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ABSTRACT 

 

Yiqing Wang: The Role of Gut Microbiome and Host Metabolome in Diet and Cardiovascular Risk 

Factors 

(Under the direction of Penny Gordon-Larsen) 

 

High blood pressure (BP) and high adiposity are leading risk factors for cardiovascular morbidity 

and mortality. Excessive sodium, low potassium, and low fiber intake are among the main contributors to 

elevated BP and adiposity. We hypothesize that the gut microbiota and host metabolites are influenced by 

diet and have effects on cardiovascular health. Numerous animal model studies have suggested that 

dietary intake impacts host BP and adiposity particularly through microbiota-mediated short-chain fatty 

acids (SCFAs). Yet, there is limited empirical evidence in humans to inform current understanding.  

To address this research gap, we used a cross-sectional adult cohort from the population-based 

Chinese Health and Nutrition Survey (CHNS) with rich gut microbiota (16S rRNA) and plasma 

metabolomics data, high-quality diet data from three-consecutive 24-h validated recalls and household 

food inventories, and health data from physical examinations. We first examined the association between 

sodium and potassium with gut microbiota and plasma metabolites. We then investigated the associations 

between gut microbiota and plasma metabolites with systolic (SBP) and diastolic BP (DBP). Last, we 

assessed the associations between plasma SCFAs and two adiposity measures, body mass index (BMI) 

and waist-to-height ratio (WHtR).  

After accounting for geographic variation in microbiota, we found that that sodium and potassium 

consumption was associated with microbiota and metabolites, including Staphylococcus, microbiota-

derived phenolics and SCFAs previously linked to inflammation, hypertension and adiposity. While we 

did not observe statistical evidence for an association between SCFAs and BP, we found that 
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sphingomyelins, acyl-carnitines, and a lipids pattern characterized by long-chain fatty acids were 

positively associated with BP. We also found positive associations between SCFAs with BMI and WHtR. 

Our results suggest that gut microbiota and related metabolites may play an important role in the 

dietary etiology of cardiovascular disease (CVD). As such, our findings provide insights into potential 

dietary interventions targeting microbiota or metabolites for disease prevention and treatment. Future 

longitudinal and randomized-controlled studies are needed to determine the causal relationships between 

diet, gut microbiome, host metabolome, and CVD risk factors.          
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CHAPTER 1. INTRODUCTION 

 

Background  

The prevalence of the two main cardiovascular disease risk factors, elevated adiposity and blood 

pressure, have increased dramatically around the world over the past decades. In particular, China has the 

highest absolute burden of elevated blood pressure and has even greater increase in abdominal adiposity 

relative to the overall body mass, as measured by waist circumference and body mass index (BMI), 

respectively. Given that diet affects the intestinal bacteria and the metabolites of which subsequently 

impact the host physiology, it is hypothesized that the gut microbiota may mediate or modify the diet-

health relationship. For example, dietary carbohydrate feeds the gut microbiota that produce short-chain 

fatty acids (SCFAs), which is absorbed into the portal system to affect blood pressure and fat oxidation. 

Although numerous experimental studies using animal models have provided the biological basis for 

these complex relationships, there is a lack of empirical evidence in humans that could potentially apply 

to the general population. In addition, some of the observational findings are inconsistent, owing to 

different populations, small sample sizes, small variations in diet and/or health outcomes, and insufficient 

adjustment of potential confounding. 

In addressing these research gaps, we capitalized on the population-based Chinese Health and 

Nutrition Survey (CHNS). The CHNS is a population-based prospective cohort across 12 provinces and 

three megacities in China that includes rich gut microbiota 16S rRNA data from 3,408 adults aged 18-80 

years in 2015, with plasma metabolomics (n=400) and gut whole metagenome data (n=214) collected 

from sub-samples. Additionally, high-quality diet data from three-consecutive validated individual 24-h 

recalls and household food inventories, health data from physical examinations, as well as 

sociodemographic data were collected by trained examiners. The CHNS participants were characterized 
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by diverse urban and rural diet, habitual consumption of excessive sodium and deficient potassium, and 

low treatment rate for hypertension, making them an ideal population examine the associations between 

key dietary and health risk factors for cardiovascular diseases like sodium and blood pressure. 

Unsing this unique cohort, we aimed to investigate (1) the associations between dietary sodium 

and potassium consumption with gut microbiota and plasma metabolites; (2) the associations between gut 

microbiota and plasma metabolites with systolic and diastolic blood pressure (SBP and DBP); (3) the 

association between plasma SCFAs and two adiposity measure, BMI and waist-to-height ratio (WHtR), 

and whether the gut microbiota of subjects with higher BMI and/or WHtR had higher capacity to harvest 

energy through carbohydrate fermentation, which could be partly reflected by the levels of circulating 

SCFAs.  

  

Specific aims 

The primary objective of the current research was to improve our understanding of the underlying 

mechanisms of gut microbial and related metabolic pathways in the relationship between diet and 

cardiovascular risk factors, particularly in regard to key dietary risk factors, SCFAs, blood pressure, and 

adiposity measures. We sought to achieve this objective with the following specific aims:   

 

Aim 1. Examine the association between sodium and potassium consumption with gut microbiota 

(16S rRNA) and plasma metabolites. 

a. Use multivariable-adjusted linear regression to analyze microbiota within-person diversity (α-

diversity) and specific taxa, and distance-based redundancy analysis (dbRDA) to analyze 

microbiota between-person diversity (β-diversity), with explicit adjustment for geographical 

modification.  

b. In a sub-sample with metabolites data, use multivariable-adjusted linear regression to analyze 

individual microbiota, and dbRDA to analyze the overall metabolites, with explicit adjustment for 

geographical modification. Additionally, use random forest regression to assess the accuracies of 
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host factors data, microbiota data, and metabolites data in predicting sodium and potassium 

consumption. 

We hypothesized that sodium and potassium are associated with microbiota and metabolites that have 

been previously linked to cardiovascular disease risk factors. 

 

Aim 2. Examine the association between gut microbiota (16S rRNA) and plasma metabolites with 

systolic and diastolic blood pressure (SBP & DBP).  

a. In the microbiota analysis sample, use multivariable-adjusted linear regression to analyze 

microbiota within-person diversity (α-diversity) and specific taxa, and permutational multivariate 

analysis of variance (PERMANOVA) to analyze microbiota between-person diversity (β-

diversity).  

b. In the metabolomics analysis sample, use multivariable-adjusted linear regression to analyze 

individual microbiota, which paired with a pathway analysis to identify metabolic pathways 

associated with SBP and DBP. Additionally, using principal component analysis (PCA) to 

identify patterns of metabolites associated with SBP and DBP. 

c. In a sub-sample with both microbiota and metabolites data, use random forest regression to assess 

the accuracies of host factors data, microbiota data, and metabolites data in predicting SBP and 

DBP. 

We hypothesized that microbiota and metabolites that have been identified to regulate blood pressure in 

animal models are associated with SBP and/or DBP, such as short-chain fatty acids (SCFAs). 

 

Aim 3. Examine the association between plasma SCFAs with two adiposity measures, BMI and 

waist-to-height ratio (WHtR).  

a. Use multivariable-adjusted linear regression to investigate the association between the relative 

abundance of each plasma SCFAs and the total plasma SCFAs with BMI and WHtR. 
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b. To test whether subjects with higher body mass and/or abdominal adiposity had higher SCFAs 

was due to higher capacity to ferment carbohydrate, a dietary precursor of SCFAs, we assess 

whether BMI or WHtR levels modify the associations between carbohydrate, fiber, and high-fiber 

foods with SCFAs, using multivariable-adjusted linear regression. 

c. In a sub-sample with gut metagenome data, use multivariable adjusted linear regression to 

investigate the associations between gut microbial SCFA producers with BMI and WHtR. 

We hypothesized that (1) plasma SCFAs were positively associated with BMI and WHtR; (2) when 

consuming the same amounts of dietary precursors or SCFAs, adults who had higher BMI and/or higher 

WHtR had higher plasma SCFAs; (3) microbial SCFA producers were positively associated with BMI 

and WHtR.  
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CHAPTER 2. LITERATURE REVIEW 

 

Main cardiovascular disease risk factors 

Cardiovascular diseases (CVD) are the leading causes of death around the world and reduce 

quality of life [1]. From 2006 to 2016, the number of deaths attributed to CVD had increased by 14.5% 

globally [2]. In contrast, the age-adjusted rate of CVD deaths had decreased by 14.5%, yet this decline 

has been decelerated substantially probably due to the obesity epidemic [2].  

Overweight and obesity are major risk factors for CVD [3,4]. Obesity was positively associated 

with lifetime risk of CVD, prevalence of hypertension, type 2 diabetes, and dyslipidemia [4], leading to 

higher medical cost for obesity than normal-weight [5]. In particular, body mass index (BMI) in 

adolescents was strongly associated with elevated CVD death in adulthood [3]. The worldwide prevalence 

of overweight and obesity increased by 27.5% in adults from 1980 and 2013 [6]. In the US, the 

prevalence of obesity in adults has increased significantly in the past decade [2] and was more than 

doubled since 1970s [7]. As a result, the projected increase in cardiovascular health in the United States 

(US) due to recent improvement of health behaviors like smoking would be offset by the increased 

prevalence of obesity [8]. What make it worse, waist circumference as a better marker than BMI in 

predicting CVD risk [9] increased even greater than expected based on the increase in BMI in the US, 

Mexico, England and China, especially in young women [10]. 

High blood pressure is another major risk factor for CVD and mortality [2]. In the US, it was 

estimated that CVD mortality could be reduced by 30.4% and 38.0% among males and females, 

respectively, if high blood pressure was eliminated [11]. In fact, the elimination of high blood pressure 

had the largest reduction on CVD death than all other risk factors in females and all other risk factors 

except smoking in males [11]. High blood pressure is also a single leading global burden of disease risk 
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factor [12]. Particularly, China has the greatest absolute burden for elevated blood pressure around the 

world by 2011 [13], which is projected to continue to expand in the next decade [14]. The worldwide 

prevalence of high blood pressures has increased substantially over the past two decades [15,16]. 

Specifically, the age-standardized prevalence of high blood pressure increased by 2.5% from 2000 to 

2010, yet the proportion of awareness, treatment, and control remained low, especially in low and middle-

income countries (e.g., only 6.9% for control) [16].    

  

Key dietary risk factors for CVD  

The key dietary risk factors for elevated adiposity and blood pressure include high sodium, low 

potassium, and low fiber intakes. The mean level of global sodium consumption in 2010 was estimated to 

be 3.95 g/day [17], which was well above the dietary recommendation of 2.0 g/day by the World Health 

Organization (WHO) [18]. Globally, annual cardiovascular deaths attributable to high sodium intake (> 

2.0 g) accounted for nearly 10% of deaths from cardiovascular cause [17]. Each additional 1000 mg 

sodium in 24-h urine excretion (a marker for sodium consumption) was associated with 4.6 and 2.3 

mmHg higher systolic and diastolic blood press (SBP and DBP), respectively, whereas each additional 

1000 mg potassium in 24-h urine excretion was associated with 3.7 mmHg lower SBP [19]. Sodium 

intake also show positive associations with body mass and abdominal obesity independent of energy 

intake [20]. Moreover, high-fiber foods such as whole grains, fruits and nuts were inversely associated 

with risk of high blood pressure, while red meat, processed meat and sugar sweetened beverage were 

positively associated with risk for high blood pressure, according to a dose-response meta-analysis of 28 

prospective studies [21]. There is also evidence for modest negative associations between consumption of 

cereal fiber, whole grains, and bran with risk of obesity and CVD [22]. Despite the well-understood 

benefits of dietary fiber, the meat intakes of fiber and whole grain remained below recommendation in the 

US [23].  

Nevertheless, individual response to these dietary factors may vary considerably, especially for 

sodium [24]. While some people have little blood pressure changes, others have blood pressure changes 
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paralleling with dietary sodium intake - a phenomenon known as salt sensitivity [25]. Salt sensitivity is a 

strong risk factor for cardiovascular disease and death independent of blood pressure [26,27], yet how 

factors like host genetics and gut microbiota determining individual susceptibility to salt sensitivity is far 

from being completely explored.  

 

Role of gut microbiota and host metabolites in main CVD risk factors 

The recent advancement on high-throughput sequencing has revealed that the gut microbiota are 

potential determinants of cardiovascular health. For example, intestinal bacteria in glucocorticoid 

metabolism have been implicated in the development of elevated blood pressure [28-31], such as 

Eggerthella lenta [32], which is involved in the 21-dehydroxylation of cortisol to 21-deoxy-5α-

tetrahydrocortisol and 21-deoxy-tetrahydrocortisol [28]. These glycerrhetinic acid like factors (GALFs) 

can raise blood pressure by inhibiting 11β-hydroxysteroid dehydrogenase-2 [28,33], an important enzyme 

that prevents water and sodium retention [28,34]. Additionally, numerous experimental studies using 

animal models have demonstrated the impact of gut microbiota on obesity and high blood pressure [35-

37]. For instance, mice colonized with fecal microbiota from the co-twins with obesity had larger 

increases in adiposity and body weight compared to mice colonized with microbiota from the lean co-

twins [35]. Fecal transplantation from spontaneously hypertensive stroke prone rats to Wistar Kyoto rats 

was associated with greater increase in SBP than Wistar Kyoto rats in the control group, confirming that 

the elevated blood pressure phenotype is transferable through gut microbiota [36].  

Human studies have also indicated that the gut microbiota is altered in obesity and high blood 

pressure, such as reduced microbial diversity [38-43]. Several fecal microbiota were different between 

adults with elevated versus normal blood pressure [39-41], including over-expressed Prevotella, 

Klebsiella, and Actinomyces [39,40], which are linked to infections [44-46], and under-expressed 

Roseburia spp. and Faecalibacterium prausnitzii [41], which are short-chain fatty acids (SCFAs)-

producing bacteria that exerts anti-inflammatory properties [47]. Lyxose and 4-hydroxyhippurate, which 

are products of gut microbial fermentation [48], were also associated with elevated blood pressure in 
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Chinese and African American adults [49,50]. However, few observational studies examine gut 

microbiota and related metabolites together to infer potential biological pathways. In addition, most of 

these studies compared people with body mass or blood pressure above versus below a single threshold, 

which may overlook people at borderline. These people are still at risk for CVD, given the dose-response 

relationship between, BMI, abdominal fatness [51], and blood pressure with CVD mortality [52]. Thus, 

the exact mechanisms linking gut microbiota to increased adiposity and blood pressure in humans remain 

unclear. 

Moreover, both mice and human studies showed that early exposure to antibiotics may predispose 

them toward obesity [53-55], whereas probiotics supplementation had anti-obesity and anti-hypertension 

effects to animal models and humans [37,55-58] through proposed mechanisms including alterations in 

several specific taxa, reduced expression of pro-inflammatory cytokines, increased fatty acid oxidation, 

and production of satiety-inducing peptides [55]. Genetic studies added another layer of evidence for the 

association between gut microbiota, obesity, and blood pressure [31,59-62]. Some host gene loci 

associated with gut microbiome are in close proximity to gene loci of disease risk factors including 

elevated blood pressure [31,59,60]. For example, genes in steroid biosynthetic pathway are associated 

with BP [61] and may shape the gut microbial composition [31,62].   

 

The interplay between diet and gut microbiota in cardiovascular health 

The gut microbiota and related metabolites plays a pivotal role in the diet-health relationship. 

Diet could shape the gut microbiota community [63]. In particular, high sodium diet altered fecal 

microbiota composition, microbial metabolites, autoimmunity, and protein digestion in murine models 

[42,64-66], including depleted Lactobacillus species and increases in fecal SCFAs and intestinal T helper 

17 (TH17) cells. Concomitant treatment with Lactobacillus murinus prevented sodium-induced high blood 

pressure in mice [42], indicating that gut microbiome could be a potential therapeutic target for sodium-

associated diseases. Similarly, in humans, sodium consumption was associated with changes in the 

microbial composition, circulating microbial-mediated metabolites, and related metabolic pathways 
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[42,67,68]. For example, high sodium intake was associated with reduced Lactobacillus [42], while 

reduced sodium intake was associated with plasma metabolites from tryptophan and benzoate metabolic 

pathways mediated by microbiota [67], such as increased 4-ethylphenylsulfate, which has been shown to 

be positively associated with percent lean body mass in young adults [69]. Another key dietary factors for 

CVD risk, dietary fiber, is positively correlated with microbiota diversity and polysaccharide-utilizing 

microbiota, but negatively correlated with protein fermentation products, Bacteroides, and Clostridia 

[70]. A mouse model has shown that fermentable fiber could prevent high-fat diet-induced depletion in 

microbiota, colon atrophy, and metabolic syndrome [71]. Altogether, these studies indicate that diet may 

affect health through changes in gut microbiota, which could be reflected by circulating metabolites, and 

modification of gut microbiota may ameliorate or even reverse the harmful effects of diet.  

Another pathway of how the gut microbiota contribute to diet-health relationship is through 

harvesting of dietary energy [72-74]. Conventionally raised mice consumed 28% less calories but had 

40% more body fat than germ-free mice [72]. In human adults, SCFAs (e.g., acetate, butyrate, and 

propionate) produced by gut microbial fermentation of carbohydrate contribute to nearly 10% of extra 

daily calorie [70]. Both fiber-rich diet and Mediterranean diet have been shown to be associated with 

increased levels of circulating and fecal SCFAs [75,76], indicating that SCFAs may serve as the link 

between diet, gut microbiota, and host health. While acetate and propionate are components of citric acid 

cycle and gluconeogenesis [77], respectively, butyrate may prevent inflammation and carcinogenesis of 

the colon epithelium [70]. SCFAs have also been shown to improve intestinal mineral absorption and 

permeability [77,78]. They can interact with G protein-coupled receptors (GPCRs) like GPR41 and 

GPR43 to affect adipocytes and peripheral organs, such as kidney and pancreas, thus regulating blood 

pressure, fat oxidation, and energy metabolism [74,79-81]. For example, Gpr41 enhances the blood 

pressure-reducing effects of propionate [80]. Although several studies have shown that SCFAs were 

associated with reduced inflammation, improved insulin sensitivity, increased satiety, and increased 

energy expenditure in mouse model [71,77,82], as well as in human trials of dietary supplementations 

[83-85], other studies have suggested that SCFAs are indeed sources of extra energy and may promote the 
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development of obesity [72,73,86,87]. For example, a mouse study showed that SCFAs production 

outweighed the benefits of soluble fiber in the context of diet-induced obesity by increasing digested 

energy [87], and a few epidemiology studies of Western populations showed that fecal SCFAs were 

positively associated with the body mass, total body fat and central adiposity [78,88-91]. Possible reasons 

for these incongruent results include different population, small sample sizes, and the differences in 

amounts and bioactivities between the experimentally administered SCFAs supplements and the SCFAs 

produced by the gut microbiota. However, few population-based studies have investigated the 

associations between circulating SCFAs and adiposity measures. Circulating SCFAs may better reflect 

the absorption and the energy-contributing fraction of SCFAs than fecal SCFAs [92]. 

 

Current gaps in research and needed work 

Prior studies have shown the complex relationships across diet, gut microbiota, microbial 

metabolites, and main CVD risk factors like obesity and high blood pressure. However, a few major gaps 

in research remain unexplored. These include the (1) lack of large population-based study with large 

variations in dietary intakes and CVD risk; (2) lack of studies that couple metabolomics analysis with gut 

microbiota analysis to reveal potential biological mechanisms, as microbiota-mediated metabolites 

derived from dietary components are efficient measures of microbial function [93]; and (3) lack of studies 

in Asians, who are different from other populations in genetics, gut microbiota [92], and dietary habits 

[94]. For example, Asians have higher sodium intake and different sodium sources than Whites, 

Hispanics/Latinos, and Blacks [94]. As such, the associations between diet, microbiota, and CVD risk 

factors observed in Western populations may not be generalizable to Asians.  

Specifically, while there is strong evidence supporting the roles of microbiota and metabolites in 

the deleterious effects of excess dietary sodium on cardiovascular health [42,64-66], few studies have 

explored the associations between potassium, another key dietary protectors for CVD [19], with 

microbiota and metabolites in humans. Additionally, many gut microbiome studies of blood pressure in 

humans were not population-based [39-41], might have overlooked people at borderline of high blood 
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pressure [39,40], and were unable to fully eliminate the effects of hypertension treatment [41,43]. Given 

that Chinese adults have habitual high sodium and low potassium intakes [95,96] and low diagnosis and 

treatment rates for high blood pressure [97], which ensures a natural history of untreated blood pressure 

and low confounding from treatment effect by design, they are an ideal population for research on dietary 

sodium and potassium and blood pressure.  

Therefore, we used a large well-characterized, population-based adult cohort from the China 

Health and Nutrition Survey (CHNS), which provides diverse sample from a range of urban and rural 

communities across 12 provinces and three megacities during rapid urbanization, in order to investigate 

the following objectives: (1) associations between dietary sodium and potassium consumption with gut 

microbiota, and circulating metabolites; (2) associations between gut microbiota and circulating 

metabolites with SBP and DBP; and (3) the associations between circulating SCFAs with adiposity 

measures and the potential involvement of diet and gut microbiota in these associations. In addition, we 

incorporated gut metagenome data that provides more detailed taxonomic classification than 16S rRNA 

data and used methods like multivariate analysis and random forest regression, a machine learning 

algorithm, to reduce dimensionality and to account for the intricate correlations among gut microbiota and 

metabolites.   

In summary, by comprehensively exploring the relationships between diet, gut microbiota, 

circulating metabolites, and main CVD risk factors (i.e., blood pressure, body mass, and abdominal 

adiposity) in a unique Chinese adult cohort, we may improve our current understanding of individual 

response to diet and the underlying mechanisms of CVD development, thereby shedding light on potential 

biomarkers and informing future intervention and treatment programs targeting the gut microbiota and 

host metabolites.    
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CHAPTER 3. METHODS 

 

Study population  

The CHNS is a longitudinal household-based survey designed to capture urbanization and diverse 

health data from nine provinces in China since 1989, with 2-4 years intervals between each survey round 

[98]. Counties and cities stratified by income and urbanicity were selected using a stratified probability 

sample based on multistage, random cluster design. Then, communities and households were randomly 

selected from these strata that initially represent the national age, gender, and education profiles [99]. 

Three megacities and three additional provinces were included in 2011 and 2015, respectively, using the 

same sampling strategy, giving a total number of more than 30,000 participants. By 2015, a total of 12 

provinces ((Heilongjiang, Liaoning, Shaanxi, Henan, Hubei, Jiangsu, Shandong, Zhejiang, Guangxi, 

Guizhou, Hunan, Yunnan) and three megacities (Beijing, Shanghai, Chongqing) that varied substantially 

in geography, economic development, public resources, and health indicators were surveyed. Each exam 

round collected thorough community, household, and individual data by trained examiners in high detail, 

including household composition, occupation, income, education, anthropometry, and health behaviors. 

The study met the standards for the ethical treatment of participants and was approved by the Institutional 

Review Boards of the University of North Carolina at Chapel Hill and the National Institute for Nutrition 

and Health, Chinese Center for Disease Control and Prevention. Informed consents were obtained for all 

participants.  

 

Dietary assessment 

Diet data were collected by trained interviewers using household food inventories and three 

consecutive validated 24-h diet recalls during three-day home visits randomly from Monday to Sunday to 
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ensure a mix of weekdays and weekends. These dietary measures not only assessed cooking methods and 

all foods consumed within the household, but also foods consumed at restaurants and other locations 

away from home. All household foods and condiments were measured using digital kitchen scales 

(graduation: 1g) and allocated to each member based on the proportions consumed as reported in the 

individual 24-h diet recalls. To estimate the average daily intakes of nutrients across three days, 

individual-level diet data were linked to a Chinese food composition table (FCT) that includes more than 

2500 foods [95]. For a few imported foods, nutrients contents were estimated using Taiwan, Hong Kong, 

Japan, or the USDA FCTs [95]. The protocol for total energy measurement was validated by doubly 

labeled water (Pearson correlation coefficient, males: 0.56, females: 0.60) [100]. Specifically, insoluble 

fiber was measured by the neutral detergent method, and for sodium and potassium, we calculated all 

measured foods and condiments, including added salt and soy sauce in mixed dishes. Our measurement 

tools for sodium and potassium intakes were validated by three-consecutive 24-hour urine samples 

(Pearson correlation coefficients, sodium: 0.58, potassium: 0.59) in an independent sample from one of 

our survey provinces, using para-aminobenzoic acid as a marker for completion of 24-hour urine 

collection [95].  

 

Gut microbiota data collection and processing 

Stool samples were collected at home in 2015 from two sub-cohorts of participants aged 18-80 

years, who had been trained to using the QIAGEN collection kit (QIAGEN, Hilden, Germany) following 

standardized procedures from a modified Human Microbiome Project (HMP) protocol. These two cohorts 

are the China Nutritional Transition Cohort Study (CNTCS, n=2,164) across all 12 provinces and three 

megacities, and the China Microbiome Study (n=1,226) across four southern provinces: Henan, Guizhou, 

Hunan, and Guangxi. The total number of participants in these two cohorts was 3,208, as 182 adults were 

included in both cohorts.  

Stool samples were frozen at -20°C immediately after collection and were sequenced by 

Novogene Bioinformatics Technology Co., Ltd., Tianjin, China in random order. Bacterial DNA was 
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extracted using TIANGEN DNA extraction kits (TIANGEN Biotech, Beijing, China) and 16S rRNA 

sequencing targeting the V4 hypervariable region was performed using primers 515F/806R on the 

Illumina MiSeq PE250 platform. The sequencing generated 12,528-7,7104 sequences in CNTCS and 

21,648-89,427 sequences in China Microbiome Study. The raw sequencing reads were processed using 

the QIIME pipeline [101], with forward and reverse reads merged with fastq-join, and filtered using a 

minimum quality score of 20. Operational Taxonomic Units (OTUs) were identified using open-reference 

method based on a threshold of 0.97. Chimeric OTUs were detected by ChimeraSlayer [102] and 

removed. Taxonomy was assigned based on the SILVA databases (Release 128). No sample was filtered 

out due to low quality. A total of 1,472 genera were detected. In addition, the whole metagenome was 

measured in 214 adults aged 30-68 years from the Hunan and Guizhou, the majority of whom were 

included in the China Microbiome Study (79%). After filtering human DNA from the sequencing reads, 

we annotated the reads with MetaPhlAn2 based on the ChocoPhlAn database for taxonomic composition 

[103]. To correct for different sequencing depth across samples, we normalized and log10 transformed the 

raw taxonomic counts in the 16S rRNA data and the metagenome data as follows [104]: 

𝑙𝑜𝑔10 (
𝑡𝑎𝑥𝑎 𝑗 𝑐𝑜𝑢𝑛𝑡 𝑓𝑜𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖

𝑡𝑜𝑡𝑎𝑙 𝑡𝑎𝑥𝑎 𝑐𝑜𝑢𝑛𝑡 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒 𝑖
 x 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑥𝑎 𝑐𝑜𝑢𝑛𝑡 𝑝𝑒𝑟 𝑠𝑎𝑚𝑝𝑙𝑒 + 1).  

  

Plasma metabolomics profiling  

Fasting blood samples were collected within 3-days of fecal sample collection using venipuncture 

with EDTA as an anticoagulant, centrifugated to prepare plasma, and stored at -80°C until analyzed. All 

sites followed the same protocol for the collection, processing, and storage. In 500 adults aged 30-68 

years from Hunan and Guizhou, the majority of whom were included in the China Microbiome Study 

(87%), non-targeted metabolomics analysis was performed using Metabolon platform (Durham, NC) 

consisting of Waters Acquity ultrahigh-performance liquid chromatography coupled to a Thermo 

Scientific Q-Exactive high-resolution Mass spectrometry at Metabolon’s partner campus in China [105]. 

More detailed information on the Metabolon platform has been described elsewhere [106]. Briefly, 
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plasma samples were extracted using methanol solvent and analyzed with several types of controls, 

including extracted water samples as process blanks and pooled experimental samples as technical 

replicate. Signals in the metabolomics data were extracted and peak identified, with quality control 

processed using Metabolon’s software and hardware. Chemicals were identified and differentiated by 

matching to the mass-to-charge ratio, rendition time/index, and chromatographic data in the Metabolon 

reference library of authenticated standards, which was created by acquiring data for more than 3,300 

purified standard compounds analyzed under the same conditions as the study samples. The metabolomics 

analysis resulted in the detection of 1,108 compounds in our sample. Metabolon rescaled the raw area 

under the peaks of each metabolite within the same run-day to a median of 1 (i.e. median-normalization) 

to correct for differences in instrument inter-day tuning, with values below detection limits imputed by 

the minimum. We log2 transformed the metabolites relative abundance to ensure normality.  

 

Anthropometry and blood pressure 

Anthropometry data were collected during physical examination by trained examiners. Weight 

was measured to the nearest 0.1 kg in light clothing using calibrated beam scales. Height was measured 

without shoes to the nearest 0.1 cm using portable stadiometers. Waist circumference was measured to the 

nearest 0.1 cm at midway between the lowest rib and iliac crest using non-elastic tape. We calculated 

BMI as weight divided by squared height (kg/m2) and WHtR as waist circumference divided by height. 

We defined high BMI as BMI ≥24 kg/m2 according to the Chinese cut-point [107] and high WHtR as 

WHtR ≥0.5, which has been determined to be the optimal cut-off point to indicate cardiovascular diseases 

risk in Chinese adults [108]. Resting blood pressure was measured by experienced physicians, who had 

completed a 7-day training session and passed a comprehensive test for the reliability of measurements. 

SBP and DBP were measured in triplicates using a standard mercury sphygmomanometer on the right 

arm after a 10 min seated rest, with a 30-second interval between cuff inflation. We used the average of 

the three readings as our measures of SBP and DBP.  
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Sociodemographic and behavioral factors 

Sociodemographic and behavioral data at community-level (i.e., urbanization), household-level 

(i.e., household income), and individual-level (i.e., age, sex, province/megacity) were collected using 

interviewer-administered questionnaires. Specifically, we assessed urbanization using the urbanization 

index, a validated index that encompasses 12 dimensions of urbanization such as population density, 

health infrastructure, sanitation, and transportation [109]. We grouped urbanization index into tertiels to 

represent low, middle, and high levels of urbanization. We calculated per capita household income by 

dividing the household income by the number of household members, and then categorize it into tertiles 

to represent low, middle, and high levels of income. We dichotomized educational attainment by the 

completion of high school education. We grouped occupation into six five categories: not-working, 

agriculture workers (e.g., farmer, fisherman, hunter), laborers (e.g., craftsman, logger), professional (e.g., 

doctor, teacher), and manager (e.g., government official, director) and other (e.g., athlete, artist). We 

dichotomized educational attainment by high school completion. We measured total physical activity in 

METs/week using seven-day recalls of occupational, transportation, domestic, and leisure activities. We 

categorized physical activity by tertiles to indicate low, middle, and high levels of physical activity. We 

dichotomized fried food intake by any/no consumption and calculated percent calories (%kcal) from 

animal-source foods by dividing energy intake from animal-source foods by the total energy intake. We 

defined smokers as individuals who ever smoked cigarettes across all completed surveys and alcohol 

consumers as individuals who drank alcohol during the past year.  
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CHAPTER 4. ASSOCIATIONS OF SODIUM AND POTASSIUM CONSUMPTION WITH GUT 

MICROBIOTA AND HOST METABOLITES IN A POPULATION-BASED STUDY OF 

CHINESE ADULTS 

 

Overview 

There is increasing evidence that sodium consumption alters gut microbiota and host metabolome 

in murine models and small studies in humans. However, there is a lack of population-based studies that 

capture large variations in sodium consumption as well as potassium consumption. Thus, we examined 

the associations of energy-adjusted dietary sodium (mg/kcal), potassium, and sodium-to-potassium 

(Na/K) ratio with microbiota and plasma metabolome in a well-characterized Chinese cohort with 

habitual excessive sodium and deficient potassium consumption. 

We estimated dietary intakes from validated three-consecutive 24-h recalls and household 

inventories. In 2833 adults (18-80 years old, 51.2% females), we analyzed microbial (genus-level 16S 

rRNA) between-person diversity, using distance-based redundancy analysis (dbRDA), and within-person 

diversity and taxa abundance using linear regression, accounting for geographic variation in both. In a 

sub-sample (n=392), we analyzed the overall metabolome (dbRDA) and individual metabolites (linear 

regression). P-values for specific taxa and metabolites were false discovery rate-adjusted (q-value). 

We found that sodium, potassium, and Na/K ratio were associated with microbial between-person 

diversity (dbRDA p-value<0.01) and several specific taxa with large geographic variation, including 

pathogenic Staphylococcus and Moraxellaceae, and short-chain fatty acids (SCFA)-producing 

Phascolarctobacterium and Lachnospiraceae (q-value<0.05). For example, sodium and Na/K ratio were 

positively associated with Staphylococcus and Moraxellaceae in Liaoning, while potassium was 

positively associated with two genera from Lachnospiraceae in Shanghai. Additionally, sodium, 

potassium, and Na/K ratio were associated with the overall metabolome (dbRDA p-value≤0.01) and 
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several individual metabolites, including butyrate/isobutyrate and gut-derived phenolics like 1,2,3-

benzenetriol sulfate, which was negative associated with sodium in Guizhou (q-value<0.05).  

In conclusion, our findings suggest that sodium and potassium consumption is associated with 

taxa and metabolites that have been implicated in cardiometabolic health, providing insights into the 

potential roles of gut microbiota and host metabolites in the pathogenesis of sodium- and potassium-

associated diseases. More studies are needed to confirm our results.  

 

Introduction 

Excessive dietary sodium intake and inadequate dietary potassium intake contribute to 

hypertension and cardiovascular disease (CVD) [95,110,111], through mechanisms involving the renin-

angiotensin-aldosterone system and oxidative stress [112,113]. Recent advances in high-throughput 

sequencing have revealed that intestinal microbes are dependent on diet and may have fundamental 

impacts on host metabolome and physiology, including blood pressure regulation [42,114]. Therefore, 

elucidating the relationships between key diet risk factors, such as sodium and potassium, with the gut 

microbiota and circulating metabolites is essential in understanding the roles of microbiota and related 

metabolites in diet-associated diseases.  

Evidence from murine models suggests that a high sodium diet changes fecal microbiota 

composition and function, with depletion of Lactobacillus and increases in fecal short chain fatty acids 

(SCFA) and microbial-dependent intestinal T helper 17 (TH17) cells [42,64-66]. Concomitant treatment 

with Lactobacillus murinus prevented sodium-induced hypertension in mice [42], indicating that gut 

microbiome could be a potential therapeutic target for sodium-associated diseases. In addition, 

metabolomics studies have revealed potential pathways underlying the sodium-health relationships. In 

119 US adults from the cross-over sodium intake feeding trail within the Dietary Approaches to Stop 

Hypertension (DASH)-Sodium trial, reduced sodium intake was associated with increased plasma 

metabolites from the microbiota-mediated tryptophan and benzoate metabolic pathways [67], such as 4-

ethylphenylsulfate that has been linked to lean body mass in adults [69]. In a double-blinded, cross-over 
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trial of 64 untreated UK patients with hypertension, sodium reduction was associated with elevated serum 

methionine sulfone and β-hydroxyisovalerate, which were associated with reduced diastolic and systolic 

blood pressure in the same sample, respectively [68]. However, there is a lack of population-based studies 

that capture large variations in sodium consumption with paired microbiome and metabolomics data for a 

more comprehensive investigation of these complex relationships. There has also been a lack of studies 

examining dietary potassium in Asians, who have higher sodium intake and different sodium sources than 

Whites, Hispanics/Latinos, and Blacks [94].  

To address the above knowledge gaps, we used data from a population-based cohort of Chinese 

adults with habitual high sodium and low potassium intakes [95,96] to study two questions. First, we 

examined the association between sodium and potassium consumption and gut microbiota in 2,833 adults 

from 12 provinces and three megacities. Second, to further understand potential biological responses to 

sodium and potassium, we examined the association between sodium and potassium and plasma 

metabolites in a sub-sample of 392 adults from two southern provinces.   

  

Methods 

Study sample 

We used data from the China Health and Nutrition Survey (CHNS) collected in 2015 during fall 

(primarily) and winter. Eligible participants were adults aged 18-80 years who had gut microbiome and 

diet data (n=3,156, Figure S4.1). Participants were excluded if they used antibiotics within the past 6 

months, ever had inflammatory bowel disease, irritable bowel syndrome, or bowel removal, or currently 

had diarrhea (n=217). Participants were further excluded if they were pregnant (n=1) or had extreme 

energy intake (<500 kcal, n=8), implausible sodium consumption (>10 mg/kcal, n=1), or missing 

covariates (n=96), resulting in an microbiota analysis sample of 2,833 adults, among whom 905 from the 

China Microbiome Study and 1,928 from the China Nutritional Transition Cohort Study (CNTCS), which 

are two sub-cohorts of the CHNS. A subset of 392 adults living in adjacent provinces (Hunan and 

Guizhou) were included in the metabolomics analysis sample.  
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Measures 

We standardized sodium and potassium by total energy intake in unit of mg/kcal to account for 

over- and under-reporting and the correlation with energy intake, and divided sodium by potassium to 

calculate sodium to potassium (Na/K) ratio. We defined excessive sodium (≥2 g) and deficient potassium 

(<3.5 g) consumption according to the WHO [115]. Pro/prebiotics intake in past month, non-steroid anti-

inflammatory drugs (NSAIDs) intake in past two weeks, and proton pump inhibitors (PPIs) intake in past 

month were assessed by questionnaires admistered before fecal sample collection. 

 

Statistical analysis 

In descriptive analysis, we compared continuous variables and categorical variables across 

provinces and megacities using analysis of variance (ANOVA) and Chi-squared test, respectively.  

Primary outcomes were gut microbial measures at genus level. We first examined the associations 

of sodium density, potassium density, and Na/K ratio with microbial diversity measures using R package 

vegan [116]. For within-person diversity (α-diversity) assessed by Shannon index and richness (number 

of distinct genera per subject), we used a linear regression. For between-person diversity (β-diversity) 

assessed by principal coordinates analysis (PCoA), we used distance‐based redundancy analysis (dbRDA) 

[117] based on Bray-Curtis distance, a multivariate analysis that did not provide the direction of 

associations, followed by an analysis of variance (ANOVA) test with 999 permutations to estimate p-

value. We then used a linear regression to assess the associations of sodium density, potassium density, 

and Na/K ratio with 159 specific taxa, after filtering rare taxa presented in less than 25% of participants to 

account for spurious findings. All analyses were adjusted for the following potential confounders based 

on a priori knowledge: age, sex, provinces or megacities [95,118], batch or plate runs, urbanization [119], 

occupation, education, income, total energy intake, %kcal from animal-source foods (the strongest 

indicator of Westernized diet in China) [120], fried food intake, physical activity [121], smoking [122], 

alcohol, pro/prebiotics, non-steroid anti-inflammatory drugs (NSAIDs), and proton pump inhibitors 
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(PPIs) intakes [123]. In addition, we conducted secondary analysis at OTU level, using linear regression 

for individual OTUs (n=256 after excluding rare OTUs), to contribute to understanding variation in 

genus-level results.  

Given that another study has found large geographic variation (provinces and megacities) in the 

CHNS gut microbiota sample [118], we accounted for this geographic variation by including 

province/megacity (categorical variable) and an interaction term of sodium density, potassium density, or 

Na/K ratio with province/megacity in the model. In addition to a test for interaction, we assessed the 

overall association using a joint analysis that simultaneously tests the main effect (sodium density, 

potassium density, or Na/K ratio) and interaction term for province/megacity [124]. This joint test is 

common in genetic studies with potential interactions since it offers more statistical power than other 

methods in the presence of interaction and comparable statistical power to other methods when there is no 

interaction [124]. The interaction and joint analyses were examined using Wald test in linear regression 

and using partial dbRDA conditioned on the rest of the model variables. For α- and β-diversity measures, 

the interaction term was removed if the p-value of joint test was >0.10. 

In the subsample, we repeated the above analyses for metabolomics data (secondary outcome) 

using dbRDA for the overall metabolome and linear regression for individual metabolites, with 

adjustment of batch run. We conducted exploratory analysis of the associations between sodium density-, 

potassium density-, and/or Na/K ratio- associated taxa and metabolites using multivariable-adjusted linear 

regression. To assess which data had the strongest association with sodium density, potassium density, 

and Na/K ratio intakes, we compared prediction accuracies of these dietary outcomes by host factor (18 

model covariates), microbiota, metabolite data, and all the possible one by one permutations of the 

combinations of host factors, microbiota, and metabolite data, using random forest regressions (100 trees) 

[125]. We conducted pairwise comparisons of root mean squared errors (RMSEs) of each model using the 

5 iterations of 2-folds cross-validation modified paired t-test, which is powerful to compare the 

performance of learning algorithms with acceptable Type I error [126].  
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We conducted statistical analyses in R 3.6.0 (http://www.r-project.org) and Python 3.5.1 

(https://www.python.org). All statistical tests were two-sided. For comparisons across all taxa and all 

metabolites in linear regression, p-values were adjusted using Benjamini-Hochberg method (false 

discovery rate, q-value) [127] for sodium density, potassium density, and Na/K ratio separately as part of 

each test of three separate hypotheses for sodium density, potassium density, and Na/K ratio. 

 

Results 

Sample characteristics 

The microbiota analysis sample had 51.2% females and a mean age of 51.6 years (Table 4.1). Gut 

microbial α-diversity (Shannon index and richness), physical activity, urbanization, income, education, 

occupation, and intakes of sodium, potassium, Na/K ratio, energy, animal-source foods, fried food, and 

pre/probiotics were different across provinces and megacities (p-value<0.001). The megacity Chongqing 

had highest Shannon index and richness and the lowest potassium intake, whereas Shanghai, a megacity 

with 77% and 69% participants at high urbanization and income level, respectively, had the highest 

potassium and the lowest Na/K ratio intake. Yunnan, one of the least urbanized provinces (67% at low 

urbanization level), had the lowest Shannon index and animal-source food intake, but the highest Na/K 

ratio intake, while Zhejiang, one of the provinces with the highest income (>67% at high income level), 

had the highest sodium intake. In the metabolomics analysis sample, Hunan had higher urbanization and 

intakes of sodium and fried food but lower microbial richness than Guizhou (p-value<0.001, Table S4.1).   

