a. This can be done in an interactive Matlab workspace or via a bash script for job 

submission on the Research Computing cluster. Information on job submission 

can be found on the UNC Information Technology Services website. 

4. Output files 

a. The script creates a text log (“BatchLog_” followed by the date) beginning with 

the timestamp of initialization, followed by a list of those files analyzed with 

basic information (file size, movie size, number of cells found, and the number 

that contained foci), and finally a timestamp for completion. 

b. A subdirectory is created for each movie analyzed. This subdirectory contains: 

i. Time-intensity traces (.traces files) for each cell with a spot – these are 

binary files with the same structure as FRET analysis 

1. Movie length (32-bit integer) 

2. Number of traces (16-bit integer) 

3. Trace data (16-bit integer) – these data are in the following order, 

repeating for each frame: 

a. Frame number 

b. “Acceptor” intensity – this is fake acceptor data created by 

inverting the intensity relative to the maximum intensity for 

the entire raw (“donor”) trace. This nomenclature is 

maintained to reduce the amount of change to the FRET 
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batch trace analysis script. Fake acceptor data allows for 

better transition detection later. 

c. “Donor” intensity – background-corrected intensity from 

the movie frame. The median background intensity from 

the pixels around the spot is calculated for the frame and 

subtracted from each spot pixel’s intensity. The corrected 

intensities are then summed. 

d. If there are multiple foci in a single cell, the fake acceptor 

and donor values repeat in this manner for each additional 

focus 

i. Image maps in PNG format (for viewing) 

1. Region map – the cell numbering map, in “parula” colormap. This 

allows the user to see which cells were identified and those that 

were removed. 

2. Threshold map – for all cells with spots, the intensity values are 

converted to multiples of that cell’s standard deviation above its 

median. This is scaled from 0 to the set threshold value (see 

initialization parameters, above) and presented in “jet” colormap. 

This allows the user to view the context of the spot pixels in terms 

of how close surrounding pixels were to the threshold. 

3. Spot map – all pixels chosen for background superimposed on the 

composite image (contrast adjusted). The spot pixels appear empty 

so the composite intensity can be seen easily. The colormap for the 
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background pixels is not indicative of value other than to show 

contrast between different and overlapping background regions. 

ii. Image maps in binary format (.erie files) – matrix values, no colormaps. 

These are used downstream by the TransitionAnalysis app 

1. Region map – see above, unsigned 16-bit integers 

2. Threshold map – see above, single-precision values 

3. Spots – binary mask of pixels selected as spots, unsigned 16-bit 

integers 

4. Backgrounds – binary mask of pixels selected as background, 

unsigned 16-bit integers 

5. Composite – composite image, single-precision values 

 

A.3 InVitroMovieAnalysis Matlab script 

2. Set initialization parameters (top of main function) 

a. threshold (default = 5) – number of standard deviations above median used for 

spot thresholding. 

b. spotPixelNumber (default = 4) – number of top-intensity pixels taken from any 

spot found. 

3. Call script in interactive Matlab session 

4. Select directory 

a. The script will prompt the user to select a directory 

b. Any TIFF files in the selected directory will be processed, so limit files to in vitro 

movies, lest the outputs be unpredictable or errors be thrown 
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5. Output files 

a. The script creates a text log (“BatchLog_” followed by the date) beginning with 

the timestamp of initialization, followed by a list of those files analyzed with 

basic information (file size, movie size, number of cells found, and the number 

that contained foci), and finally a timestamp for completion. 

b. A subdirectory is created for each movie analyzed. This subdirectory contains: 

i. Time-intensity traces (.traces files) for all spots found – these are binary 

files with the same structure as FRET analysis 

1. Movie length (32-bit integer) 

2. Number of traces (16-bit integer) 

3. Trace data (16-bit integer) – these data are in the following order, 

repeating for each frame: 

a. Frame number 

b. “Acceptor” intensity – this is fake acceptor data created by 

inverting the intensity relative to the maximum intensity for 

the entire raw (“donor”) trace. This nomenclature is 

maintained to reduce the amount of change to the FRET 

batch trace analysis script. Fake acceptor data allows for 

better transition detection later. 

c. “Donor” intensity – background-corrected intensity from 

the movie frame. The median background intensity from 

the pixels around the spot is calculated for the frame and 



 90 

subtracted from each spot pixel’s intensity. The corrected 

intensities are then summed. 

 

A.4 InVivoBackgroundChooser Matlab application 

1. Open the application. This can be done outside of or within a Matlab session. Opening 

from the directory panel in Matlab will open App Designer, at which point the user can 

select “Run” at the top (indicated by a green “play” icon). 

2. The UI window will open (Figure A.2). 

3. Press the “Select Movie” button to open the file selection prompt (limited to TIFF image 

stacks). After selecting a movie, it may take some time to load the composite image. 

a. The loaded composite image is processed in the same manner as the 

CellMovieAnalysis script (see section A.2) 

4. To select points for background traces, switch the “Select Points” toggle to “on.” While 

Select Points is active, clicking on the composite image will place solid circle markers at 

the chosen coordinates. 

a. NOTE: To use the window functions available by hovering the mouse over the 

image (zoom, pan, etc.), toggle Select Points off while manipulating the image to 

avoid recording the clicks. While zoomed in, point-selection can be resumed, as 

the image coordinates scale. 

5. Optional: The contrast of the composite image can be adjusted using the slider 

underneath the image. Use the dropdown menus on the far-left to change the colormap of  
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Figure A.2. InVivoBackgroundChooser application interface.  
 

the image and the color of the click markers. The “Reset Points” button will remove all 

selected points. At the time of writing this, there is not yet an option to remove individual 

points. 

6. Once desired points are selected, adjust the number of pixels taken for analysis using the 

“Pixels” dropdown menu. 

a. This value is equivalent to the spotPixelNumber variable from the 

CellMovieAnalysis script. 

7. Press the “Finish” button to begin analysis. 

a. Progress can be monitored through the text box and progress gauge underneath 

the image. The text box displays the current step and the progress gauge shows 

the percent completion of this step. 
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b. The analysis is performed using the “box method” (see CellMovieAnalysis, 

section A.2) around each pixel that was clicked. 

c. Background is taken as a two-pixel border around the 3-by-3 box. 

d. If the selected pixel is near the edge of a cell, the algorithm will determine which 

region (e.g. cell or slide) that comprises the majority of the combined 

background/spot area and only included pixels from that region. 

e. Time-intensity traces (.traces files) are output as previously described, with 

“_Background” included in the title. 

f. No map files are output 

 

A.5 FilterSliders Matlab application 

1. Open the application. This can be done outside of or within a Matlab session. Opening 

from the directory panel in Matlab will open App Designer, at which point the user can 

select “Run” at the top (indicated by a green “play” icon). 

2. The UI window will open (Figure A.3). 

3. Select time-intensity traces to display. This can be accomplished in several ways: 

a. Pressing the “Randomize All” button in the upper-left corner of the interface will 

prompt the user to select a directory containing “.traces” files and select three 

random time-intensity traces from the dataset. These will not include duplicates, 

but can include multiple traces from the same file. 

b. Pressing the “Random Trace” button next to a display window will prompt the 

user to select a directory as described above, but this will only select a single  
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Figure A.3. FilterSliders application interface. 
 

random trace to be display in the respective display window. This option is useful 

for viewing traces from different experiments held in separate directories. 

c. Pressing the “Select Trace” button next to a display window allows the user to 

manually select a “.traces” file. If the file contains multiple time-intensity traces, a 

pop-up window will display the number of traces and ask which trace to load. 

d. NOTE: The software will work even if not all windows are displaying a trace. 

4. Raw trace data is displayed in green, while the smoothed data is black. The regional 

means appear as a dashed blue line, while the bounds of the 95% confidence interval are 

thinner, solid blue lines above and below the mean. Transitions are displayed as vertical 

lines of increasing thickness for increasing score, the key for which is found in the lower-

left corner of the user interface. 
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5. Adjust the smoothing and edge-detection parameters using the sliders. Sliders will 

automatically adjust to the valid value nearest that selected and the value is displayed in a 

text box immediately to the right of the slider. The trace(s) will automatically update 

upon any change in parameter values. 

a. NOTE: The p-value for the edge-detection t-tests differ from the “Scoring” p-

values. Changing the value of the edge-detection p-values will reduce the number 

of edges found prior to scoring. The scoring p-values do not change the edges 

found by the detection methods, but instead change the threshold for allotting the 

score points for those statistical tests (the point for detection by each method is 

still accrued). 

b. NOTE: Changing the “Transition Score Cutoff” removes those transitions scored 

below the threshold. After applying the cutoff, transitions may remain with scores 

lower than this due to the fact that removal of transitions will change the results 

for calculating regional means, confidence intervals, and t-tests, all of which are 

used for scoring. This score removal is only performed once, otherwise it might 

continue iterating until all most or all transitions are removed. 