 

Microbiota analysis 

First, we evaluated the overall measures of the gut microbiota composition and found that sodium 

density, potassium density, and Na/K ratio were not associated with α-diversity measures (Table 4.2), but 

associated with β-diversity, which varied across provinces and megacities (interaction and joint test 

dbRDA p-value<0.01, Table 4.3). The microbial β-diversity was visualized with multiple dimension 

http://www.r-project.org/
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scaling (MDS) in Figure S2-4, which show no clear separation of microbiota by sodium density, 

potassium density, or Na/K ratio.  

Next, we examined specific taxa and found that at joint test q-value<0.10, sodium density was 

associated with eight taxa, including Staphylcoccus, Moraxellaceae,  Phascolarctobacterium, 

Salinicoccus, and Jeotgalicoccus (Figure 4.1A); potassium density was associated with 30 taxa, including 

Pseudomonas, Staphylcoccus, Dorea, Leuconostocaceae, and Oscillospira (Figure 4.1B); and Na/K ratio 

was associated with 54 taxa, including Moraxellaceae, Pseudomonas, Lactobacillales, Staphylcoccus, 

and Microbacterium (Figure 4.1C). These associations showed large geographic variations. Province- and 

megacity-specific model estimates are shown in Table S4.2-4.4, respectively. For example, sodium 

density was negatively associated with Moraxellaceae in Beijing [coefficient (95% confidence interval): -

0.10 (-0.17, -0.04)], but positively associated with it in Liaoning [0.14 (0.07, 0.21)] and Shanghai [0.18 

(0.09, 0.27)].    

Secondary analysis using OTU-level data was consistent with genus-level results. We observed 

large geographic variation in the following associations at joint test q-value<0.10, sodium density with 

Phascolarctobacterium (Table S4.5); potassium density with six OTUs, including Dorea, 

Ruminococcaceae_UCG-014, and Weissella (Table S4.6); and Na/K ratio with 36 OTUs, including 

Ruminococcus_2, Lachnospiraceae, Blautia, Phascolarctobacterium, Megamonas, 

Ruminococcaceae_UCG-014, Catenibacterium,, Coprococcus_2, Clostridium_sensu_stricto_1, 

Akkermansia, Ruminococcus_1, and Prevotella (Table S4.7).  

 

Metabolomics analysis 

We first examined the overall metabolome and found that sodium density, potassium density, and 

Na/K ratio were associated with the overall metabolome at dbRDA p-value≤0.01 (Table 4.4), which were 

visualized with MDS in Figure S4.5-4.7. Then, for individual metabolites, we found that at joint test q-

value<0.10, sodium density was associated with four metabolites: N6-methyladenosine form purine 

metabolic pathway and gut-derived phenolics, 1,2,3-benzenetriol sulfate, 3-methoxycatechol sulfate, and 
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4-methylcatechol sulfate (Figure 4.2A); potassium density was associated with 6-oxopiperidine-2-

carboxylate from lysine metabolic pathway (Figure 4.2B); and Na/K ratio was associated with 15 

metabolites, including a fibrinogen cleavage peptide (DSGEGDFXAEGGGVR), N6-methyladenosine, 

thyroxine, two eicosanoid (5-HETrE, 5-HETE), and the microbiota-mediated SCFAs, butyrate/isobutyrate 

and isovalerate (also a branched-chain amino acid intermediary) (Figure 4.2C). We show province-

specific estimates in Table S4.8, respectively.  

 

Integrated analysis of microbiota and metabolite data 

We examined the associations between sodium density-, potassium density-, and/or Na/K ratio-

associated taxa (n=67) and metabolites (n=18) and found that Coriobacteriaceae and Ruminococcaceae 

were positively associated with 4-methylcatechol sulfate (q-value<0.10, Table S4.9). In random forest 

analysis assessing microbiota or metabolite data as a whole, we found that metabolite data and the 

combinations of metabolite + host factor data, microbiota + metabolite data, and microbiota + metabolite 

+ host factor data had higher accuracy (lower RMSE, q-value<0.05) than microbiota data in predicting 

sodium density and Na/K ratio (Figure 4.3). Metabolite data and host factor data had comparable 

accuracies in predicting sodium density, potassium density, and Na/K ratio, and adding microbiota data to 

the combination of metabolite + host factor data made no difference in prediction accuracy of these three 

diet outcomes.  

 

Discussion 

In this study, we investigated the association of dietary sodium and potassium consumption with 

gut microbiota and host metabolites in a population-based cohort of Chinese adults with habitual 

excessive sodium intake and deficient potassium intake [95,96]. We found that independent of a wide 

range of sociodemographic and behavioral factors and after accounting for geographic variations, energy-

adjusted sodium (i.e., density in mg/kcal), potassium, and Na/K ratio were associated with the microbial 

between-person diversity (β-diversity) and several microbial groups, including infectious pathogens, like 
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Staphylococcus [128] and Pseudomonas [129], and taxa that have been linked to CVD risk factors, like 

Dorea [130], Ruminococcus, Ruminococcaceae [131], and Lachnospiraceae [132]. In sub-sample 

analysis, we found that dietary sodium, potassium, and Na/K ratio were associated with the overall 

metabolome and several metabolites that involved in inflammation and etiology of CVD, including three 

gut-derived phenolics (1,2,3-benzenetriol sulfate, 3-methoxycatechol sulfate, and 4-methylcatechol 

sulfate) [133] and two SCFAs (butyrate/isobutyrate and isovalerate) [134]. These results suggest that gut 

microbiota and related-metabolites may play important roles in sodium- and potassium-associated 

diseases.   

Our findings add evidence to the sodium-microbiota associations in a large, free-living human 

population and were consistent with previous studies [42,64-66]. High sodium diet has been found to alter 

the gut microbiota composition and function in murine models, as reflected by decreases in Lactobacillus 

and increases in Lachnospiraceae, Ruminococcus, and fecal SCFA levels [42,64-66]. Moreover, there is 

little known about microbiota associated with potassium, another well-established dietary risk factor for 

CVD [95,110,111]. The sodium- and potassium-associated taxa we found have been implicated in CVD 

risk. For example, Dorea and Ruminococcus were positively associated with body mass index in Swedish 

adults [130]; Lachnospiraceae and Ruminococcaceae were related to lower long-term weight gain in 

females from TwinsUK [131]; Lachnospiraceae and Blautia were correlated with metabolic impairment 

in Austria older adults [132]; and Eggerthella and Prevotella were associated with hypertension in 

Chinese adults [39,41]. Furthermore, we found that in Liaoning, Henan and Shanghai, sodium 

consumption was positively associated with pathogenic bacteria including Staphylococcus, which causes 

a wide variety of severe infections [128], and Moraxellaceae, a biomarker for Crohn’s disease [135], 

indicating that high sodium intake may increase the susceptibility to gut infection and inflammation. 

Indeed, sodium exposure has been shown to enhance pro-inflammatory cytokine production in human 

intestinal mononuclear cells and high-sodium diet exacerbated colitis in mice [136].   

A probable mechanism of how gut microbiota influence host physiology is through SCFAs, such 

as acetate, butyrate, and propionate, which are primarily produced from bacterial fermentation of 
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carbohydrates [134]. Animal studies suggest that SCFAs are potentially beneficial to cardiometabolic 

health by modulating gut barrier function, immunomodulation, glucose homeostasis, and blood pressure 

[80,134]. However, human observational studies suggest that higher levels of fecal and plasma SCFAs 

associate with poorer gut health and higher obesity and hypertension risk [73,78]. We found that Na/K 

ratio consumption was positively associated with isovalerate and butyrate/isobutyrate in Guizhou. 

Similarly, the DASH cross-over sodium intake feeding trial showed reduced plasma isovalerate after a 

month-long sodium-restricted diet [67]. In addition, we found that in Guizhou province, sodium 

consumption was negatively associated with 1,2,3-benzenetriol sulfate, 3-methoxycatechol sulfate, and 4-

methylcatechol sulfate, which are phenolics derived from microbiota conversion of dietary polyphenols 

that potentially have anti-inflammatory bioactivity [133]. These results are consistent with studies 

showing high sodium induced inflammation in mice [42,136]. Our integrated analysis of microbiota and 

metabolites showed that the Na/K ratio-associated Coriobacteriaceae and Ruminococcaceae were 

positively associated with 4-methylcatechol sulfate. Coriobacteriaceae has been shown to be involved in 

phenolic conversion [137]. However, we may lack statistical power to detect associations for other 

microbiota-mediated metabolites, like SCFAs, in the sub-sample. Larger population samples with diet, 

microbiota, and metabolite data are needed to allow more complex integrated analysis.   

The strengths of our study include the well-characterized, population-based cohort with large 

variations in sodium and potassium consumption. Host factors collected from standardized and validated 

instruments allowed us to control for a wide range of potential confounders. Our large and diverse cohort 

allowed us to examine potential effect modification by geographic locations, which explained the largest 

variation (17.9%) in gut microbiota in our sample [118], compared to all other host factors, including age 

and sex (<1%). We observed that the associations between sodium and potassium consumption with 

microbiota varied substantially across provinces and megacities, but not by age or sex, indicating that 

geographical variation should be considered in future microbiota analyses. We also observed geographic 

variation using OTU-level data with more detailed taxa identification than genus-level data. The large 

geographic variation may relate to basal differences in gut microbiota across provinces and megacities 
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[118], as well as different dietary sources of sodium and potassium [95]. Our analysis is a preliminary 

step to identify associations across provinces and megacities. Further province- and megacity-specific 

analyses are needed to delineate mechanisms underlying the observed geographic variation.     

A limitation of our study is the potential measurement errors in diet assessment tools. Although 

24-h dietary recall has shown poorer performance in estimating sodium intake in Chinese adults than 24-h 

urine [138], our estimation of sodium and potassium consumption was based on both three-consecutive 

24-h recalls and household inventories, and had been validated by 24-h urine [95]. Given that a majority 

of our unique sample consumed a high-sodium and low-potassium diet, we acknowledge that our findings 

have limited generalizability to populations with lower sodium and higher potassium intake, common to 

less urbanized areas. We were unable to adjust for former smoking due to small numbers of male (n=89) 

and female (n=34) former smokers. Our analyses were limited to microbial community structures using 

16S rRNA data and thus specific pathways of relevant microbial functional genes could not be 

established. Our study also lacks independent sample for replication and repeated measures of microbiota 

and metabolites to model changes and test stability. Whereas it has been previously reported in the CHNS 

that microbiota was stable over two weeks [119], circulating metabolites were dynamic [139].  

 

Conclusion 

We provide substantial observational evidence to the associations of sodium and potassium 

consumption with gut microbiota and plasma metabolites in a population-based cohort of Chinese adults 

with habitual excessive sodium intake and inadequate potassium intake. In line with murine models and 

smaller human studies, we show that sodium, potassium, and Na/K ratio consumption is associated with 

microbiota and metabolites related to inflammation and CVD risk factors. Taken together, our findings 

suggest the roles of the gut microbiota and related metabolites in the diet-health relationship. More studies 

are needed to replicate our results and fully elucidate the biological pathways linking dietary sodium and 

potassium to CVD outcomes. 
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Tables and Figures 

Table 4.1. Characteristics of the gut microbiota analysis sample by provinces and megacities, part 1 

 Total Beijing Heilongjiang Liaoning Shaanxi Henan Jiangsu Shandong Shanghai 

N 2,833 112 206 127 110 325 134 118 130 

Shannon index2 2.6 (0.3) 2.5 (0.3) 2.6 (0.3) 2.7 (0.3) 2.5 (0.3) 2.5 (0.3) 2.6 (0.3) 2.6 (0.3) 2.5 (0.4) 

Richness3 94.6 

(40.2) 

79.3 

(24.1) 

91.6  

(34.9) 

91.3  

(25) 

87.5 

(21.2) 

91.3 

(37.2) 

86.2 

(14.8) 

84.4  

(34.7) 

112.7 

(66.6) 

Age, year 51.6 

(12.6) 

50.8 

(12.8) 

51.3  

(12.7) 

52.2  

(14.7) 

50.1 

(14.6) 

52.2 

(11.3) 

52.5 

(14.5) 

52.1  

(13.9) 

50.6  

(13.9) 

Females, n (%) 1450 

(51.2) 

53  

(47.3) 

111  

(53.9) 

63  

(49.6) 

54  

(49.1) 

181  

(55.7) 

66  

(49.3) 

56  

(47.5) 

65  

(50) 

Sodium (Na)4, mg 4188.1 

(2176.9) 

4163.9 

(2553.5) 

4619.6 

(2379.4) 

4123.2 

(2267.5) 

3948.1 

(2293.9) 

4526.1 

(2307.2) 

4294.8 

(2102.5) 

4274.4 

(2020.5) 

3913.9 

(2041.1) 

Na density 

(mg/kcal)4 

2.4 (1.4) 2.6 (1.9) 2.7 (1.4) 2.6 (1.5) 2.1 (1.4) 2.5 (1.5) 2.3 (1.1) 2.2 (1.1) 2.2 (1.1) 

Excessive Na5, n 

(%) 

2517 

(88.8) 

97  

(86.6) 

189  

(91.8) 

106  

(83.5) 

92  

(83.6) 

301  

(92.6) 

122  

(91.0) 

103  

(87.3) 

116  

(89.2) 
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Potassium (K)4, mg 1575.5 

(682.7) 

1633.1 

(734.9) 

1545.6 

(605.9) 

1535 

(643.1) 

1582.7 

(765) 

1420 

(636) 

1675.5 

(679.2) 

1678.1 

(707.2) 

1884 

(856.9) 

K density 

(mg/kcal)4 

0.8 (0.3) 1 (0.6) 0.9 (0.2) 0.9 (0.3) 0.8 (0.3) 0.7 (0.3) 0.9 (0.3) 0.8 (0.2) 1 (0.4) 

Deficient K5, n (%) 2775 

(97.9) 

110  

(98.2) 

203  

(98.5) 

126  

(99.2) 

107  

(97.3) 

319  

(98.2) 

132  

(98.5) 

113  

(95.8) 

123  

(94.6) 

Na/K ratio4  3 (2) 2.8 (1.8) 3.4 (2.3) 3 (1.9) 3 (2.4) 3.7 (2.7) 2.9 (1.5) 2.8 (1.5) 2.3 (1.3) 

Energy intake4, 

kcal 

1906.2 

(623.5) 

1709.8 

(573.3) 

1829.3  

(631) 

1644.4 

(566.6) 

2104 

(724.8) 

2040 

(682.9) 

1941.8 

(632.1) 

2051.9 

(624.7) 

1837.8 

(533.4) 

Animal-source 

foods4, %kcal 

18.2 

(13.4) 

12.6  

(8.7) 

9.3  

(8.8) 

12.5  

(11.3) 

25.7 

(13.5) 

7  

(8.9) 

16.6 

(12.6) 

11.9  

(9.2) 

20.1  

(10.8) 

Fried food intake4, 

n (%) 

720 (25.4) 60 (53.6) 62 (30.1) 36 (28.4) 34 (30.9) 82 (25.2) 39 (29.1) 49 (41.5) 55 (42.3) 

Ever smoked, n 

(%) 

1109 

(39.2) 

39 (34.8) 80 (38.8) 52 (40.9) 36 (32.7) 131 (40.3) 54 (40.3) 43 (36.4) 41 (31.5) 

Alcohol use, n (%) 850 (30) 38 (33.9) 53 (25.7) 40 (31.5) 45 (40.9) 94 (28.9) 34 (25.4) 41 (34.7) 23 (17.7) 

Pre/probiotics use, 

n (%) 

18 (0.6) 0 (0) 0 (0) 0 (0) 0 (0) 11 (3.4) 0 (0) 0 (0) 0 (0) 
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NSAIDs use, n (%) 35 (1.2) 3 (2.7) 2 (1.0) 1 (0.8) 1 (0.9) 5 (1.5) 0 (0) 2 (1.7) 3 (2.3) 

PPIs use, n (%) 18 (0.6) 0 (0) 2 (1.0) 2 (1.6) 0 (0) 2 (0.6) 1 (0.7) 1 (0.8) 1 (0.8) 

Physical activity6, n 

(%) 

         

Low 944 (33.3) 42 (37.5) 74 (35.92) 44 (34.65) 24 (21.8) 124 (38.2) 42 (31.3) 46 (39.0) 52 (40) 

Middle 949 (33.5) 46 (41.1) 71 (34.5) 42 (33.1) 41 (37.3) 86 (26.5) 43 (32.1) 43 (36.4) 56 (43.1) 

High 940 (33.2) 24 (21.4) 61 (29.6) 41 (32.3) 45 (40.9) 115 (35.4) 49 (36.6) 29 (24.6) 22 (16.9) 

Urbanization7, n 

(%) 

         

Low 937 (33.1) 0 (0) 109 (52.9) 35 (27.6) 37 (33.6) 175 (53.8) 28 (20.9) 26 (22.0) 0 (0) 

Middle 957 (33.8) 45 (40.2) 16 (7.8) 36 (28.4) 52 (47.3) 120 (36.9) 40 (29.9) 83 (70.3) 53 (40.8) 

High 939 (33.2) 67 (59.8) 81 (39.3) 56 (44.1) 21 (19.1) 30 (9.2) 66 (49.2) 9 (7.6) 77 (59.2) 

Income8, n (%)          

Low 948 (33.5) 12 (10.7) 50 (24.3) 24 (18.9) 34 (30.9) 171 (52.6) 25 (18.7) 25 (21.2) 6 (4.6) 

Middle 943 (33.3) 38 (33.9) 76 (36.9) 40 (31.5) 32 (29.1) 92 (28.3) 43 (32.1) 51 (43.2) 55 (42.3) 

High 942 (33.2) 62 (55.4) 80 (38.8) 63 (49.6) 44 (40) 62 (19.1) 66 (49.2) 42 (35.6) 69 (53.1) 

High school 

completion, n (%) 

1030 

(36.4) 

88 (78.6) 80 (38.8) 55 (43.3) 43 (39.1) 85 (26.2) 48 (35.8) 54 (45.8) 90 (69.2) 
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Occupation9, n (%)          

Not-working 1410 

(49.8) 

55 (49.11) 109 (52.9) 51 (40.2) 41 (37.3) 213 (65.5) 62 (46.3) 61 (51.7) 59 (45.4) 

Agriculture worker 343 (12.1) 0 (0) 30 (14.6) 19 (15.0) 20 (18.2) 36 (11.1) 4 (3.0) 4 (3.4) 0 (0) 

Laborers 673 (23.8) 20 (17.) 24 (11.6) 35 (27.6) 28 (25.5) 50 (15.5) 52 (38.8) 26 (22.0) 37 (28.5) 

Professional 203 (7.2) 22 (19.6) 20 (9.7) 11 (8.7) 13 (11.8) 18 (5.5) 5 (3.7) 7 (5.9) 7 (5.4) 

Manager 204 (7.2) 15 (13.4) 23 (11.2) 11 (8.7) 8 (7.3) 8 (2.5) 11 (8.2) 20 (17.0) 27 (20.8) 

High blood 

pressure10, n (%) 

1844 

(65.1) 

70 (62.5) 144 (69.9) 94 (74.0) 65 (59.1) 256 (78.8) 99 (73.9) 86 (72.9) 81 (62.3) 

Overweight10, n 

(%)  

1412 (50) 64 (57.1) 129 (62.6) 78 (61.4) 45 (40.9) 191 (59.3) 72 (53.7) 69 (58.5) 61 (47.3) 
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Table 4.1. Characteristics of the gut microbiota analysis sample by provinces and megacities, part 2 

 Zhejiang Chongqing Guangxi Guizhou Hubei Hunan Yunnan p-

value 

N 123 125 412 283 117 390 121  

Shannon index2 2.5 (0.3) 2.7 (0.3) 2.6 (0.3) 2.6 (0.3) 2.5 (0.3) 2.6 (0.3) 2.4 (0.3) <0.001 

Richness3 87.7 (43.7) 174.1 (59.2) 92.8 (27.2) 96.8 (45) 91.2 (25.7) 85.5 (27.7) 90.8 (26.9) <0.001 

Age, year 52 (13.3) 52 (14.7) 51.3 (10.6) 50.8 (12) 52.2 (14.4) 52 (11.2) 51.1 (14.3) 0.911 

Females, n (%) 63 (51.2) 60 (48) 207 (50.2) 148 (52.3) 53 (45.3) 208 (53.3) 62 (51.24) 0.873 

Sodium (Na)4, mg 4775.4 

(2620.4) 

3524.5 

(1642.1) 

4148 

(2018.4) 

3372.8 

(1472) 

4102.2 

(1864.3) 

4387.7 

(2193) 

4518.3 

(2654.4) 

<0.001 

Na density (mg/kcal)4 2.9 (1.6) 2.3 (1.3) 2.1 (1) 2 (1) 2.3 (1.1) 2.5 (1.5) 2.8 (1.9) <0.001 

Excessive Na5, n (%) 114 (92.7) 104 (83.2) 383 (93.0) 234 (82.67) 109 (93.2) 345 (88.5) 102 (84.3) <0.001 

Potassium (K)4, mg 1578.2 

(585.6) 

1335.6 

(554.6) 

1625.9 

(623.7) 

1449.8 

(709.5) 

1690.3 

(758.1) 

1687.9 

(685) 

1379.5 

(610.8) 

<0.001 

K density (mg/kcal)4 0.9 (0.4) 0.8 (0.3) 0.8 (0.3) 0.8 (0.3) 0.9 (0.3) 0.9 (0.3) 0.8 (0.3) <0.001 

Deficient K5, n (%) 122 (99.2) 125 (100) 405 (98.3) 279 (98.6) 113 (96.6) 379 (97.2) 119 (98.35) 0.177 

Na/K ratio4  3.3 (1.9) 3.1 (1.8) 2.8 (1.4) 2.8 (1.8) 2.7 (1.6) 2.9 (1.9) 3.7 (3) <0.001 
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Energy intake4, kcal 1752.7  

(533) 

1670.4  

(519) 

2069.8 

(622.6) 

1843.4 

(533.6) 

1894.3 

(565.3) 

1931.7 

(649.2) 

1764.9 

(558.2) 

<0.001 

Animal-source 

foods4, %kcal 

19.1 (11) 22.5 (12.3) 26.1 (12.9) 25.4 (13.2) 14.4 (9.5) 24.7 (11.3) 6.4 (8.1) <0.001 

Fried food intake4, n (%) 39 (31.7) 18 (14.4) 22 (5.3) 43 (15.2) 36 (30.8) 118 (30.3) 27 (22.3) <0.001 

Ever smoked, n (%) 35 (28.5) 52 (41.6) 174 (42.2) 112 (39.6) 55 (47.0) 164 (42.1) 41 (33.9) 0.117 

Alcohol use, n (%) 44 (35.8) 44 (35.2) 126 (30.6) 89 (31.4) 45 (38.5) 98 (25.1) 36 (29.8) 0.002 

Pre/probiotics use, n (%) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 7 (1.8) 0 (0) <0.001 

NSAIDs use, n (%) 1 (0.8) 0 (0) 1 (0.2) 7 (2.5) 2 (1.7) 7 (1.8) 0 (0) 0.254 

PPIs use, n (%) 2 (1.6) 1 (0.8) 2 (0.5) 0 (0) 1 (0.9) 3 (0.8) 0 (0) 0.855 

Physical activity6, n (%)        <0.001 

Low 29 (23.6) 49 (39.2) 104 (25.2) 98 (34.6) 39 (33.3) 145 (37.2) 32 (26.4)  

Middle 56 (45.5) 34 (27.2) 132 (32.0) 96 (33.9) 40 (34.2) 122 (31.3) 41 (33.9)  

High 38 (30.9) 42 (33.6) 176 (42.7) 89 (31.5) 38 (32.5) 123 (31.5) 48 (39.8)  

Urbanization7, n (%)        <0.001 

Low 29 (23.6) 51 (40.8) 159 (38.6) 125 (44.2) 17 (14.5) 79 (20.3) 67 (55.4)  

Middle 62 (50.4) 17 (13.6) 75 (18.2) 100 (35.3) 40 (34.2) 202 (51.8) 16 (13.2)  

High 32 (26.0) 57 (45.6) 178 (43.2) 58 (20.5) 60 (51.3) 109 (28.0) 38 (31.4)  



 

 

 

3
4
 

Income8, n (%)        <0.001 

Low 19 (15.5) 56 (44.8) 225 (54.6) 85 (30.0) 27 (23.1) 138 (35.4) 51 (42.2)  

Middle 37 (30.1) 29 (23.2) 133 (32.3) 94 (33.2) 49 (41.9) 136 (34.9) 38 (31.4)  

High 67 (54.5) 40 (32) 54 (13.1) 104 (36.8) 41 (35.0) 116 (29.7) 32 (26.6)  

High school completion, 

n (%) 

52 (42.3) 38 (30.4) 101 (24.5) 80 (28.3) 41 (35.0) 137 (35.1) 38 (31.4) <0.001 

Occupation9, n (%)        <0.001 

Not-working 63 (51.2) 66 (52.8) 162 (39.3) 130 (45.9) 50 (42.7) 222 (56.9) 66 (54.6)  

Agriculture worker 3 (2.4) 12 (9.6) 80 (19.4) 57 (20.1) 18 (15.4) 40 (10.3) 20 (16.5)  

Laborers 28 (22.8) 25 (20) 161 (39.1) 55 (19.4) 34 (29.1) 81 (20.8) 17 (14.1)  

Professional 15 (12.2) 15 (12) 4 (1.0) 20 (7.1) 9 (7.7) 27 (6.9) 10 (8.3)  

Manager 14 (11.4) 7 (5.6) 5 (1.2) 21 (7.4) 6 (5.1) 20 (5.1) 8 (6.6)  

High blood pressure10, n 

(%) 

68 (55.3) 76 (60.8) 266 (64.6) 166 (58.7) 66 (56.4) 243 (62.3) 64 (52.9) <0.001 

Overweight10, n (%)  55 (44.7) 53 (42.4) 152 (37.3) 150 (53) 52 (44.8) 189 (48.5) 52 (43.0) <0.001 

Mean (SD), unless noted as n (%); NSAID, non-steroid anti-inflammatory drug; PPI, proton-pump inhibitor.  

1Provices and megacities were compared using analysis of variance (ANOVA) for continues variables and Chi-squared test for categorical 

variables. 

2Shannon index at genus level was calculated using − ∑ 𝑝𝑖𝑙𝑛𝑝𝑖, where 𝑝𝑖 is the proportional abundance of genera i.  
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3Richness measured the number of distinct genera per subject. 

4Nutrients intakes estimated by 3-consecutive dietary recalls, household food inventories, and a Chinese food composition table. Sodium density 

and potassium density were calculated using absolute sodium and potassium intakes divided by total energy intake, respectively.  

5Excessive sodium (≥2 g) and deficient potassium (<3.5 g) consumption was defined according to the WHO recommendation [115]. 

6Physical activity measured via 7-day recalls in METS/week was categorized to tertiles to represent low (≤40.8 METs/week), medium (40.8-144.5 

METs/week), and high (>144.5 METs/week) levels of physical activity. 

7Urbanization index, a 12-component scale that includes population density, economic activity, transportation infrastructure, sanitation, etc., to 

define and distinguish urbanicity, was categorized to tertiles to represent low (≤63), medium (63.4-84.3), and high (>84.3) levels of urbanization. 

8Per capita household income was categorized to year-specific tertiles to represent low (≤9.4k Yuan), medium (9.4-22.4k Yuan), and high (>22.4k 

Yuan) levels of income. 

9Occupation was categorized into the following types: unemployed, agriculture worker (e.g. farmer, fisherman, hunter), laborers (e.g. craftsman, 

logger), professional (e.g. doctor, teacher), manager (e.g. government official, director), and other (e.g. athlete, artist). 

10High blood pressure was defined as systolic blood pressure or diastolic blood pressure ≥130/80 mmHg, or self-reported high blood pressure. 

Overweight was defined as BMI (weight/height2) ≥ 24 kg/m2. Blood pressure, weight, and height were measured by trained examiners.  
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Table 4.2. Associations of sodium density, potassium density, and sodium to potassium (Na/K) ratio 

with within-person gut microbial diversity measures (n=2,833)1 

 Sodium density Potassium density Na/K ratio 

 Coefficient 

(95% CI) 

P-

value 

Coefficient 

(95% CI) 

P-

value 

Coefficient  

(95% CI) 

P-

value 

Shannon 

index2 

0.00 (-0.01, 0.01) 0.554 0.02 (-0.02, 0.05) 0.419 0.00 (-0.00, 0.01) 0.566 

Richness3 0.38 (-0.68, 1.44) 0.483 -2.28 (-6.72, 2.17) 0.316 0.29 (-0.41, 0.98) 0.418 

CI, confidence interval. 

1Linear regression model was adjusted for age, sex, provinces or megacities, batch or plate run, 

urbanization, occupation, income, education, total energy intake, %kcal from animal-source foods, fried 

food intake, physical activity, smoking, alcohol, pro/prebiotic intake in past month, NSAIDs intake in 

past two weeks, and PPIs intake in past month. Interaction with province/megacity was removed from all 

models because p-value >0.10. 

2Shannon index at genus level was calculated using − ∑ 𝑝𝑖𝑙𝑛𝑝𝑖, where 𝑝𝑖 is the proportional abundance 

of genera i.  

3Richness measured the number of distinct genera per subject with rarefication.



 

37 

 

Table 4.3. Associations of sodium density, potassium density, and sodium to potassium (Na/K) ratio 

with between-person gut microbial diversity (n=2,833)1 

 Sodium density Potassium density Na/K ratio 

 Interaction2 Joint3 Interaction2 Joint3 Interaction2 Joint3 

R-squared4 0.07% 0.11% 0.10% 

Sum of 

squares 

0.88 0.93 1.02 1.06 1.18 1.25 

F 1.32 1.31 1.53 1.50 1.78 1.76 

P value 0.002 0.003 0.001 0.001 0.001 0.001 

1Model was adjusted for age, sex, provinces or megacities, batch or plate run, urbanization, occupation, 

income, education, total energy intake, %kcal from animal-source foods, fried food intake, physical 

activity, smoking, alcohol, pro/prebiotic intake in past month, NSAIDs intake in past two weeks, and PPIs 

intake in past month.   

2The interaction of sodium density, potassium density, or Na/K ratio with province/megacity.  

3The joint tests of sodium density, potassium density, or Na/K ratio with its interaction with 

province/megacity. Pseudo F statistics and p-values of the interaction and joint test were obtained from 

partial distance-based redundancy analysis (dbRDA) conditioned on the rest of the model variables 

followed by an analysis of variance (ANOVA) test with 999 permutations. 

4R-squared was estimated in a univariate dbRDA model for sodium density, potassium density, or Na/K 

ratio.   
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Table 4.4. Associations of sodium density, potassium density, and sodium to potassium (Na/K) ratio 

with the overall plasma metabolome (n=392)1   

 Sodium density Potassium density Na/K ratio 

 Interaction2 Joint3 Interaction2 Joint3 

R-squared4 0.53% 0.47% 0.34% 

Sum of squares 0.13 0.24 0.17 0.14 0.24 

F 1.55 1.44 2.01 1.70 1.42 

P value 0.010 0.009 0.002 0.007 0.007 

1Model was adjusted for age, sex, provinces or megacities, batch run, urbanization, occupation, income, 

education, total energy intake, %kcal from animal-source foods, fried food intake, physical activity, 

smoking, alcohol, pro/prebiotic intake in past month, NSAIDs intake in past two weeks, and PPIs intake 

in past month. Interaction of potassium density and province/megacity was removed because p-

value>0.10. 

2The interaction between sodium density or Na/K ratio and province/megacity. 

3The joint test of sodium density or Na/K ratio and its interaction with province/megacity. Pseudo F 

statistics and p-values of the interaction and joint test were obtained from partial distance-based 

redundancy analysis (dbRDA) conditioned on the rest of the model variables followed by an analysis of 

variance (ANOVA) test with 999 permutations. 

4R-squared was estimated in a univariate dbRDA model for sodium density, potassium density, or Na/K 

ratio.  
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Figure 4.1. Heatmap of associations between (A) sodium density, (B) potassium density, and (C) Na/K 

ratio with specific taxa. N=2,833. Na/K ratio, sodium to potassium ratio; q-value, false discovery rate-

adjusted p-value; Interaction, interaction with province/megacity; Joint, joint test of main and interaction 

effects; “*”, unknown genera from family; “**”, unknown genera from order; “***” unknown genera 

from class; “#”, q-values<0.10, and “##”, q-values<0.05 for province- and megacity-specific estimates; 

Color and shading of the heatmap indicate the direction and magnitude of model coefficient. Taxa were 

ordered by joint test q-value and provinces and megacities were ordered by region. Linear regression 

model was adjusted for age, sex, provinces or megacities, batch or plate run, urbanization, occupation, 

education, income, total energy intake, %kcal from animal-source foods, fried food intake, physical 

activity, smoking, alcohol, and intakes of pro/prebiotics, NSAIDs, and PPIs. 

  



 

 

40 

 

Figure 4.2. Heatmap of associations between (A) sodium density, (B) potassium density, and (C) Na/K 

ratio with individual metabolites. N=392. Na/K ratio, sodium to potassium ratio; q-value, false discovery 

rate-adjusted p-value; Interaction, interaction with province/megacity; Joint, joint test of main and 

interaction effects; “#”, q-values<0.10, and “##”, q-values<0.05 for province-specific estimates; Color 

and shading of the heatmap indicate the direction and magnitude of model coefficient. Metabolites were 

ordered by joint test q-value. Linear regression model was adjusted for age, sex, provinces or megacities, 

batch or plate run, urbanization, occupation, education, income, total energy intake, %kcal from animal-

source foods, fried food intake, physical activity, smoking, alcohol, and intakes of pro/prebiotics, 

NSAIDs, and PPIs. 
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Figure 4.3. Box plots of root mean square errors (RMSEs) of (A) sodium density, (B) potassium density, 

and (C) Na/K ratio estimated by host factors, microbiota and metabolite data, using random forest 

regression. N=392. Na/K ratio, sodium to potassium ratio; p-values for 5 iterations of 2-fold cross-

validation modified paired t-test that below 0.05 are shown between comparison groups. 
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Table S4.1. Characteristics of the plasma metabolome analysis sample 

 Total Guizhou Hunan P-value1 

N 392 133 259  

Shannon index2 2.6 (0.3) 2.6 (0.3) 2.6 (0.2) 0.072 

Richness3 85.8 (20.5) 94 (24.4) 81.5 (16.7) <0.001 

Age, year 51.9 (9) 51.5 (8.9) 52.1 (9.1) 0.488 

Females, n (%) 231 (58.9) 82 (61.7) 149 (57.5) 0.498 

Sodium (Na)4, mg 3887.7 (1891.4) 3239 (1373.2) 4220.8 (2031.9) <0.001 

Na density (mg/kcal)4 2.2 (1.3) 1.9 (0.9) 2.4 (1.4) <0.001 

Excessive Na5, n (%) 330 (84.2) 105 (79) 225 (86.9) 0.059 

Potassium (K)4, mg 1562.4 (658) 1370.6 (622.5) 1660.8 (655.1) 0.481 

K density (mg/kcal)4 0.8 (0.3) 0.8 (0.3) 0.9 (0.3) <0.001 

Deficient K5, n (%) 385 (98.2) 132 (99.3) 253 (97.7) 0.481 

Na/K ratio4  2.9 (1.8) 2.9 (1.8) 2.9 (1.9) 0.952 

Energy intake4, kcal 1882.7 (615) 1802.6 (516.8) 1923.8 (656.9) 0.065 

Animal-source 

foods4, %kcal 

25 (12.5) 26.6 (14.2) 24.2 (11.5) 0.071 

Fried food intake4, n (%) 94 (24) 16 (12) 78 (30.1) <0.001 

Ever smoked, n (%) 154 (39.3) 51 (38.4) 103 (39.8) 0.87 

Alcohol use, n (%) 100 (25.5) 37 (27.8) 63 (24.3) 0.529 

Pre/probiotics use, n (%) 4 (1) 0 (0) 4 (1.5) 0.363 

NSAIDs use, n (%) 4 (1) 2 (1.5) 2 (0.8) 0.88 

PPIs use, n (%) 2 (0.5) 0 (0) 2 (0.8) 0.789 

Physical activity6, n (%)    0.23 

Low 136 (34.69) 40 (30.08) 96 (37.07)  

Middle 127 (32.4) 50 (37.59) 77 (29.73)  

High 129 (32.91) 43 (32.33) 86 (33.2)  

Urbanization7, n (%)    <0.001 

Low 120 (30.6) 66 (49.6) 54 (20.9)  

Middle 178 (45.4) 45 (33.8) 133 (51.4)  
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High 94 (24) 22 (16.5) 72 (27.8)  

Income8, n (%)    0.268 

Low 134 (34.2) 40 (30.1) 94 (36.3)  

Middle 136 (34.7) 45 (33.8) 91 (35.1)  

High 122 (31.1) 48 (36.1) 74 (28.6)  

High school completion, n 

(%) 

127 (32.4) 41 (30.8) 86 (33.2) 0.717 

Occupation9, n (%)    0.011 

Unemployed 203 (51.8) 58 (43.6) 145 (56)  

Agriculture worker 62 (15.8) 32 (24.1) 30 (11.6)  

Laborers 79 (20.2) 26 (19.6) 53 (20.5)  

Professional 28 (7.1) 12 (9) 16 (6.2)  

Manager 20 (5.1) 5 (3.76) 15 (5.79)  

High blood pressure10, n (%) 241 (61.5) 78 (58.7) 163 (62.9) 0.474 

Overweight10, n (%)  193 (49.2) 68 (51.1) 125 (48.3) 0.667 

Mean (SD), unless noted as n (%); NSAID, non-steroid anti-inflammatory drug; PPI, proton-pump 

inhibitor.  

1Provices and megacities were compared using analysis of variance (ANOVA) for continues variables 

and Chi-squared test for categorical variables. 

2Shannon index at genus level was calculated using − ∑ 𝑝𝑖𝑙𝑛𝑝𝑖, where 𝑝𝑖 is the proportional abundance 

of genera i.  

3Richness measured the number of distinct genera per subject. 

4Nutrients intakes estimated by 3-consecutive dietary recalls, household food inventories, and a Chinese 

food composition table. Sodium density and potassium density were calculated using absolute sodium and 

potassium intakes divided by total energy intake, respectively.  

5Excessive sodium (≥2 g) and deficient potassium (<3.5 g) consumption was defined according to the 

WHO recommendation (35). 

6Physical activity measured via 7-day recalls in METS/week was categorized to tertiles to represent low 

(≤40.8 METs/week), medium (40.8-144.5 METs/week), and high (>144.5 METs/week) levels of physical 

activity. 
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7Urbanization index, a 12-component scale that includes population density, economic activity, 

transportation infrastructure, sanitation, etc., to define and distinguish urbanicity, was categorized to 

tertiles to represent low (≤63), medium (63.4-84.3), and high (>84.3) levels of urbanization. 

8Per capita household income was categorized to year-specific tertiles to represent low (≤9.4k Yuan), 

medium (9.4-22.4k Yuan), and high (>22.4k Yuan) levels of income. 

9Occupation was categorized into the following types: unemployed, agriculture worker (e.g. farmer, 

fisherman, hunter), laborers (e.g. craftsman, logger), professional (e.g. doctor, teacher), manager (e.g. 

government official, director), and other (e.g. athlete, artist). 

10High blood pressure was defined as systolic blood pressure or diastolic blood pressure ≥130/80 mmHg, 

or self-reported high blood pressure. Overweight was defined as BMI (weight/height2) ≥ 24 kg/m2. Blood 

pressure, weight, and height were measured by trained examiners. 
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Table S4.2. Province/megacity-specific estimates [coefficient (95% CI)] for the associations between sodium density and specific taxa, part 1. 