6. Optional: Results of smoothing and edge-detection on each display trace can be saved 

using the “Save Trace” button next to the respective display window. 

7. To save the current parameter setting, press the “Save Settings” button in the upper-left 

of the user interface. 

a. The settings are saved as a text file – titled “BatchTraceConfig.txt” – that can be 

read into the InVivoBatchTraces script (see below). 
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A.6 InVivoBatchTraces Matlab script 

1. NOTE: This script is mostly the same as the FRET version, with a few exceptions. It is 

currently set to use only donor data, although it should work with donor and acceptor 

(since we create fake acceptor data during trace generation). The same scoring system 

used in the FilterSliders application has been implemented here as well. The output file 

has been modified to remove output of acceptor data and to include the scoring metrics. 

2. Set up directory 

a. The file handling has been changed to query the current directory and all 

subdirectories for “.traces” files. This allows the user to move whole folders of 

traces instead of individual files, but it is important to note that any output files 

will be overridden if the data is reanalyzed. 

b. This file system was designed to be used with the Research Computing cluster. 

The output from the CellMovieAnalysis script will result in the directory 

containing subdirectories for each movie with the respective trace files. Placing 

this script in the same directory as the CellMovieAnalysis script will allow all 

resulting traces to be analyzed. 

3. Set up initialization parameters 

a. The filter parameters are no longer tied to a pop-up window. The script will 

search the current directory for a configuration file titled “BatchTraceConfig.txt” 

that is output by the FilterSliders application. This file can be edited manually if 

necessary. 
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b. If no configuration file is located, the script will run with the default values: 

i. Chung-Kennedy Smoothing 

1. Window size: 4 

2. Predictor window size: 4 

3. Exponents: 10 

ii. Gaussian Kernel Edge-Detection 

1. Threshold: 0.4 

2. Scales: 8 

3. Transition width: 2 

4. t-Test p-value: 0.05 

iii. Chung-Kennedy Edge-Detection 

1. Window size: 4 

2. Percentile: 98 

3. Window separation: 2 

4. t-Test p-value: 0.05 

iv. Scoring 

1. Wilcoxon Rank-Sum p-value: 0.05 

2. t-Test p-value: 0.05 

3. Score Cutoff: 1 

4. Call the script 

a. The script can be called in an interactive Matlab session or via a bash script on the 

Research Computing cluster. Information on job submission can be found on the 

UNC Information Technology Services website. 
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5. Output files 

a. The output files are text files with the “.trans” extension, which allows for file 

searching by the TransitionAnalysis application. 

 

A.7 TransitionAnalysisApp – Matlab application 

1. NOTE: There are several variables with hard-coded values. These are the first 5 variables 

listed in the editable “Properties” section of the code (i.e. not the section that is grayed 

out). To access the code, open the application in the directory window of a Matlab 

session to open the App Designer window and select the “Code View” tab in the upper-

right corner of the middle panel. 

a. timestep – framerate of the movie (default = 0.1, equivalent to 100 ms) 

b. bleachThreshold – intensity below which we consider complete photobleaching 

(default = 400 AU) 

c. imageHeight – y-dimension of the image (default = 1024). NOTE: Changing to 

non-square images will require more editing. 

d. colNum – anonymous function for finding column number from linear indexing 

(uses 1024 for the image height) 

e. rowNum – anonymous function for finding row number from linear indexing 

(uses 1024 for the image height) 

2. Open the application. This can be done outside of or within a Matlab session. Opening 

from the directory panel in Matlab will open App Designer, at which point the user can 

select “Run” at the top (indicated by a green “play” icon). 