  Beijing Heilongjiang Liaoning Shaanxi Henan Jiangsu Shandong Shanghai 

Staphylococcus -0.01 0.00 0.15 -0.06 0.06 0.00 -0.04 0.03 

 
(-0.05, (-0.04, (0.1, (-0.12, (0.03, (-0.07, (-0.1, (-0.04, 

 
0.03) 0.04) 0.19)² -0.01) 0.09)² 0.06) 0.03) 0.09) 

Moraxellaceae* -0.1 -0.03 0.14 -0.01 -0.03 0.01 -0.02 0.18 

 
(-0.17, (-0.09, (0.07, (-0.1, (-0.08, (-0.08, (-0.12, (0.09, 

 
-0.04)¹ 0.03) 0.21)² 0.07) 0.02) 0.1) 0.09) 0.27) 

Phascolarctobacterium 0.02 -0.03 0.14 -0.05 -0.02 0.02 -0.12 -0.01 

 
(-0.03, (-0.08, (0.08, (-0.11, (-0.05, (-0.05, (-0.19, (-0.08, 

 
0.07) 0.01) 0.19)² 0.01) 0.02) 0.08) -0.04) 0.05) 

Salinicoccus 0.00 0.00 0.09 -0.03 0.01 0.01 0.01 0.03 

 
(-0.03, (-0.04, (0.05, (-0.08, (-0.02, (-0.05, (-0.05, (-0.03, 

 
0.04) 0.03) 0.14)² 0.02) 0.04) 0.06) 0.07) 0.08) 

Jeotgalicoccus -0.03 -0.02 0.12 0.03 0.03 -0.03 -0.02 -0.01 

 
(-0.08, (-0.07, (0.07, (-0.03, (-0.01, (-0.09, (-0.09, (-0.07, 

 
0.01) 0.02) 0.17)² 0.09) 0.06) 0.04) 0.05) 0.06) 

Acinetobacter -0.11 0.00 0.06 -0.08 0.04 -0.01 -0.01 0.08 
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(-0.17, (-0.06, (-0.01, (-0.17, (-0.01, (-0.1, (-0.12, (-0.01, 

 
-0.05)¹ 0.06) 0.13) 0.000) 0.09) 0.08) 0.09) 0.17) 

Bacteroidales** 0.01 0.03 0.02 0.01 -0.03 0.03 0.00 -0.01 

 
(-0.03, (-0.01, (-0.03, (-0.04, (-0.06, (-0.03, (-0.07, (-0.07, 

 
0.05) 0.07) 0.06) 0.06) 0.00) 0.09) 0.06) 0.04) 

Lactobacillales** -0.09 -0.01 -0.09 0.06 0.01 0.07 0.02 0.13 

 
(-0.14, (-0.07, (-0.16, (-0.01, (-0.04, (-0.01, (-0.07, (0.05, 

 
-0.03)¹ 0.04) -0.03)¹ 0.14) 0.05) 0.15) 0.11) 0.22) 
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Table S4.2. Province/megacity-specific estimates [coefficient (95% CI)] for the associations between sodium density and specific taxa, part 2 

 Zhejinag Chongqing Guangxi Guizhou Hubei Hunan Yunan 

Staphylococcus -0.07 0.02 -0.02 -0.03 -0.02 -0.01 -0.02 

 (-0.11, (-0.04, (-0.06, (-0.07, (-0.09, (-0.03, (-0.06, 

 -0.02) 0.08) 0.02) 0.02) 0.05) 0.02) 0.02) 

Moraxellaceae* -0.05 0.08 0.00 0.03 -0.12 0.03 -0.04 

 (-0.12, (-0.01, (-0.06, (-0.04, (-0.22, (-0.01, (-0.1, 

 0.01) 0.16) 0.06) 0.1) -0.02) 0.07) 0.02) 

Phascolarctobacterium 0.01 0.02 0.01 -0.03 0.01 -0.05 -0.01 

 (-0.04, (-0.04, (-0.04, (-0.08, (-0.06, (-0.08, (-0.05, 

 0.06) 0.09) 0.05) 0.03) 0.09) -0.01)¹ 0.04) 

Salinicoccus -0.02 -0.03 -0.01 -0.05 -0.03 0.00 0.08 

 (-0.06, (-0.08, (-0.04, (-0.09, (-0.09, (-0.03, (0.05, 

 0.02) 0.02) 0.03) -0.01) 0.03) 0.03) 0.12)² 

Jeotgalicoccus -0.02 0.01 0.01 -0.02 -0.09 0.00 0.04 

 (-0.06, (-0.05, (-0.03, (-0.07, (-0.16, (-0.03, (0.00, 

 0.03) 0.07) 0.06) 0.03) -0.02) 0.03) 0.09) 

Acinetobacter -0.01 0.05 -0.01 0.05 -0.15 -0.01 0.06 
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 (-0.08, (-0.03, (-0.07, (-0.02, (-0.24, (-0.05, (0.00, 

 0.06) 0.14) 0.05) 0.12) -0.05) 0.03) 0.12) 

Bacteroidales** -0.01 0.12 0.05 -0.02 -0.04 0.00 -0.02 

 (-0.06, (0.07, (0.01, (-0.06, (-0.1, (-0.03, (-0.05, 

 0.03) 0.18)² 0.09) 0.03) 0.02) 0.02) 0.02) 

Lactobacillales** 0.01 0.01 0.00 0.04 -0.05 0.02 -0.02 

 (-0.05, (-0.06, (-0.06, (-0.02, (-0.14, (-0.01, (-0.07, 

 0.07) 0.09) 0.05) 0.1) 0.04) 0.06) 0.04) 

N=2,833. CI, confidence interval; “*”, unknown genera from family; “**”, unknown genera from order. Only taxa with false discovery rate-

adjusted p-value <0.10 for joint test of sodium density and its interaction with province/megacity are shown here. Taxa were ordered by joint test 

q-values. Taxon relative abundance was log10 transformed. Linear model was adjusted for age, sex, provinces or megacities, batch or plate run, 

urbanization, occupation, income, high school completion, energy intake, percent energy from animal food, fried food intake, physical activity, 

ever smoked, alcohol consumption, and use of probiotic, non-steroid anti-inflammatory drug, and proton pump inhibitor. Please see the 

Supplementary Table 1 in the supplemental files to see results for the full list of taxa. 

1 false discovery rate-adjusted p-value <0.10;   

2 false discovery rate-adjusted p-value <0.05;   
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Table S4.3. Province/megacity-specific estimates [coefficient (95% CI)] for the associations between potassium density and specific taxa, part 1 

 Beijing Heilongjiang Liaoning Shaanxi Henan Jiangsu Shandong Shanghai 

Pseudomonas 0.24 0.11 -0.28 0.86 -0.11 0.02 -0.8 -0.47 

 (0.05, (-0.22, (-0.66, (0.5, (-0.33, (-0.29, (-1.26, (-0.73, 

 0.44) 0.44) 0.1) 1.23)² 0.11) 0.34) -0.34) -0.21)² 

Staphylococcus -0.08 -0.03 -0.26 0.6 0.32 -0.22 -0.04 -0.01 

 (-0.22, (-0.26, (-0.52, (0.34, (0.16, (-0.44, (-0.37, (-0.2, 

 0.05) 0.21) 0.01) 0.85)² 0.47)² 0) 0.29) 0.17) 

Dorea 0.02 0.04 0.16 -0.14 -0.17 0.17 0.2 0.13 

 (-0.06, (-0.1, (0.01, (-0.29, (-0.26, (0.04, (0.01, (0.02, 

 0.1) 0.17) 0.32) 0.01) -0.08)² 0.3) 0.39) 0.23) 

Leuconostocaceae* 0.13 0.57 -0.09 0.16 0.15 -0.02 -0.56 -0.15 

 (-0.07, (0.23, (-0.48, (-0.21, (-0.08, (-0.35, (-1.04, (-0.42, 

 0.33) 0.92)¹ 0.3) 0.54) 0.38) 0.31) -0.08) 0.12) 

Oscillospira -0.03 -0.04 0.21 -0.11 -0.17 0.12 -0.05 0.12 

 (-0.15, (-0.23, (-0.01, (-0.32, (-0.3, (-0.06, (-0.32, (-0.03, 

 0.08) 0.16) 0.43) 0.11) -0.04) 0.31) 0.23) 0.28) 

Microbacterium 0.17 0.06 -0.08 0.14 0.03 -0.04 -0.05 -0.1 
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 (0.09, (-0.08, (-0.23, (-0.01, (-0.06, (-0.18, (-0.24, (-0.21, 

 0.25)² 0.2) 0.08) 0.3) 0.12) 0.09) 0.15) 0.01) 

Nocardioidaceae* 0.02 0.00 -0.01 -0.03 0.08 -0.15 -0.15 -0.31 

 (-0.08, (-0.18, (-0.22, (-0.24, (-0.05, (-0.33, (-0.41, (-0.45, 

 0.13) 0.19) 0.2) 0.17) 0.2) 0.02) 0.1) -0.16)² 

Weissella -0.02 0.15 -0.33 0.59 0.09 0.04 -0.23 0.19 

 (-0.19, (-0.15, (-0.67, (0.26, (-0.11, (-0.25, (-0.65, (-0.04, 

 0.16) 0.45) 0.01) 0.92)² 0.29) 0.32) 0.19) 0.43) 

Bacillus -0.01 0.05 0.00 -0.13 0.47 0.12 -0.11 -0.06 

 (-0.15, (-0.2, (-0.28, (-0.41, (0.31, (-0.12, (-0.47, (-0.26, 

 0.14) 0.3) 0.29) 0.14) 0.64)² 0.36) 0.24) 0.14) 

Lachnospiraceae* -0.01 -0.05 0.04 0.01 -0.05 0.12 0.23 0.17 

 (-0.08, (-0.17, (-0.1, (-0.12, (-0.14, (0.00, (0.06, (0.07, 

 0.06) 0.07) 0.18) 0.15) 0.03) 0.23) 0.4) 0.26)² 

Halomonas 0.05 0.13 0.12 0.09 0.18 -0.32 -0.19 0.04 

 (-0.09, (-0.11, (-0.15, (-0.18, (0.03, (-0.54, (-0.52, (-0.15, 

 0.19) 0.36) 0.39) 0.35) 0.34) -0.09) 0.15) 0.22) 

Chitinophagaceae* 0.02 0.22 0.09 0.13 0.09 0.00 -0.21 -0.31 
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 (-0.1, (0.03, (-0.12, (-0.08, (-0.04, (-0.18, (-0.48, (-0.46, 

 0.13) 0.41) 0.31) 0.34) 0.22) 0.19) 0.06) -0.16)² 

Lactobacillales** 0.12 0.49 -0.34 -0.25 -0.01 0.09 -0.44 -0.37 

 (-0.06, (0.18, (-0.69, (-0.59, (-0.21, (-0.21, (-0.87, (-0.61, 

 0.3) 0.8) 0.01) 0.09) 0.2) 0.38) -0.01) -0.12)² 

Lachnospiraceae_ 

other* 

0.03 0.18 0.16 0.00 -0.07 0.09 -0.07 0.19 

 (-0.05, (0.05, (0.01, (-0.14, (-0.15, (-0.04, (-0.26, (0.08, 

 0.11) 0.32) 0.31) 0.15) 0.02) 0.22) 0.11) 0.29)² 

Propionibacteriaceae* -0.01 -0.01 -0.1 0.09 -0.04 -0.11 -0.03 -0.04 

 (-0.1, (-0.16, (-0.28, (-0.08, (-0.14, (-0.26, (-0.25, (-0.16, 

 0.08) 0.15) 0.07) 0.26) 0.06) 0.04) 0.18) 0.08) 

Ruminococcus -0.08 -0.12 -0.01 0.18 -0.22 0.21 0.1 0.02 

 (-0.19, (-0.32, (-0.24, (-0.04, (-0.35, (0.02, (-0.19, (-0.14, 

 0.04) 0.09) 0.22) 0.4) -0.08)² 0.4) 0.38) 0.18) 

Anaerococcus 0.04 0.2 0.00 0.00 0.05 0.21 -0.2 -0.07 

 (-0.05, (0.04, (-0.18, (-0.17, (-0.05, (0.06, (-0.42, (-0.2, 

 0.13) 0.36) 0.18) 0.18) 0.15) 0.36) 0.02) 0.05) 
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WAL_1855D -0.02 -0.02 0.21 -0.09 0.01 0.15 0.00 -0.33 

 (-0.15, (-0.24, (-0.04, (-0.33, (-0.14, (-0.06, (-0.31, (-0.51, 

 0.11) 0.21) 0.46) 0.16) 0.15) 0.37) 0.31) -0.16)² 

Actinomycetales** 0.00 0.05 0.03 -0.03 0.13 -0.07 -0.09 -0.13 

 (-0.11, (-0.13, (-0.18, (-0.23, (0.01, (-0.25, (-0.35, (-0.27, 

 0.11) 0.23) 0.24) 0.17) 0.25) 0.1) 0.16) 0.02) 

Leuconostoc 0.06 0.19 -0.33 0.00 0.1 0.25 -0.54 -0.41 

 (-0.12, (-0.1, (-0.67, (-0.33, (-0.09, (-0.03, (-0.95, (-0.64, 

 0.23) 0.49) 0.01) 0.33) 0.3) 0.54) -0.12) -0.17)² 

Sphingomonadaceae* 0.03 0.09 0.00 0.01 0.13 -0.02 -0.06 -0.21 

 (-0.07, (-0.09, (-0.21, (-0.19, (0.01, (-0.19, (-0.32, (-0.35, 

 0.14) 0.27) 0.2) 0.21) 0.25) 0.15) 0.19) -0.06)² 

Micrococcaceae* 0.03 -0.04 -0.08 0.03 0.11 -0.01 -0.23 -0.31 

 (-0.09, (-0.24, (-0.31, (-0.2, (-0.02, (-0.2, (-0.51, (-0.47, 

 0.14) 0.16) 0.14) 0.25) 0.24) 0.19) 0.05) -0.15)² 

Bacillales_other** -0.13 0.12 -0.13 -0.11 0.32 -0.07 0.16 0.07 

 (-0.28, (-0.14, (-0.42, (-0.39, (0.15, (-0.32, (-0.2, (-0.13, 

 0.02) 0.37) 0.16) 0.17) 0.49)² 0.17) 0.51) 0.27) 
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Acinetobacter 0.08 0.2 -0.38 0.04 0.28 0.01 -0.18 -0.3 

 (-0.12, (-0.15, (-0.78, (-0.35, (0.05, (-0.32, (-0.67, (-0.58, 

 0.28) 0.55) 0.01) 0.42) 0.51) 0.35) 0.31) -0.03) 

Sinobacteraceae* -0.03 0.13 0.01 -0.05 0.15 0.08 -0.19 -0.25 

 (-0.14, (-0.06, (-0.2, (-0.25, (0.03, (-0.1, (-0.45, (-0.4, 

 0.08) 0.32) 0.22) 0.16) 0.28) 0.26) 0.08) -0.1) 

Micrococcus 0.04 -0.03 0.02 -0.07 0.00 0.01 -0.12 -0.18 

 (-0.04, (-0.18, (-0.15, (-0.24, (-0.1, (-0.13, (-0.33, (-0.3, 

 0.13) 0.12) 0.19) 0.09) 0.1) 0.16) 0.09) -0.07) 

Peptoniphilus -0.08 0.25 0.1 -0.18 0.00 0.24 0.04 0.01 

 (-0.19, (0.05, (-0.12, (-0.4, (-0.12, (0.05, (-0.23, (-0.14, 

 0.03) 0.44) 0.32) 0.03) 0.13) 0.42) 0.31) 0.16) 

Oxalobacter -0.03 -0.24 0.18 -0.03 0.06 -0.1 -0.08 0.00 

 (-0.11, (-0.37, (0.02, (-0.18, (-0.03, (-0.23, (-0.27, (-0.11, 

 0.05) -0.1)¹ 0.33) 0.12) 0.15) 0.03) 0.11) 0.1) 

Anaerobacillus -0.05 0.17 -0.03 0.02 0.04 0.07 -0.03 -0.1 

 (-0.12, (0.04, (-0.18, (-0.13, (-0.04, (-0.05, (-0.21, (-0.2, 

 0.03) 0.3) 0.12) 0.16) 0.13) 0.19) 0.15) 0.00) 
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Ruminococcaceae* 0.03 -0.07 0.06 -0.02 -0.24 0.01 0.01 0.11 

 (-0.08, (-0.25, (-0.14, (-0.21, (-0.36, (-0.16, (-0.24, (-0.02, 

 0.13) 0.1) 0.26) 0.18) -0.12)² 0.18) 0.26) 0.25) 
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Table S4.3. Province/megacity-specific estimates [coefficient (95% CI)] for the associations between potassium density and specific taxa, part 2 

  Zhejinag Chongqing Guangxi Guizhou Hubei Hunan Yunan 

Pseudomonas -0.31 0.00 -0.05 0.00 0.13 0.07 -0.32 

 (-0.59, (-0.3, (-0.27, (-0.22, (-0.19, (-0.16, (-0.68, 

 -0.02) 0.3) 0.17) 0.22) 0.45) 0.29) 0.04) 

Staphylococcus -0.11 -0.14 -0.07 0.01 -0.07 0.06 -0.02 

 (-0.31, (-0.36, (-0.22, (-0.15, (-0.3, (-0.1, (-0.28, 

 0.1) 0.07) 0.09) 0.17) 0.16) 0.22) 0.23) 

Dorea 0.01 0.11 0.04 0.09 0.03 0.04 0.01 

 (-0.11, (-0.01, (-0.05, (0.00, (-0.11, (-0.05, (-0.14, 

 0.13) 0.23) 0.13) 0.18) 0.16) 0.14) 0.16) 

Leuconostocaceae* -0.14 -0.15 -0.2 0.06 0.58 0.09 0.38 

 (-0.44, (-0.47, (-0.43, (-0.17, (0.25, (-0.14, (0.00, 

 0.15) 0.16) 0.02) 0.3) 0.92)² 0.33) 0.76) 

Oscillospira 0.36 0.1 0.04 -0.12 0.1 -0.01 0.07 

 (0.19, (-0.08, (-0.09, (-0.26, (-0.09, (-0.14, (-0.14, 

 0.53)² 0.27) 0.17) 0.01) 0.29) 0.13) 0.29) 

Microbacterium -0.04 -0.04 -0.05 -0.05 0.17 -0.02 -0.06 
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 (-0.16, (-0.16, (-0.14, (-0.14, (0.04, (-0.11, (-0.21, 

 0.08) 0.09) 0.04) 0.04) 0.31) 0.08) 0.1) 

Nocardioidaceae* 0.13 -0.07 -0.1 -0.11 0.17 -0.08 -0.02 

 (-0.03, (-0.23, (-0.22, (-0.23, (-0.01, (-0.21, (-0.22, 

 0.29) 0.1) 0.02) 0.02) 0.34) 0.04) 0.18) 

Weissella -0.32 0.08 -0.03 0.00 0.33 0.06 0.36 

 (-0.58, (-0.2, (-0.23, (-0.2, (0.04, (-0.15, (0.03, 

 -0.07) 0.35) 0.16) 0.2) 0.62) 0.26) 0.69) 

Bacillus -0.09 -0.05 -0.04 0.02 0.09 0.01 0.13 

 (-0.31, (-0.27, (-0.21, (-0.15, (-0.16, (-0.16, (-0.14, 

 0.12) 0.18) 0.12) 0.19) 0.33) 0.18) 0.41) 

Lachnospiraceae* 0.13 -0.08 0.02 -0.05 -0.07 0.03 -0.07 

 (0.02, (-0.19, (-0.07, (-0.14, (-0.19, (-0.05, (-0.2, 

 0.23) 0.04) 0.1) 0.03) 0.05) 0.12) 0.06) 

Halomonas 0.17 -0.04 -0.04 -0.13 0.39 0.05 0.22 

 (-0.04, (-0.26, (-0.2, (-0.29, (0.16, (-0.11, (-0.04, 

 0.37) 0.17) 0.11) 0.03) 0.62)¹ 0.21) 0.49) 

Chitinophagaceae* 0.11 -0.01 -0.09 -0.09 0.11 -0.05 0.00 
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 (-0.06, (-0.18, (-0.22, (-0.22, (-0.08, (-0.18, (-0.22, 

 0.28) 0.17) 0.04) 0.04) 0.29) 0.08) 0.21) 

Lactobacillales** -0.12 0.24 -0.06 0.05 0.00 0.09 0.07 

 (-0.38, (-0.05, (-0.27, (-0.15, (-0.3, (-0.12, (-0.27, 

 0.15) 0.52) 0.14) 0.26) 0.3) 0.3) 0.41) 

Lachnospiraceae_ 

other* 

-0.04 -0.07 0.04 -0.02 -0.03 0.07 0.04 

 (-0.16, (-0.19, (-0.05, (-0.11, (-0.16, (-0.02, (-0.11, 

 0.07) 0.05) 0.12) 0.07) 0.1) 0.16) 0.18) 

Propionibacteriaceae* -0.19 -0.22 -0.12 -0.07 -0.09 0.03 0.13 

 (-0.32, (-0.36, (-0.23, (-0.18, (-0.24, (-0.08, (-0.04, 

 -0.05) -0.08) -0.02) 0.03) 0.06) 0.13) 0.3) 

Ruminococcus 0.16 0.02 0.1 -0.1 0.13 0.11 -0.13 

 (-0.01, (-0.16, (-0.04, (-0.24, (-0.07, (-0.03, (-0.35, 

 0.34) 0.21) 0.23) 0.03) 0.32) 0.25) 0.1) 

Anaerococcus 0.13 -0.01 -0.06 -0.1 -0.03 0.1 0.11 

 (0.00, (-0.16, (-0.16, (-0.2, (-0.18, (0.00, (-0.06, 

 0.27) 0.13) 0.05) 0.01) 0.12) 0.21) 0.28) 
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WAL_1855D 0.05 -0.02 0.08 -0.19 0.05 0.00 0.29 

 (-0.14, (-0.22, (-0.06, (-0.34, (-0.16, (-0.15, (0.05, 

 0.25) 0.18) 0.23) -0.04) 0.27) 0.16) 0.54) 

Actinomycetales** 0.15 -0.15 -0.01 -0.15 0.18 -0.15 -0.07 

 (-0.01, (-0.31, (-0.13, (-0.27, (0.01, (-0.28, (-0.27, 

 0.31) 0.02) 0.11) -0.02) 0.36) -0.03) 0.13) 

Leuconostoc 0.00 -0.01 0.1 -0.16 0.09 -0.02 -0.14 

 (-0.26, (-0.28, (-0.1, (-0.36, (-0.2, (-0.23, (-0.46, 

 0.26) 0.26) 0.3) 0.05) 0.38) 0.18) 0.19) 

Sphingomonadaceae* 0.13 -0.13 -0.06 -0.14 0.18 -0.09 -0.01 

 (-0.02, (-0.29, (-0.18, (-0.26, (0.00, (-0.21, (-0.2, 

 0.29) 0.04) 0.06) -0.02) 0.35) 0.03) 0.19) 

Micrococcaceae* -0.03 -0.06 -0.09 -0.17 0.16 0.00 -0.02 

 (-0.2, (-0.25, (-0.22, (-0.31, (-0.04, (-0.14, (-0.24, 

 0.15) 0.12) 0.04) -0.03) 0.36) 0.13) 0.2) 

Bacillales_other** -0.02 -0.05 -0.13 -0.11 -0.19 -0.01 0.26 

 (-0.24, (-0.28, (-0.3, (-0.28, (-0.44, (-0.19, (-0.02, 

 0.2) 0.18) 0.03) 0.07) 0.05) 0.16) 0.54) 



 

 

 

5
9
 

Acinetobacter -0.05 -0.33 -0.23 -0.05 -0.15 0.1 0.4 

 (-0.35, (-0.65, (-0.46, (-0.28, (-0.49, (-0.14, (0.01, 

 0.25) -0.02) 0) 0.19) 0.19) 0.34) 0.78) 

Sinobacteraceae* 0.07 -0.07 -0.06 -0.01 0.08 -0.13 -0.07 

 (-0.09, (-0.24, (-0.19, (-0.14, (-0.1, (-0.26, (-0.28, 

 0.23) 0.11) 0.06) 0.12) 0.26) -0.01) 0.13) 

Micrococcus 0.04 -0.06 -0.08 -0.08 -0.01 -0.04 0.27 

 (-0.09, (-0.2, (-0.18, (-0.19, (-0.16, (-0.14, (0.11, 

 0.17) 0.07) 0.02) 0.02) 0.14) 0.07) 0.44) 

Peptoniphilus 0.15 0.00 0.00 -0.09 0.1 0.14 0.1 

 (-0.02, (-0.18, (-0.12, (-0.22, (-0.09, (0.01, (-0.12, 

 0.31) 0.18) 0.13) 0.04) 0.29) 0.28) 0.31) 

Oxalobacter 0.07 0.04 -0.02 0.02 0.04 0.09 -0.1 

 (-0.05, (-0.09, (-0.11, (-0.07, (-0.09, (0, (-0.25, 

 0.19) 0.16) 0.08) 0.11) 0.17) 0.18) 0.05) 

Anaerobacillus -0.18 0.1 -0.03 0.04 0.04 0.01 -0.02 

 (-0.3, (-0.02, (-0.11, (-0.05, (-0.09, (-0.08, (-0.17, 

 -0.07) 0.21) 0.06) 0.13) 0.17) 0.09) 0.12) 
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Ruminococcaceae* 0.15 0.12 0.01 0.04 0.13 0.01 -0.05 

 (0, (-0.04, (-0.11, (-0.08, (-0.04, (-0.11, (-0.25, 

 0.3) 0.28) 0.13) 0.16) 0.3) 0.14) 0.14) 

N=2,833. CI, confidence interval; “*”, unknown genera from family; “**”, unknown genera from order. Only taxa with false discovery rate-

adjusted p-value <0.10 for joint test of potassium density and its interaction with province/megacity are shown here. Taxa were ordered by joint 

test q-values. Taxon relative abundance was log10 transformed. Linear model was adjusted for age, sex, provinces or megacities, batch or plate run, 

urbanization, occupation, income, high school completion, energy intake, percent energy from animal food, fried food intake, physical activity, 

ever smoked, alcohol consumption, and use of probiotic, non-steroid anti-inflammatory drug, and proton pump inhibitor. Please see the 

Supplementary Table 2 in the supplemental files to see results for the full list of taxa. 

1 false discovery rate-adjusted p-value <0.10;   

2 false discovery rate-adjusted p-value <0.05; 
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Table S4.4. Province/megacity-specific estimates [coefficient (95% CI)] for the associations between sodium-to-potassium (Na/K) ratio and 

specific taxa, part 1 

  Beijing 

Heilongjian

g Liaoning Shaanxi Henan Jiangsu Shandong Shanghai 

Moraxellaceae* -0.14 -0.02 0.14 -0.02 -0.01 -0.01 -0.02 0.27 

 

(-0.2, (-0.06, (0.08, (-0.07, (-0.04, (-0.07, (-0.09, (0.18, 

 

-0.07)² 0.01) 0.19)² 0.03) 0.01) 0.06) 0.05) 0.35)² 

Pseudomonas -0.14 -0.02 0.02 -0.09 0.02 -0.01 0.00 0.18 

 

(-0.2, (-0.05, (-0.03, (-0.14, (-0.01, (-0.07, (-0.07, (0.09, 

 

-0.07)² 0.02) 0.08) -0.04)² 0.04) 0.06) 0.07) 0.26)² 

Lactobacillales** -0.15 -0.01 -0.04 0.06 0.00 0.04 0.04 0.18 

 

(-0.21, (-0.04, (-0.09, (0.01, (-0.02, (-0.02, (-0.03, (0.11, 

 

-0.1)² 0.02) 0.01) 0.1) 0.02) 0.1) 0.1) 0.26)² 

Staphylococcus 0.05 0.00 0.13 -0.05 0.01 0.02 -0.02 0.03 

 

(0, (-0.02, (0.09, (-0.08, (-0.01, (-0.02, (-0.07, (-0.03, 

 

0.09) 0.03) 0.16)² -0.02) 0.03) 0.07) 0.03) 0.08) 

Microbacterium -0.09 -0.02 0.00 -0.01 0.00 0.00 0.01 0.00 

 

(-0.12, (-0.03, (-0.02, (-0.03, (-0.01, (-0.03, (-0.02, (-0.04, 



 

 

 

6
2
 

 

-0.07)² 0) 0.03) 0.01) 0.01) 0.03) 0.04) 0.03) 

Jeotgalicoccus -0.06 -0.01 0.09 0.00 0.01 0.01 0.00 0.00 

 

(-0.1, (-0.03, (0.05, (-0.03, (-0.01, (-0.04, (-0.05, (-0.06, 

 

-0.01) 0.02) 0.14)² 0.04) 0.02) 0.05) 0.05) 0.06) 

Lachnospiraceae_ 

other* 0.00 0.00 -0.01 -0.02 0.02 -0.03 0.03 -0.06 

 

(-0.02, (-0.02, (-0.03, (-0.04, (0.01, (-0.06, (0.00, (-0.09, 

 

0.03) 0.01) 0.01) -0.01) 0.02) 0.00) 0.05) -0.03)² 

Dialister 0.01 0.03 -0.01 0.04 -0.01 0.14 0.06 -0.03 

 

(-0.03, (0.00, (-0.05, (0.00, (-0.03, (0.09, (0.01, (-0.09, 

 

0.06) 0.05) 0.03) 0.07) 0.01) 0.19)² 0.11) 0.03) 

Bacteroidales** 0.01 0.02 0.01 0.01 -0.01 0.05 0.01 0.02 

 

(-0.03, (0.00, (-0.02, (-0.02, (-0.03, (0.01, (-0.03, (-0.04, 

 

0.05) 0.05) 0.05) 0.04) 0.01) 0.1) 0.06) 0.07) 

Acinetobacter -0.12 0.00 0.08 -0.04 0.01 -0.01 0.01 0.15 

 

(-0.18, (-0.04, (0.02, (-0.09, (-0.01, (-0.07, (-0.06, (0.06, 

 

-0.05)² 0.04) 0.13) 0.01) 0.04) 0.06) 0.08) 0.23)² 

Micrococcaceae* -0.02 -0.01 0.00 0.00 -0.01 0.00 0.02 0.09 
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(-0.06, (-0.03, (-0.03, (-0.03, (-0.02, (-0.04, (-0.02, (0.04, 

 

0.02) 0.01) 0.04) 0.03) 0.01) 0.04) 0.07) 0.14)² 

Chitinophagaceae* 0.00 -0.03 -0.01 -0.01 0.00 0.00 0.01 0.12 

 

(-0.04, (-0.05, (-0.04, (-0.03, (-0.01, (-0.04, (-0.03, (0.07, 

 

0.03) -0.01) 0.02) 0.02) 0.02) 0.04) 0.05) 0.17)² 

Phascolarctobacterium 0.03 -0.02 0.1 -0.02 0.00 0.03 -0.07 -0.01 

 

(-0.02, (-0.05, (0.05, (-0.06, (-0.02, (-0.02, (-0.13, (-0.07, 

 

0.08) 0.01) 0.14)² 0.01) 0.02) 0.08) -0.02) 0.06) 

Pseudoramibacter_ 

Eubacterium -0.03 0.01 0.02 -0.01 -0.01 -0.07 0.00 -0.1 

 

(-0.08, (-0.02, (-0.03, (-0.04, (-0.03, (-0.12, (-0.06, (-0.17, 

 

0.02) 0.03) 0.06) 0.03) 0.01) -0.02) 0.05) -0.04)² 

Catenibacterium -0.11 0.07 -0.01 0.09 -0.02 0.05 -0.05 0.03 

 

(-0.2, (0.02, (-0.09, (0.01, (-0.06, (-0.05, (-0.15, (-0.09, 

 

-0.01) 0.13) 0.07) 0.16) 0.01) 0.14) 0.06) 0.15) 

Anaerobacillus 0.01 0.00 0.03 0.03 0.00 0.00 -0.01 0.05 

 

(-0.01, (-0.02, (0.01, (0.01, (-0.01, (-0.03, (-0.04, (0.02, 

 

0.04) 0.01) 0.05) 0.05) 0.01) 0.02) 0.02) 0.08)² 
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Oscillospira 0.03 0.00 0.02 0.00 0.00 -0.01 0.03 -0.08 

 

(-0.01, (-0.02, (-0.01, (-0.03, (-0.01, (-0.05, (-0.02, (-0.12, 

 

0.06) 0.02) 0.05) 0.02) 0.02) 0.03) 0.07) -0.03)² 

Gaiellaceae* -0.03 -0.01 0.00 0.02 0.00 0.00 0.02 0.12 

 

(-0.06, (-0.03, (-0.03, (0, (-0.02, (-0.04, (-0.02, (0.07, 

 

0.01) 0.01) 0.03) 0.05) 0.01) 0.03) 0.06) 0.16)² 

Nocardioidaceae* -0.01 0.00 0.03 0.02 0.00 0.02 0.01 0.11 

 

(-0.04, (-0.02, (0.00, (0.00, (-0.01, (-0.01, (-0.02, (0.06, 

 

0.03) 0.02) 0.06) 0.05) 0.01) 0.06) 0.05) 0.15)² 

Ruminococcus 0.03 0.01 0.00 -0.03 0.02 -0.02 0.00 0.01 

 

(-0.01, (-0.01, (-0.04, (-0.06, (0.00, (-0.06, (-0.04, (-0.04, 

 

0.07) 0.03) 0.03) 0.00) 0.03) 0.02) 0.05) 0.06) 

Sinobacteraceae* 0.00 -0.02 0.03 0.03 -0.01 -0.01 0.03 0.09 

 

(-0.04, (-0.04, (0, (0.01, (-0.02, (-0.04, (-0.01, (0.04, 

 

0.03) 0.00) 0.06) 0.06) 0.01) 0.03) 0.07) 0.14)² 

Betaproteobacteria*** -0.01 -0.01 0.02 0.02 0.01 -0.01 0.02 0.09 

 

(-0.04, (-0.03, (-0.01, (0.00, (0.00, (-0.04, (-0.01, (0.05, 

 

0.03) 0.00) 0.04) 0.04) 0.02) 0.02) 0.06) 0.14)² 
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Slackia -0.05 0.05 0.01 0.01 0.00 0.03 0.02 0.09 

 

(-0.1, (0.02, (-0.05, (-0.03, (-0.03, (-0.03, (-0.05, (0.01, 

 

0.01) 0.09) 0.06) 0.05) 0.02) 0.1) 0.09) 0.17) 

Clostridium 0.02 0.01 0.03 0.02 0.01 -0.01 -0.04 -0.01 

 

(-0.03, (-0.02, (-0.02, (-0.02, (-0.01, (-0.06, (-0.09, (-0.07, 

 

0.07) 0.03) 0.07) 0.05) 0.02) 0.04) 0.02) 0.06) 

Megamonas 0.00 -0.01 0.07 0.02 -0.01 0.13 -0.05 0.03 

 

(-0.06, (-0.05, (0.01, (-0.03, (-0.04, (0.07, (-0.12, (-0.05, 

 

0.06) 0.02) 0.12) 0.06) 0.01) 0.19)² 0.02) 0.1) 

[Eubacterium] -0.05 0.02 0.02 0.00 0.01 0.04 -0.01 0.00 

 

(-0.11, (-0.01, (-0.03, (-0.05, (-0.02, (-0.03, (-0.08, (-0.08, 

 

0.02) 0.06) 0.07) 0.04) 0.03) 0.1) 0.06) 0.08) 

Gemm-1*** -0.03 -0.02 0.02 0.03 0.00 0.00 0.02 0.07 

 

(-0.06, (-0.04, (-0.01, (0.00, (-0.01, (-0.03, (-0.02, (0.03, 

 

0.00) 0.00) 0.05) 0.05) 0.01) 0.03) 0.06) 0.11)² 

Acidimicrobiales** -0.03 -0.02 0.02 0.00 0.00 0.01 0.03 0.11 

 

(-0.07, (-0.04, (-0.01, (-0.03, (-0.02, (-0.03, (-0.01, (0.06, 

 

0.01) 0.00) 0.05) 0.03) 0.01) 0.05) 0.07) 0.16)² 
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Salinicoccus 0.01 -0.01 0.07 -0.03 0.00 0.02 0.01 0.04 

 

(-0.03, (-0.03, (0.03, (-0.06, (-0.02, (-0.02, (-0.03, (-0.01, 

 

0.05) 0.01) 0.1)² 0.00) 0.01) 0.06) 0.06) 0.1) 

Myxococcales** 0.00 -0.02 0.02 0.01 0.00 -0.01 0.00 0.11 

 

(-0.03, (-0.04, (-0.01, (-0.01, (-0.02, (-0.05, (-0.04, (0.06, 

 

0.04) 0.00) 0.05) 0.04) 0.01) 0.02) 0.04) 0.15)² 

[Mogibacteriaceae]* 0.00 0.01 0.01 0.02 0.01 0.03 0.01 0.01 

 

(-0.02, (-0.01, (-0.01, (0.00, (0.00, (0.00, (-0.02, (-0.02, 

 

0.03) 0.02) 0.03) 0.04) 0.02) 0.06) 0.04) 0.05) 

Kaistobacter -0.01 -0.01 0.02 0.02 0.00 0.01 0.01 0.09 

 

(-0.05, (-0.03, (-0.01, (0.00, (-0.02, (-0.03, (-0.03, (0.04, 

 

0.02) 0.01) 0.05) 0.05) 0.01) 0.04) 0.05) 0.14)² 

Lactobacillales_ 

other** -0.05 0.01 0.01 0.02 0.00 0.00 0.00 0.04 

 

(-0.08, (-0.01, (-0.02, (0.00, (-0.01, (-0.03, (-0.04, (0, 

 

-0.02)² 0.02) 0.04) 0.05) 0.01) 0.04) 0.03) 0.08) 

Facklamia -0.1 -0.01 0.04 0.05 0.00 0.01 -0.01 0.03 

 

(-0.16, (-0.04, (-0.01, (0.00, (-0.02, (-0.05, (-0.07, (-0.04, 
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-0.05)² 0.02) 0.09) 0.09) 0.02) 0.06) 0.05) 0.1) 

[Prevotella] 0.02 0.02 -0.02 0.03 0.00 0.09 0.03 -0.01 

 

(-0.03, (-0.01, (-0.06, (-0.01, (-0.02, (0.03, (-0.04, (-0.08, 

 

0.08) 0.06) 0.03) 0.07) 0.02) 0.15) 0.09) 0.06) 

Syntrophobacteraceae* -0.03 -0.01 0.03 0.03 0.00 0.00 0.03 0.06 

 

(-0.06, (-0.03, (0.00, (0.01, (-0.02, (-0.04, (-0.01, (0.01, 

 

0.01) 0.01) 0.06) 0.06) 0.01) 0.03) 0.06) 0.1)¹ 

Eggerthella -0.02 -0.01 -0.04 -0.04 0.01 -0.05 0.00 -0.05 

 

(-0.06, (-0.04, (-0.08, (-0.07, (-0.01, (-0.1, (-0.04, (-0.11, 

 

0.03) 0.01) 0.00) -0.01) 0.02) -0.01) 0.05) 0.01) 

Prevotella 0.04 0.00 0.04 0.1 0.00 0.11 -0.08 0.00 

 

(-0.04, (-0.05, (-0.03, (0.04, (-0.04, (0.03, (-0.17, (-0.11, 

 

0.12) 0.04) 0.11) 0.16) 0.03) 0.2) 0.02) 0.11) 

S24-7* 0.04 0.02 -0.05 0.02 0.00 0.02 0.01 -0.05 

 

(-0.03, (-0.02, (-0.11, (-0.03, (-0.03, (-0.05, (-0.06, (-0.14, 

 

0.11) 0.06) 0.01) 0.07) 0.02) 0.09) 0.09) 0.04) 

Lachnospiraceae* 0.00 0.00 -0.01 0.00 0.00 -0.03 -0.01 -0.04 

 

(-0.02, (-0.01, (-0.03, (-0.02, (-0.01, (-0.05, (-0.04, (-0.07, 
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0.02) 0.02) 0.01) 0.02) 0.01) -0.01) 0.02) -0.01)¹ 

Blautia 0.01 0.00 -0.02 -0.02 0.00 -0.04 0.01 -0.03 

 

(-0.01, (-0.02, (-0.04, (-0.04, (-0.01, (-0.06, (-0.02, (-0.07, 

 

0.04) 0.01) 0.01) 0.00) 0.01) -0.01) 0.04) 0.00) 

Coprococcus 0.00 -0.01 -0.01 -0.01 0.01 -0.02 0.02 0.00 

 

(-0.02, (-0.02, (-0.03, (-0.03, (0.00, (-0.05, (-0.01, (-0.03, 

 

0.03) 0.01) 0.02) 0.01) 0.02) 0.01) 0.05) 0.04) 

Epulopiscium -0.04 -0.01 0.1 0.01 0.01 0.1 -0.02 -0.01 

 

(-0.1, (-0.05, (0.05, (-0.04, (-0.01, (0.04, (-0.09, (-0.09, 

 

0.03) 0.02) 0.15) 0.06) 0.04) 0.16)¹ 0.05) 0.07) 

Ruminococcaceae* 0.02 0.00 -0.01 0.00 0.02 0.00 0.02 -0.03 

 

(-0.01, (-0.02, (-0.04, (-0.03, (0, (-0.03, (-0.02, (-0.07, 

 

0.05) 0.02) 0.02) 0.02) 0.03) 0.04) 0.06) 0.02) 

Oxalobacteraceae* 0.00 0.00 0.02 -0.01 0.01 0.01 0.01 0.08 

 

(-0.03, (-0.02, (0.00, (-0.03, (0.00, (-0.02, (-0.02, (0.04, 

 

0.02) 0.01) 0.05) 0.01) 0.02) 0.03) 0.04) 0.11)² 

Akkermansia 0.1 -0.02 -0.04 -0.07 0.00 0.05 0.08 -0.03 

 

(0.02, (-0.06, (-0.11, (-0.13, (-0.03, (-0.04, (-0.01, (-0.13, 
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0.18) 0.03) 0.03) -0.01) 0.03) 0.13) 0.17) 0.07) 

Caulobacteraceae* -0.01 -0.01 0.01 -0.01 0.00 0.00 0.01 0.1 

 

(-0.04, (-0.03, (-0.02, (-0.03, (-0.01, (-0.03, (-0.02, (0.05, 

 

0.03) 0.00) 0.04) 0.02) 0.01) 0.04) 0.05) 0.14)² 

Propionibacteriaceae* -0.01 0.02 0.01 0.02 0.00 0.03 -0.02 0.03 

 

(-0.03, (0.01, (-0.02, (00.00 (-0.01, (0, (-0.05, (-0.01, 

 

0.02) 0.04) 0.03) 0.04) 0.02) 0.06) 0.01) 0.06) 

Methanobrevibacter 0.02 0.06 0.05 0.04 0.00 0.06 -0.01 0.00 

 

(-0.04, (0.03, (0, (-0.01, (-0.02, (-0.01, (-0.08, (-0.08, 

 

0.08) 0.09)¹ 0.1) 0.08) 0.02) 0.12) 0.05) 0.08) 

Leuconostoc -0.01 0.02 -0.01 0.00 -0.02 0.01 0.00 0.14 

 

(-0.06, (-0.01, (-0.06, (-0.04, (-0.04, (-0.05, (-0.06, (0.07, 

 

0.05) 0.05) 0.04) 0.05) 0.00) 0.07) 0.07) 0.22)² 

Coprobacillus -0.01 0.01 0.01 -0.03 0.00 0.02 -0.01 -0.04 

 

(-0.06, (-0.02, (-0.04, (-0.06, (-0.02, (-0.03, (-0.07, (-0.1, 

 

0.04) 0.03) 0.05) 0.01) 0.01) 0.07) 0.04) 0.02) 

Solirubrobacterales** -0.02 -0.01 0.02 0.03 -0.01 0.01 0.02 0.11 

 

(-0.06, (-0.04, (-0.02, (-0.01, (-0.02, (-0.04, (-0.03, (0.05, 
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0.02) 0.01) 0.05) 0.06) 0.01) 0.05) 0.07) 0.16)² 

Rhodocyclaceae* 0.00 -0.02 -0.01 -0.03 0.00 -0.01 -0.01 0.07 

 

(-0.04, (-0.04, (-0.04, (-0.05, (-0.01, (-0.05, (-0.05, (0.03, 

 

0.03) 0.00) 0.02) 0.00) 0.01) 0.03) 0.03) 0.12)² 

Coriobacteriaceae* -0.02 0.02 0.00 -0.01 0.01 0.01 0.02 0.01 

 

(-0.06, (0.00, (-0.04, (-0.04, (0.00, (-0.03, (-0.03, (-0.04, 

 

0.02) 0.05) 0.03) 0.02) 0.03) 0.06) 0.07) 0.07) 
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Table S4.4. Province/megacity-specific estimates [coefficient (95% CI)] for the associations between sodium-to-potassium (Na/K) ratio and 

specific taxa, part 2 

 Zhejinag Chongqing Guangxi Guizhou Hubei Hunan Yunan 

Moraxellaceae* -0.04 0.04 0.00 0.03 -0.04 0.02 -0.02 

 (-0.1, (-0.02, (-0.04, (-0.01, (-0.11, (-0.01, (-0.05, 

 0.02) 0.09) 0.04) 0.07) 0.03) 0.06) 0.02) 

Pseudomonas -0.01 -0.02 0.01 0.01 -0.02 0.00 0.08 

 (-0.06, (-0.08, (-0.03, (-0.02, (-0.09, (-0.03, (0.04, 

 0.05) 0.04) 0.05) 0.05) 0.04) 0.03) 0.11)² 

Lactobacillales** 0.03 -0.03 0.00 0.01 -0.05 0.01 -0.01 

 (-0.03, (-0.08, (-0.04, (-0.02, (-0.11, (-0.02, (-0.04, 

 0.08) 0.03) 0.03) 0.05) 0.02) 0.04) 0.02) 

Staphylococcus -0.05 0.04 -0.01 -0.01 -0.01 -0.01 0 

 (-0.09, (0, (-0.04, (-0.03, (-0.06, (-0.03, (-0.03, 

 -0.01) 0.08) 0.02) 0.02) 0.04) 0.02) 0.02) 

Microbacterium 0.00 -0.01 0.01 0.01 0.01 0.00 0.01 

 (-0.03, (-0.03, (0.00, (-0.01, (-0.02, (-0.01, (-0.01, 

 0.02) 0.01) 0.03) 0.02) 0.04) 0.01) 0.02) 
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Jeotgalicoccus -0.02 0.03 0.01 0.00 -0.07 -0.01 0.06 

 (-0.06, (-0.02, (-0.02, (-0.02, (-0.12, (-0.03, (0.03, 

 0.02) 0.07) 0.04) 0.03) -0.02) 0.01) 0.08)² 

Lachnospiraceae_ 

other* 

-0.02 0.01 0.00 -0.01 0.00 -0.02 -0.01 

 (-0.04, (-0.02, (-0.02, (-0.02, (-0.02, (-0.03, (-0.03, 

 0.01) 0.03) 0.01) 0.01) 0.03) -0.01)¹ 0.00) 

Dialister -0.02 -0.01 0.00 0.01 0.05 -0.01 -0.01 

 (-0.07, (-0.06, (-0.03, (-0.02, (0.00, (-0.03, (-0.03, 

 0.02) 0.03) 0.03) 0.04) 0.1) 0.01) 0.02) 

Bacteroidales** -0.04 0.09 0.04 0.00 -0.03 0.00 -0.01 

 (-0.08, (0.05, (0.01, (-0.03, (-0.08, (-0.02, (-0.03, 

 -0.01) 0.12)² 0.07) 0.02) 0.01) 0.02) 0.01) 

Acinetobacter -0.01 0.08 0.02 0.04 -0.06 -0.01 0.02 

 (-0.06, (0.02, (-0.02, (0.00, (-0.13, (-0.05, (-0.02, 

 0.05) 0.14) 0.06) 0.08) 0.01) 0.02) 0.05) 

Micrococcaceae* -0.01 -0.01 0.02 0.00 0.02 0.00 0.06 

 (-0.04, (-0.05, (0, (-0.02, (-0.02, (-0.02, (0.04, 
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 0.02) 0.02) 0.05) 0.02) 0.06) 0.01) 0.08)² 

Chitinophagaceae* -0.04 0.01 0.01 0.01 -0.01 0.00 0.00 

 (-0.07, (-0.02, (-0.01, (-0.02, (-0.05, (-0.01, (-0.02, 

 -0.01) 0.04) 0.03) 0.03) 0.03) 0.02) 0.02) 

Phascolarctobacterium -0.01 0.02 0.00 -0.03 0.00 -0.03 -0.01 

 (-0.06, (-0.03, (-0.03, (-0.06, (-0.05, (-0.06, (-0.04, 

 0.03) 0.06) 0.03) 0.00) 0.05) -0.01) 0.02) 

Pseudoramibacter_ 

Eubacterium 

0.04 0.04 0.00 -0.02 0.00 -0.05 -0.01 

 (0.00, (0.00, (-0.03, (-0.05, (-0.05, (-0.07, (-0.04, 

 0.08) 0.09) 0.04) 0.01) 0.05) -0.02)² 0.01) 

Catenibacterium 0.11 -0.05 -0.04 0.03 0.01 -0.05 -0.04 

 (0.03, (-0.13, (-0.1, (-0.02, (-0.09, (-0.1, (-0.09, 

 0.19) 0.04) 0.02) 0.09) 0.11) -0.01) 0.02) 

Anaerobacillus 0.03 0.00 0.00 -0.01 -0.01 0.00 0.00 

 (0.01, (-0.02, (-0.01, (-0.03, (-0.04, (-0.01, (-0.02, 

 0.05) 0.03) 0.02) 0.00) 0.01) 0.01) 0.01) 

Oscillospira -0.03 0.03 0.01 0.01 0.00 -0.03 -0.03 
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 (-0.06, (-0.01, (-0.01, (-0.01, (-0.04, (-0.05, (-0.05, 

 0.00) 0.06) 0.04) 0.03) 0.03) -0.01)² -0.01) 

Gaiellaceae* -0.01 -0.01 0.01 0.00 0.01 0.01 0.00 

 (-0.05, (-0.05, (-0.01, (-0.02, (-0.03, (0.00, (-0.02, 

 0.02) 0.02) 0.03) 0.02) 0.05) 0.03) 0.02) 

Nocardioidaceae* -0.02 0.00 0.01 0.01 0.00 0.02 0.00 

 (-0.05, (-0.03, (-0.02, (-0.02, (-0.04, (0.00, (-0.02, 

 0.01) 0.03) 0.03) 0.03) 0.03) 0.03) 0.02) 

Ruminococcus -0.04 -0.01 0.01 0.01 0.01 -0.04 0.00 

 (-0.07, (-0.04, (-0.01, (-0.01, (-0.03, (-0.05, (-0.02, 

 0.00) 0.03) 0.04) 0.04) 0.05) -0.02)² 0.02) 

Sinobacteraceae* -0.02 -0.02 0.01 0.01 0.00 0.00 0.00 

 (-0.05, (-0.06, (-0.01, (-0.01, (-0.04, (-0.01, (-0.02, 

 0.02) 0.01) 0.03) 0.03) 0.04) 0.02) 0.02) 

Betaproteobacteria*** -0.03 0.00 0.00 0.00 -0.02 0.00 0.00 

 (-0.06, (-0.03, (-0.02, (-0.02, (-0.05, (-0.01, (-0.02, 

 0.00) 0.03) 0.02) 0.02) 0.02) 0.02) 0.02) 

Slackia 0.04 -0.03 0.00 0.01 0.07 -0.04 -0.03 
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 (-0.02, (-0.08, (-0.04, (-0.03, (0.01, (-0.07, (-0.06, 

 0.09) 0.03) 0.04) 0.04) 0.13) -0.01) 0.01) 

Clostridium 0.04 -0.03 0.03 0.01 0.06 0.04 -0.03 

 (0.00, (-0.07, (0.00, (-0.02, (0.01, (0.01, (-0.06, 

 0.08) 0.01) 0.06) 0.04) 0.11) 0.06)¹ 0.00) 

Megamonas -0.01 -0.02 -0.01 -0.01 0.01 0.03 -0.02 

 (-0.06, (-0.08, (-0.04, (-0.05, (-0.06, (0, (-0.05, 

 0.04) 0.03) 0.03) 0.02) 0.07) 0.06) 0.02) 

[Eubacterium] 0.07 -0.05 0.02 0.02 0.05 -0.06 0.00 

 (0.01, (-0.11, (-0.02, (-0.02, (-0.01, (-0.09, (-0.04, 

 0.12) 0) 0.06) 0.05) 0.12) -0.03)² 0.03) 

Gemm-1*** -0.03 -0.01 0.01 0.00 0.00 0.01 0.00 

 (-0.06, (-0.04, (-0.01, (-0.02, (-0.04, (-0.01, (-0.02, 

 0) 0.02) 0.03) 0.02) 0.03) 0.02) 0.02) 

Acidimicrobiales** -0.03 0.00 0.01 0.00 0.00 0.00 0.00 

 (-0.07, (-0.04, (-0.02, (-0.03, (-0.04, (-0.02, (-0.02, 

 0.00) 0.03) 0.03) 0.02) 0.04) 0.02) 0.02) 

Salinicoccus -0.01 -0.01 0.00 -0.01 -0.03 0.00 0.03 



 

 

 

7
6
 

 (-0.04, (-0.05, (-0.03, (-0.03, (-0.07, (-0.02, (0.01, 

 0.03) 0.02) 0.02) 0.01) 0.01) 0.02) 0.05) 

Myxococcales** -0.03 0.00 0.00 -0.01 0.00 0.01 0.01 

 (-0.07, (-0.03, (-0.02, (-0.03, (-0.03, (-0.01, (-0.01, 

 0.00) 0.03) 0.03) 0.02) 0.04) 0.02) 0.03) 

[Mogibacteriaceae]* 0.00 0.01 -0.01 -0.01 0.03 -0.02 -0.02 

 (-0.02, (-0.02, (-0.03, (-0.03, (0, (-0.03, (-0.03, 

 0.03) 0.03) 0.01) 0.01) 0.06) -0.01)¹ 0.00) 

Kaistobacter -0.03 -0.01 0.00 0.00 0.02 0.02 0.00 

 (-0.06, (-0.05, (-0.02, (-0.03, (-0.02, (0.00, (-0.02, 

 0) 0.02) 0.02) 0.02) 0.06) 0.03) 0.02) 

Lactobacillales_ 

other** 

0.03 -0.01 -0.01 -0.01 -0.04 0.01 0.00 

 (0.01, (-0.04, (-0.03, (-0.03, (-0.08, (-0.01, (-0.02, 

 0.06) 0.02) 0.01) 0.01) -0.01) 0.02) 0.02) 

Facklamia 0.01 0.03 0.01 0.02 -0.05 -0.01 0.00 

 (-0.04, (-0.02, (-0.03, (-0.01, (-0.11, (-0.04, (-0.03, 

 0.05) 0.08) 0.04) 0.06) 0.01) 0.02) 0.03) 
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[Prevotella] -0.03 0.07 0.02 -0.02 0.01 -0.02 -0.01 

 (-0.07, (0.02, (-0.02, (-0.05, (-0.05, (-0.05, (-0.04, 

 0.02) 0.12) 0.05) 0.02) 0.07) 0.01) 0.02) 

Syntrophobacteraceae* -0.03 -0.01 0.00 0.00 0.03 0.00 0.00 

 (-0.06, (-0.04, (-0.02, (-0.02, (0, (-0.01, (-0.02, 

 0) 0.02) 0.03) 0.02) 0.07) 0.02) 0.02) 

Eggerthella -0.01 0.03 -0.02 0.01 0.02 -0.02 -0.02 

 (-0.05, (-0.01, (-0.04, (-0.02, (-0.03, (-0.05, (-0.05, 

 0.03) 0.07) 0.01) 0.03) 0.06) 0.00) 0.00) 

Prevotella -0.05 -0.02 0.06 -0.02 0.02 -0.02 -0.02 

 (-0.12, (-0.09, (0, (-0.07, (-0.07, (-0.06, (-0.07, 

 0.02) 0.06) 0.11) 0.03) 0.1) 0.02) 0.03) 

S24-7* -0.08 0.1 0.02 0.00 0.00 -0.04 -0.01 

 (-0.14, (0.04, (-0.03, (-0.04, (-0.07, (-0.08, (-0.05, 

 -0.02) 0.17) 0.06) 0.05) 0.08) -0.01) 0.03) 

Lachnospiraceae* -0.03 0.02 0.00 0.00 0.01 -0.01 -0.01 

 (-0.05, (0, (-0.01, (-0.01, (-0.02, (-0.02, (-0.03, 

 -0.01) 0.04) 0.02) 0.02) 0.03) 0.01) 0.00) 
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Blautia 0.00 0.00 -0.01 -0.01 -0.02 -0.02 0.00 

 (-0.03, (-0.03, (-0.03, (-0.03, (-0.05, (-0.03, (-0.02, 

 0.02) 0.02) 0.01) 0.01) 0.01) 0.00) 0.01) 

Coprococcus -0.02 -0.03 -0.01 0.00 0.02 -0.02 -0.01 

 (-0.04, (-0.05, (-0.02, (-0.02, (-0.01, (-0.03, (-0.03, 

 0.01) 0.00) 0.01) 0.01) 0.05) -0.01)¹ 0.00) 

Epulopiscium 0.01 -0.01 0.01 0.00 0.04 -0.01 0.01 

 (-0.04, (-0.07, (-0.03, (-0.04, (-0.02, (-0.04, (-0.02, 

 0.07) 0.04) 0.05) 0.03) 0.1) 0.02) 0.05) 

Ruminococcaceae* -0.05 0.00 0.00 -0.02 -0.01 -0.01 -0.01 

 (-0.08, (-0.03, (-0.02, (-0.04, (-0.04, (-0.03, (-0.03, 

 -0.02) 0.03) 0.02) 0.00) 0.03) 0.01) 0.00) 

Oxalobacteraceae* -0.01 0.01 0.01 0.00 0.00 0.00 0.00 

 (-0.04, (-0.01, (-0.01, (-0.02, (-0.03, (-0.01, (-0.02, 

 0.01) 0.04) 0.03) 0.01) 0.03) 0.01) 0.01) 

Akkermansia -0.01 0.07 -0.03 0.05 0.00 -0.03 -0.01 

 (-0.08, (0, (-0.08, (0, (-0.08, (-0.07, (-0.05, 

 0.06) 0.14) 0.02) 0.1) 0.08) 0.01) 0.03) 



 

 

 

7
9
 

Caulobacteraceae* -0.02 0.01 0.01 -0.01 0.01 -0.01 -0.01 

 (-0.05, (-0.02, (-0.01, (-0.03, (-0.03, (-0.03, (-0.02, 

 0.01) 0.04) 0.03) 0.01) 0.04) 0.01) 0.01) 

Propionibacteriaceae* 0.03 0.02 0.00 0.01 -0.02 0.00 0.00 

 (0, (-0.01, (-0.02, (0, (-0.05, (-0.01, (-0.02, 

 0.05) 0.04) 0.02) 0.03) 0.01) 0.01) 0.01) 

Methanobrevibacter -0.02 0.01 0.02 -0.01 0.04 -0.02 -0.01 

 (-0.07, (-0.05, (-0.01, (-0.04, (-0.02, (-0.05, (-0.05, 

 0.04) 0.06) 0.06) 0.03) 0.11) 0.01) 0.02) 

Leuconostoc 0.00 -0.01 -0.02 0.01 -0.01 0.02 0.03 

 (-0.05, (-0.06, (-0.06, (-0.03, (-0.07, (-0.01, (0.00, 

 0.05) 0.04) 0.02) 0.04) 0.05) 0.05) 0.06) 

Coprobacillus 0.00 0.06 0.04 0.01 0.02 -0.03 -0.01 

 (-0.04, (0.01, (0.01, (-0.02, (-0.03, (-0.05, (-0.04, 

 0.04) 0.1) 0.07) 0.03) 0.07) -0.01) 0.01) 

Solirubrobacterales** -0.05 0.00 0.01 -0.01 0.01 0.01 0.00 

 (-0.09, (-0.04, (-0.02, (-0.04, (-0.03, (-0.01, (-0.02, 

 -0.01) 0.04) 0.03) 0.01) 0.06) 0.03) 0.03) 
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Rhodocyclaceae* -0.04 0.01 0.01 0.01 -0.02 0.00 0.00 

 (-0.08, (-0.02, (-0.02, (-0.02, (-0.06, (-0.01, (-0.02, 

 -0.01) 0.04) 0.03) 0.03) 0.02) 0.02) 0.02) 

Coriobacteriaceae* -0.01 -0.04 0.01 -0.01 0.04 -0.02 -0.03 

 (-0.05, (-0.07, (-0.02, (-0.04, (0.00, (-0.04, (-0.05, 

 0.02) 0.00) 0.04) 0.02) 0.09) 0.00) 0.00) 

N=2,833. CI, confidence interval; “*”, unknown genera from family; “**”, unknown genera from order; “***”, unknown genera from class. Only 

taxa with false discovery rate-adjusted p-value <0.10 for joint test of Na/K ratio and its interaction with province/megacity are shown here. Taxa 

were ordered by joint test q-values. Taxon relative abundance was log10 transformed. Linear model was adjusted for age, sex, provinces or 

megacities, batch or plate run, urbanization, occupation, income, high school completion, energy intake, percent energy from animal food, fried 

food intake, physical activity, ever smoked, alcohol consumption, and use of probiotic, non-steroid anti-inflammatory drug, and proton pump 

inhibitor. Please see the Supplementary Table 3 in the supplemental files to see results for the full list of taxa. 

1 false discovery rate-adjusted p-value <0.10;   

2 false discovery rate-adjusted p-value <0.05; 
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Table S4.5. Province/megacity-specific estimates [coefficient (95% CI)] for the associations between sodium density and specific operational 

taxonomic units (OUTs), part 1 

  Beijing Heilongjiang Liaoning Shaanxi Henan Jiangsu Shandong Shanghai 

Phascolarctobacterium 0.03 -0.04 0.16 -0.05 0.01 0.01 -0.11 0.00 

 
(-0.02, (-0.08, (0.1, (-0.12, (-0.03, (-0.06, (-0.19, (-0.08, 

 
0.08) 0.01) 0.21) 0.01) 0.05) 0.08) -0.03) 0.07) 
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Table S4.5. Province/megacity-specific estimates [coefficient (95% CI)] for the associations between sodium density and specific operational 

taxonomic units (OUTs), part 2 

 Zhejinag Chongqing Guangxi Guizhou Hubei Hunan Yunan 

Phascolarctobacterium 0.03 0.01 -0.01 -0.01 0.03 -0.03 0.00 

 (-0.02, (-0.05, (-0.06, (-0.06, (-0.05, (-0.06, (-0.05, 

 0.09) 0.08) 0.04) 0.05) 0.10) 0.00) 0.04) 

N=2,833. CI, confidence interval; Only OTUs with false discovery rate-adjusted p-value <0.10 for joint test of sodium density and its interaction 

with province/megacity are shown here. OTUs were ordered by joint test q-values. OTU relative abundance was log10 transformed. Linear model 

was adjusted for age, sex, provinces or megacities, batch or plate run, urbanization, occupation, income, high school completion, energy intake, 

percent energy from animal food, fried food intake, physical activity, ever smoked, alcohol consumption, and use of probiotic, non-steroid anti-

inflammatory drug, and proton pump inhibitor. Please see the Supplementary Table 4 in the supplemental files to see results for the full list of 

OTUs. 
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Table S4.6. Province/megacity-specific estimates [coefficient (95% CI)] for the associations between potassium density and specific operational 

taxonomic units (OUTs), part 1 

 Beijing Heilongjiang Liaoning Shaanxi Henan Jiangsu Shandong Shanghai 

Dorea 0.04 0.07 0.14 -0.17 -0.14 0.18 0.24 0.16 

 
(-0.04, (-0.08, (-0.02, (-0.33, (-0.23, (0.04, (0.04, (0.05, 

 
0.12) 0.21) 0.3) -0.01) -0.04) 0.32) 0.44) 0.27) 

Ruminococcaceae- -0.15 -0.31 -0.34 -0.08 -0.09 0.84 0.17 -0.09 

UCG-014 (-0.36, (-0.67, (-0.75, (-0.48, (-0.33, (0.5, (-0.33, (-0.38, 

 
0.06) 0.05) 0.07) 0.32) 0.15) 1.19)² 0.68) 0.19) 

Weissella 0.25 0.49 -0.09 0.17 0.11 -0.03 -0.6 -0.32 

 
(0.03, (0.12, (-0.51, (-0.24, (-0.14, (-0.39, (-1.13, (-0.61, 

 
0.46) 0.86) 0.34) 0.58) 0.36) 0.33) -0.08) -0.03) 

Bacteroides 0.07 -0.41 0.26 0.00 0.27 -0.79 0.25 -0.32 

 
(-0.21, (-0.89, (-0.28, (-0.52, (-0.04, (-1.24, (-0.42, (-0.69, 

 
0.35) 0.06) 0.8) 0.53) 0.59) -0.33)² 0.91) 0.05) 

Lactobacillus -0.08 0.27 -0.11 -0.9 0.17 0.00 -0.34 -0.37 

 
(-0.3, (-0.1, (-0.54, (-1.31, (-0.08, (-0.36, (-0.87, (-0.66, 

 
0.14) 0.65) 0.32) -0.48) 0.42) 0.36) 0.19) -0.07) 
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Fusicatenibacter -0.06 -0.16 0.06 0.15 -0.04 0.11 0.40 0.15 

 
(-0.16, (-0.34, (-0.15, (-0.05, (-0.16, (-0.07, (0.15, (0.01, 

 
0.05) 0.02) 0.26) 0.34) 0.08) 0.28) 0.65) 0.29) 
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Table S4.6. Province/megacity-specific estimates [coefficient (95% CI)] for the associations between potassium density and specific operational 

taxonomic units (OUTs), part 2 

 Zhejinag Chongqing Guangxi Guizhou Hubei Hunan Yunan 

Dorea 0.07 0.14 0.07 0.04 0.06 0.06 -0.07 

 (-0.06, (0.01, (-0.02, (-0.06, (-0.08, (-0.04, (-0.23, 

 0.19) 0.27) 0.17) 0.14) 0.19) 0.15) 0.08) 

Ruminococcaceae- -0.12 0.2 0.06 -0.1 0.52 -0.04 0.19 

UCG-014 (-0.43, (-0.13, (-0.18, (-0.34, (0.17, (-0.29, (-0.21, 

 0.19) 0.53) 0.3) 0.15) 0.87) 0.21) 0.59) 

Weissella -0.14 -0.24 -0.17 0.11 0.64 0.13 0.33 

 (-0.46, (-0.58, (-0.42, (-0.15, (0.28, (-0.12, (-0.08, 

 0.18) 0.1) 0.07) 0.36) 1)² 0.39) 0.74) 

Bacteroides 0.14 -0.06 0.48 -0.13 0.51 -0.16 0.52 

 (-0.27, (-0.49, (0.16, (-0.45, (0.05, (-0.49, (-0.01, 

 0.55) 0.37) 0.79) 0.19) 0.97) 0.16) 1.04) 

Lactobacillus -0.08 -0.03 0.07 -0.19 -0.37 0.27 0.14 

 (-0.41, (-0.37, (-0.18, (-0.44, (-0.73, (0.02, (-0.28, 

 0.24) 0.31) 0.32) 0.07) 0.00) 0.53) 0.55) 
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Fusicatenibacter 0.23 -0.15 -0.02 -0.03 -0.09 0.04 -0.05 

 (0.07, (-0.31, (-0.14, (-0.15, (-0.26, (-0.08, (-0.24, 

 0.38) 0.02) 0.09) 0.09) 0.08) 0.16) 0.15) 

N=2,833. CI, confidence interval; Only OTUs with false discovery rate-adjusted p-value <0.10 for joint test of potassium density and its 

interaction with province/megacity are shown here. OTUs were ordered by joint test q-values. OTU relative abundance was log10 transformed. 

Linear model was adjusted for age, sex, provinces or megacities, batch or plate run, urbanization, occupation, income, high school completion, 

energy intake, percent energy from animal food, fried food intake, physical activity, ever smoked, alcohol consumption, and use of probiotic, non-

steroid anti-inflammatory drug, and proton pump inhibitor. Please see the Supplementary Table 5 in the supplemental files to see results for the 

full list of OTUs. 

1 false discovery rate-adjusted p-value <0.10;   

2 false discovery rate-adjusted p-value <0.05; 
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Table S4.7. Province/megacity-specific estimates [coefficient (95% CI)] for the associations between sodium-to-potassium (Na/K) ratio and 

specific operational taxonomic units (OUTs), part 1 

 Beijing Heilongjiang Liaoning Shaanxi Henan Jiangsu Shandong Shanghai 

Faecalitalea 0.07 0.06 -0.01 0.02 0.01 0.08 -0.07 -0.08 

 
(0.01, (0.02, (-0.06, (-0.02, (-0.01, (0.02, (-0.13, (-0.15, 

 
0.13) 0.09)¹ 0.05) 0.06) 0.03) 0.14) 0.00) 0.00) 

Ruminococcus_2 0.20 0.02 -0.03 0.02 -0.02 0.00 0.03 0.17 

 
(0.1, (-0.03, (-0.12, (-0.06, (-0.06, (-0.11, (-0.08, (0.04, 

 
0.31)² 0.08) 0.06) 0.09) 0.02) 0.1) 0.14) 0.3) 

CAG-56 0.11 0.05 0.00 -0.08 -0.02 -0.08 0.02 -0.04 

 
(0.03, (0.01, (-0.07, (-0.14, (-0.05, (-0.16, (-0.07, (-0.15, 

 
0.19) 0.10) 0.07) -0.02) 0.01) 0.00) 0.11) 0.06) 

Lachnospiraceae_ 0.15 0.02 -0.02 -0.01 0.01 0.04 -0.06 0.00 

FCS020_group (0.08, (-0.02, (-0.08, (-0.07, (-0.02, (-0.03, (-0.14, (-0.09, 

 
0.22)² 0.06) 0.04) 0.04) 0.04) 0.11) 0.02) 0.09) 

Blautia 0.03 -0.02 -0.01 0.01 0.02 -0.03 0.05 -0.14 

 
(-0.03, (-0.05, (-0.07, (-0.04, (-0.01, (-0.1, (-0.03, (-0.23, 

 
0.1) 0.02) 0.05) 0.05) 0.04) 0.03) 0.12) -0.06)² 
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Lactobacillus 0.05 0.09 -0.04 0.01 0.00 0.06 0.05 0.00 

 
(-0.04, (0.04, (-0.11, (-0.06, (-0.03, (-0.03, (-0.05, (-0.11, 

 
0.13) 0.13)² 0.04) 0.07) 0.03) 0.15) 0.14) 0.11) 

Holdemanella -0.11 0.04 0.03 0.00 -0.01 0.08 0.02 -0.23 

 
(-0.21, (-0.02, (-0.06, (-0.08, (-0.05, (-0.03, (-0.09, (-0.37, 

 
0.00) 0.1) 0.12) 0.08) 0.03) 0.19) 0.14) -0.09) 

Phascolarctobacterium 0.02 -0.03 0.10 -0.03 0.00 0.01 -0.07 0.00 

 
(-0.03, (-0.06, (0.05, (-0.07, (-0.02, (-0.05, (-0.13, (-0.07, 

 
0.07) 0.00) 0.14)² 0.01) 0.02) 0.06) -0.01) 0.07) 

Megamonas 0.01 -0.01 0.08 0.03 -0.02 0.16 -0.06 0.00 

 
(-0.06, (-0.05, (0.02, (-0.02, (-0.04, (0.08, (-0.13, (-0.09, 

 
0.08) 0.02) 0.14) 0.08) 0.01) 0.23)² 0.02) 0.09) 

Ruminococcaceae 0.08 0.04 -0.1 0.01 0.01 -0.05 0.03 0.01 

UCG-014 (0.00, (0.00, (-0.17, (-0.05, (-0.02, (-0.13, (-0.06, (-0.09, 

 
0.15) 0.08) -0.03) 0.07) 0.04) 0.03) 0.12) 0.11) 

Bifidobacterium 0.00 0.08 -0.11 0.08 0.00 0.2 0.02 -0.08 

 
(-0.11, (0.02, (-0.21, (-0.01, (-0.04, (0.08, (-0.11, (-0.23, 

 
0.11) 0.14) -0.01) 0.16) 0.05) 0.31)² 0.14) 0.06) 
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Catenibacterium -0.1 0.07 -0.02 0.07 -0.02 0.05 -0.05 0.05 

 
(-0.2, (0.02, (-0.11, (0.00, (-0.06, (-0.05, (-0.16, (-0.08, 

 
-0.01) 0.13) 0.07) 0.15) 0.01) 0.15) 0.06) 0.18) 

Holdemanella 0.13 0.04 0.01 0.02 0.00 0.04 -0.03 0.18 

 
(0.03, (-0.02, (-0.07, (-0.05, (-0.03, (-0.06, (-0.14, (0.05, 

 
0.23) 0.09) 0.1) 0.1) 0.04) 0.14) 0.09) 0.31) 

Lachnospira 0.01 -0.04 0.1 -0.02 0.00 0.07 0.05 0.01 

 
(-0.05, (-0.07, (0.05, (-0.06, (-0.03, (0.01, (-0.02, (-0.07, 

 
0.07) -0.01) 0.15)² 0.03) 0.02) 0.13) 0.11) 0.09) 

Ruminococcaceae -0.01 0.01 0.13 0.02 -0.01 -0.1 -0.09 -0.01 

UCG-014 (-0.08, (-0.03, (0.06, (-0.04, (-0.03, (-0.18, (-0.17, (-0.1, 

 
0.07) 0.05) 0.19)² 0.07) 0.02) -0.03) -0.01) 0.09) 

Coprococcus_2 0.06 0.00 -0.01 -0.05 -0.03 0.1 0.02 0.17 

 
(-0.01, (-0.04, (-0.07, (-0.1, (-0.05, (0.03, (-0.05, (0.07, 

 
0.13) 0.04) 0.05) 0.00) 0.00) 0.17) 0.1) 0.26)² 

Clostridium_sensu_stri

cto_1 

0.04 0.00 0.13 0.05 0.00 0.11 -0.04 0.05 

(-0.04, (-0.05, (0.06, (-0.01, (-0.03, (0.03, (-0.13, (-0.06, 

 
0.12) 0.04) 0.2)¹ 0.11) 0.03) 0.19) 0.05) 0.15) 
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Lachnospiraceae* -0.03 0.00 -0.01 0.00 0.01 0.00 0.12 0.06 

 
(-0.11, (-0.05, (-0.08, (-0.06, (-0.02, (-0.08, (0.03, (-0.05, 

 
0.05) 0.04) 0.06) 0.06) 0.04) 0.09) 0.2) 0.16) 

Faecalibacterium 0.06 0.02 0.01 -0.01 -0.02 0.01 0.00 0.02 

 
(0.00, (-0.02, (-0.05, (-0.06, (-0.04, (-0.06, (-0.07, (-0.06, 

 
0.13) 0.05) 0.06) 0.03) 0.00) 0.07) 0.07) 0.1) 

Lactobacillus 0.05 0.11 -0.02 0.02 0.00 0.11 0.06 -0.05 

 
(-0.05, (0.06, (-0.1, (-0.05, (-0.04, (0.01, (-0.05, (-0.17, 

 
0.14) 0.17)² 0.07) 0.1) 0.04) 0.21) 0.17) 0.08) 

Subdoligranulum 0.06 0.00 -0.04 -0.01 0.01 -0.01 0.00 -0.05 

 
(0.01, (-0.03, (-0.08, (-0.05, (0.00, (-0.06, (-0.06, (-0.12, 

 
0.11) 0.02) 0.00) 0.02) 0.03) 0.04) 0.05) 0.01) 

Holdemanella -0.13 0.06 0.01 -0.02 0.01 0.05 -0.03 -0.02 

 
(-0.23, (0.01, (-0.07, (-0.09, (-0.03, (-0.05, (-0.14, (-0.14, 

 
-0.04) 0.11) 0.1) 0.06) 0.04) 0.15) 0.07) 0.11) 

Lachnospiraceae_ 

ND3007_group 

-0.02 0.01 0.03 -0.01 -0.01 0.04 -0.02 0.05 

(-0.07, (-0.02, (-0.01, (-0.05, (-0.03, (-0.02, (-0.08, (-0.02, 

 
0.03) 0.04) 0.08) 0.03) 0.01) 0.09) 0.04) 0.12) 
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Fusicatenibacter 0.01 0.01 -0.01 0.00 0.00 -0.04 -0.03 -0.07 

 
(-0.03, (-0.01, (-0.04, (-0.02, (-0.01, (-0.07, (-0.06, (-0.12, 

 
0.04) 0.03) 0.02) 0.03) 0.01) 0.00) 0.01) -0.03)¹ 

Subdoligranulum 0.03 0.02 -0.01 0.01 0.01 0.01 0.00 -0.03 

 
(-0.01, (-0.01, (-0.05, (-0.02, (-0.01, (-0.03, (-0.05, (-0.08, 

 
0.07) 0.04) 0.03) 0.04) 0.02) 0.06) 0.05) 0.03) 

Akkermansia 0.12 0.00 -0.03 -0.03 0.00 0.06 0.08 -0.06 

 
(0.04, (-0.05, (-0.1, (-0.1, (-0.03, (-0.03, (-0.01, (-0.17, 

 
0.21) 0.05) 0.05) 0.03) 0.03) 0.15) 0.18) 0.05) 

Ruminococcaceae_ 0.13 0.02 -0.02 -0.05 0.00 0.05 0.01 0.00 

UCG-014 (0.05, (-0.03, (-0.09, (-0.1, (-0.03, (-0.03, (-0.07, (-0.09, 

 
0.21) 0.06) 0.05) 0.01) 0.03) 0.13) 0.09) 0.1) 

Ruminococcaceae_ 0.07 -0.01 0.03 -0.02 0.01 -0.01 0.02 -0.14 

UCG-004 (0.01, (-0.05, (-0.02, (-0.06, (-0.01, (-0.07, (-0.04, (-0.22, 

 
0.13) 0.02) 0.09) 0.03) 0.03) 0.05) 0.09) -0.06)¹ 

Eubacterium 0.00 0.00 -0.01 -0.01 0.00 -0.03 0.00 -0.1 

 
(-0.05, (-0.03, (-0.06, (-0.05, (-0.02, (-0.08, (-0.06, (-0.17, 

 
0.06) 0.04) 0.04) 0.03) 0.02) 0.03) 0.07) -0.02) 
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Family_XIII* -0.01 -0.02 -0.01 0.04 0.00 -0.02 0.02 0.11 

 
(-0.06, (-0.04, (-0.05, (0.01, (-0.02, (-0.07, (-0.04, (0.05, 

 
0.03) 0.01) 0.03) 0.08) 0.02) 0.03) 0.07) 0.17) 

Clostridium_sensu_ 

stricto_1 

0.00 0.00 0.02 -0.01 -0.01 0.02 -0.05 -0.01 

(-0.08, (-0.05, (-0.06, (-0.08, (-0.04, (-0.07, (-0.14, (-0.12, 

 
0.09) 0.04) 0.09) 0.05) 0.02) 0.1) 0.04) 0.1) 

Christensenellaceae_ 

R-7_group 

0.1 0.01 -0.1 0.01 -0.01 -0.05 0.09 -0.02 

(0.03, (-0.03, (-0.16, (-0.04, (-0.04, (-0.12, (0.01, (-0.12, 

 
0.17) 0.05) -0.04) 0.06) 0.02) 0.02) 0.17) 0.07) 

Granulicatella 0.1 -0.01 0.00 0.02 0.00 -0.01 -0.02 0.07 

 
(0.05, (-0.04, (-0.05, (-0.02, (-0.02, (-0.06, (-0.08, (0, 

 
0.15) 0.02) 0.04) 0.06) 0.02) 0.05) 0.04) 0.13) 

Lachnospiraceae* 0.05 0.09 0.00 0.01 0.00 0.01 -0.04 0.09 

 
(-0.02, (0.05, (-0.07, (-0.04, (-0.03, (-0.06, (-0.12, (-0.01, 

 
0.12) 0.13)² 0.06) 0.07) 0.03) 0.09) 0.04) 0.18) 

Ruminococcus_1 0.13 -0.01 -0.03 -0.01 0.00 -0.02 -0.01 0.09 

 
(0.07, (-0.05, (-0.08, (-0.06, (-0.03, (-0.09, (-0.08, (0, 

 
0.2)² 0.03) 0.03) 0.04) 0.02) 0.05) 0.07) 0.17) 
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Mogibacterium -0.07 -0.02 0.07 0.03 0.01 0.1 0.00 -0.06 

 
(-0.13, (-0.05, (0.02, (-0.02, (-0.01, (0.03, (-0.08, (-0.14, 

 
0.00) 0.02) 0.13) 0.08) 0.04) 0.17)¹ 0.07) 0.03) 
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Table S4.7. Province/megacity-specific estimates [coefficient (95% CI)] for the associations between sodium-to-potassium (Na/K) ratio and 

specific operational taxonomic units (OUTs), part 2 

 Zhejinag Chongqing Guangxi Guizhou Hubei Hunan Yunan 

Faecalitalea 0.00 0.00 0.07 0.03 -0.02 0.00 -0.01 

 (-0.05, (-0.06, (0.04, (0, (-0.08, (-0.03, (-0.04, 

 0.05) 0.05) 0.11) 0.07) 0.05) 0.03) 0.02) 

Ruminococcus_2 0.02 -0.01 -0.01 0.01 -0.04 -0.08 0.04 

 (-0.07, (-0.11, (-0.07, (-0.05, (-0.15, (-0.13, (-0.02, 

 0.11) 0.08) 0.06) 0.08) 0.07) -0.04)² 0.09) 

CAG-56 -0.11 -0.03 -0.02 0.02 -0.03 -0.02 0.01 

 (-0.18, (-0.11, (-0.07, (-0.03, (-0.12, (-0.06, (-0.04, 

 -0.03) 0.04) 0.03) 0.07) 0.05) 0.02) 0.05) 

Lachnospiraceae_ -0.09 -0.01 0.01 -0.03 0.05 -0.02 -0.01 

FCS020_group (-0.15, (-0.07, (-0.03, (-0.08, (-0.02, (-0.06, (-0.05, 

 -0.03) 0.06) 0.06) 0.01) 0.13) 0.01) 0.03) 

Blautia 0.01 -0.01 0.02 -0.07 0.01 -0.05 0.00 

 (-0.05, (-0.07, (-0.02, (-0.11, (-0.06, (-0.08, (-0.04, 

 0.07) 0.05) 0.07) -0.02) 0.08) -0.02)² 0.03) 
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Lactobacillus -0.03 0.12 0.00 -0.02 0.06 -0.02 -0.06 

 (-0.1, (0.05, (-0.05, (-0.08, (-0.03, (-0.06, (-0.11, 

 0.05) 0.2) 0.06) 0.03) 0.15) 0.02) -0.01) 

Holdemanella 0.08 0.03 0.08 0.06 0.04 -0.06 0.01 

 (-0.01, (-0.07, (0.01, (0, (-0.07, (-0.11, (-0.05, 

 0.18) 0.13) 0.15) 0.13) 0.15) -0.01) 0.06) 

Phascolarctobacterium 0.01 0.01 -0.01 -0.03 0.01 -0.02 0.00 

 (-0.04, (-0.04, (-0.04, (-0.06, (-0.04, (-0.04, (-0.03, 

 0.05) 0.05) 0.02) 0.01) 0.07) 0.01) 0.02) 

Megamonas 0.00 -0.01 -0.01 0.00 -0.02 0.03 -0.01 

 (-0.06, (-0.08, (-0.05, (-0.05, (-0.09, (0.00, (-0.05, 

 0.06) 0.05) 0.04) 0.04) 0.06) 0.06) 0.03) 

Ruminococcaceae 0.07 -0.05 0.05 0.06 -0.01 -0.01 0.04 

UCG-014 (0.00, (-0.12, (0.00, (0.02, (-0.09, (-0.05, (0.00, 

 0.14) 0.03) 0.1) 0.11) 0.08) 0.02) 0.08) 

Bifidobacterium -0.07 -0.07 0.03 -0.06 -0.01 0.01 -0.04 

 (-0.17, (-0.18, (-0.04, (-0.12, (-0.13, (-0.05, (-0.11, 

 0.03) 0.03) 0.1) 0.01) 0.11) 0.06) 0.02) 
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Catenibacterium 0.11 -0.03 -0.04 0.05 0.02 -0.06 -0.03 

 (0.02, (-0.12, (-0.1, (-0.01, (-0.09, (-0.11, (-0.08, 

 0.19) 0.06) 0.03) 0.11) 0.12) -0.01) 0.03) 

Holdemanella 0.13 0.00 -0.05 -0.07 -0.01 -0.03 -0.03 

 (0.05, (-0.09, (-0.11, (-0.13, (-0.12, (-0.08, (-0.09, 

 0.22) 0.09) 0.01) -0.01) 0.09) 0.02) 0.02) 