3. The UI window will open (Figure A.4). 
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Figure A.4. TransitionAnalysis application interface. 

 

4. Press the “Start Analysis” button at the center-bottom of the interface to open the 

directory-selection prompt. 

5. A pop-up window will open so the user can name the output file. If a file with the same 

name already exists, the user must confirm the override or rename the output file. 

6. Data Analysis 

a. Trace Display Window 

i. Trace data is displayed in the prominent window. Raw data is displayed in 

light gray and smoothed data is in darker gray. 

ii. Step levels are arbitrarily colored for contrast purposes and displayed as a 

dashed line at the y-position of the weighted mean. While the colors are 
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not representative of the value of the levels, the regions contributing to 

each level are highlighted in the matching color. 

iii. The SEM for each region is represented by a dashed black line above and 

below the region. 

b. Cell maps  

i. These maps are not displayed for background or in vitro traces, or if there 

are no “.erie” map files in the selected directory. 

ii. The contrast-adjusted composite image is displayed in the bottom left. The 

current cell is highlighted by a yellow box. 

iii. A cropped map of the cell intensities is shown in green, with a magenta 

box highlighting the pixels chosen for background around the current spot. 

iv. The cropped threshold map for the current cell is displayed in the “jet” 

colormap for added context. 

c. Histograms 

i. The step sizes for the current trace are displayed in the left histogram 

window. The x-axis is set to automatically scale, so the scale will change 

depending on the step profile of the trace. 

ii. The cumulative step sizes for all traces analyzed are displayed in the right 

histogram window. This histogram has a fixed x-axis scale from -1000 to 

1000. Up to three histograms will be displayed, depending on how the user 

has classified the traces: spot (green), background (red), and 

autofluorescence (purple). 

d. Trace Stats – displayed as text below the histograms 
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i. Spot Pixels – number of pixels in the spot above threshold 

ii. Steps Found – number of steps identified 

iii. Step Levels – number of step levels identified 

iv. Total Intensity – intensity of the highest step level 

v. Bleach Time – time at which the intensity drops below the threshold 

considered complete bleaching 

e. User Interface 

i. Binning trace by type – press the “Save As” button for the corresponding 

data type to bin as spot, background, or autofluorescence. 

ii. To return to the previous trace, press the “Prev Trace” button. If the 

previous trace data was binned, the data will be removed from the 

cumulative histogram. If the trace was skipped, no data is removed. 

iii. To skip a trace without saving the data, press the “Skip Trace” button. 

iv. The “Save All as Single Histogram” button provides an alternative means 

of saving the data. When pressed, all traces in the directory are binned 

automatically as spots. This method is ideal for in vitro experiments that 

contain a high volume of traces. 

v. To remove all analyzed data and select a new file at any time during 

analysis, press the “Start Analysis” button. The user will be prompted to 

confirm this choice. 

7. Save the analyzed data by pressing the “Done” button. A prompt will appear asking the 

user if they would like blinks to be removed. Selecting either option results in display of 

the histograms and the option to proceed or revert. 
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a. Blink Removal 

i. Blinks are deemed to have occurred when a down-step is immediately 

followed by a return to the same level. 

ii. If the user selects blink removal, the down- and up-step from each blink is 

removed and all histograms are displayed with the change from blink 

removal overlaid. 

iii. The user then has the option to continue with blink removal or to save the 

dataset without removing known blinks. 

8. Output files 

a. Step levels and step heights are written to a two-column, tab-delimited text file 

with the suffix “_Steps” for easy import into statistical software. 

b. A more descriptive tab-delimited text file contains the details of the dataset on a 

trace-by-trace basis. 

i. TraceName – filename of the trace 

ii. SpotType – 0 (spot), 1 (background), or 2 (autofluorescence) 

iii. NumPixels – number of pixels in the spot above threshold 

iv. MaxIntensity – intensity of the highest step level 

v. BleachFrame – frame at which the intensity drops below the threshold 

considered complete bleaching 

vi. NumLevels – number of step levels identified 

vii. NumSteps – number of steps identified 

viii. StepLevels – the values that follow are the weighted mean intensities for 

the step levels in descending order 
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ix. StepHeights – the values that follow are the intensity sizes of steps in 

chronological order 
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