Lachnospira 0.01 -0.02 0.02 -0.03 0.06 -0.01 0.00 

 (-0.04, (-0.07, (-0.02, (-0.07, (0.00, (-0.04, (-0.03, 

 0.07) 0.03) 0.06) 0.01) 0.12) 0.02) 0.03) 

Ruminococcaceae 0.0 0.04 -0.03 -0.01 0.03 0.03 0.01 

UCG-014 (-0.06, (-0.03, (-0.08, (-0.05, (-0.05, (-0.01, (-0.03, 

 0.07) 0.1) 0.01) 0.03) 0.1) 0.06) 0.05) 

Coprococcus_2 -0.02 -0.01 -0.02 0.00 0.04 -0.02 -0.01 

 (-0.08, (-0.08, (-0.07, (-0.04, (-0.04, (-0.05, (-0.05, 

 0.04) 0.05) 0.02) 0.04) 0.11) 0.02) 0.03) 

Clostridium_sensu_stricto_1 0.01 0.04 0.04 0.01 0.07 0.03 -0.01 

 (-0.06, (-0.03, (-0.01, (-0.04, (-0.01, (-0.01, (-0.05, 

 0.08) 0.12) 0.09) 0.06) 0.15) 0.07) 0.04) 
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Lachnospiraceae* -0.08 -0.1 0.04 0.03 0.07 -0.06 0.00 

 (-0.15, (-0.17, (-0.02, (-0.02, (-0.01, (-0.1, (-0.04, 

 0.00) -0.03) 0.09) 0.08) 0.16) -0.02)¹ 0.05) 

Faecalibacterium -0.06 -0.05 -0.03 -0.01 0.06 -0.05 -0.02 

 (-0.12, (-0.1, (-0.07, (-0.05, (-0.01, (-0.08, (-0.05, 

 -0.01) 0.01) 0.01) 0.03) 0.12) -0.02)² 0.02) 

Lactobacillus 0.00 0.11 -0.03 -0.02 0.02 0.01 -0.02 

 (-0.08, (0.02, (-0.09, (-0.08, (-0.09, (-0.04, (-0.07, 

 0.09) 0.2) 0.03) 0.04) 0.12) 0.05) 0.04) 

Subdoligranulum -0.06 -0.01 -0.02 -0.03 0.02 -0.01 -0.02 

 (-0.11, (-0.06, (-0.05, (-0.06, (-0.04, (-0.03, (-0.04, 

 -0.02) 0.03) 0.02) 0.00) 0.07) 0.01) 0.01) 

Holdemanella 0.03 -0.13 -0.01 0.07 0.05 -0.03 0.01 

 (-0.05, (-0.22, (-0.07, (0.01, (-0.05, (-0.08, (-0.05, 

 0.12) -0.05) 0.05) 0.12) 0.15) 0.01) 0.06) 

Lachnospiraceae_ 

ND3007_group 

0.01 -0.03 -0.02 -0.05 0.03 -0.04 0.01 

 (-0.04, (-0.08, (-0.06, (-0.08, (-0.03, (-0.06, (-0.01, 
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 0.05) 0.01) 0.01) -0.02) 0.09) -0.01)¹ 0.04) 

Fusicatenibacter -0.04 0.02 0.01 0.01 0.01 -0.01 -0.01 

 (-0.07, (-0.01, (-0.02, (-0.01, (-0.02, (-0.03, (-0.03, 

 -0.01) 0.05) 0.03) 0.03) 0.05) 0.01) 0.01) 

Subdoligranulum -0.05 -0.01 0.04 -0.02 0.00 -0.02 -0.02 

 (-0.09, (-0.05, (0.02, (-0.05, (-0.05, (-0.04, (-0.04, 

 -0.01) 0.03) 0.07) 0.01) 0.04) 0.00) 0.01) 

Akkermansia 0.03 0.11 -0.05 0.03 0.02 -0.03 -0.03 

 (-0.05, (0.03, (-0.1, (-0.02, (-0.07, (-0.07, (-0.08, 

 0.1) 0.19) 0.01) 0.08) 0.12) 0.01) 0.01) 

Ruminococcaceae_ 0.03 -0.08 0.04 0.04 0.02 0.02 -0.04 

UCG-014 (-0.03, (-0.15, (0, (-0.01, (-0.06, (-0.02, (-0.08, 

 0.1) -0.01) 0.09) 0.08) 0.1) 0.05) 0.00) 

Ruminococcaceae_ 0.01 0.03 -0.01 0.02 0.02 -0.03 -0.03 

UCG-004 (-0.04, (-0.03, (-0.05, (-0.02, (-0.05, (-0.06, (-0.06, 

 0.07) 0.08) 0.03) 0.06) 0.08) 0.00) 0.01) 

Eubacterium 0.05 0.06 0.02 -0.02 0.02 -0.05 -0.01 

 (0.00, (0.00, (-0.02, (-0.05, (-0.04, (-0.08, (-0.04, 
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 0.1) 0.11) 0.06) 0.02) 0.08) -0.02)² 0.02) 

Family_XIII* 0.01 0.05 -0.02 0.00 0.02 0.01 0.00 

 (-0.03, (0.01, (-0.05, (-0.03, (-0.03, (-0.01, (-0.02, 

 0.05) 0.1) 0.01) 0.03) 0.07) 0.04) 0.03) 

Clostridium_sensu_ 

stricto_1 

0.08 -0.1 0.01 0.00 0.06 0.07 -0.06 

 (0.01, (-0.17, (-0.04, (-0.05, (-0.02, (0.03, (-0.11, 

 0.15) -0.02) 0.07) 0.05) 0.15) 0.11)² -0.01) 

Christensenellaceae_ 

R-7_group 

-0.02 -0.06 -0.01 0.01 0.01 -0.01 -0.02 

 (-0.08, (-0.13, (-0.05, (-0.04, (-0.07, (-0.05, (-0.06, 

 0.04) 0.00) 0.04) 0.05) 0.08) 0.02) 0.02) 

Granulicatella 0.02 0.02 -0.01 0.01 -0.03 0.02 -0.02 

 (-0.02, (-0.02, (-0.05, (-0.02, (-0.08, (0.00, (-0.05, 

 0.07) 0.07) 0.02) 0.05) 0.03) 0.05) 0.01) 

Lachnospiraceae* -0.06 -0.02 0.01 0.02 0.06 -0.01 -0.01 

 (-0.12, (-0.09, (-0.04, (-0.02, (-0.02, (-0.05, (-0.05, 

 0.01) 0.05) 0.06) 0.07) 0.14) 0.02) 0.03) 
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Ruminococcus_1 0.00 0.06 -0.03 0.01 0.02 -0.02 -0.02 

 (-0.05, (0, (-0.07, (-0.03, (-0.05, (-0.05, (-0.05, 

 0.06) 0.12) 0.01) 0.05) 0.09) 0.01) 0.02) 

Mogibacterium 0.00 -0.04 -0.02 -0.04 -0.05 0.00 -0.01 

 (-0.06, (-0.1, (-0.06, (-0.08, (-0.12, (-0.04, (-0.04, 

 0.06) 0.02) 0.03) 0.00) 0.02) 0.03) 0.03) 

N=2,833. CI, confidence interval; “*”, unknown genera from famly. Only OTUs with false discovery rate-adjusted p-value <0.10 for joint test of 

Na/K ratio and its interaction with province/megacity are shown here. OTUs were ordered by joint test q-values. OTU relative abundance was 

log10 transformed. Linear model was adjusted for age, sex, provinces or megacities, batch or plate run, urbanization, occupation, income, high 

school completion, energy intake, percent energy from animal food, fried food intake, physical activity, ever smoked, alcohol consumption, and 

use of probiotic, non-steroid anti-inflammatory drug, and proton pump inhibitor. Please see the Supplementary Table 6 in the supplemental files to 

see results for the full list of OTUs. 

1 false discovery rate-adjusted p-value <0.10;   

2 false discovery rate-adjusted p-value <0.05; 
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Table S4.8. Province-speicifc estimates [coefficient (95% CI)] for the associations between sodium density, potassium density, and sodium-to-

potassium (Na/K ratio) with individual metabolites 

Metabolites Class Pathway Guizhou Hunan 

Sodium density 

N6-methyladenosine Nucleotide Purine Metabolism, Adenine containing 0.1 (-0.1, 0.3) -0.19 (-0.28, -0.09) 

1,2,3-benzenetriol sulfate (2) Xenobiotics Chemical -1.21 (-1.82, -0.6)² 0.16 (-0.14, 0.46) 

3-methoxycatechol sulfate (1) Xenobiotics Benzoate Metabolism -1.08 (-1.6, -0.56)² 0.07 (-0.18, 0.32) 

4-methylcatechol sulfate Xenobiotics Benzoate Metabolism -0.73 (-1.08, -0.38)² -0.07 (-0.24, 0.1) 

Potassium density 

6-oxopiperidine-2-carboxylate Amino Acid Lysine Metabolism 0.26 (-0.32, 0.85) 0.95 (0.53, 1.37)² 

Na/K ratio 

DSGEGDFXAEGGGVR* Peptide Fibrinogen Cleavage Peptide 0.23 (0.09, 0.38) -0.15 (-0.24, -0.06) 

N6-methyladenosine Nucleotide Purine Metabolism, Adenine containing 0.12 (0.02, 0.23) -0.13 (-0.2, -0.07) 

glycerophosphorylcholine (GPC) Lipid Phospholipid Metabolism 0.07 (0.04, 0.1)² 0 (-0.02, 0.02) 

5-HETrE Lipid Eicosanoid 0.33 (0.16, 0.5)¹ -0.09 (-0.19, 0.02) 

4-HDoHE Lipid Docosanoid 0.2 (0.05, 0.34) -0.14 (-0.23, -0.05) 

4-guanidinobutanoate Amino Acid Guanidino and Acetamido Metabolism 0.1 (0.01, 0.19) -0.08 (-0.14, -0.03) 

thyroxine Amino Acid Tyrosine Metabolism 0.18 (0.09, 0.28)¹ 0.01 (-0.05, 0.07) 
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5-HETE Lipid Eicosanoid 0.24 (0.08, 0.39) -0.1 (-0.2, -0.01) 

13-HODE + 9-HODE Lipid Fatty Acid, Monohydroxy 0.16 (0.04, 0.28) -0.09 (-0.17, -0.02) 

isovalerate (C5) Amino Acid Leucine, Isoleucine and Valine Metabolism 0.16 (0.06, 0.26) -0.07 (-0.13, 0.00) 

5-HEPE Lipid Eicosanoid 0.28 (0.1, 0.46) -0.1 (-0.22, 0.01) 

butyrate/isobutyrate (4:0) Lipid Short Chain Fatty Acid 0.13 (0.05, 0.22) -0.05 (-0.1, 0.01) 

gamma-glutamyl-epsilon-lysine Peptide Gamma-glutamyl Amino Acid 0.08 (-0.02, 0.18) -0.11 (-0.17, -0.04) 

pipecolate Amino Acid Lysine Metabolism -0.2 (-0.31, -0.1)¹ -0.02 (-0.09, 0.05) 

N=392. CI, confidence interval; Only metabolites with false discovery rate-adjusted p-value <0.10 for joint test of sodium density, potassium 

density, or Na/K ratio and its interaction with province/megacity are shown here. Metabolites were ordered by joint test q-values. Metabolite 

abundance was log2 transformed. Linear model was adjusted for age, sex, provinces or megacities, batch run, urbanization, occupation, income, 

high school completion, energy intake, percent energy from animal food, fried food intake, physical activity, ever smoked, alcohol consumption, 

and use of probiotic, non-steroid anti-inflammatory drug, and proton pump inhibitor. Please see the Supplementary Table 7-9 in the supplemental 

files to see results for the full list of metabolites. 

1 false discovery rate-adjusted p-value <0.10;   

2 false discovery rate-adjusted p-value <0.05; 
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Table S4.9. The associations between sodium density-, potassium density-, or sodium-to-potassium 

(Na/K) ratio-associated taxa and metabolites  

Taxon Metabolite Class Pathway Coefficient  

(95% CI) 

q-

value 

Coriobacteriaceae* 4-methylcatechol 

sulfate 

Xenobiotics Benzoate 

Metabolism 

0.93 (0.46, 1.40) 0.08 

Ruminococcaceae* 4-methylcatechol 

sulfate 

Xenobiotics Benzoate 

Metabolism 

1.16 (0.57, 1.74) 0.08 

N=392. “*”, unknown genera from family. CI, confidence interval; q-value, false discovery rate-adjusted 

p-value; Only taxon-metabolite pairs q-v <0.10 are shown here. Taxon relative abudance was log10 

transformed and metabolite abundance was log2 transformed. Linear model was adjusted for age, sex, 

provinces or megacities, plate or batch run, urbanization, occupation, income, high school completion, 

energy intake, percent energy from animal food, fried food intake, physical activity, ever smoked, alcohol 

consumption, and use of probiotic, non-steroid anti-inflammatory drug, and proton pump inhibitor. Please 

see the Supplementary Table 10 in the supplemental files to see results for the full list of taxon-metabolite 

pairs. 
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Figure S4.1. Sample flow chart.  
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Figure S4.2. Multidimensional scaling (MDS) plots of gut microbiota with respect to sodium density (A) 

across and (B) within provinces and megacities. Numbers within parentheses are percentage of variability 

in microbial similarity explained by MDS axes. 
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Figure S4.3. Multidimensional scaling (MDS) plots of gut microbiota with respect to potassium density 

(A) across and (B) within provinces and megacities. Numbers within parentheses are percentage of 

variability in microbial similarity explained by MDS axes.  
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Figure S4.4. Multidimensional scaling (MDS) plots of gut microbiota with respect to sodium-to-

potassium (Na/K) ratio (A) across and (B) within provinces and megacities. Numbers within parentheses 

are percentage of variability in microbial similarity explained by MDS axes. 
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Figure S4.5. Multidimensional scaling (MDS) plots of plasma metabolome with respect to sodium density 

(A) across and (B) within provinces. Numbers within parentheses are percentage of variability in 

microbial similarity explained by MDS axes. 
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Figure S4.6. Multidimensional scaling (MDS) plots of plasma metabolome with respect to potassium 

density (A) across and (B) within provinces. Numbers within parentheses are percentage of variability in 

microbial similarity explained by MDS axes. 
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Figure S4.7. Multidimensional scaling (MDS) plots of plasma metabolome with respect to sodium-to-

potassium (Na/K) ratio (A) across and (B) within provinces. Numbers within parentheses are percentage 

of variability in microbial similarity explained by MDS axes. 
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CHAPTER 5. GUT MICROBIOTA AND HOST METABOLITES ASSOCIATIONS WITH 

BLOOD PRESSURE IN CHINESE ADULTS  

 

Overview  

Animal studies have revealed gut microbial and metabolic pathways of blood pressure (BP) 

regulation, yet there are few epidemiological studies that capture large variation in BP with paired 

microbiota and metabolomics data.  

In a population-based, Chinese cohort (30-69 years, 54% women), we examined cross-sectional 

associations of gut microbiota (16S rRNA, n=1003) and untargeted plasma metabolomics (n=434) with 

systolic and diastolic BP (SBP/DBP), after adjusting for a wide range of covariates (e.g., urbanization, 

diet, kidney function). We found that the overall microbial community assessed by principal coordinates 

analysis based on Bray-Curtis matrix varied by SBP and DBP (permutational multivariate ANOVA p-

value<0.05). No specific genera were associated with SBP or DBP using linear regression.  

In metabolomics analysis, a lipid pattern derived from principal component analysis was 

positively associated with SBP [linear regression coefficient (95% CI) per 1SD pattern score: 2.23 (0.72, 

3.74) mmHg] and DBP [1.72 (0.81, 2.63) mmHg]. Individual metabolites including linoleate, palmitate, 

and dihomolinolenate, as well as eight sphingomyelins, four acyl-carnitines, and two 

phosphatidylinositol, were positively associated with SBP and DBP [false discovery rate (FDR) adjusted 

linear model p-value<0.05). Subsequent pathway analysis suggested that metabolites from acyl-carnitine 

(long chain saturated), phosphatidylinositol, and sphingomyelins metabolic pathways were positively 

associated with SBP and DBP more than expected by chance (FDR adjusted Fisher’s exact test p-

value<0.05).  
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Our results suggest potential metabolic pathways involved in BP regulation in free-living adults, 

to be followed up in future human intervention and clinical studies.  

 

Introduction 

High blood pressure (BP) is a leading modifiable risk factor for cardiovascular disease and 

mortality [2]. Despite numerous efforts to curb the epidemic, the worldwide prevalence of high BP has 

continued to increase over the past decade [16] and the prevalence of controlled high BP has remained 

low [140]. In the US, only 48.3% of adults with high BP reduced their systolic and diastolic BP 

(SBP/DBP) below the threshold for high BP (140/90 mmHg) after treatment during 2015-2016 [140].  

The BP regulatory system is multifactorial, involving interactions among host genetics [141], 

sociodemographic factors, and diet [24]. The gut microbiota and host metabolome, which may reflect 

these complex interactions [106,142], have been demonstrated to play fundamental roles in BP regulation 

in animal models [80,143] and humans [33]. In particular, the metabolome reflects a thorough snapshot of 

various metabolic processes, allowing identification of novel biomarkers and potential pathogenic 

pathways leading to high BP [144]. For example, the microbiota-mediated serum 4-hydroxyhippurate has 

been shown to be positively associated with incident high BP in blacks [49]. Additionally, reductions in 

gut microbial diversity and in several microbial groups, including Prevotella and Coprococcus, have been 

shown to be associated with high BP in animal models [36,37,40] and in human studies, albeit in small 

samples [39,41,43,145]. However, there is a lack of population-based studies that include microbial and 

metabolomic data along with phenotypic data. In comparison with the rest of the world, China has the 

greatest absolute burden of high BP [13] coupled with a high rates of undiagnosed and untreated 

hypertension [146], thus China is an ideal context for studying relationships between BP, microbiota, and 

metabolites, while minimizing the medication effects. 

To this end, we examined the associations between gut microbiota and nontargeted plasma 

metabolome with BP in a well-characterized cohort of adults from the 2015 China Health and Nutrition 
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Survey (CHNS). We quantified the associations between specific microbiota and metabolites with BP, 

and identified patterning of microbiota and metabolites associated with BP.   

 

Methods 

Study sample 

We used data from the 2015 China Health and Nutrition Survey (CHNS). Participants aged 30-68 

years from four southern provinces (Henan, Hunan, Guizhou, Guangxi) with blood pressure data and gut 

microbiome or plasma metabolomics data were eligible for analysis (n=1,285, Figure S5.1). We excluded 

participants who were pregnant (n=1), self-reported use of antihypertension medication (n=99), or had 

missing covariates (n=86). For microbiota analysis, we additionally excluded 35 participants who 

currently used antibiotics, had diarrhea, inflammatory bowel disease, irritable bowel syndrome, or bowel 

removal. For metabolites analysis, we additionally excluded 16 participants who had detectable levels of 

CVD dugs metabolites in plasma: metoprolol acid metabolite, alpha-hydroxymetoprolol, nifedipine, and 

valsartan. The total analysis sample had 1,082 adults, with 1,003 and 434 adults included in the 

microbiota analysis sample and metabolomics analysis sample, respectively. 

 

Measures 

We used the average of the three readings of reasting BP measured by experienced physicians 

using a standard mercury sphygmomanometer as our measure of SBP and DBP.  

In 16S rRNA sequencing, a total of 1027 genera were detected in our sample, 19 of which with 

all zero values were removed from analysis. We rarefied the resulting raw taxonomic counts to 21,600 

sequences/sample to correct for different sequencing depth (before rarefaction, 21,648-89,427 

sequences/sample) and log10 transformed it.  

The non-targeted metabolomics analysis of fasting plasma samples using Metabolon portal 

resulted in the detection and quantification of 1,108 chemicals in our sample, among which four CVD 

drugs with all zero values were removed from analysis. We categorized 131 metabolites that below 
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detection limits (BDL) in 25%-50% samples to ordinal variables (0=BDL, 1=below median, 3=equal or 

above median) and 99 metabolites >50% BDL to binary variables (0=BDL, 1=above detection limit). For 

874 metabolites with ≤25% BDL, we used the rescaled-imputed data from Metabolon (raw area counts of 

each metabolite rescaled to a median of 1 with values BDL imputed by the minimum value) and log2 

transformed the data.  

We included the following measures as covariates in our analysese based on self-reported 

sociodemographic and behavioral information collected using standardized questionnaires administered 

by trained interviewers, such as age, sex, education (yes/no completed high school), and per capita 

household income (household income / number of household member). We assessed community-level 

urbanization using community-level data and a validated urbanization index that encompasses 12 

dimensions of urbanization [109]. We included five measures of heath behaviors: the total energy intake, 

sodium intake, total physical activity (METs/week), ever smoking (yes/no), and alcohol intake in the past 

year (yes/no). We also included a measure of kidney function based on fasting serum creatinine 

concentration measured by picric acid method using Hitachi 7600 (Randox, UK) for calculation of 

estimated glomerular filtration rate (eGFR) using the Chronic Kidney Disease Epidemiology 

Collaboration (CKD-EPI) equation [147]. We included body mass index (BMI) as a measure of body 

mass.  

 

Statistical analysis 

Primary outcomes were SBP and DBP. In the microbiota analysis sample, we first analyzed the 

overall gut microbiome by examining the associations of genus-level within-person microbial diversity 

(α-diversity), measured by Shannon index and richness [116,148], and between-person diversity (β-

diversity), assessed by principal coordinate analysis (PCoA) based on Bray-Curtis dissimilarity matrix 

[149], with SBP and DBP using linear regression and permutational multivariate analysis of variance 

(PERMANOVA) with 999 permutations [150], respectively. PCoA axis score was a weighted (i.e., 

genera relative abundance) sum of genera scores, which reflect the contribution of each genera to a given 
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axis (Table S5.1). Then, we quantified the association between each of the first four PCoA axes with SBP 

and DBP. Second, we examined the association between specific microbiota across 1,008 specific genera, 

with SBP and DBP using linear regression. We treated 110 genera detected in ≥25% of the sample as 

continuous variables and dichotomized the rest 898 rare genera to presence/absence. We adjusted all 

analyses for the following potential confounders in Model 1 using a priori knowledge: age, sex, provinces 

[151], urbanization index (tertiles) [119], education, per-capita household income (tertiles), total energy 

intake, animal-source food consumption [120], sodium consumption [152], total physical activity 

(tertiles), tobacco use, alcohol consumption, and eGFR [153]. As BMI is a potential mediator for 

microbiota-BP relationship, we additionally adjusted for BMI in Model 2 as a sensitivity analysis to test 

whether the association was independent of BMI.  

In the metabolomics analysis sample, we first analyzed the overall metabolome by separately 

grouping 875 metabolites (continuous variables, ≤25% BDL) into uncorrelated patterns, using principal 

component analysis (PCA) followed by a varimax rotation to improve interpretation [154] and account for 

complex correlations across metabolites. Based on three criteria: eigenvalues >1, the point of inflection in 

scree plot, and interpretability [155], we selected three metabolite patterns (Table S5.2). Pattern score was 

a weighted (i.e., metabolite relative abundance) sum of rotated and inverse factor loadings, which indicate 

the contributions of metabolites to a given pattern. Then, we assessed the association between each 

metabolite pattern, as well as 1,104 individual metabolites with SBP and DBP, using linear regression 

adjusting for the above-mentioned potential covariates (e.g., province, sodium consumption, eGFR) and 

batch in Model 1 and additionally adjusting for BMI in Model 2. We used a Wald test to assess the 

overall statistical significance of 131 metabolites categorized as ordinal variables. Based on Model 1 

results for individual metabolites, we calculated pathway enrichment score [
𝑘

𝑚
/(

𝑛−𝑘

𝑁−𝑚
)] reflecting the 

degree to which a given pathway was associated with SBP or DBP, where k and n are numbers of 

statistically significant metabolites in the given pathway and all pathways, respectively, and m and N are 

numbers of tested metabolites in the given pathway and all pathways, respectively. We performed a 
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Fisher’s exact test [156] to evaluate whether the presence of blood pressure-associated metabolites 

(excluding unknown compounds) from a particular metabolic pathway was greater than expected by 

chance.  

In a sub-sample of participants with microbiota and metabolite data (n=355), we conducted 

random forest regression (100 trees) [125] followed by a 5 iterations of 2-folds cross-validation (5X2cv) 

modified paired t-test, a powerful test to compare the performance of learning algorithms with acceptable 

Type I error [126], to provide insight into which data as a whole had the strongest association with BP. 

Specifically, we compared the accuracy (i.e., root mean squared errors, RMSE) of prediction of SBP and 

DBP using: (1) host factors (e.g.,14 individual- and community-level covariates), (2) microbiota (e.g., 

1,008 specific genera), (3) metabolites (e.g.,1,104 individual metabolites), (4) microbiota + host factors, 

(5) metabolites + host factors, (6) microbiota + metabolites, and (7) microbiota + metabolites + host 

factors. 

We adjusted p-values for multiple comparisons using Benjamini-Hochberg method (false 

discovery rate, FDR) [127] in comparisons across all taxa, metabolites, and metabolic pathways for SBP 

and DBP separately in a test of two separate hypotheses for SBP and DBP, respectively. All statistical 

tests were two-sided with a significance level of 0.05. We used R 3.6.0 (http://www.r-project.org) and 

Python 3.5.1 (https://www.python.org) for data analysis.  

 

Results 

Our sample had large variation in SBP [mean (SD): 126.01 (17.43) mmHg] and DBP [80.70 

(10.67)], with 62.48% prevalence of high blood pressure (Table S5.3).  

We first assessed the overall gut microbial measures. We found that while within-person 

microbial diversity (Shannon index and richness) was not associated with SBP or DBP in linear 

regression (Table S5.4), between-person microbial diversity assessed by PCoA was associated with SBP 

(Figure 5.1; PERMANOVA R2=2.01%, p-value=0.002) and DBP (Figure S5.2; PERMANOVA 

R2=1.42%, p-value<0.05). The first four PCoA axes each explained 8.61%, 5.58%, 3.54%, and 3.12% of 
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microbial variability, respectively. Only the fourth axis showed a clear separation of SBP (Fugure 5.1, 

with higher SBP at higher axis score. While Rothia, Serratia, Enterobacteriaceae, Leuconostocaceae, and 

Fusobacterium had the strongest positive correlations with the fourth axis, Coprococcus, Adlercreutzia, 

Eggerthella, and Raistonia had the strongest negative correlations with the fourth axis. The linear 

regression also showed a positive association between the fourth PCoA axis and SBP independent of BMI 

(Table S5.5). However, none of the specific genera were associated with SBP or DBP (Table S5.6, FDR-

adjusted p-valueq-value>0.10).  

In plasma metabolomics analysis, we identified three biologically possible metabolite patterns 

using PCA that explained a total of 19.11% variance of metabolites (Table 5.1). Only the second pattern 

that characterized by lipids like linoleate, palmitate, and oleate/vaccinate was positively associated with 

SBP [linear model coefficient (95% CI) per 1SD pattern score: 2.23 (0.72, 3.74)] and DBP [1.72 (0.81, 

2.63)], though the results were slightly attenuated by adjustment of BMI [SBP: 1.88 (0.38, 3.38); DBP: 

1.45 (0.55, 2.35)]. To assess whether single or a few metabolites contributing to this lipid pattern drove 

the associations with SBP and DBP, we examined individual metabolites using linear regression and 

found that at Model 1 FDR-adjusted p-value<0.05, eight and 19 metabolites of the lipid pattern 

(loading>0.4) were positively associated with SBP (Table 5.2) and DBP (Table 5.3), respectively, 

including palmitoylcarnitine (C16), cerotoylcarnitine (C26), 1-palmitoleoylglycerol (16:1), 

myristoylcarnitine (C14), dihomolinolenate (20:3n3 or 3n6), laurylcarnitine (C12). Among all detected 

metabolites, a total of 34 and 39 metabolites were associated with SBP and DBP, respectively, among 

which 19 metabolites were positively associated with both BP measures, including eight sphingomyelins 

[e.g., tricosanoyl sphingomyelin (d18:1/23:0), lignoceroyl sphingomyelin (d18:1/24:0)], four acyl-

carnitines, and cholesterol. Only nine and 17 metabolites were associated with SBP and DBP independent 

of BMI (Model 2 FDR-adjusted p-value<0.05), respectively, including tricosanoyl sphingomyelin 

(d18:1/23:0), lignoceroyl sphingomyelin (d18:1/24:0), and sphingomyelin (d18:2/24:2). A full list of 

results for all individual metabolites are shown in Supplementary Table S12-S14 in supplemental file. In 

pathway analysis that tested whether the number of positive or negative associations between metabolites 
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from a particular metabolic pathway and BP was more than expected by chance (Table 5.4), we found 

that diacylglycerol, acyl-carnitine (long chain saturated), phosphatidylcholine, phosphatidylinositol, 

sphingomyelins metabolic pathways were associated with SBP (FDR-adjusted p-value<0.05); and 

corticosteroids, acyl-carnitine (long chain saturated and median chain), monoacylglycerol, 

phosphatidylinositol, and sphingomyelins metabolic pathways were associated with DBP. 

To examine whether the overall microbiota and metabolite data were better than traditional risk 

factors like sociodemographic factors and health behaviors in predicting BP, we conducted random forest 

regression in a sub-sample with microbiota and metabolite data (n=355). We found comparable 

accuracies across host factors, microbiota, and metabolite data in predicting SBP and DBP (Figure S5.3, 

p-value>0.05). 

 

Discussion 

We investigated the association between gut microbiota and plasma metabolites with BP in a 

population-based cohort of middle-aged Chinese adults, after accounting for a wide range of 

sociodemographic factors, health behaviors, and kidney function. Between-person diversity in microbiota 

was associated with SBP and DBP, whereas there was no statistical evidence of any association between 

within-person diversity or with specific genera in relation to SBP or DBP. In metabolomics analysis, a 

lipid pattern that included various long-chain fatty acids like linoleate, palmitate, and oleate/vaccenate 

was positively associated with SBP and DBP, independent of BMI. Several individual metabolites were 

also associated with SBP (n=34) and DBP (n=39), including eight sphingomyelins, four acyl-carnitines, 

and cholesterol, which were positively associated with SBP and DBP. 

Several animal [36,37,40] and human studies [39,41,43,145] have linked gut microbiota to high 

blood pressure. For example, in the CARDIA study of 529 middle-aged US adults, Sun et al. [43] showed 

an inverse association between within-person microbial diversity and SBP and differences in the overall 

microbial community by SBP. In a recent case-control study of 80 Brazilian adults [145], lower microbial 

biodiversity along with lower proportions of butyrate-producing taxa like Roseburia, Coprococcus and 
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Lachnospiraceae, but higher proportions of Enterobacteriaceae and Lactobacillus were observed in 

individuals with high versus normal blood pressure. Similarly, we found an overall association between 

the microbial community with SBP and DBP. Although we had larger sample size than these studies 

[43,145], we found no statistical evidence of any association between specific genera with blood pressure. 

As such, our results may suggest that instead of a few specific taxa, it is the overall microbiota 

composition or a collection of microorganisms that associated with blood pressure. In addition, by 

excluding all participants who took antihypertension medication, our study may have better control for 

potential hypertension treatment effects on gut microbiota than prior studies [43,145].  

Metabolomics studies showing associations between microbial metabolites and blood pressure 

further support the role of gut microbiota in blood pressure regulation [49,157]. The INTERMAP study 

(International Population Study on Macronutrients and Blood Pressure) of 4,630 middle-aged adults from 

USA, UK, Japan, and China, showed that urinary alanine and hippurate were positively and negatively 

associated with blood pressure, respectively [157]. The Atherosclerosis Risk in Communities (ARIC) 

study of 896 African Americans revealed that 4-hydroxyhippurate was associated with 17% higher risk of 

incident high blood pressure [49]. Though we did not observe an associations between alanine or 

hippurate metabolites with blood pressure in our sample, we found that a novel metabolite from benzoate 

metabolism, p-cresol sulphate, which is produced from tyrosine and phenylalanine by anaerobic bacteria 

[158], was inversely associated with DBP. A well-establish route through which gut microbiota influence 

blood pressure is short chain fatty acids (SCFAs), like butyrate and propionate, which have been shown to 

modulate blood pressure through G protein-coupled receptors and olfactory receptors [79]. Nonetheless, 

none of these studies (INTERMAP and ARIC) [49,157] nor our study found an association between 

SCFAs and blood pressure. This may be due to the small molecular sizes and rapid uptake of SCFAs in 

circulation [159], impeding them from being fully captured by non-targeted metabolomics.    

Prior studies also suggested that mechanisms of blood pressure regulation involve fatty acids 

[49,144]. Menni et al. showed that in 3,980 TwinsUK females, a few plasma carnitines, long chain fatty 

acids, and steroids were positively associated with blood pressure, including hexadecanedioate, palmitate 
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(16:0), octanoylcarnitine, 10-heptadecenoate (17:1n7), and dihomolinoleate (20:2n6) [144]. In particular, 

hexadecanedioate, a dicarboxylic acid, consistently showed positive association with blood pressure in 

two replication cohorts with both males and females, the Cooperative Health Research in the Region of 

Augsburg (KORA) S4 study and Hertfordshire Cohort [144]. Subsequent analysis using rat model 

demonstrated that oral intake of hexadecanedioate increased blood pressure, supporting a causal role of 

hexadecanedioate in blood pressure regulation [144]. In another study of 202 African and Caucasian men, 

serum long-chain [e.g., cerotoylcarnitine (C26)] and medium-chain acyl-carnitines [in Caucasian only; 

e.g., octanoylcarnitine (C8)] were positively associated with ambulatory blood pressure.[160] Our results 

showing positive associations between acyl-carnitines (e.g., octanoylcarnitine), long chain fatty acids 

(e.g., palmitate), and a lipid pattern driven by linoleate (18:2n6), palmitate (16:0), 10-heptadecenoate 

(17:1n7), and dihomolinoleate (20:2n6) with BP are consistent with these two studies [144,160]. Acyl-

carnitines as byproducts of incomplete β-oxidation of long-chain fatty acids accumulate in blood or urine 

when there are excess fatty acids for oxidation and can stimulate proinflammatory pathways involving 

Nuclear factor kappa B (NF-κB) [161]. Omega-6 fatty acid like linoleate may impair cardiovascular 

health as it can be metabolized to dihomolinoleate and then to arachidonic acid, a precursor for 

proinflammatory eicosanoids like leukotriene B4 [162].  

In addition, we found that several sphingomyelins and the sphingomyelin metabolic pathway 

were each positively associated with blood pressure. Ceramide as a precursor for sphingolipids is 

deleterious to cardiovascular health, including impaired vasodilation [163]. Excess sphingolipids occur 

when fatty acids exceed energy need or storage capacity of a cell [164]. Several lipidomic studies have 

identified sphingolipids as candidate blood markers for cardiovascular diseases in humans [165-167]. For 

example, Poss et al. [167] using machine learning found that 30 serum sphingolipids were elevated in 

subjects with coronary artery disease (CAD, n=462) than controls (n=212) and a sphingolipid risk score, 

which included sphingomyelins (d18:1/24:0) and (d18:1/18:0), was more effective than conventional 

biomarkers like triglycerides and LDL-cholesterol in distinguishing CAD patients. Overall, our results 

suggest that overloaded circulating lipids are associated with higher blood pressure.  
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The strengths of our study include paired microbiota and metabolite data in a well-characterized 

cohort, enabling us to investigate microbial and host metabolic pathways in relation to BP. Fecal samples 

and blood samples were collected and processed using standardized protocols. BP was measured by 

trained clinicians using standardized protocols as well. Moreover, the rich sociodemographic and 

behavioral data of the CHNS allowed us to account for a wide range of potential confounders, including 

diet assessed by validated instruments, as well as anthropometry and eGFR measured by clinicians. The 

low treatment rate for high BP ensured sufficient sample size and large variation in BP, even after 

excluding people who took antihypertension medication to minimize medication effects.   

However, our study is cross-sectional, which hinders the establishment of a causal relationship 

between gut microbiota, host metabolome, and blood pressure. Additionally, our microbiota analysis 

using 16S rRNA data did provide functional information and thus could not directly link to our results in 

metabolites. Future studies are needed to confirm our findings, particularly, population-based studies with 

repeated measures paired with experimental studies to investigate the causal pathways modulating blood 

pressure.  

 

Conclusion 

Our study provides substantial observational evidence for the associations between gut 

microbiota and plasma metabolites with BP in a population-based cohort of middle-aged Chinese adults. 

The overall microbial community varied by BP. Several individual metabolites (e.g., lignoceroyl 

sphingomyelin, cerotoylcarnitine, and dihomolinolenate) and a lipids pattern were positively associated 

with BP, suggesting a role of circulating lipids in the development of high BP. Further analyses with 

longitudinal data and refined microbial composition data in larger samples are needed to fully elucidate 

the causal relationship between gut microbiota, host metabolites, and BP, thereby informing effective 

early interventions and treatments for high BP. 
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Tables and figures 

Table 5.1. Association between metabolite patterns with systolic and diastolic blood pressure (SBP and DBP, mmHg), Coefficient (95% CI) 

 Metabolites contributing to each pattern  Eigenvalue Variance 

explained  

SBP DBP 

Model 

1 

Model 

2 

Model 

1 

Model 

2 

Pattern 1 

(nucleotide, amino 

acid, and peptide) 

pseudouridine; 

2,3-dihydroxy-5-

methylthio-4-pentenoate 

(DMTPA); 

N-acetylthreonine; 

N,N-dimethyl-pro-pro; 

C-glycosyltryptophan; 

orotidine; 

hydroxy-N6,N6,N6-

trimethyllysine; 

5,6-dihydrouridine; 

dimethylarginine 

(ADMA + SDMA); 

N6-acetyllysine 

84.19 9.63% 1.81  

(-0.24, 

3.86) 

1.58  

(-0.44, 

3.60) 

0.24  

(-1.01, 

1.49) 

0.06  

(-1.16, 

1.28) 

Pattern 2 (lipids, 

especially long 

chain fatty acids) 

linoleate (18:2n6); 

palmitate (16:0); 

oleate/vaccenate (18:1); 

10-heptadecenoate 

(17:1n7); 

10-nonadecenoate 

(19:1n9); 

margarate (17:0); 

dihomolinoleate 

(20:2n6); 

41.83 4.79% 2.23 

(0.72, 

3.74) 

** 

1.88 

(0.38, 

3.38) * 

1.72 

(0.81, 

2.63) ** 

1.45 

(0.55, 

2.35) ** 
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docosapentaenoate (DPA; 

22:5n3); 

hexadecadienoate 

(16:2n6); 

dihomolinolenate 

(20:3n3 or 3n6) 

Pattern 3 

(sphingomyelins, 

eicosanoid, and 

short-chain fatty 

acids, and 

branched-chain 

amino acids)  

sphingomyelin 

(d18:2/23:0, d18:1/23:1, 

d17:1/24:1); 

3-methyl-2-oxobutyrate; 

leukotriene B4; 

5-HETE; 

methionine sulfoxide; 

butyrate/isobutyrate (4:0); 

4-methyl-2-

oxopentanoate; 

1-(1-enyl-oleoyl)-GPE 

(P-18:1); 

1-(1-enyl-palmitoyl)-

GPE (P-16:0); 

3-methyl-2-oxovalerate 

40.99 4.69% 0.24  

(-1.57, 

2.05) 

-0.02 

(-1.80, 

1.77) 

0.14 

 (-0.96, 

1.24) 

-0.05 (-

1.13, 

1.02) 

Patterns were derived from principal component analysis followed by a varimax rotation of 874 metabolites in the metabolomics analysis sample 

(n=434). The factor loading for each metabolite contributing to each pattern is listed in Table S5.2. Coefficient (95% confidence interval) indicates 

SBP and DBP (mmHg) associated with each 1SD increase in metabolites pattern score in linear regression. Contributing metabolites are 

metabolites with the top 10 highest absolute loadings for the respective pattern. Metabolites are vertically ordered by their absolute values of 

loading (descending). Model 1 was adjusted for age, sex, provinces, batch, urbanization index (tertiles: ≤64.2, 64.2-81.5, >81.5), per capita 

household income (tertiles: ≤10, 10-21.6, >21.6), education, total energy intake, animal-source food consumption, sodium consumption, physical 

activity (tertiles: ≤57.4, 57.4-152, >152), smoking, alcohol intake, and Estimated glomerular filtration rate (eGFR). Model 2 was additionally 

adjusted for BMI.  

“*” indicates p-value < 0.05; “**” indicates p-value<0.01 
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Table 5.2. Association between individual metabolites and systolic blood pressure (SBP), n=434 

Metabolites Pathway Loading 

in lipid 

pattern* 

Model 1 Model 2 

  Coefficient  

(95% CI) 

q-value Coefficient 

(95% CI) 

q-

value 

tricosanoyl sphingomyelin 

(d18:1/23:0) †  

Sphingomyelins ─ 7.56  

(4.52, 10.61) 

0.002 6.53  

(3.43, 9.62) 

0.015 

lignoceroyl sphingomyelin 

(d18:1/24:0) †  

Sphingomyelins ─ 6.37  

(3.59, 9.14) 

0.005 5.61  

(2.83, 8.39) 

0.024 

palmitoylcarnitine (C16) †  Fatty Acid Metabolism (Acyl 

Carnitine, Long Chain Saturated) 

0.50 7.26  

(3.97, 10.56) 

0.007 6.95  

(3.71, 10.2) 

0.015 

1-myristoyl-2-arachidonoyl-GPC 

(14:0/20:4) †  

Phosphatidylcholine (PC) ─ 4.34  

(2.32, 6.37) 

0.007 3.53  

(1.45, 5.61) 

0.059 

sphingomyelin (d18:2/24:2) †  Sphingomyelins ─ 4.53  

(2.41, 6.64) 

0.007 4.46  

(2.38, 6.54) 

0.015 

1-palmitoyl-2-linoleoyl-GPI 

(16:0/18:2) †  

Phosphatidylinositol (PI) ─ 5.83  

(3.02, 8.64) 

0.010 5.38  

(2.59, 8.16) 

0.037 

1-palmitoyl-2-arachidonoyl-GPC 

(16:0/20:4n6) † 

Phosphatidylcholine (PC) ─ 7.91  

(4.01, 11.82) 

0.010 6.7  

(2.77, 10.63) 

0.059 
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1-palmitoyl-2-arachidonoyl-GPI 

(16:0/20:4) † 

Phosphatidylinositol (PI) ─ 4.96  

(2.51, 7.41) 

0.010 4.44  

(2.01, 6.87) 

0.046 

sphingomyelin (d18:1/21:0, 

d17:1/22:0, d16:1/23:0) † 

Sphingomyelins ─ 6.38  

(3.28, 9.49) 

0.010 5.03  

(1.82, 8.25) 

0.088 

behenoyl sphingomyelin 

(d18:1/22:0) † 

Sphingomyelins ─ 7.35  

(3.57, 11.14) 

0.014 5.91  

(2.05, 9.77) 

0.092 

sphingomyelin (d18:1/14:0, 

d16:1/16:0) † 

Sphingomyelins ─ 7.21  

(3.4, 11.01) 

0.019 5.65  

(1.75, 9.55) 

0.118 

cerotoylcarnitine (C26) † Fatty Acid Metabolism (Acyl 

Carnitine, Long Chain Saturated) 

0.42 4.29  

(2.02, 6.56) 

0.019 3.91  

(1.66, 6.16) 

0.059 

pantothenate (Vitamin B5) Pantothenate and CoA Metabolism ─ 7.77  

(3.63, 11.91) 

0.019 6.86  

(2.74, 10.97) 

0.064 

N2,N2-dimethylguanosine Purine Metabolism, Guanine 

containing 

─ 8.74  

(3.99, 13.49) 

0.020 8.09  

(3.4, 12.78) 

0.059 

cholesterol † Sterol ─ 8.48  

(3.89, 13.07) 

0.020 7.67  

(3.12, 12.22) 

0.062 

sphingomyelin (d18:2/14:0, 

d18:1/14:1) † 

Sphingomyelins ─ 5.75  

(2.58, 8.91) 

0.022 4.57  

(1.36, 7.79) 

0.121 
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adrenate (22:4n6) Long Chain Polyunsaturated Fatty 

Acid (n3 and n6) 

0.71 3.15  

(1.36, 4.93) 

0.028 2.9  

(1.14, 4.67) 

0.066 

1-palmitoleoylglycerol (16:1) † Monoacylglycerol 0.57 2.26  

(0.98, 3.53) 

0.028 1.75  

(0.45, 3.05) 

0.143 

1-palmitoyl-2-palmitoleoyl-GPC 

(16:0/16:1) 

Phosphatidylcholine (PC) ─ 3.57  

(1.54, 5.59) 

0.028 3.01  

(0.98, 5.04) 

0.107 

myristoylcarnitine (C14) † Fatty Acid Metabolism (Acyl 

Carnitine, Long Chain Saturated) 

0.53 2.96 ( 

1.27, 4.64) 

0.029 3.01  

(1.35, 4.66) 

0.046 

branched-chain, straight-chain, or 

cyclopropyl 10:1 fatty acid (1) 

Partially Characterized Molecules ─ 2.66  

(1.13, 4.19) 

0.030 2.58  

(1.07, 4.08) 

0.059 

sphingomyelin (d18:2/16:0, 

d18:1/16:1) † 

Sphingomyelins ─ 8.35  

(3.52, 13.17) 

0.031 6.84  

(1.99, 11.69) 

0.122 

picolinoylglycine Fatty Acid Metabolism (Acyl 

Glycine) 

─ 3.34  

(1.41, 5.28) 

0.031 2.75  

(0.81, 4.69) 

0.122 

N6-carbamoylthreonyladenosine Purine Metabolism, Adenine 

containing 

─ 6.16  

(2.54, 9.78) 

0.032 5.57  

(1.99, 9.16) 

0.088 

dihomolinolenate (20:3n3 or 3n6) † Long Chain Polyunsaturated Fatty 

Acid (n3 and n6) 

0.73 4.25  

(1.75, 6.74) 

0.032 3.65  

(1.16, 6.14) 

0.113 
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1-stearoyl-2-arachidonoyl-GPC 

(18:0/20:4) 

Phosphatidylcholine (PC) ─ 6.08  

(2.52, 9.64) 

0.032 5.01  

(1.44, 8.58) 

0.122 

acetylcarnitine (C2) Fatty Acid Metabolism (Acyl 

Carnitine, Short Chain) 

0.50 6.57  

(2.63, 10.5) 

0.038 7 (3.13, 10.86) 0.046 

retinol (Vitamin A) Vitamin A Metabolism ─ 5.16  

(2.04, 8.28) 

0.040 4.48  

(1.39, 7.58) 

0.118 

argininate Urea cycle; Arginine and Proline 

Metabolism 

─ 3.93  

(1.56, 6.3) 

0.040 3.19  

(0.81, 5.57) 

0.148 

2,3-dihydroxy-5-methylthio-4-

pentenoate (DMTPA) 

Methionine, Cysteine, SAM and 

Taurine Metabolism 

─ 7.88  

(3.11, 12.66) 

0.040 6.51  

(1.73, 11.29) 

0.135 

laurylcarnitine (C12) † Fatty Acid Metabolism (Acyl 

Carnitine, Medium Chain) 

0.49 2.25  

(0.88, 3.62) 

0.042 2.36  

(1.02, 3.71) 

0.059 

Metabolites with 25-50% below level of detection (BLOD)/missing: Reference=BLOD/missing 

linoleoyl-linoleoyl-glycerol 

(18:2/18:2) [1] 

Diacylglycerol Below 

median 

─ 2.29  

(-1.6, 6.17) 

0.022 3.5  

(-0.37, 7.37) 

0.046 

  Above 

median 

 -4.56  

(-8.39, -0.73) 

 -3.45  

(-7.26, 0.36) 
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oleoyl-linoleoyl-glycerol 

(18:1/18:2) [2] 

Diacylglycerol Below 

median 

─ -3.07  

(-6.99, 0.85) 

0.042 -2.49  

(-6.36, 1.38) 

0.088 

  Above 

median 

 -7.31  

(-11.39, -3.24) 

 -6.8  

(-10.82, -2.78) 

 

Metabolites with >50% BLOD/missing: Reference=BLOD/missing 

phenylalanylalanine Dipeptide Above limit 

of detection 

─ -4.86  

(-7.86, -1.85) 

0.047 -4.94  

(-7.89, -1.98) 

0.064 

Coefficient (95% confidence interval) indicates SBP (mmHg) associated with a fold increase of the relative abundance of a given metabolite or per 

category change in the categorical metabolites in linear regression. The statistical significance of metabolites categorized as ordinal variables was 

assessed using a Wald test. Model 1 was adjusted for age, sex, provinces, batch, urbanization index (tertiles: ≤64.2, 64.2-81.5, >81.5), per capita 

household income (tertiles: ≤10, 10-21.6, >21.6), education, total energy intake, animal-source food consumption, sodium consumption, physical 

activity (tertiles: ≤57.4, 57.4-152, >152), smoking, alcohol intake, and Estimated glomerular filtration rate (eGFR). Model 2 was additionally 

adjusted for BMI. Metabolites are ordered by the Model 1 q-values, which are false discovery rate-adjusted p-values.  

* Pattern was derived from a principal component analysis followed by a varimax rotation. Only metabolites with loading >0.4 are listed.  

† Metabolites also associated with systolic blood pressure.  
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Table 5.3. Association between individual metabolites and diastolic blood pressure (DBP), n=434 

Metabolites Pathway Loading 

in lipid 

pattern* 

Model 1 Model 2 

Coefficient 

(95% CI) 

q-value Coefficient 

(95% CI) 

q-

value 

lignoceroyl sphingomyelin 

(d18:1/24:0) † 

Sphingomyelins ─ 4.85 (3.19, 6.52) 2E-05 4.28 (2.62, 5.93) 0.001 

behenoyl sphingomyelin 

(d18:1/22:0) † 

Sphingomyelins ─ 6.16 (3.9, 8.43) 1E-04 5.09 (2.8, 7.39) 0.004 

tricosanoyl sphingomyelin 

(d18:1/23:0)  † 

Sphingomyelins ─ 4.95 (3.11, 6.8) 1E-04 4.12 (2.26, 5.98) 0.004 

cerotoylcarnitine (C26) † Fatty Acid Metabolism (Acyl 

Carnitine, Long Chain Saturated) 

0.42 3.09 (1.71, 4.46) 0.003 2.79 (1.45, 4.14) 0.008 

corticosterone Corticosteroids ─ -1.39 (-2.02, -

0.77) 

0.003 -1.11 (-1.74, -

0.49) 

0.033 

dihomolinolenate (20:3n3 or 3n6) 

† 

Long Chain Polyunsaturated Fatty 

Acid (n3 and n6) 

0.73 3.28 (1.77, 4.79) 0.004 2.83 (1.34, 4.31) 0.020 

sphingomyelin (d18:2/24:2) † Sphingomyelins ─ 2.8 (1.51, 4.09) 0.004 2.75 (1.5, 4) 0.004 
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myristoylcarnitine (C14) † Fatty Acid Metabolism (Acyl 

Carnitine, Long Chain Saturated) 

0.53 2.15 (1.13, 3.17) 0.005 2.19 (1.2, 3.18) 0.004 

cortolone glucuronide (1) Corticosteroids ─ 2.34 (1.22, 3.45) 0.005 1.7 (0.56, 2.83) 0.112 

behenoyl dihydrosphingomyelin 

(d18:0/22:0) 

Dihydrosphingomyelins ─ 1.84 (0.95, 2.72) 0.006 1.2 (0.27, 2.14) 0.182 

sphingomyelin (d18:1/21:0, 

d17:1/22:0, d16:1/23:0) † 

Sphingomyelins ─ 3.85 (1.96, 5.74) 0.007 2.73 (0.79, 4.67) 0.133 

1-palmitoyl-2-linoleoyl-GPI 

(16:0/18:2) † 

Phosphatidylinositol (PI) ─ 3.46 (1.75, 5.18) 0.007 3.11 (1.43, 4.79) 0.024 

cis-4-decenoylcarnitine (C10:1) Fatty Acid Metabolism (Acyl 

Carnitine, Monounsaturated) 

0.44 1.47 (0.73, 2.21) 0.008 1.52 (0.81, 2.24) 0.006 

laurylcarnitine (C12) † Fatty Acid Metabolism (Acyl 

Carnitine, Medium Chain) 

0.49 1.63 (0.8, 2.46) 0.009 1.72 (0.91, 2.52) 0.006 

linoleate (18:2n6) Long Chain Polyunsaturated Fatty 

Acid (n3 and n6) 

0.80 2.65 (1.26, 4.04) 0.013 2.44 (1.08, 3.81) 0.030 

decanoylcarnitine (C10) Fatty Acid Metabolism (Acyl 

Carnitine, Medium Chain) 

0.48 1.43 (0.67, 2.19) 0.014 1.46 (0.72, 2.2) 0.013 

1-palmitoleoylglycerol (16:1) † Monoacylglycerol 0.57 1.45 (0.68, 2.23) 0.014 1.05 (0.27, 1.84) 0.157 
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palmitate (16:0) Long Chain Saturated Fatty Acid 0.80 3.51 (1.62, 5.41) 0.014 3.11 (1.26, 4.97) 0.054 

cis-4-decenoate Medium Chain Fatty Acid ─ 2.06 (0.95, 3.17) 0.014 2.03 (0.95, 3.11) 0.021 

1-myristoyl-2-arachidonoyl-GPC 

(14:0/20:4) † 

Phosphatidylcholine (PC) ─ 2.29 (1.05, 3.53) 0.014 1.59 (0.33, 2.85) 0.188 

5-dodecenoylcarnitine (C12:1) Fatty Acid Metabolism (Acyl 

Carnitine, Monounsaturated) 

0.50 1.43 (0.66, 2.2) 0.014 1.53 (0.78, 2.29) 0.009 

1-dihomo-linoleoylglycerol 

(20:2) 

Monoacylglycerol 0.64 1.39 (0.62, 2.15) 0.018 1.06 (0.3, 1.83) 0.141 

octanoylcarnitine (C8) Fatty Acid Metabolism (Acyl 

Carnitine, Medium Chain) 

0.51 1.74 (0.78, 2.71) 0.018 1.83 (0.9, 2.77) 0.014 

1-linoleoylglycerol (18:2) Monoacylglycerol 0.63 1.54 (0.68, 2.39) 0.018 1.14 (0.28, 2) 0.161 

1-dihomo-linolenylglycerol 

(20:3) 

Monoacylglycerol 0.66 1.49 (0.65, 2.33) 0.020 1.02 (0.17, 1.87) 0.225 

palmitoylcarnitine (C16) † Fatty Acid Metabolism (Acyl 

Carnitine, Long Chain Saturated) 

0.50 3.57 (1.55, 5.59) 0.021 3.33 (1.36, 5.3) 0.051 

tetrahydrocortisone glucuronide 

(5) 

Corticosteroids ─ 1.65 (0.7, 2.6) 0.024 1.22 (0.27, 2.17) 0.182 
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1-palmitoyl-2-arachidonoyl-GPI 

(16:0/20:4) † 

Phosphatidylinositol (PI) ─ 2.6 (1.11, 4.1) 0.024 2.19 (0.72, 3.67) 0.112 

sphingomyelin (d18:2/16:0, 

d18:1/16:1) † 

Sphingomyelins ─ 5.09 (2.15, 8.03) 0.024 3.9 (0.97, 6.82) 0.161 

hexanoylcarnitine (C6) Fatty Acid Metabolism (Acyl 

Carnitine, Medium Chain) 

0.55 1.79 (0.75, 2.83) 0.025 1.83 (0.82, 2.84) 0.027 

sphingomyelin (d18:2/14:0, 

d18:1/14:1) † 

Sphingomyelins ─ 3.31 (1.38, 5.24) 0.025 2.36 (0.42, 4.3) 0.217 

1-arachidonoyl-GPI (20:4) Lysophospholipid 0.55 3.53 (1.46, 5.6) 0.026 2.99 (0.95, 5.02) 0.118 

sphingomyelin (d18:1/14:0, 

d16:1/16:0) † 

Sphingomyelins ─ 3.95 (1.63, 6.27) 0.026 2.65 (0.29, 5.01) 0.279 

cholesterol † Sterol ─ 4.78 (1.98, 7.59) 0.026 4.15 (1.4, 6.9) 0.112 

2-palmitoleoylglycerol (16:1) Monoacylglycerol 0.46 1.14 (0.46, 1.82) 0.031 0.81 (0.13, 1.5) 0.237 

hydantoin-5-propionate Histidine Metabolism ─ 1.45 (0.58, 2.32) 0.032 1.32 (0.47, 2.17) 0.094 

1-palmitoyl-2-arachidonoyl-GPC 

(16:0/20:4n6) † 

Phosphatidylcholine (PC) ─ 3.94 (1.55, 6.33) 0.035 2.94 (0.55, 5.32) 0.206 

p-cresol sulfate Benzoate Metabolism ─ -1.01 (-1.63, -0.4) 0.036 -0.88 (-1.48, -

0.27) 

0.118 
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palmitoleate (16:1n7) Long Chain Monounsaturated 

Fatty Acid 

0.70 1.8 (0.69, 2.91) 0.040 1.71 (0.63, 2.79) 0.077 

Coefficient (95% confidence interval) indicates DBP (mmHg) associated with a fold increase of the relative abundance of a given metabolite in 

linear regression. Model 1 was adjusted for age, sex, provinces, batch, urbanization index (tertiles: ≤64.2, 64.2-81.5, >81.5), per capita household 

income (tertiles: ≤10, 10-21.6, >21.6), education, total energy intake, animal-source food consumption, sodium consumption, physical activity 

(tertiles: ≤57.4, 57.4-152, >152), smoking, alcohol intake, and Estimated glomerular filtration rate (eGFR). Model 2 was additionally adjusted for 

BMI. Metabolites are ordered by the Model 1 q-values, which are false discovery rate-adjusted p-values.  

* Pattern was derived from principal component analysis followed by a varix rotation. Only metabolites with loading > 0.4 are listed. 

† Metabolites also associated with diastolic blood pressure.  
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Table 5.4. Metabolic pathway analysis  

  Systolic blood pressure (SBP) Diastolic blood pressure (DBP) 

 m* k* 

Enrichment 

score* 

p-value† q-value† k* 

Enrichment 

score* 

p-value† q-value† 

Benzoate Metabolism 30 0 -- -- -- 1 0.77 1 1 

Corticosteroids 6 0 -- -- -- 3 12.47 0.001 0.005 

Diacylglycerol 3 2 16.23 0.004 0.019 0 -- -- -- 

Dihydrosphingomyelins 5 0 -- -- -- 1 4.73 0.198 0.337 

Dipeptide 14 1 1.67 0.418 0.496 0 -- -- -- 

Fatty Acid Metabolism (Acyl Carnitine, Long 

Chain Saturated) 

6 3 14.48 9E-04 0.009 3 14.48 0.001 0.005 

Fatty Acid Metabolism (Acyl Carnitine, 

Medium Chain) 

6 1 4.54 0.206 0.301 4 19.96 4E-05 3E-04 

Fatty Acid Metabolism (Acyl Carnitine, 

Monounsaturated) 

9 0 -- -- -- 2 6.22 0.054 0.131 

Fatty Acid Metabolism (Acyl Carnitine, Short 

Chain) 

1 1 27.36 0.038 0.103 0 -- -- -- 

Fatty Acid Metabolism (Acyl Glycine) 5 1 4.73 0.175 0.277 0 -- -- -- 
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Histidine Metabolism 16 0 -- -- -- 1 1.46 0.509 0.577 

Long Chain Monounsaturated Fatty Acid 7 0 -- -- -- 1 3.37 0.266 0.348 

Long Chain Polyunsaturated Fatty Acid (n3 

and n6) 

16 2 3.00 0.119 0.270 2 3.00 0.149 0.317 

Long Chain Saturated Fatty Acid 7 0 -- -- -- 1 3.37 0.266 0.348 

Lysophospholipid 27 0 -- -- -- 1 0.85 1 1 

Medium Chain Fatty Acid 11 0 -- -- -- 1 2.14 0.386 0.469 

Methionine, Cysteine, SAM and Taurine 

Metabolism 

22 1 1.06 0.574 0.574 0 -- -- -- 

Monoacylglycerol 14 1 1.67 0.418 0.496 5 9.35 0.0002 0.001 

Pantothenate and CoA Metabolism 1 1 23.76 0.038 0.103 0 -- -- -- 

Partially Characterized Molecule 17 1 1.37 0.482 0.539 0 -- -- -- 

Phosphatidylcholine (PC) 18 4 5.63 0.004 0.019 2 2.66 0.180 0.337 

Phosphatidylinositol (PI) 5 2 9.72 0.013 0.049 2 9.72 0.017 0.048 

Purine Metabolism, Adenine containing 5 1 4.73 0.175 0.277 0 -- -- -- 

Purine Metabolism, Guanine containing 4 1 5.92 0.142 0.270 0 -- -- -- 

Sphingomyelins 28 8 8.07 3E-06 6E-05 8 8.07 1E-05 2E-04 

Sterol 7 1 3.37 0.236 0.320 1 3.37 0.266 0.348 
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Urea cycle; Arginine and Proline Metabolism 21 1 1.11 0.557 0.574 0 -- --  

Vitamin A Metabolism 4 1 5.92 0.142 0.270 0 -- --  

* Enrichment score was calculated using (k/m)/[(n-k)/(N-m)], where k is the number of metabolites associated with SBP or DBP in the pathway 

(false discovery rate adjusted p-value in linear regression Model 1, q-value<0.05), m is the total number of tested metabolites in the pathway, n is 

the total number of known metabolites associated with SBP (n=34) or DBP (n=39), and N is the total number of known metabolites (N=904).  

† P-value for each pathway was calculated using Fisher’s exact test and false discovery rate adjusted (q-value) across eligible pathways (i.e., 

containing at least one metabolite associated with SBP or DBP).  
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Figure 5.1. Microbial between-person diversity (β-diversity) assessed using principal coordinate analysis 

(PCoA) by systolic blood pressure (SBP). MDS, multidivisional scaling (i.e., PCoA axis). For better 

visualization of the separation, SBP (mmHg) was categorized to quartiles. Plot legend shows the color 

and range of SBP for each quartile. Centroids illustrate the 95% CI for the mean location of each SBP 

quartile. Because SBP show separation along MDS4 only, the 10 taxa had the greatest contribution to 

MDS4 are shown as vectors, indicating directions and strengths (vector lengths) of their associations 

along PCoA axes. Table S5.1 showed the full list of taxa scores for each axis. In permutational 

multivariate analysis of variance (PERMANOVA), SBP (continuous) had R2 of 2.01% and p-value of 

0.002, after adjusting for age, sex, provinces, urbanization index (tertiles: ≤64.2, 64.2-81.5, >81.5), per 

capita household income (tertiles: ≤10, 10-21.6, >21.6), education, total energy intake, animal-source 

food consumption, sodium consumption, physical activity (tertiles: ≤57.4, 57.4-152, >152), smoking, 

alcohol intake, and estimated glomerular filtration rate. Results remained the same after additionally 

adjustment of BMI.  
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Table S5.1. Taxa scores for principal coordinate analysis (PCoA) axes (n=1,003) 

MDS1 MDS2 MDS3 MDS4 phylum class order family genus 

0.44 0.45 - - Euryarchaeota Methanobacteria Methanobacteriales Methanobacteriacea

e 

Methanobrevibacte

r 

- - - 0.67 Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Rothia 

0.48 - - - Actinobacteria Actinobacteria Actinomycetales Nocardiaceae Rhodococcus 

-0.70 - -0.64 - Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium 

- - 0.57 -0.86 Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Adlercreutzia 

- - 0.80 -0.51 Actinobacteria Coriobacteriia Coriobacteriales Coriobacteriaceae Eggerthella 

0.45 - - - Bacteroidetes Bacteroidia Bacteroidales 
 

0.46 - - - Bacteroidetes Bacteroidia Bacteroidales [Barnesiellaceae] 

0.42 - - - Bacteroidetes Bacteroidia Bacteroidales [Odoribacteraceae] Odoribacter 

0.74 - - - Bacteroidetes Bacteroidia Bacteroidales [Paraprevotellaceae] [Prevotella] 

0.96 0.85 - - Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides 

1.01 0.67 - - Bacteroidetes Bacteroidia Bacteroidales Porphyromonadacea

e 

Parabacteroides 

1.33 0.70 - - Bacteroidetes Bacteroidia Bacteroidales Prevotellaceae Prevotella 

0.77 - - - Bacteroidetes Bacteroidia Bacteroidales Rikenellaceae 
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1.20 - - - Bacteroidetes Bacteroidia Bacteroidales S24-7 
 

- - -0.67 - Cyanobacteria 4C0d-2 YS2 
  

0.45 - - - Firmicutes Bacilli Bacillales 
  

- - - 0.49 Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 

- -0.63 0.73 0.80 Firmicutes Bacilli Lactobacillales Leuconostocaceae 

- -0.69 0.93 - Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus 

0.45 0.50 - - Firmicutes Clostridia Clostridiales Christensenellaceae 

- - 0.49 - Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium 

- - 0.70 - Firmicutes Clostridia Clostridiales Eubacteriaceae Pseudoramibacter_

Eubacterium 

- 0.51 - - Firmicutes Clostridia Clostridiales Lachnospiraceae Anaerostipes 

- - 0.43 -0.41 Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia 

- - - -0.52 Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus 

- 0.83 - - Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospira 

- 0.46 - - Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia 

- - 0.63 - Firmicutes Clostridia Clostridiales Peptococcaceae Peptococcus 

- -0.43 - - Firmicutes Clostridia Clostridiales Peptostreptococcaceae 

- 0.55 - - Firmicutes Clostridia Clostridiales Ruminococcaceae 
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0.51 0.80 - - Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium 

0.57 0.50 - - Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira 

- 0.45 - - Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus 

0.52 0.67 - - Firmicutes Clostridia Clostridiales Veillonellaceae Phascolarctobacteri

um 

- - - 0.48 Firmicutes Clostridia Clostridiales Veillonellaceae Veillonella 

0.45 - - - Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae [Eubacterium] 

0.58 - -0.74 - Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Catenibacterium 

- - 0.44 - Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Coprobacillus 

- 0.49 - - Firmicutes Erysipelotrichi Erysipelotrichales Erysipelotrichaceae Holdemania 

- - 0.57 0.54 Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 

0.56 - - - Proteobacteria Alphaproteobact

eria 

Rhizobiales Bradyrhizobiaceae 

0.54 - - - Proteobacteria Alphaproteobact

eria 

Rhodobacterales Rhodobacteraceae 

0.62 - - - Proteobacteria Betaproteobacte

ria 

Burkholderiales Alcaligenaceae Sutterella 
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0.80 -0.70 - - Proteobacteria Betaproteobacte

ria 

Burkholderiales Comamonadaceae 

1.06 -1.01 - - Proteobacteria Betaproteobacte

ria 

Burkholderiales Comamonadaceae Delftia 

0.40 -0.46 - - Proteobacteria Betaproteobacte

ria 

Burkholderiales Comamonadaceae Other 

1.24 -1.03 - -0.50 Proteobacteria Betaproteobacte

ria 

Burkholderiales Oxalobacteraceae Ralstonia 

0.43 - - - Proteobacteria Deltaproteobact

eria 

Desulfovibrionales Desulfovibrionaceae Desulfovibrio 

- - 0.50 0.71 Proteobacteria Gammaproteoba

cteria 

Enterobacteriales Enterobacteriaceae 

- - - 0.71 Proteobacteria Gammaproteoba

cteria 

Enterobacteriales Enterobacteriaceae Serratia 

- - 0.56 0.81 Proteobacteria Gammaproteoba

cteria 

Enterobacteriales Enterobacteriaceae Other 

0.65 -0.48 - - Proteobacteria Gammaproteoba

cteria 

Pseudomonadales Moraxellaceae Acinetobacter 
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0.51 -0.63 - - Proteobacteria Gammaproteoba

cteria 

Xanthomonadales Xanthomonadaceae 

0.74 0.42 - -0.41 Tenericutes Mollicutes RF39 
  

0.44 - - - TM7 TM7-3 
   

- 0.79 - - Verrucomicrob

ia 

Verrucomicrobi

ae 

Verrucomicrobiales Verrucomicrobiacea

e 

Akkermansia 

0.84 - - - Other Other Other Other Other 

MDS, multidimensional scaling. PCoA was performed for 1,008 taxa based on Bray-Curtis distance matrix. The first four axes each explained 

8.61, 5.58, 3.54, and 3.12 percent variance of gut microbiota, respectively. Taxa with scores ≥ 0.40 or ≤ -0.40 are shown here. Taxa are ordered 

alphabetically. 
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Table S5.2. Metabolites loadings for principal component analysis (PCA) axes (n=434) 

Axis 1  Axis 2  Axis 3  Metabolites Class Pathway 

   (2 or 3)-decenoate (10:1n8 or n7) Lipid Medium Chain Fatty Acid 

- 0.58 - (2,4 or 2,5)-dimethylphenol sulfate Xenobiotics Food Component/Plant 

0.45 - - (R)-3-hydroxybutyrylcarnitine Lipid Fatty Acid Metabolism (Acyl Carnitine, Hydroxy) 

- 0.60 - (S)-3-hydroxybutyrylcarnitine Lipid Fatty Acid Metabolism (Acyl Carnitine, Hydroxy) 

- 0.45 - (S)-a-Amino-omega-caprolactam Xenobiotics Food Component/Plant 

0.44 - - 1-(1-enyl-oleoyl)-GPE (P-18:1)* Lipid Lysoplasmalogen 

- - 0.59 1-(1-enyl-palmitoyl)-GPC (P-16:0)* Lipid Lysoplasmalogen 

- - 0.52 1-(1-enyl-palmitoyl)-GPE (P-16:0)* Lipid Lysoplasmalogen 

- - 0.59 1-(1-enyl-stearoyl)-GPE (P-18:0)* Lipid Lysoplasmalogen 

- - 0.54 10-heptadecenoate (17:1n7) Lipid Long Chain Monounsaturated Fatty Acid 

- 0.79 - 10-nonadecenoate (19:1n9) Lipid Long Chain Monounsaturated Fatty Acid 

- 0.74 - 10-undecenoate (11:1n1) Lipid Medium Chain Fatty Acid 

- 0.47 - 13-HODE + 9-HODE Lipid Fatty Acid, Monohydroxy 

- - 0.51 16-hydroxypalmitate Lipid Fatty Acid, Monohydroxy 

- 0.56 - 17alpha-hydroxypregnenolone 3-sulfate Lipid Pregnenolone Steroids 

- - -0.41 1-arachidonoyl-GPI* (20:4)* Lipid Lysophospholipid 
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- 0.55 - 1-arachidonylglycerol (20:4) Lipid Monoacylglycerol 

- 0.62 - 1-carboxyethylisoleucine Amino Acid Leucine, Isoleucine and Valine Metabolism 

0.60 - - 1-carboxyethylleucine Amino Acid Leucine, Isoleucine and Valine Metabolism 

0.54 - - 1-carboxyethylphenylalanine Amino Acid Phenylalanine Metabolism 

0.66 - - 1-carboxyethyltyrosine Amino Acid Tyrosine Metabolism 

0.54 - - 1-carboxyethylvaline Amino Acid Leucine, Isoleucine and Valine Metabolism 

0.55 - - 1-dihomo-linolenylglycerol (20:3) Lipid Monoacylglycerol 

- 0.66 - 1-dihomo-linoleoylglycerol (20:2) Lipid Monoacylglycerol 

- 0.64 - 1-docosahexaenoylglycerol (22:6) Lipid Monoacylglycerol 

- 0.49 - 1-linolenoylglycerol (18:3) Lipid Monoacylglycerol 

- 0.56 - 1-linoleoylglycerol (18:2) Lipid Monoacylglycerol 

- 0.63 - 1-linoleoyl-GPE (18:2)* Lipid Lysophospholipid 

0.52 - - 1-methyl-4-imidazoleacetate Amino Acid Histidine Metabolism 

0.55 - - 1-methyladenosine Nucleotide Purine Metabolism, Adenine containing 

0.44 - - 1-methylhistidine Amino Acid Histidine Metabolism 

0.62 - - 1-myristoylglycerol (14:0) Lipid Monoacylglycerol 

- 0.43 - 1-oleoylglycerol (18:1) Lipid Monoacylglycerol 

- 0.67 - 1-oleoyl-GPC (18:1) Lipid Lysophospholipid 
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0.42 - - 1-oleoyl-GPE (18:1) Lipid Lysophospholipid 

0.61 - - 1-palmitoleoylglycerol (16:1)* Lipid Monoacylglycerol 

- 0.56 - 1-palmitoyl-2-linoleoyl-GPE (16:0/18:2) Lipid Phosphatidylethanolamine (PE) 

0.42 - - 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) Lipid Phosphatidylethanolamine (PE) 

0.43 - - 1-palmitoylglycerol (16:0) Lipid Monoacylglycerol 

- 0.57 - 1-palmitoyl-GPI* (16:0) Lipid Lysophospholipid 

- - 0.46 1-ribosyl-imidazoleacetate* Amino Acid Histidine Metabolism 

0.44 - - 1-stearoyl-2-linoleoyl-GPE (18:0/18:2)* Lipid Phosphatidylethanolamine (PE) 

0.43 - - 1-stearoyl-2-oleoyl-GPC (18:0/18:1) Lipid Phosphatidylcholine (PC) 

0.45 - - 1-stearoyl-2-oleoyl-GPE (18:0/18:1) Lipid Phosphatidylethanolamine (PE) 

0.48 - - 1-stearoyl-GPC (18:0) Lipid Lysophospholipid 

- - 0.51 1-stearoyl-GPI (18:0) Lipid Lysophospholipid 

- - 0.52 2,3-dihydroxy-5-methylthio-4-pentenoate 

(DMTPA)* 

Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

0.76 - - 2-arachidonoylglycerol (20:4) Lipid Monoacylglycerol 

- 0.40 - 2-hydroxy-3-methylvalerate Amino Acid Leucine, Isoleucine and Valine Metabolism 

0.48 - - 2-hydroxybutyrate/2-hydroxyisobutyrate Amino Acid Glutathione Metabolism 

- 0.57 - 2-hydroxyfluorene sulfate Xenobiotics Tobacco Metabolite 
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0.45 - - 2-hydroxypalmitate Lipid Fatty Acid, Monohydroxy 

- 0.48 - 2-hydroxysebacic acid Lipid Fatty Acid, Dicarboxylate 

0.45 - - 2-ketocaprylate Amino Acid Leucine, Isoleucine and Valine Metabolism 

- - -0.55 2-linoleoylglycerol (18:2) Lipid Monoacylglycerol 

- 0.58 - 2-methylbutyrylcarnitine (C5) Amino Acid Leucine, Isoleucine and Valine Metabolism 

0.55 - - 2-oleoylglycerol (18:1) Lipid Monoacylglycerol 

- 0.65 - 2-palmitoleoylglycerol (16:1)* Lipid Monoacylglycerol 

- 0.46 - 3-(3-amino-3-carboxypropyl)uridine* Nucleotide Pyrimidine Metabolism, Uracil containing 

0.69 - - 3-(4-hydroxyphenyl)lactate (HPLA) Amino Acid Tyrosine Metabolism 

0.58 - - 3-amino-2-piperidone Amino Acid Urea cycle; Arginine and Proline Metabolism 

0.52 - - 3-hydroxy-2-ethylpropionate Amino Acid Leucine, Isoleucine and Valine Metabolism 

0.54 - - 3-hydroxy-3-methylglutarate Lipid Mevalonate Metabolism 

0.67 - - 3-hydroxybutyrate (BHBA) Lipid Ketone Bodies 

- 0.60 - 3-hydroxydecanoate Lipid Fatty Acid, Monohydroxy 

- 0.66 - 3-hydroxyhexanoate Lipid Fatty Acid, Monohydroxy 

- 0.56 - 3-hydroxylaurate Lipid Fatty Acid, Monohydroxy 

- 0.63 - 3-hydroxyoctanoate Lipid Fatty Acid, Monohydroxy 

- 0.56 - 3-hydroxyoctanoylcarnitine (1) Lipid Fatty Acid Metabolism (Acyl Carnitine, Hydroxy) 



 

 

 

1
4
7
 

- 0.56 - 3-hydroxyoctanoylcarnitine (2) Lipid Fatty Acid Metabolism (Acyl Carnitine, Hydroxy) 

- 0.56 - 3-hydroxypyridine sulfate Xenobiotics Chemical 

0.53 - - 3-indoleglyoxylic acid Xenobiotics Food Component/Plant 

0.41 - - 3-methoxytyramine sulfate Amino Acid Tyrosine Metabolism 

0.57 - - 3-methyl catechol sulfate (1) Xenobiotics Benzoate Metabolism 

0.47 - - 3-methyl-2-oxobutyrate Amino Acid Leucine, Isoleucine and Valine Metabolism 

- - -0.65 3-methyl-2-oxovalerate Amino Acid Leucine, Isoleucine and Valine Metabolism 

- - -0.59 4-acetylphenyl sulfate Xenobiotics Benzoate Metabolism 

0.43 - - 4-guanidinobutanoate Amino Acid Guanidino and Acetamido Metabolism 

- - 0.51 4-HDoHE Lipid Docosanoid 

- - 0.59 4-methyl-2-oxopentanoate Amino Acid Leucine, Isoleucine and Valine Metabolism 

- - -0.60 4-vinylphenol sulfate Xenobiotics Benzoate Metabolism 

0.53 - - 5-(galactosylhydroxy)-L-lysine Amino Acid Lysine Metabolism 

0.65 - - 5,6-dihydrouridine Nucleotide Pyrimidine Metabolism, Uracil containing 

0.70 - - 5alpha-androstan-3beta,17beta-diol 

disulfate 

Lipid Androgenic Steroids 

- - -0.45 5-dodecenoate (12:1n7) Lipid Medium Chain Fatty Acid 
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- 0.58 - 5-dodecenoylcarnitine (C12:1) Lipid Fatty Acid Metabolism (Acyl Carnitine, 

Monounsaturated) 

- 0.50 - 5-HEPE Lipid Eicosanoid 

- - 0.57 5-HETE Lipid Eicosanoid 

- - 0.61 5-HETrE Lipid Eicosanoid 

- - 0.59 5-hydroxylysine Amino Acid Lysine Metabolism 

0.41 - - 5-methylthioribose Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

0.44 - - 5-methyluridine (ribothymidine) Nucleotide Pyrimidine Metabolism, Uracil containing 

0.48 - - 7-methylguanine Nucleotide Purine Metabolism, Guanine containing 

0.53 - - acetylcarnitine (C2) Lipid Fatty Acid Metabolism (Acyl Carnitine, Short 

Chain) 

- 0.50 - acisoga Amino Acid Polyamine Metabolism 

0.40 - - adrenate (22:4n6) Lipid Long Chain Polyunsaturated Fatty Acid (n3 and 

n6) 

- 0.71 - alpha-hydroxyisovalerate Amino Acid Leucine, Isoleucine and Valine Metabolism 

0.44 - - alpha-ketoglutarate Energy TCA Cycle 
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- - -0.57 alpha-tocopherol Cofactors and 

Vitamins 

Tocopherol Metabolism 

- - -0.48 androstenediol (3alpha, 17alpha) 

monosulfate (3) 

Lipid Androgenic Steroids 

- - -0.49 androstenediol (3beta,17beta) disulfate (1) Lipid Androgenic Steroids 

- - -0.50 androstenediol (3beta,17beta) disulfate (2) Lipid Androgenic Steroids 

- 0.41 -0.47 androstenediol (3beta,17beta) 

monosulfate (1) 

Lipid Androgenic Steroids 

- - -0.48 arabitol/xylitol Carbohydrate Pentose Metabolism 

0.57 - - arachidate (20:0) Lipid Long Chain Saturated Fatty Acid 

- 0.47 - arachidonate (20:4n6) Lipid Long Chain Polyunsaturated Fatty Acid (n3 and 

n6) 

- 0.66 - argininate* Amino Acid Urea cycle; Arginine and Proline Metabolism 

0.46 - - ascorbic acid 3-sulfate* Cofactors and 

Vitamins 

Ascorbate and Aldarate Metabolism 

0.49 - - behenoyl sphingomyelin (d18:1/22:0)* Lipid Sphingomyelins 

- - 0.40 beta-citrylglutamate Amino Acid Glutamate Metabolism 
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0.43 - - bilirubin Cofactors and 

Vitamins 

Hemoglobin and Porphyrin Metabolism 

- - -0.52 bilirubin (E,E)* Cofactors and 

Vitamins 

Hemoglobin and Porphyrin Metabolism 

- - -0.45 bilirubin degradation product, 

C17H18N2O4 (2)** 

Partially 

Characterized 

Molecules 

Partially Characterized Molecules 

- - -0.49 branched-chain, straight-chain, or 

cyclopropyl 12:1 fatty acid* 

Partially 

Characterized 

Molecules 

Partially Characterized Molecules 

- 0.62 - butyrate/isobutyrate (4:0) Lipid Short Chain Fatty Acid 

- - 0.60 caprate (10:0) Lipid Medium Chain Fatty Acid 

- 0.49 - caproate (6:0) Lipid Medium Chain Fatty Acid 

- - 0.46 cerotoylcarnitine (C26)* Lipid Fatty Acid Metabolism (Acyl Carnitine, Long 

Chain Saturated) 

- 0.42 - C-glycosyltryptophan Amino Acid Tryptophan Metabolism 

0.72 - - cholesterol Lipid Sterol 

- - 0.42 choline Lipid Phospholipid Metabolism 
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0.47 - - cis-4-decenoate Lipid Medium Chain Fatty Acid 

- 0.61 - cis-4-decenoylcarnitine (C10:1) Lipid Fatty Acid Metabolism (Acyl Carnitine, 

Monounsaturated) 

- 0.44 - citrulline Amino Acid Urea cycle; Arginine and Proline Metabolism 

0.54 - - creatinine Amino Acid Creatine Metabolism 

0.61 - - cystathionine Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

0.47 - - cysteine Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

- - -0.53 cysteine s-sulfate Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

-  0.47 decanoylcarnitine (C10) Lipid Fatty Acid Metabolism (Acyl Carnitine, Medium 

Chain) 

- 0.48 - dehydroepiandrosterone sulfate (DHEA-

S) 

Lipid Androgenic Steroids 

- - -0.42 dihomolinoleate (20:2n6) Lipid Long Chain Polyunsaturated Fatty Acid (n3 and 

n6) 
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- 0.74 - dihomolinolenate (20:3n3 or 3n6) Lipid Long Chain Polyunsaturated Fatty Acid (n3 and 

n6) 

- 0.73 - dimethylarginine (ADMA + SDMA) Amino Acid Urea cycle; Arginine and Proline Metabolism 

0.70 - - docosadienoate (22:2n6) Lipid Long Chain Polyunsaturated Fatty Acid (n3 and 

n6) 

- 0.50 - docosahexaenoate (DHA; 22:6n3) Lipid Long Chain Polyunsaturated Fatty Acid (n3 and 

n6) 

- 0.70 - docosapentaenoate (DPA; 22:5n3) Lipid Long Chain Polyunsaturated Fatty Acid (n3 and 

n6) 

- 0.78 - docosatrienoate (22:3n3) Lipid Long Chain Polyunsaturated Fatty Acid (n3 and 

n6) 

- 0.54 - dodecadienoate (12:2)* Lipid Fatty Acid, Dicarboxylate 

- 0.62 - dopamine 3-O-sulfate Amino Acid Tyrosine Metabolism 

0.47 - - eicosapentaenoate (EPA; 20:5n3) Lipid Long Chain Polyunsaturated Fatty Acid (n3 and 

n6) 

- 0.47 - eicosenoate (20:1n9 or 1n11) Lipid Long Chain Monounsaturated Fatty Acid 

- 0.57 - formiminoglutamate Amino Acid Histidine Metabolism 

0.52 - - glucuronate Carbohydrate Aminosugar Metabolism 
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0.42 - - glutamate Amino Acid Glutamate Metabolism 

- 0.42 - glutamine conjugate of C6H10O2 (2)* Partially 

Characterized 

Molecules 

Partially Characterized Molecules 

- 0.47 - glutaroylcarnitine (C5) Amino Acid Lysine Metabolism 

0.41 - - glycerol Lipid Glycerolipid Metabolism 

- 0.65 - glycerophosphoethanolamine Lipid Phospholipid Metabolism 

- - 0.53 guaiacol sulfate Xenobiotics Benzoate Metabolism 

0.43 - - heptanoate (7:0) Lipid Medium Chain Fatty Acid 

- - 0.42 hexadecadienoate (16:2n6) Lipid Long Chain Polyunsaturated Fatty Acid (n3 and 

n6) 

- 0.74 - hexadecanedioate (C16) Lipid Fatty Acid, Dicarboxylate 

- 0.47 - hexanoylcarnitine (C6) Lipid Fatty Acid Metabolism (Acyl Carnitine, Medium 

Chain) 

- 0.54 - hexanoylglutamine Lipid Fatty Acid Metabolism (Acyl Glutamine) 

- 0.52 - homocitrulline Amino Acid Urea cycle; Arginine and Proline Metabolism 

0.57 - - hydroxyasparagine Amino Acid Alanine and Aspartate Metabolism 

0.69 - - hydroxy-N6,N6,N6-trimethyllysine* Amino Acid Lysine Metabolism 
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0.71 - - hydroxypalmitoyl sphingomyelin 

(d18:1/16:0(OH))** 

Lipid Sphingomyelins 

- - 0.42 imidazole lactate Amino Acid Histidine Metabolism 

0.46 - - indolelactate Amino Acid Tryptophan Metabolism 

0.64 - - isoleucine Amino Acid Leucine, Isoleucine and Valine Metabolism 

0.42 - - isovalerate (C5) Amino Acid Leucine, Isoleucine and Valine Metabolism 

- - 0.59 kynurenine Amino Acid Tryptophan Metabolism 

0.59 - - lactate Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate 

Metabolism 

0.45 - - laurate (12:0) Lipid Medium Chain Fatty Acid 

- 0.43 - laurylcarnitine (C12) Lipid Fatty Acid Metabolism (Acyl Carnitine, Medium 

Chain) 

- 0.49 - leukotriene B4 Lipid Eicosanoid 

- - 0.63 linoleate (18:2n6) Lipid Long Chain Polyunsaturated Fatty Acid (n3 and 

n6) 

- 0.80 - linolenate (18:3n3 or 3n6) Lipid Long Chain Polyunsaturated Fatty Acid (n3 and 

n6) 

- 0.72 - linoleoyl ethanolamide Lipid Endocannabinoid 
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- 0.54 - linoleoylcarnitine (C18:2)* Lipid Fatty Acid Metabolism (Acyl Carnitine, 

Polyunsaturated) 

- 0.41 - margarate (17:0) Lipid Long Chain Saturated Fatty Acid 

- 0.74 - methionine sulfone Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

0.44 - - methionine sulfoxide Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

- - 0.61 methylnaphthyl sulfate (2)* Xenobiotics Chemical 

0.44 - - myristate (14:0) Lipid Long Chain Saturated Fatty Acid 

- 0.70 - myristoleate (14:1n5) Lipid Long Chain Monounsaturated Fatty Acid 

- 0.61 - myristoleoylcarnitine (C14:1)* Lipid Fatty Acid Metabolism (Acyl Carnitine, 

Monounsaturated) 

- 0.51 - myristoyl dihydrosphingomyelin 

(d18:0/14:0)* 

Lipid Dihydrosphingomyelins 

- - 0.47 myristoylcarnitine (C14) Lipid Fatty Acid Metabolism (Acyl Carnitine, Long 

Chain Saturated) 

- 0.53 - N,N,N-trimethyl-alanylproline betaine 

(TMAP) 

Amino Acid Urea cycle; Arginine and Proline Metabolism 
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0.60 - - N,N-dimethyl-pro-pro Peptide Modified Peptides 

0.73 - - N1-methylinosine Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 

containing 

0.57 - - N2,N2-dimethylguanosine Nucleotide Purine Metabolism, Guanine containing 

0.60 - - N2,N5-diacetylornithine Amino Acid Urea cycle; Arginine and Proline Metabolism 

0.56 - - N6,N6,N6-trimethyllysine Amino Acid Lysine Metabolism 

0.58 - - N6-acetyllysine Amino Acid Lysine Metabolism 

0.69 - - N6-carbamoylthreonyladenosine Nucleotide Purine Metabolism, Adenine containing 

0.65 - - N-acetylalanine Amino Acid Alanine and Aspartate Metabolism 

0.69 - - N-acetylglucosamine/N-

acetylgalactosamine 

Carbohydrate Aminosugar Metabolism 

0.65 - - N-acetyl-isoputreanine* Amino Acid Polyamine Metabolism 

0.42 - - N-acetylneuraminate Carbohydrate Aminosugar Metabolism 

0.65 - - N-acetylputrescine Amino Acid Polyamine Metabolism 

0.50 - - N-acetylserine Amino Acid Glycine, Serine and Threonine Metabolism 

0.67 - - N-acetyltaurine Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

0.66 - - N-acetylthreonine Amino Acid Glycine, Serine and Threonine Metabolism 
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0.73 - - N-acetylvaline Amino Acid Leucine, Isoleucine and Valine Metabolism 

0.42 - - N-delta-acetylornithine Amino Acid Urea cycle; Arginine and Proline Metabolism 

0.50 - - N-formylmethionine Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

0.55 - - N-linoleoyltaurine* Lipid Endocannabinoid 

- 0.46 - N-oleoyltaurine Lipid Endocannabinoid 

- 0.63 - nonadecanoate (19:0) Lipid Long Chain Saturated Fatty Acid 

- 0.58 - o-cresol sulfate Xenobiotics Benzoate Metabolism 

0.50 - - octadecanedioate (C18) Lipid Fatty Acid, Dicarboxylate 

- 0.48 - octanoylcarnitine (C8) Lipid Fatty Acid Metabolism (Acyl Carnitine, Medium 

Chain) 

- 0.51 - oleate/vaccenate (18:1) Lipid Long Chain Monounsaturated Fatty Acid 

- 0.80 - oleoyl ethanolamide Lipid Endocannabinoid 

- 0.66 - oleoylcarnitine (C18) Lipid Fatty Acid Metabolism (Acyl Carnitine, 

Monounsaturated) 

- 0.54 - ornithine Amino Acid Urea cycle; Arginine and Proline Metabolism 

0.51 - - orotidine Nucleotide Pyrimidine Metabolism, Orotate containing 

0.71 - - O-sulfo-L-tyrosine Xenobiotics Chemical 
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0.63 - - palmitate (16:0) Lipid Long Chain Saturated Fatty Acid 

- 0.80 - palmitoleate (16:1n7) Lipid Long Chain Monounsaturated Fatty Acid 

- 0.70 - palmitoleoylcarnitine (C16:1)* Lipid Fatty Acid Metabolism (Acyl Carnitine, 

Monounsaturated) 

- 0.55 - palmitoyl dihydrosphingomyelin 

(d18:0/16:0)* 

Lipid Dihydrosphingomyelins 

- - 0.52 palmitoyl ethanolamide Lipid Endocannabinoid 

- 0.56 - palmitoyl sphingomyelin (d18:1/16:0) Lipid Sphingomyelins 

- - 0.53 palmitoylcarnitine (C16) Lipid Fatty Acid Metabolism (Acyl Carnitine, Long 

Chain Saturated) 

- 0.50 - pantothenate (Vitamin B5) Cofactors and 

Vitamins 

Pantothenate and CoA Metabolism 

0.48 - - pentadecanoate (15:0) Lipid Long Chain Saturated Fatty Acid 

- 0.51 - phenylalanine Amino Acid Phenylalanine Metabolism 

0.44 - - phenyllactate (PLA) Amino Acid Phenylalanine Metabolism 

0.63 - - picolinoylglycine Lipid Fatty Acid Metabolism (Acyl Glycine) 

0.58 - - pregnen-diol disulfate* Lipid Pregnenolone Steroids 

- - -0.53 pregnenediol sulfate (C21H34O5S)* Lipid Pregnenolone Steroids 
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- - -0.42 pregnenetriol disulfate* Lipid Pregnenolone Steroids 

- - -0.52 pregnenetriol sulfate* Lipid Pregnenolone Steroids 

- 0.42 -0.45 pregnenolone sulfate Lipid Pregnenolone Steroids 

- - -0.46 prolylglycine Peptide Dipeptide 

0.44 - - prolylhydroxyproline Amino Acid Urea cycle; Arginine and Proline Metabolism 

0.45 - - pseudouridine Nucleotide Pyrimidine Metabolism, Uracil containing 

0.77 - - pyroglutamine* Amino Acid Glutamate Metabolism 

0.55 - - pyruvate Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate 

Metabolism 

- - -0.43 quinolinate Cofactors and 

Vitamins 

Nicotinate and Nicotinamide Metabolism 

0.41 - - retinol (Vitamin A) Cofactors and 

Vitamins 

Vitamin A Metabolism 

0.46 - - ribitol Carbohydrate Pentose Metabolism 

0.49 - - S-adenosylhomocysteine (SAH) Amino Acid Methionine, Cysteine, SAM and Taurine 

Metabolism 

0.49 - - sebacate (C10-DC) Lipid Fatty Acid, Dicarboxylate 
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0.42 - - sphingomyelin (d17:1/16:0, d18:1/15:0, 

d16:1/17:0)* 

Lipid Sphingomyelins 

- - 0.56 sphingomyelin (d18:1/14:0, d16:1/16:0)* Lipid Sphingomyelins 

- - 0.49 sphingomyelin (d18:1/17:0, d17:1/18:0, 

d19:1/16:0) 

Lipid Sphingomyelins 

- - 0.59 sphingomyelin (d18:1/18:1, d18:2/18:0) Lipid Sphingomyelins 

- - 0.53 sphingomyelin (d18:1/19:0, d19:1/18:0)* Lipid Sphingomyelins 

- - 0.55 sphingomyelin (d18:1/20:0, d16:1/22:0)* Lipid Sphingomyelins 

- - 0.51 sphingomyelin (d18:1/20:1, d18:2/20:0)* Lipid Sphingomyelins 

- - 0.51 sphingomyelin (d18:1/21:0, d17:1/22:0, 

d16:1/23:0)* 

Lipid Sphingomyelins 

- - 0.57 sphingomyelin (d18:1/22:1, d18:2/22:0, 

d16:1/24:1)* 

Lipid Sphingomyelins 

- - 0.56 sphingomyelin (d18:2/14:0, d18:1/14:1)* Lipid Sphingomyelins 

- - 0.57 sphingomyelin (d18:2/16:0, d18:1/16:1)* Lipid Sphingomyelins 

- - 0.56 sphingomyelin (d18:2/18:1)* Lipid Sphingomyelins 

- - 0.42 sphingomyelin (d18:2/21:0, d16:2/23:0)* Lipid Sphingomyelins 
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- - 0.59 sphingomyelin (d18:2/23:0, d18:1/23:1, 

d17:1/24:1)* 

Lipid Sphingomyelins 

- - 0.66 sphingomyelin (d18:2/23:1)* Lipid Sphingomyelins 

- - 0.52 sphingomyelin (d18:2/24:1, d18:1/24:2)* Lipid Sphingomyelins 

- - 0.45 stearate (18:0) Lipid Long Chain Saturated Fatty Acid 

- 0.65 - stearidonate (18:4n3) Lipid Long Chain Polyunsaturated Fatty Acid (n3 and 

n6) 

- 0.59 - stearoyl sphingomyelin (d18:1/18:0) Lipid Sphingomyelins 

- - 0.44 suberate (C8-DC) Lipid Fatty Acid, Dicarboxylate 

0.44 - - succinylcarnitine (C4) Energy TCA Cycle 

0.57 - - sulfate* Xenobiotics Chemical 

0.53 - - tetradecadienedioate (C14:2-DC)* Lipid Fatty Acid, Dicarboxylate 

- 0.46 - tetradecadienoate (14:2)* Lipid Fatty Acid, Dicarboxylate 

- 0.59 - tetradecanedioate (C14) Lipid Fatty Acid, Dicarboxylate 

- 0.50 - thioproline Xenobiotics Chemical 

- - -0.44 tricosanoyl sphingomyelin (d18:1/23:0)* Lipid Sphingomyelins 

- - 0.46 tridecenedioate (C13:1-DC)* Lipid Fatty Acid, Dicarboxylate 

- 0.42 - tyramine O-sulfate Amino Acid Tyrosine Metabolism 
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0.44 - - undecanedioate (C11-DC) Lipid Fatty Acid, Dicarboxylate 

0.40 - - urea Amino Acid Urea cycle; Arginine and Proline Metabolism 

0.45 - - urocortisol glucuronide (4) aka 

tetrahydrocortisol glucuronide (5) 

Lipid Corticosteroids 

- 0.41 - vanillactate Amino Acid Tyrosine Metabolism 

0.65 - - xanthosine Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 

containing 

PCA was performed on 874 metabolites followed by a varimax rotation. The first three axes (i.e., principal component) each explained 9.63, 4.79, 

and 4.69 percent variance of metabolites, respectively. Metabolites with scores ≥ 0.40 or ≤ -0.40 are shown here. Metabolites are ordered 

alphabetically.  
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Table S5.3. Characteristics of the analysis sample (n=1,082)  

 Mean (SD) or n (%) 

Age, years 50.99 (9.14) 

Women, n (%) 589 (54.44%) 

Systolic blood pressure (SBP), mmHg 126.01 (17.43) 

Diastolic blood pressure (DBP), mmHg 80.70 (10.67) 

High blood pressure (self-reported or SBP/DBP≥130/80 mmHg) 676 (62.48%) 

Body mass index (BMI), kg/m2 23.78 (3.23) 

Estimated glomerular filtration rate (eGFR)*, mL/min/1.73m2 76.68 (14.38) 

Province, n (%)     

Guangxi 304 (28.10%)  

Guizhou 227 (20.98%) 

Henan 225 (20.79%) 

Hunan 326 (30.13%) 

Urbanization index†  68.65 (16.52)  

Per capita household income‡, 1000 yuan 19.01 (33.56) 

Completed high school education, n (%) 308 (28.47%) 

Total energy§, kcal 2001.31 (645.75) 
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Animal-source food consumption§, %kcal 21.70 (13.74) 

Sodium consumption§, mg 4042.60 (2046.17) 

Physical activity||, METS/week 161.6 (162.1) 

Ever smoking, n (%) 459 (42.42%)   

Drank alcohol last year, n (%) 321 (29.67%)  

Sample with gut microbiota data, n (%) 1,003 (92.70%) 

sample with plasma metabolites data, n (%) 434 (43.06%) 

Sample with both microbiota and metabolites data, n (%) 355 (32.80%) 

* eGFR was calculated based on the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation.  

† Urbanization index encompasses 12 components of urbanization, including population density, sanitation, and health infrastructure.  

‡ Per capita household income was estimated by dividing the total household income by the number of household members. 

§ Dietary intakes were measured by 3-consecutive 24h dietary recalls and household food inventories.  

6 Physical activity was estimated by 7-day physical activity (occupational, transportation, domestic, and leisure activities) recalls in METS.  
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Table S5.4. Associations between gut microbial within-person diversity (α-diversity) measures with systolic and diastolic blood pressure (SBP 

and DBP), n=1,003 

  SBP DBP 

  Model 1 Model 2 Model 1 Model 2 

 Mean 

(SD) 

β Coefficient 

(95% CI) 

P 

value 

β Coefficient 

(95% CI) 

P 

value 

β Coefficient 

(95% CI) 

P 

value 

β Coefficient 

(95% CI) 

P 

value 

Shannon 

index* 

2.59 

(0.30) 

0.90 

(-2.52, 4.33) 

0.60 0.51 

(-2.83, 3.86) 

0.76 -0.52 

(-2.72, 1.68) 

0.64 -0.83 

(-2.96, 1.31) 

0.45 

Richness† 99.14 

(27.51) 

0.01 

(-0.03, 0.05) 

0.59 0.01 

(-0.03, 0.05) 

0.64 -4E-04 

(-0.02, 0.02) 

0.97 -1E-03 

(-0.02, 0.02) 

0.91 

Model 1 was adjusted for age, sex, provinces, urbanization index (tertiles: ≤58.8, 58.8-78.8, >78.8), per capita household income (tertiles: ≤7.2, 

7.2-18, >18), education, total energy intake, animal-source food consumption, sodium consumption, physical activity (tertiles: ≤75, 75-192, >192), 

smoking, alcohol intake, and estimated glomerular filtration rate (eGFR). Model 2 was additionally adjusted for BMI. 

*Shannon index at genus level was calculated using − ∑ 𝑝𝑖𝑙𝑛𝑝𝑖, where 𝑝𝑖 is the proportional abundance of genera i.  

†Richness measured the number of distinct genera per subject with rarefication.  
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Table S5.5. Association between gut microbial principal coordinates analysis (PCoA) axes with systolic and diastolic blood pressure (SBP and 

DBP, mmHg), Coefficient (95% CI) 

 

 

Taxa contributing to each axis Eigen-

value 

Variance 

explained 

SBP DBP 

Model 1 Model 2 Model 1 Model 2 

MDS1 Prevotella 

Ralstonia 

S24-7 

Delftia 

Parabacteroides 

Bacteroides 

Unassigned 

Comamonadaceae 

Rikenellaceae 

RF39 

4.91 8.61% 18.08  

(-15.40, 

51.56) 

16.97  

(-15.70, 

49.64) 

3.27  

(-18.27, 

24.80) 

2.53  

(18.33, 

23.40) 

MDS 2 Ralstonia 

Delftia 

Bacteroides 

Lachnospira 

Faecalibacterium 

Akkermansia 

Comamonadaceae 

Prevotella 

Lactococcus 

Phascolarctobacterium 

3.18 5.58% 6.01  

(-27.13, 

39.16) 

4.80  

(-27.57, 

37.18) 

-4.89  

(-26.20, 

16.41)  

-5.67  

(-26.34, 

14.99) 

MDS3 Lactococcus 

Eggerthella 

Catenibacterium 

Leuconostocaceae 

YS2 

Bifidobacterium 

Peptococcus 

Adlercreutzia 

2.02 3.54% 15.45  

(-30.06, 

60.97) 

5.81  

(-38.69, 

50.30) 

3.96  

(-25.31, 

33.22) 

-2.97  

(-31.37, 

25.44) 



 

 

 

1
6
7
 

Pseudoramibacter_ 

Eubacterium 

Fusobacterium 

MDS4 Adlercreutzia 

Enterobacteriaceae_other 

Leuconostocaceae 

Serratia 

Enterobacteriaceae 

Rothia 

Fusobacterium 

Coprococcus 

Eggerthella 

Ralstonia 

1.80 3.12% 52.94  

(15.61, 

90.27)** 

38.90  

(2.19, 75.61) 

* 

16.60  

(-7.47, 

40.67) 

6.47  

(-17.01, 

29.95) 

MDS, multidimensional scaling. PCo were derived from principal coordinate analysis of 1,008 taxa based on Bray-Curtis distance matrix in 

microbiota analysis sample (n=1,008). Coefficient indicates SBP and DBP (mmHg) associated with each 1 unit increase in microbiota pattern 

score. Contributing taxa include taxa with the top 10 highest absolute scores for the respective PCo. Taxa are vertically ordered by their absolute 

values of scores (descending). A full list of scores is shown in Table S5.1. Model 1 was adjusted for age, sex, provinces, urbanization index 

(tertiles: ≤58.8, 58.8-78.8, >78.8), per capita household income (tertiles: ≤7.2, 7.2-18, >18), education, total energy intake, animal-source food 

consumption, sodium consumption, physical activity (tertiles: ≤75, 75-192, >192), smoking, alcohol intake, and estimated glomerular filtration 

rate (eGFR). Model 2 was additionally adjusted for BMI. “*” indicates p-value < 0.05; “**” indicates p-value<0.01 
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Figure S5.1. Sample flow chart.  
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Figure S5.2. Microbial between-person diversity (β-diversity) assessed using principal coordinate analysis 

(PCoA) by diastolic blood pressure (SBP). MDS, multidivisional scaling (i.e., PCoA axis). For better 

visualization of the separation, DBP was categorized to quartiles. Plot legend shows the color and range 

of DBP for each quartile. Centroids illustrate the 95% CI for the mean location of each DBP quartile. In 

permutational multivariate analysis of variance (PERMANOVA), DBP (continuous) had R2 of 1.42% and 

p-value of 0.026 in Model 1 and 0.046 in Model 2. Model 1 was adjusted for age, sex, provinces, 

urbanization index (tertiles: ≤64.2, 64.2-81.5, >81.5), per capita household income (tertiles: ≤10, 10-

21.6, >21.6), education, total energy intake, animal-source food consumption, sodium consumption, 

physical activity (tertiles: ≤57.4, 57.4-152, >152), smoking, alcohol intake, and estimated glomerular 

filtration rate. Model 2 was additionally adjusted for BMI.  
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CHAPTER 6. CIRCULATING SHORT-CHAIN FATTY ACIDS ARE POSITIVELY 

ASSOCIATED WITH ADIPOSITY MEASURES IN CHINESE ADULTS 

 

Overview  

Epidemiological studies suggest a positive association between obesity and fecal short-chain fatty 

acids (SCFAs) produced by microbial fermentation of dietary carbohydrates, while animal models 

suggest increased energy harvest through colonic SCFA production in obesity. However, there is a lack of 

human population-based studies with dietary intake data, plasma SCFAs, gut microbial, and 

anthropometric data.  

In 490 Chinese adults aged 30-68y, we examined the associations between key plasma SCFAs 

(butyrate/isobutyrate, isovalerate, and valerate measured by nontargeted plasma metabolomics) with BMI 

using multivariable-adjusted linear regression. We then assessed whether overweight (BMI≥24kg/m2) 

modified the association between dietary-precursors of SCFAs (insoluble fiber, total carbohydrates, and 

high-fiber foods) with plasma SCFAs. In a sub-sample (n=209) with gut metagenome data, we examined 

the association between gut microbial SCFA-producers with BMI.  

We found positive associations between butyrate/isobutyrate and BMI (p-value<0.05). The 

associations between insoluble fiber and butyrate/isobutyrate differed by overweight (p-value<0.10). 

There was no statistical evidence for an association between microbial SCFA-producers and BMI. In sum, 

plasma SCFAs were positively associated with BMI and that the colonic fermentation of fiber may differ 

for adults with versus without overweight.   
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Introduction 

Overall and central obesity are major risk factors for a wide range of chronic diseases, including 

cardiometabolic diseases [1-3]. As the prevalence of obesity has increased dramatically over the past 

decades around the world [1], many studies have been conducted to identify the biological determinants 

of obesity. Recent evidence has shown that the gut microbiota and microbiota-mediated metabolites like 

short-chain fatty acids (SCFAs) influence diet-induced obesity [4,5]. SCFAs like butyrate are major 

products of microbiota fermentation of dietary carbohydrates, especially soluble fiber and resistant starch 

[4]. In human studies, fiber-rich diets and Mediterranean diets have been shown to be positively 

associated with weight loss [6,7] and increased serum [8] and fecal SCFAs [9], respectively.    

However, studies have yielded incongruent results for the SCFA-obesity association, which involves 

various factors like diet and gut microbiota. Whereas several studies have demonstrated that dietary 

SCFA supplementation may be beneficial to weight loss through appetite regulation [10,11] and increases 

in lipid oxidation and energy expenditure [12], others have suggested that SCFA production may promote 

obesity [5,13-15] through pathways including de novo lipogenesis [13] and energy harvesting from diet 

by gut microbiota [5]. For example, a randomized, controlled study showed that colonic delivery of 

SCFA propionate (i.e., oral supplementation of inulin-propionate ester) reduced energy intake, weight 

gain, and intra-abdominal fat accretion in overweight adults [10]. In contrast, in a study of obesity-prone 

mice fed a macronutrient-matched and isoenergetic high-fat diet, Isken et al. suggested that colonic SCFA 

production potentially outweighed the beneficial effects of soluble fiber supplementation on diet-induced 

obesity via contribution to increased digested energy [15]. Additionally, mouse model and in vitro assays 

suggest that the gut microbiome of mice and humans with (versus without) obesity had increased capacity 

to harvest energy through colonic fermentation of dietary carbohydrates and SCFA production [5,13].       

There has been a lack of large population-based studies with large variation in dietary intake and gut 

microbiota composition to examine the incongruent experimental results in free-living people. Although a 

few community-based studies and case-control studies of fecal SCFAs in Western human populations 
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support positive associations between SCFAs with overall body mass and central adiposity [16-20], few 

population-based studies have examined plasma SCFAs, which, in contrast to fecal SFCAs, may better 

represent the fraction of SCFAs that enter the host blood stream as a potential source of energy [21]. 

Therefore, we aimed to investigate the associations between plasma SCFAs with two adiposity measures, 

body mass index (BMI) and waist-to-height ratio (WHtR) in a socio-demographically diverse cohort of 

Chinese adults consuming a range of traditional and Western diets. We also assessed whether overweight 

and abdominal obesity modified the association between dietary precursors of SCFAs and plasma SCFAs. 

In a sub-sample with gut metagenome data, we examined the association between gut microbial SCFA 

producers with BMI and WHtR.  

 

Methods 

Study sample 

We used nontargeted plasma metabolomics data from the 2015 China Health and Nutrition 

Survey (CHNS). Adults with anthropometry and diet data were ligible for the current study (n=500). We 

excluded participants if they were pregnant (n=1) or had missing covariates (n=9), resulting in an analysis 

sample of 490 adults, among which a subset of 209 adults also had gut metagenome data (Figure S1).   

Measures 

We detected three SCFAs among the 1,108 matched compounds: butyrate/isobutyrate, valerate, 

and isovalerate. Metabolon rescaled the raw area count of each metabolite within each run-day to a 

median of 1 to correct for differences in instrument inter-day tuning and imputed values below detection 

limits with the minimum. We log2 transformed the abundance of these three SCFAs. As the total SCFAs 

was also of interest, we log2 transformed the sum of the total abundance for all three SCFAs.  
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We calculated BMI as weight divided by squared height (kg/m2) and WHtR as waist 

circumference divided by height. We defined overweight as BMI ≥24 kg/m2 and abdominal obesity as 

WHtR ≥0.5, according to the optimal cut-off points to indicate cardiovascular diseases risk in Chinese 

adults [25,26].   

We included three measures of dietary precursors of SCFAs: insoluble fiber, total carbohydrates, 

and an a priori high-fiber food group (Table S1) consisting of: whole grains (e.g. millet), legumes (e.g. 

soybean curd), starchy roots (e.g. potato), vegetables (e.g. cabbage), mushrooms/seaweeds (e.g. Shitake 

mushroom), fruits (e.g. apple), nuts/seeds (e.g. walnut). We grouped insoluble fiber, carbohydrate, and 

high-fiber foods by tertiles to limit the influence of extreme consumers, allow for non-linearity of 

relationships, and preserve statistical power. In analysis of individual foods, we categorized those 

consumed by more than and less than 50% of the sample by median and any/no intake, respectively.  

For measures of gut microbial SCFA producers, we selected 56 potential SCFA-producing 

microbiota species based on literature search (Table S2) and calculated the total counts of the 56 selected 

species. We normalized and log10 transformed the raw counts of each species and the total counts of 

selected species [29]. For analysis of specific species, we dichotomized 27 rare species that present in less 

than 25% of the sample to yes/no detected in the sample.  

Statistical analysis 

We presented continuous variables as mean (SD) and categorical variables as number 

(proportion). We compared the characteristics by overweight and abdominal obesity using t-test for 

continuous variables and chi-square test for categorical variables.   

To determine the associations between plasma SCFAs with BMI and WHtR, we used a linear 

regression adjusting for the following covariates as guided by literature [4,31-36]: age, sex, batch run, 
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province, urbanization, education, income, energy intake, insoluble fiber intake, physical activity, 

smoking, and alcohol intake.   

To investigate whether overweight and abdominal obesity modified the association between 

dietary precursors of SCFAs (insoluble fiber, total carbohydrates and high-fiber foods) with plasma 

SCFAs, we assessed the interaction of each of these dietary precursors with overweight and abdominal 

obesity in linear regression models of plasma SFCAs using a Wald test at a nominal significance level of 

p-value <0.10. In an exploratory analysis, we examined the interaction of each individual types of foods 

included in the high-fiber food group with overweight and abdominal obesity in linear regression models 

of plasma SCFAs. Then, in the sub-sample also containing gut metagenome data, we examined (1) the 

association between the overall microbial SCFA producers (i.e., SCFA-producing species) with BMI and 

WHtR using permutational multivariate analysis of variance (PERMANOVA) based on Bray-Curtis 

distance with 999 permutations [37] and (2) the association between the total relative abundance of all 

microbial SCFA producers with BMI and WHtR using linear regression. In an exploratory analysis, we 

examined each individual microbial SCFA producer using linear regression. For sensitivity, we tested the 

associations between microbial SCFA producers and plasma SCFAs. All analyses were adjusted for 

covariates described above. 

We conducted sensitivity analysis by excluding participants who took antibiotics, pre/probiotics, 

or had diarrhea, irritable bowel syndrome (IBS), or inflammatory bowel disease (IBD), because these 

factors may affect the gut microbiome and therefore influence SCFA production and absorption. After 

applying these exclusion criteria, 462 adults remained in the analysis sample, among which 192 had gut 

metagenome data. We performed all statistical analyses in R 3.6.0 (http://www.r-project.org).  

  

http://www.r-project.org/
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Results 

The prevalence of overweight and abdominal obesity were 48.8% and 65.2%, respectively, in our 

analysis sample (Table 1). Adults with overweight were not different from those without overweight in 

terms of age, sex, plasma SCFAs, province, urbanization, education, income, diet, physical activity, 

smoking, and alcohol intake. Adults with abdominal obesity were older, less physically active, and had 

higher abundance of plasma butyrate/isobutyrate, isovalerate, and total SCFAs than those without 

abdominal obesity. 

We first examined the associations between plasma SCFAs and BMI and WHtR and found that 

butyrate/isobutyrate was positively associated with BMI and WHtR, and isovalerate and total SCFAs 

were positively associated with WHtR (p-value<0.05, Table 2). For example, a fold increase of 

butyrate/isobutyrate was associated with a 0.40 and a 0.01 unit increase in BMI (kg/m2) and WHtR, 

respectively.   

Then, in models of plasma SFCAs, we tested the interaction between dietary precursors of SCFAs 

with overweight (Figure 1, Table S3) and abdominal obesity (Figure 2, Table S4). We observed effect 

modification of the association (interaction p-value<0.10) between insoluble fiber with 

butyrate/isobutyrate by overweight; between insoluble fiber with butyrate/isobutyrate and total SCFAs by 

abdominal obesity; and between carbohydrate with valerate by abdominal obesity. Whereas the model 

estimated abundance of valerate was lower at high versus low carbohydrate consumption in people 

without abdominal obesity, valerate abundance was slightly higher at high versus low carbohydrate 

consumption in people with abdominal obesity. Moreover, when consuming middle level of insoluble 

fiber, adults with abdominal obesity had higher abundance of butyrate/isobutyrate and total SCFAs than 

those without abdominal obesity.  

In an exploratory analysis, we examined individual types of foods included in the high-fiber food 

group and observed effect modification (interaction p-value<0.10) of the associations between legumes 
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and fruits with valerate by overweight (Table S5); between whole grains and nuts/seeds with 

butyrate/isobutyrate, valerate and total SCFAs by abdominal obesity (Table S6); and between fruits with 

valerate and total SCFAs by abdominal obesity. In general, consuming more of these fiber-rich foods 

tended to be associated with lower SCFAs in adults with abdominal obesity.  

Last, in the sub-sample with gut metagenome data, we tested whether adults with higher BMI or 

WHtR had higher relative abundance of gut microbial SCFA producers. We found little statistical 

evidence of association between the overall microbial SCFA producers with BMI (PERMANOVA R2 = 

0.008, Table 3) or WHtR (PERMANOVA R2 = 0.005). There was no statistical evidence of association 

between the total relative abundance of microbial SCFA producers with BMI and WHtR either (p-

value>0.500). In an exploratory analysis examining the specific microbial SCFA producers, we found a 

few species that were associated with BMI and WHtR (Table S7) at p-value<0.05. For example, 

Eubacterium hallii and Eubacterium rectale were positively associated with BMI and WHtR. For 

sensitivity, we tested whether those species were associated with plasma SCFAs. We found no 

association between the overall (PERMANOVA R2 ranged 0.002-0.004, Table S8) or the total relative 

abundance (p-value>0.100) of microbial SCFA producers with plasma SCFAs, though a few individual 

species were associated with butyrate/isobutyrate, valerate, isovalerate, and total plasma SCFAs (Table 

S9) at p-value<0.05, including Faecalibacterium prausnitzii.  

In sensitivity analysis that restricted the sample to those who did not take antibiotics, 

pre/probiotics, or had diarrhea, IBS, or IBD, though the statistical significance reduced a little due to 

decreased sample size, the patterns of associations and parameter estimates remained similar for the 

associations between plasma SCFAs and BMI and WHtR (Table S10); interactions of dietary precursors 

of SCFAs with overweight (Figure S2, Table S11) and abdominal obesity in linear models of plasma 

SCFAs (Figure S2, Table S12); and associations of the overall and total relative abundance of microbial 

SCFA producers with BMI and WHtR (Table S13).   
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Discussion 

In our population-based cohort of Chinese adults, we found positive associations between plasma 

SCFAs and two adiposity measures, BMI and WHtR, independent of sociodemographic and behavioral 

factors, including urbanization, diet, and physical activity. Butyrate/isobutyrate was positively associated 

with BMI; and butyrate/isobutyrate, isovalerate, and total SCFAs were positively associated with WHtR. 

Our results provide insights into the potential role of SCFAs in the etiology of obesity and abdominal 

obesity.    

Several cross-sectional studies have reported positive associations between fecal SCFAs levels 

and obesity [16-20]. For example, a community-based study of 441 Colombian adults aged 18-62 years 

demonstrated that higher fecal butyrate, acetate, propionate and total SCFAs were associated with BMI, 

body fat, and waist circumference [17]. One hypothesis is that gut microbial dysbiosis in obesity may lead 

to less efficient SCFA absorption and therefore more SCFA excretion [17,38]. However, Rahat-

Rozenbloom et al. [19] suggested that in 22 Canadian individuals aged >17 years, higher fecal acetate, 

butyrate, and total SCFAs in people with (versus without) overweight was not due to differences in diet or 

SCFAs absorption measured by rectal dialysis bag method. Our findings of positive associations between 

plasma SCFAs and adiposity measures may support their results that higher SCFA excretion in higher 

body mass was not due to reduced SCFA absorption [19], though studies using both circulating and fecal 

SCFAs are needed to fully elucidate this hypothesis. Moreover, our findings show no difference in intakes 

of dietary precursors of SCFAs by overweight and abdominal obesity, but potential effect medication of 

associations between dietary precursors of SFCAs (e.g., insoluble fiber) and plasma SCFAs (i.e., 

butyrate/isobutyrate) by overweight and abdominal obesity, indicating that colonic fermentation of dietary 

precursors of SCFAs may differ for people with and without overweight, thereby leading to different 

abundance of plasma SCFAs, Though we focused on well-established dietary precursors like fiber and 

carbohydrates, our results in butyrate/isobutyrate and isovalerate suggest that higher protein catabolism 

may be associated with higher adiposity, given that isobutyrate and isovalerate are major fermentation 
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products of amino acids valine and leucine, respectively [39]. These branched-chain SCFAs function 

similarly to straight-chain SCFAs (e.g. butyrate) when modulating glucose and lipid metabolism [40]. 

Additionally, our results are consistent with Goffredo et al. [13], which showed that plasma 

concentrations of acetate, propionate, and butyrate were positively associated with body fat percentage 

and BMI changes in 84 children and adolescents. Conversely, in 12 normal- and over-weight adults aged 

18-65 years, Boets et al. [41] found that the rate of appearance of plasma propionate and butyrate 

measured by stable isotope dilution was lower in subjects with higher BMI. In 18 women who were 

obese, Layden et al. [42] found a negative association between serum acetate and visceral adipose tissue 

(though not BMI). These two studies had much smaller samples with less variation in BMI than our 

study.  

A potential reason for the positive relationship between SCFAs and obesity is that the gut 

microbiota of individuals with obesity may have higher capacity to harvest energy through SCFA 

production [5,13]. In fact, SCFAs are estimated to add about 10% of extra daily energy intake to adults 

eating westernized diet [14]. Goffredo et al. [13] found that plasma SCFAs were associated with hepatic 

de novo lipogenesis and the gut microbiota of adolescents with obesity compared to their lean 

counterparts had higher capacity to ferment the same amount of fructose in vitro. Additionally, Yang et 

al. showed that the fecal microbiota of people with (versus without) obesity produced more propionate in 

response to in vitro fermentation of cereal grains [43]. Similarly, we found that carbohydrate consumption 

tended to be negatively associated with plasma valerate in adults without abdominal obesity, but tended to 

be positively associated with plasma valerate in adults with abdominal obesity, indicating that adults with 

higher abdominal adiposity may have higher potential for carbohydrate fermentation when consuming a 

carbohydrate-rich diet. The fact that fruits, whole grains, and nuts/seeds consumption tended to be 

negatively associated with SCFAs in adults with abdominal obesity in our study suggests that consuming 

these healthy fiber-rich foods may help decrease energy harvesting via SCFA production in adults with 

excess abdominal adiposity. Indeed, a double-blinded, randomized-controlled trial showed that fecal 
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acetate, propionate and total SCFAs were lower in prebiotic dietary fibers-treated group than placebo 

group after treatment [44]. We also found different patterns of associations between different dietary 

precursors of SCFAs and plasma SCFAs. This may be because different gut microbiota compositions 

respond differently to different sources of fermentable fibers [43,45].   

Nevertheless, not all epidemiological studies that support positive associations between SCFAs 

and adiposity measures also suggest the potential involvement of gut microbiota [13,16,17,19,20]. 

Whereas a recent meta-analysis of case-control studies found no evidence of association between obesity 

and phyla richness [16], other studies found that higher fecal SCFAs was associated with lower 

microbiota diversity and higher gut permeability, Firmicutes/Bacteriodetes ratio and cardiometabolic 

disease-associated taxa [17,19]. While a study of 96 adolescent girls found no association between 

microbiota phyla abundance and fecal SCFAs [20], a study 84 adolescent boys and girls found a positive 

association between plasma SCFAs and obesity-related microbiota, including Faecalibacterium, 

Streptococcus and Actinomyces [13]. Although our sub-sample analysis using gut metagenome data 

showed a few positive associations between microbial producers of SCFAs with BMI, WHtR, and plasma 

SCFAs, like Eubacterium hallii and Eubacterium rectale, none of which reached statistical significance 

after considering multiple testing (Bonferroni corrected p-value threshold =0.05 / 56 species / 6 outcomes 

= 1.5E-4). The relationships between gut microbiota with SCFAs production and host adiposity are 

complicated given the convoluted metabolic pathways and bacterial cross-feeding interactions [46]. It is 

possible that we lacked statistical power to detect these associations, given that our sample comprised 

free-living people from a range of rural and urban communities, providing more diversity in environments 

and behaviors, than previous studies that were conducted in a single city or neighborhood [17,19].  

The strengths of our study include the well-characterized, population-based cohort, high-quality 

dietary data from three-consecutive 24-h recalls and household food inventories, and rich host factors 

collected from standardized protocols, allowing us to control for a wide range of potential confounders. 

Additionally, to our knowledge, we are the first study to examine the associations between plasma 
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SCFAs, gut metagenome, and adiposity measures in population-based adult cohort and our study is 

relatively larger than previous studies studying fecal SCFAs [16-20]. However, it is possible that we 

lacked statistical power to test potential interactions between dietary precursors of SCFAs with 

overweight and abdominal obesity in models of plasma SCFAs. After considering multiple testing (3 

precursors X 4 SCFAs X 2 adiposity measures =24 tests), none of the interactions reached statistical 

significance (Bonferroni corrected p-value threshold =0.10/24 =4.2E-03). Other limitations of our study 

include the (1) cross-sectional design; (2) potential measurement error in diet and lack of detailed 

information on fiber types to distinguish fermentable versus non-fermentable fiber; (3) selected SCFA-

producing species may not comprehensively capture the SCFA-producing ability of the gut microbiota; 

(4) nontargeted metabolomics could not provide the concentrations for SCFAs and could not detect two 

major SCFAs (acetate and propionate) due to small molecular sizes. The fraction of 

acetate:propionate:butyrate in portal system is approximately 69:23:8 [47]. Since butyrate could be 

undetectable in circulation because of rapid usage [48], we could not exclude the possibility that we 

underestimated the abundance of plasma butyrate and other SCFAs.  

 

Conclusion 

Our study in a population-based cohort of Chinese adults suggests that plasma SCFAs may be 

positively associated with overall body mass and abdominal girth measured by BMI and WHtR, 

respectively, providing insights into the possible role of SCFAs in obesity etiology. Our results also 

suggest that individuals with higher adiposity may potentially have higher capacity to produce SCFAs 

from dietary carbohydrate and insoluble fiber than lean individuals, though we were unable to confirm 

whether it is due to differences in relative abundance of SCFA-producing gut microbiota. Further studies 

are needed to confirm our results, determine the causal relationship between SCFAs and adiposity, and 

clarity whether the gut microbiota in people with higher adiposity harvest more energy from diet than 

those with lower adiposity through SCFAs production. 
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Tables and figures 

Table 6.1. Characteristics of the metabolomics analysis sample by body mass index (BMI) and waist-

to-height ratio (WHtR) groups 

 Overweight1 Abdominal obesity1 

 Without With Without With 

n (%) 251 (51.2%) 239 

(48.8%) 

170 (34.8%) 318 (65.2%) 

Age, years 52.3 (9.0) 52.2 (9.1) 51.0 (8.8) 52.9 (9.1)* 

Women, n (%) 155 (61.8%) 135 

(56.5%) 

100 (58.8%) 189 (59.4%) 

Body mass index (BMI), kg/m2 21.8 (1.7) 26.6 

(2.0)*** 

21.1 (2.0) 25.5 (2.7)*** 

Waist-to-height-ratio (WHtR) 0.5 (0.05) 0.6 

(0.05)*** 

0.5 (0.03) 0.6 (0.04)*** 

Butyrate/isobutyrate2 -0.05 (0.7) -0.001 (0.8) -0.2 (0.7) 0.04 (0.7)** 

Valerate2 -1.1 (1.8) -1.1 (1.7) -1.1 (1.7) -1.0 (1.8) 

Isovalerate2 0.07 (0.9) 0.1 (1.0) -0.03 (0.9) 0.2 (0.9)* 

Total short-chain fatty acids 

(SCFAs)2 

1.5 (0.8) 1.5 (0.8) 1.4 (0.8) 1.6 (0.7)** 

Hunan province 159 (63.3%) 145 

(60.7%) 

102 (60.0%) 200 (62.9%) 

Urbanization index, n (%)3     

Low (39.2 – 64.2) 89 (35.5%) 84 (35.1%) 63 (37.1%) 110 (34.3%) 

Middle (64.2 – 81.5) 77 (30.7%) 84 (35.1%) 51 (30.0%) 109 (34.3%) 

High (81.5 – 99.6) 85 (33.9%) 71 (29.7%) 56 (32.9%) 99 (31.1%) 
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Completed high school education 85 (33.9%) 65 (27.2%) 52 (30.6%) 96 (30.2%) 

Per capita household income, n (%))4     

Low (0 – 10k yuan) 89 (35.5%) 74 (31.0%) 60 (35.3%) 102 (32.1%) 

Middle (10 – 22.1k yuan) 85 (33.9%) 79 (33.1%) 65 (38.2%) 99 (31.1%) 

High (22.1 – 468k yuan) 77 (30.7%) 86 (36.0%) 45 (26.5%) 117 (36.8%) 

Total energy, 1000kcal5 1.9 (0.6) 1.9 (0.7) 1.9 (0.6) 1.9 (0.7) 

Insoluble fiber intake, n (%)5     

Low (1.5 – 8.2g) 77 (30.7%) 87 (36.4%) 58 (34.1%) 105 (33.0%) 

Middle (8.2 – 12.5g) 88 (35.1%) 75 (31.4%) 57 (33.5%) 105 (33.0%) 

High (12.5 – 69.7g) 86 (34.3%) 77 (32.2%) 55 (32.4%) 108 (34.0%) 

Carbohydrate intake, n (%)5     

Low (65.2 – 172g) 83 (33.1%) 81 (33.9%) 55 (32.4%) 108 (34.0%) 

Middle (172 – 248g) 87 (34.7%) 76 (31.8%) 61 (35.9%) 101 (31.8%) 

High (248 – 649g) 81 (32.3%) 82 (34.3%) 54 (31.8%) 109 (34.3%) 

High-fiber foods, n (%)5     

Low (0 – 344g) 87 (34.7%) 77 (32.2%) 61 (35.9%) 102 (32.1%) 

Middle (344 – 482g) 85 (33.9%) 78 (32.6%) 55 (32.4%) 108 (34.0%) 

High (482 – 1200g) 79 (31.5%) 84 (35.1%) 54 (31.8%) 108 (34.0%) 

Physical activity, n (%)6    * 

Low (0 – 50 METS/wk), 76 (30.3%) 84 (35.1%) 43 (25.3%) 117 (36.8%) 

Middle (50 – 147 METS/wk) 82 (32.7%) 83 (34.7%) 58 (34.1%) 106 (33.3%) 

High (147 – 1390 METS/wk) 93 (37.1%) 72 (30.1%) 69 (40.6%) 95 (29.9%) 

Ever smoking, n (%) 100 (39.8%) 93 (38.9%) 74 (43.5%) 118 (37.1%) 

Drank alcohol last year, n (%) 62 (24.7%) 64 (26.8%) 38 (22.4%) 87 (27.4%) 

Continuous variables [mean (SD)] were tested by t test and categorical variables [n (%)] were tested by 

chi-square test. *, p-value<0.05; **, p-value<0.01; ***, p-value<0.001 when comparing high versus 

normal BMI and WHtR.  
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1 Overweight: BMI ≥24 kg/m2; abdominal obesity: waist-to-height ratio ≥0.5. 

2 Plasma SCFAs were measured by nontargeted metabolomics and the total SCFAs was estimated by the 

sum of the three identified SCFAs. The abundance was log2 transformed.  

3 Urbanization index encompasses 12 dimensions of urbanization, including population density, health 

infrastructure, and transportation. Urbanization index was categorized by tertiles to represent low, middle, 

and high levels of urbanization.  

4 Per capita household income was estimated by dividing the household income by the number of 

household members. Per capita household income was categorized by tertiles to represent low, middle, 

and high levels of income. 

5 Dietary intakes were measured by 3-consecutive 24h dietary recalls and household food inventories. The 

intake of high-fiber foods was calculated as the sum of whole grains, legumes, starchy roots, vegetables, 

mushrooms/seaweeds, fruits, nuts/seeds. Insoluble fiber, carbohydrate, and high-fiber food score were 

categorized by tertiles to represent low, middle, and high intakes. 

6 Physical activity was estimated by 7-day physical activity recalls in METS and was categorized by 

tertiles to represent low, middle, and high levels of physical activity.  
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Table 6.2. The associations between plasma short-chain fatty acids (SCFAs) and body mass index 

(BMI) and waist-to-height ratio (WHtR) 

  BMI (n=490) WHtR (n=488) 

 Mean (SD) β (95% confidence 

interval) 

p-

value 

β (95% confidence 

interval) 

p-

value 

Butyrate/isobutyrate -0.03 (0.75) 0.40 (0.01, 0.78) 0.04 0.01 (4E-03, 0.02) 3E-03 

Valerate -1.09 (1.75) -0.01 (-0.17, 0.16) 0.93 1E-03 (-2E-03, 4E-03) 0.48 

Isovalerate 0.09 (0.94) 0.20 (-0.10, 0.52) 0.18 0.01 (3E-04, 0.01) 0.04 

Total SCFAs 1.61 (0.76) 0.29 (-0.09, 0.66) 0.14 0.01 (3E-03, 0.02) 0.01 

The mean (SD) for BMI (kg/m2) and WHtR was 24.01 (3.18) and 0.52 (0.06), respectively. Because the 

SCFAs relative abundance were log2 transformed, the linear model coefficients are interpreted as units of 

BMI and WHtR associated with a fold increase in SCFAs. Model was adjusted for age, sex, batch, 

province, urbanization, income, education, physical activity, total energy intake, fiber intake, alcohol, and 

ever smoking. 
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Table 6.3. The associations between the overall and the total relative abundance of 56 gut microbial 

short-chain fatty acid (SCFA) producers with body mass index (BMI) and waist-to-height-ratio 

(WHtR) 

   Overall1 Total2 

 n Mean (SD) R2 P-value β (95% CI) P-value 

BMI 209 24.35 (3.21) 0.008 0.05 -0.04 (-1.7, 1.61) 0.96 

WHtR 208 0.53 (0.06) 0.005 0.30 0.00 (-0.03, 0.03) 0.78 

The 56 SCFA-producing species were selected from literature and the full list with references is in Table 

S2. The raw counts of each species and the total counts of the 56 species were normalized and log10 

transformed [104]. Model was adjusted for age, sex, batch, province, urbanization, income, education, 

total energy, insoluble fiber, physical activity, smoking, and alcohol intake.  

1 R2 and p-value were calculated using permutational multivariate analysis of variance (PERMANOVA) 

of all 56 species.  

2 Linear regression was performed on the total relative abundance of the 56 species.  
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Figure 6.1. The associations between dietary precursors of short-chain fatty acids (SCFAs) and plasma 

SCFAs by overweight. Overweight: BMI≥24 kg/m2. Vertical axes represent model predicted (marginal 

means) plasma SCFAs abundance. Dietary intakes of were categorized by tertiles. Linear model was 

adjusted for age, sex, batch run, province, urbanization, income, education, physical activity, total energy 

intake, insoluble fiber, alcohol, and ever smoking. P-value for interaction between each dietary precusors 

and overweight was derived using a Wald test. P-value>0.05 for all comparisons of plasma SCFA 

abundance at a given level of a dietary precursor by overweight 
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Figure 6.2. The associations between dietary precursors of short-chain fatty acids (SCFAs) and plasma 

SCFAs by abdominal obesity. Abdominal obesity: waist-to-height ratio≥0.5. Vertical axes represent 

model predicted (marginal means) SCFAs abundance. Dietary intakes were categorized by tertiles. Linear 

model was adjusted for age, sex, batch run, province, urbanization, income, education, physical activity, 

total energy intake, insoluble fiber intake, alcohol, and ever smoking. P-value for the interaction between 

each dietary precursor of SCFAs and AOB was derived using a Wald test. *, p-value<0.5; **, p-value 

<0.01 for comparisons of plasma SCFAs abundance at a given level of dietary precursor by abdominal 

obesity.   
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Table S6.1. Foods included in the high-fiber food group  

Foods Examples 

Whole grains Buckwheat flour, foxtail millet, pea starch noodle, tartarian buckwheat flour, yellow corn (grain, grits, flour) 

Legumes Broad bean, soybean curd (soft, semisoft, slab), red bean 

Starchy roots Lotus root, sweet potato, taro, whit potato, winged yam, yam, yam bean 

Vegetables Amaranth, asparagus, bamboo shoot, bitter melon, bok choy, broccoli, cabbage, carrot, cauliflower, celery, chives, corn 

(fresh), cucumber, eggplant, garlic stalk, hispid yam leaf, hyacinth bean (green), hot pepper, kidney bean (green), 

lettuce, lily, mung bean sprounts, mustard root, pumpkin, pumpkin sprouts, radish, radish leaf, snap pea, soybean 

sprouts, spinach, sweet pepper, tomato, turnip, water spinach, winter melon, yardlong cowpea  

Mushrooms/seaweed Button mushroom, “gold needle” mushroom, kelp, laver, oyster mushroom, shitake mushroom, silver ear fungus, wood 

ear fungus 

Fruits  Apple, banana, casaba, date, dragon fruit, durian, gooseberry, grape, jujube, kiwi fruit, longan, orange, pear, persimmon, 

pitaya, pomegranate, pomelo, tangerine, watermelon 

Nuts/seeds Chestnut, lotus seed, peanut, pumpkin seed, sesame (black, white), sunflower seed, walnut, watermelon seed 
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Table S6.2. Gut microbiota that are found to have abilities to produce short-chain fatty acids (SCFAs) in previous studies and identified in the 

metagenome analysis sample 

Phylum Family Species Acetate1 Butyrate1 Propionate1 References 

Present in at least 25% of the sample 

Actinobacteria Bifidobacteriaceae Bifidobacterium longum  Y Y Y [81,184] 

Bacteroidetes Bacteroidaceae Bacteroides uniformis   Y [185] 

  Bacteroides vulgatus   Y [185,186] 

 Prevotellaceae Prevotella copri   Y [185] 

 Rikenellaceae Alistipes putredinis  Y Y [185,187] 

Firmicutes Erysipelotrichaceae Clostridium innocuum  Y  [159] 

  Eubacterium biforme  Y  [159,185,187] 

 Eubacteriaceae Eubacterium hallii  Y Y [159,185-191] 

  Eubacterium ramulus  Y  [159] 

  Eubacterium rectale  Y  [184-188,190] 

  Eubacterium ventriosum  Y  [159,184] 

 Lachnospiraceae Anaerostipes hadrus  Y  [185,186] 

  Coprococcus catus  Y Y [159,185-187] 

  Coprococcus comes  Y  [186,187] 



 

 

 

1
9
0
 

  Lachnospiraceae bacterium 

5_1_63FAA 

 Y  [187] 

  Roseburia hominis Y Y  [192] 

  Roseburia intestinalis  Y Y [159,185-187,190,193] 

  Roseburia inulinivorans  Y  [185-188] 

  Ruminococcus gnavus   Y [186,194] 

  Ruminococcus obeum   Y [186] 

  Ruminococcus torques   Y [186] 

 Lactobacillaceae Lactobacillus gasseri   Y [81] 

 Ruminococcaceae Faecalibacterium prausnitzii  Y  [159,184-

186,188,190,193,195] 

  Ruminococcus bromii Y   [196] 

 Veillonellaceae Dialister invisus   Y [185] 

  Megamonas funiformis Y  Y [197] 

  Veillonella parvula   Y [186] 

Present in less than 25% of the sample 

Actinobacteria Bifidobacteriaceae Bifidobacterium adolescentis Y   [191] 

  Bifidobacterium bifidum Y  Y [81] 
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Bacteroidetes Bacteroidaceae Bacteroides thetaiotaomicron Y  Y [186,195] 

 Porphyromonoadaceae Odoribacter splanchnicus  Y  [187] 

  Porphyromonas gingivalis  Y  [187] 

Firmicutes Clostridiaceae Clostridium beijerinckii  Y  [159] 

  Clostridium butyricum  Y  [159] 

  Clostridium sp. L2-50  Y  [186] 

  Clostridium symbiosum  Y  [159,187] 

 Eubacteriaceae Anaerofustis stercorihominis  Y  [187] 

  Eubacterium limosum Y Y  [159,198,199] 

 Erysipelotrichaceae Eubacterium cylindroides  Y  [159] 

  Eubacterium dolichum  Y  [159] 

 Lachnospiraceae Anaerostipes caccae  Y  [159,187,188,190,191,200] 

  Blautia hydrogenotrophica Y   [196] 

  Butyrivibrio crossotus  Y  [159,187] 

  Coprococcus eutactus  Y  [159,186,187] 

 Lactobacillaceae Lactobacillus acidophilus Y Y Y [201] 

  Lactobacillus rhamnosus   Y [81] 

 Peptostreptococcaceae Clostridium difficile  Y  [159,187] 
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 Ruminococcaceae Anaerotruncus colihominis  Y  [187] 

  Ruminococcaceae bacterium 

D16 

 Y  [187] 

  Subdoligranulum variabile  Y  [185,187] 

 Veillonellacea Megasphaera elsdenii   Y [186] 

Fusobacteria Fusobacteriaceae Fusobacterium mortiferum  Y  [187] 

  Fusobacterium nucleatum  Y  [187] 

  Fusobacterium ulcerans  Y  [187] 

  Fusobacterium varium  Y  [187] 

Verrucomicrobia Verrucomicrobiaceae Akkermansia muciniphila Y  Y [185,202] 

1 “Y” indicates that the microbiota produces the given SCFA and empty cell indicates that there is no evidence showing that the microbiota 

produces the given SCFA.  
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Table S6.3. The interaction between dietary precursors of short-chain fatty acids (SCFAs) and overweight in models of plasma SCFAs [% 

change (95% CI)], corresponding to Figure 6.11 

n=490 Butyrate/isobutyrate Valerate Isovalerate Total SCFAs 

Insoluble fiber (ref. = low)2 

Middle  -15.45 (-28.4, -0.15)* -4.23 (-35.24, 41.63) -18.02 (-33.48, 1.05) -14.91 (-28.17, 0.8) 

High  1.47 (-14.54, 20.47) 0.87 (-32.66, 51.09) 1.47 (-18.24, 25.92) 4.52 (-12.25, 24.51) 

Middle X High BMI 25.71 (0.29, 57.55)* 7.83 (-36.62, 83.46) 31.45 (-1.05, 74.62) 24.92 (-0.75, 57.25) 

High X High BMI 2.87 (-17.84, 28.79) 19.41 (-29.64, 102.64) 6.38 (-19.81, 41.12) 6.04 (-15.67, 33.32) 

Interaction p-value3 0.095 0.803 0.140 0.144 

Carbohydrate (ref. = low)2 

Middle  4.89 (-11.35, 24.1) 22.43 (-17.39, 81.44) 4.17 (-15.66, 28.66) 5.37 (-11.17, 24.98) 

High  -4.37 (-20.71, 15.34) -8.9 (-41.23, 41.21) -10.78 (-29.48, 12.89) -8.44 (-24.3, 10.75) 

Middle X High BMI 0.08 (-20.31, 25.7) -30.31 (-59.11, 18.77) 0.91 (-24.2, 34.34) -2.28 (-22.46, 23.16) 

High X High BMI 12.38 (-10.4, 40.95) 12.18 (-33.96, 90.54) 19.29 (-10.24, 58.52) 21.55 (-3.42, 52.97) 

Interaction p-value3 0.508 0.188 0.391 0.124 

High-fiber foods (ref. = low)2 

Middle  -7.4 (-21.45, 9.17) 4.64 (-28.92, 54.04) -8.02 (-25.17, 13.06) -7.73 (-21.95, 9.09) 

High  -5.04 (-20.02, 12.74) 21.03 (-19.14, 81.13) -4.25 (-22.79, 18.73) -2.78 (-18.35, 15.76) 
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Middle X High BMI -7.72 (-26.31, 15.55) -10.56 (-47.27, 51.7) -14.76 (-35.7, 13) -9.54 (-28.04, 13.7) 

High X High BMI -1.63 (-21.47, 23.22) -27.02 (-57.01, 23.88) -1.46 (-25.7, 30.69) -5.39 (-24.76, 18.97) 

Interaction p-value3 0.761 0.497 0.472 0.689 

1 High BMI, BMI≥24 kg/m2. The abundance of each plasma SCFAs and the sum of the all three SCFAs were log2 transformed. The % change 

relative to the reference level was calculated using the following formula: (2^(β)-1)*100%, whereβwas the linear model coefficient. Model was 

adjusted for age, sex, batch, province, urbanization, income, education, total energy, insoluble fiber intake, physical activity, smoking, and alcohol 

intake. *, % change p-value<0.05, **, % change p-value<0.01 

2 Dietary intakes were measured by 3-consecutive 24h dietary recalls and household food inventories. High-fiber foods was calculated as the sum 

of whole grains, legumes, starchy roots, vegetables, mushrooms/seaweeds, fruits, nuts/seeds. Insoluble fiber, carbohydrate, and high-fiber food 

score were categorized by tertiles to represent low, middle, and high intakes. 

3 The statistical significance of the interaction term between dietary factors and overweight was estimated using a Wald test that compared models 

with and without the interaction term. .  
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Table S6.4. The interaction between dietary precursors of short-chain fatty acids (SCFAs) and abdominal obesity in models of plasma SCFAs 

[% change (95% CI)], corresponding to Figure 6.21 

n=488 Butyrate/isobutyrate Valerate Isovalerate Total SCFAs 

Insoluble fiber (ref. = low)2 

Middle  -18.42 (-33.00, -0.66)* -9.96 (-43.57, 43.66) -19.07 (-36.9, 3.8) -18.25 (-33.17, -0.01)* 

High  6.31 (-12.88, 29.73) 1.72 (-36.57, 63.13) 9.63 (-14.76, 41) 9.02 (-11.06, 33.64) 

Middle X High WHtR 23.88 (-2.03, 56.63) 14.72 (-34.24, 100.13) 23.52 (-8.17, 66.14) 23.79 (-2.62, 57.35) 

High X High WHtR -5.15 (-24.96, 19.9) 8.45 (-37.8, 89.1) -7.08 (-30.9, 24.95) -2.87 (-23.57, 23.44) 

Interaction p-value3 0.063 0.888 0.150 0.098 

Carbohydrate (ref. = low)2 

Middle  3.24 (-15.5, 26.14) -17.26 (-48.32, 32.47) -0.02 (-22.34, 28.71) -5.73 (-23.18, 15.7) 

High  9.64 (-11.83, 36.35) -41.01 (-64.65, -1.56)* 5.98 (-19.49, 39.51) -4.46 (-23.54, 19.38) 

Middle X High WHtR 2.91 (-18.84, 30.49) 36.07 (-22.1, 137.67) 7.41 (-20.38, 44.9) 16.27 (-8.78, 48.21) 

High X High WHtR -11.21 (-30.08, 12.75) 100.19 (14.22, 250.87)* -12.13 (-34.99, 18.75) 7.57 (-15.73, 37.32) 

Interaction p-value3 0.428 0.052 0.404 0.475 

High-fiber foods (ref. = low)2 

Middle  -14.88 (-29.94, 3.41) 10.78 (-30.14, 75.66) -17.55 (-35.48, 5.37) -12.92 (-28.62, 6.23) 

High  -3.71 (-21.12, 17.54) 8.02 (-32.65, 73.24) -0.95 (-22.97, 27.34) -2.98 (-20.87, 18.94) 
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Middle X High WHtR 6.66 (-15.49, 34.62) -14.69 (-50.85, 48.09) 4.3 (-22.22, 39.86) 1.14 (-20.27, 28.29) 

High X High WHtR -4.84 (-24.57, 20.03) -2.69 (-43.87, 68.69) -7.95 (-31.31, 23.35) -4.77 (-24.89, 20.73) 

Interaction p-value3 0.634 0.835 0.702 0.872 

1 Waist-to-height ratio ≥0.5. The abundance of each SCFAs and the sum of the all three SCFAs were log2 transformed. The % change relative to 

the reference level was calculated using the following formula: (2^(β)-1)*100%, whereβwas the linear model coefficient. Model was adjusted 

for age, sex, batch, province, urbanization, income, education, total energy, insoluble fiber, physical activity, smoking, and alcohol intake. *, % 

change p-value<0.05, **, % change p-value<0.01. 

2 Dietary intakes were measured by 3-consecutive 24h dietary recalls and household food inventories. High-fiber foods was calculated as the sum 

of whole grains, legumes, starchy roots, vegetables, mushrooms/seaweeds, fruits, nuts/seeds. Insoluble fiber, carbohydrate, and high-fiber food 

score were categorized by tertiles to represent low, middle, and high intakes. 

3 The statistical significance of the interaction term between dietary factors and abdominal obesity was estimated using a Wald test that compared 

models with and without the interaction term  
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Table S6.5. The associations between individual high-fiber foods and plasma short-chain fatty acids (SCFAs) by overweight (n=490)1  

  
Butyrate/isobutyrate Valerate Isovalerate Total SCFAs 

  
Interaction 

p-value2 

% change  

(95% CI) 

Interaction 

p-value2 

% change  

(95% CI) 

Interaction 

p-value2 

% change  

(95% CI) 

Interaction 

p-value2 

% change  

(95% CI) 

Wholegrains (ref. = non-consumer)3 

Normal BMI 0.64 -9.24  

(-30.92, 19.26) 

0.36 25.87  

(-33.52, 138.32) 

0.79 -11.06  

(-36.91, 25.39) 

0.3 -4.78  

(-27.92, 25.79) 

High BMI 
 

-17.71  

(-39.27, 11.51) 

 
-18.75  

(-60.07, 65.35) 

 
-16.92  

(-43.31, 21.76) 

 
-23.38  

(-43.79, 4.45) 

Legumes (ref. = below median)3 

Normal BMI 0.56 7.66  

(-5.8, 23.04) 

0.06 21.84  

(-10.74, 66.31) 

0.42 9.61  

(-7.34, 29.65) 

0.21 9.49  

(-4.45, 25.47) 

High BMI 
 

1.82  

(-11.17, 16.73) 

 
-19.54  

(-41.47, 10.59) 

 
-0.45  

(-16.15, 18.2) 

 
-2.92  

(-15.54, 11.59) 

Starchy roots (ref. = below median)3 

Normal BMI 0.89 -5.47  

(-17.1, 7.79) 

0.8 -5.75  

(-30.65, 28.11) 

0.74 -3.33  

(-18.05, 14.02) 

0.79 -7.11  

(-18.74, 6.19) 

High BMI 
 

-6.67  
 

-10.88  
 

-7  
 

-9.41  
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(-18.45, 6.81) (-34.98, 22.17) (-21.52, 10.21) (-21.05, 3.94) 

Vegetables (ref. = below median)3 

Normal BMI 0.44 -3.44  

(-15.31, 10.1) 

0.51 7.73  

(-20.7, 46.35) 

0.32 -4.62  

(-19.12, 12.47) 

0.51 -2.93  

(-15.1, 10.98) 

High BMI 
 

3.95  

(-9.21, 19) 

 
-6.94  

(-32.15, 27.65) 

 
7.46  

(-9.34, 27.38) 

 
3.46  

(-9.89, 18.78) 

Mushrooms/seaweeds (ref. = non-consumer)3 

Normal BMI 0.32 3.86  

(-9.6, 19.31) 

0.32 -16.28  

(-39.44, 15.74) 

0.47 7.97  

(-9.31, 28.54) 

0.65 1.85  

(-11.61, 17.35) 

High BMI 
 

-6.01  

(-18.84, 8.86) 

 
5.94  

(-24.8, 49.26) 

 
-1.53  

(-18.13, 18.43) 

 
-2.73  

(-16.28, 13) 

Fruits (ref. = non-consumer)3 

Normal BMI 0.89 -6.54  

(-18.43, 7.08) 

0.04 4.8  

(-23.61, 43.79) 

0.9 -5.36  

(-20.25, 12.31) 

0.21 -2.2 

(-14.85, 12.34) 

High BMI 
 

-7.76  

(-19.58, 5.79) 

 
-32.81  

(-51.15, -7.58)* 

 
-6.76  

(-21.54, 10.8) 

 
-13.15  

(-24.47, -0.13)* 

Nuts/seeds (ref. = non-consumer)3 

Normal BMI 0.69 11.37  0.78 -1.14  0.61 17.98  0.31 17.13  
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(-5.64, 31.45) (-32.92, 45.71) (-4.19, 45.27) (-1.07, 38.69) 

High BMI 
 

6.19  

(-10.59, 26.11) 

 
6.78  

(-28.6, 59.67) 

 
9.33  

(-11.9, 35.69) 

 
3.35  

(-13.26, 23.15) 

1 High BMI, BMI≥24 kg/m2. The abundance of each SCFAs and the sum of the all three SCFAs were log2 transformed. The % change relative to 

the reference level was calculated using the following formula: (2^(β)-1)*100%, whereβwas the linear model coefficient. Model was adjusted 

for age, sex, batch, province, urbanization, income, education, total energy, insoluble fiber, physical activity, smoking, and alcohol intake. *, % 

change p-value<0.05. 

2 The statistical significance of the interaction term between dietary factors and overweight was estimated using a Wald test that compared models 

with and without the interaction term.  

3 Dietary intakes were measured by 3-consecutive 24h dietary recalls and household food inventories. Foods consumed by more than and less than 

50% of the analysis sample were categorized by median and yes/no consumers, respectively.   
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Table S6.6. The associations between individual high-fiber foods and plasma short-chain fatty acids (SCFAs) by abdominal obesity (n=488)1 

  
Butyrate/isobutyrate Valerate Isovalerate Total SCFAs 

  
Interaction 

p-value2 

% change  

(95% CI) 

Interaction 

p-value2 

% change  

(95% CI) 

Interaction 

p-value2 

% change  

(95% CI) 

Interaction 

p-value2 

% change  

(95% CI) 

Wholegrains (ref. = non-consumer)3 

Normal 

WHTR 

0.098 9.32  

(-22.51, 54.23) 

0.005 164.02  

(17.88, 491.34)* 

0.16 10.65  

(-28.38, 70.95) 

0.003 31.64  

(-7.26, 86.87) 

High 

WHTR 

 
-23.35  

(-40.14, -1.85)* 

 
-36.26  

(-64.28, 13.74) 

 
-24.58  

(-44.82, 3.07) 

 
-30.84  

(-46.23, -11.06)** 

Legumes (ref. = below median)3 

Normal 

WHTR 

0.45 9.81  

(-6.22, 28.57) 

0.98 -0.07  

(-31.07, 44.89) 

0.42 11.39  

(-8.72, 35.94) 

0.51 7.57  

(-8.49, 26.45) 

High 

WHTR 

 
1.97  

(-9.38, 14.73) 

 
-0.53  

(-24.65, 31.33) 

 
0.83  

(-13.13, 17.02) 

 
0.78  

(-10.7, 13.74) 

Starchy roots (ref. = below median)3 

Normal 

WHTR 

0.95 -5.83  

(-19.74, 10.48) 

0.42 5.93  

(-27.27, 54.28) 

0.87 -3.99  

(-21.54, 17.48) 

0.71 -5.82  

(-20.02, 10.91) 



 

 

 

2
0
1
 

High 

WHTR 

 
-6.44  

(-16.56, 4.91) 

 
-12.1  

(-32.86, 15.09) 

 
-5.98 

(-18.64, 8.66) 

 
-9.25  

(-19.29, 2.03) 

Vegetables (ref. = below median)3 

Normal 

WHTR 

0.95 -0.16  

(-14.69, 16.84) 

0.83 -4.23  

(-33.82, 38.6) 

0.82 3.13  

(-15.43, 25.76) 

0.95 0.48  

(-14.46, 18.04) 

High 

WHTR 

 
0.44  

(-10.51, 12.74) 

 
0.67  

(-23.26, 32.06) 

 
0.33  

(-13.27, 16.07) 

 
-0.13  

(-11.27, 12.41) 

Mushrooms/seaweeds (ref. = non-consumer)3 

Normal 

WHTR 

0.36 5.21 

 (-11.27, 

24.76) 

0.88 -8.7 

 (-38.85, 36.31) 

0.34 12.2  

(-9.5, 39.1) 

0.52 4.07  

(-12.61, 23.93) 

High 

WHTR 

 
-4.52  

(-15.72, 8.17) 

 
-5.13  

(-29.26, 27.23) 

 
-1.31  

(-15.68, 

15.52) 

 
-2.9  

(-14.55, 10.35) 

Fruits (ref. = non-consumer)3 

Normal 

WHTR 

0.28 -0.48  

(-15.42, 17.11) 

0.001 39.98  

(-4.17, 104.47) 

0.36 1.05  

(-17.74, 24.13) 

0.02 7.2  

(-9.19, 26.56) 
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High 

WHTR 

 
-10.49 

(-20.55, 0.84) 

 
-33.35  

(-49.51, -

12.03)** 

 
-9.66  

(-22.3, 5.04) 

 
-14.37  

(-24.18, -3.3)* 

Nuts/seeds (ref. = non-consumer)3 

Normal 

WHTR 

0.09 24.46  

(1.69, 52.34) 

0.91 6.65  

(-33.84, 71.91) 

0.02 43.57  

(11.35, 85.13) 

0.03 32.35  

(7.66, 62.71)* 

High 

WHTR 

 
0.39  

(-13.32, 16.26) 

 
2.98  

(-27.2, 45.65) 

 
-0.61  

(-17.36, 19.54) 

 
-0.56  

(-14.41, 15.52) 

1 Waist-to-height ratio ≥0.5. The abundance of each SCFAs and the sum of the all three SCFAs were log2 transformed. The % change relative to 

the reference level was calculated using the following formula: (2^(β)-1)*100%, whereβwas the linear model coefficient. Model was adjusted 

for age, sex, batch, province, urbanization, income, education, total energy, insoluble fiber, physical activity, smoking, and alcohol intake. *, % 

change p-value<0.05; **, % change p-value<0.01. 

2 The statistical significance of the interaction term between dietary factors and abdominal obesity was estimated using a Wald test that compared 

models with and without the interaction term.  

3 Dietary intakes were measured by 3-consecutive 24h dietary recalls and household food inventories. Foods consumed by more than and less than 

50% of the analysis sample were categorized by median and yes/no consumers, respectively. 
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Table S6.7. The associations between each 56 microbial short-chain fatty acid (SCFA) producers with body mass index (BMI) and waist-to-

height ratio (WHtR)1 

 BMI (n=209) WHtR (n=208)  

Species β (95% confidence interval) p-value β (95% confidence interval) p-value Rare2 

Bifidobacterium longum -0.03 (-0.24, 0.18) 0.78 3.E-06 (-4.E-03, 4.E-03) 1.00 N 

Bacteroides thetaiotaomicron -0.32 (-0.66, 0.01) 0.06 -7.E-03 (-0.01, -1.E-03) 0.02 N 

Bacteroides uniformis -0.07 (-0.4, 0.25) 0.66 -3.E-03 (-0.01, 3.E-03) 0.38 N 

Bacteroides vulgatus 0.05 (-0.33, 0.42) 0.80 -3.E-04 (-0.01, 0.01) 0.92 N 

Prevotella copri 0.08 (-0.16, 0.32) 0.51 3.E-03 (-2.E-03, 0.01) 0.25 N 

Alistipes putredinis 0.15 (-0.14, 0.43) 0.31 3.E-04 (-5.E-03, 0.01) 0.92 N 

Lactobacillus gasseri -0.07 (-0.44, 0.31) 0.73 -1.E-04 (-0.01, 0.01) 0.97 N 

Eubacterium hallii 0.54 (0.22, 0.87) 1.E-03 9.E-03 (3.E-03, 0.01) 0.01 N 

Eubacterium ramulus 0.21 (-0.09, 0.51) 0.17 3.E-03 (-3.E-03, 0.01) 0.30 N 

Eubacterium rectale 0.31 (0.08, 0.54) 0.01 6.E-03 (2.E-03, 0.01) 0.01 N 

Eubacterium ventriosum 0.01 (-0.29, 0.31) 0.95 1.E-04 (-0.01, 0.01) 0.97 N 

Anaerostipes hadrus 0.22 (-0.17, 0.61) 0.27 1.E-03 (-0.01, 0.01) 0.78 N 

Ruminococcus gnavus -0.04 (-0.29, 0.22) 0.78 3.E-05 (-5.E-03, 5.E-03) 0.99 N 

Ruminococcus obeum 0.53 (-0.04, 1.11) 0.07 6.E-03 (-5.E-03, 0.02) 0.28 N 
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Ruminococcus torques 0.61 (-0.09, 1.31) 0.09 9.E-03 (-4.E-03, 0.02) 0.18 N 

Coprococcus catus 0.03 (-0.25, 0.31) 0.83 2.E-03 (-3.E-03, 0.01) 0.44 N 

Coprococcus comes 0.01 (-0.24, 0.27) 0.92 -2.E-05 (-5.E-03, 5.E-03) 0.99 N 

Lachnospiraceae bacterium 5 1 63FAA 0.2 (-0.18, 0.58) 0.29 7.E-04 (-0.01, 0.01) 0.85 N 

Roseburia hominis 0.17 (-0.13, 0.46) 0.27 2.E-04 (-0.01, 0.01) 0.95 N 

Roseburia intestinalis 0.23 (-0.06, 0.51) 0.12 3.E-04 (-5.E-03, 0.01) 0.90 N 

Roseburia inulinivorans 0.11 (-0.19, 0.41) 0.46 1.E-03 (-5.E-03, 0.01) 0.72 N 

Faecalibacterium prausnitzii 0.17 (-0.23, 0.57) 0.40 4.E-03 (-4.E-03, 0.01) 0.34 N 

Ruminococcus bromii -0.13 (-0.34, 0.08) 0.23 -2.E-03 (-0.01, 2.E-03) 0.39 N 

Clostridium innocuum -0.05 (-0.57, 0.47) 0.85 2.E-04 (-0.01, 0.01) 0.97 N 

Eubacterium biforme 0.08 (-0.14, 0.31) 0.47 3.E-03 (-1.E-03, 0.01) 0.15 N 

Dialister invisus -0.16 (-0.48, 0.17) 0.34 -3.E-03 (-0.01, 3.E-03) 0.37 N 

Megamonas funiformis 0.45 (0.14, 0.76) 0.01 6.E-03 (-8.40E-05, 0.01) 0.05 N 

Veillonella parvula -0.16 (-0.55, 0.23) 0.42 -2.E-03 (-0.01, 5.E-03) 0.53 N 

Akkermansia muciniphila 0.06 (-0.19, 0.31) 0.66 1.E-03 (-4.E-03, 0.01) 0.69 N 

Bifidobacterium adolescentis -0.09 (-1.33, 1.15) 0.88 7.E-03 (-0.02, 0.03) 0.56 Y 

Bifidobacterium bifidum -0.89 (-2.46, 0.68) 0.26 -1.E-02 (-0.04, 0.02) 0.45 Y 

Odoribacter splanchnicus -0.26 (-1.49, 0.98) 0.68 3.E-03 (-0.02, 0.03) 0.83 Y 
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Porphyromonas gingivalis -1.5 (-4.44, 1.45) 0.32 2.E-02 (-0.03, 0.08) 0.43 Y 

Lactobacillus acidophilus 0.46 (-4.14, 5.06) 0.84 2.E-02 (-0.07, 0.1) 0.68 Y 

Lactobacillus rhamnosus 0.01 (-1.37, 1.4) 0.98 -8.E-03 (-0.03, 0.02) 0.54 Y 

Clostridium beijerinckii 0.22 (-6.5, 6.94) 0.95 -7.E-02 (-0.19, 0.06) 0.29 Y 

Clostridium butyricum -1.14 (-3.86, 1.57) 0.41 -4.E-02 (-0.09, 0.01) 0.15 Y 

Clostridium sp. L2 50 0.39 (-1.85, 2.62) 0.73 2.E-02 (-0.02, 0.06) 0.37 Y 

Clostridium symbiosum -2.08 (-3.22, -0.94) 4.E-04 -2.E-02 (-0.05, -4.E-03) 0.02 Y 

Anaerofustis stercorihominis 0.9 (-0.67, 2.48) 0.26 1.E-02 (-0.02, 0.04) 0.41 Y 

Eubacterium limosum -0.01 (-1.25, 1.23) 0.99 -9.E-03 (-0.03, 0.01) 0.41 Y 

Anaerostipes caccae -0.94 (-3.02, 1.15) 0.38 -1.E-02 (-0.05, 0.03) 0.54 Y 

Blautia hydrogenotrophica -1.61 (-3.62, 0.4) 0.12 -4.E-02 (-0.07, -2.E-04) 0.05 Y 

Butyrivibrio crossotus -0.94 (-2.82, 0.95) 0.33 -7.E-03 (-0.04, 0.03) 0.68 Y 

Coprococcus eutactus 0.5 (-0.99, 1.98) 0.51 1.E-02 (-0.02, 0.04) 0.44 Y 

Clostridium difficile 0.07 (-1.62, 1.77) 0.93 6.E-03 (-0.02, 0.04) 0.70 Y 

Anaerotruncus colihominis -0.93 (-2.63, 0.77) 0.28 -2.E-02 (-0.05, 0.01) 0.19 Y 

Ruminococcaceae bacterium D16 -3.36 (-6.61, -0.11) 0.04 -5.E-02 (-0.11, 0.01) 0.14 Y 

Subdoligranulum variabile -0.88 (-2.69, 0.92) 0.34 -2.E-02 (-0.05, 0.02) 0.37 Y 

Eubacterium cylindroides -0.77 (-2.81, 1.28) 0.46 -4.E-03 (-0.04, 0.03) 0.83 Y 
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Eubacterium dolichum 0.71 (-0.65, 2.07) 0.31 3.E-03 (-0.02, 0.03) 0.79 Y 

Megasphaera elsdenii -0.41 (-4.95, 4.14) 0.86 4.E-02 (-0.04, 0.12) 0.36 Y 

Fusobacterium mortiferum -0.06 (-1.21, 1.09) 0.92 5.E-04 (-0.02, 0.02) 0.96 Y 

Fusobacterium nucleatum -0.55 (-2.1, 0.99) 0.48 2.E-02 (-0.01, 0.04) 0.27 Y 

Fusobacterium ulcerans -0.62 (-3.59, 2.35) 0.68 -9.E-03 (-0.06, 0.05) 0.75 Y 

Fusobacterium varium -4.78 (-7.92, -1.64) 3.E-03 -6.E-02 (-0.12, -4.E-03) 0.04 Y 

1 The 56 microbial SCFA producers were selected from literature and the full list with references is in Table S2. The raw counts of each species 

were normalized and log10 transformed. Model was adjusted for age, sex, batch, province, urbanization, income, education, total energy, insoluble 

fiber, physical activity, smoking, and alcohol intake. β coefficients are interpreted as units of BMI or WHtR associated with per 1 unit increase in 

log10 of the relative abundance of microbiota.  

2 Microbiota presented in at least 25% of the sample were denoted as non-rare microbiota and kept as continuous variables in linear regression. 

Microbiota present in less than 25% of the sample were denoted as rare microbiota and included as binary variables (yes/no present in the sample) 

in linear regression.   
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Table S6.8. The associations between the overall and the total relative abundance of 56 microbial short-chain fatty acid (SCFA) producers with 

plasma SCFAs (n=209).  

 Overall1 Total2 

 R2 P-value β (95% CI) P-value 

Butyrate/isobutyrate 0.002 0.95 -0.01 (-0.39, 0.37) 0.97 

Valerate  0.004 0.58 0.54 (-0.37, 1.46) 0.24 

Isovalerate 0.003 0.79 0.00 (-0.49, 0.48) 0.99 

Total SCFAs 0.003 0.82 0.06 (-0.33, 0.45) 0.77 

The 56 microbial SCFA producers were selected from literature and the full list with references is in Table S2. The relative abundance of each 

SCFAs and the sum of the all three SCFAs were log2 transformed. The raw counts of each species and the total counts of the 56 species were 

normalized and log10 transformed. Model was adjusted for age, sex, batch, province, urbanization, income, education, total energy, insoluble fiber, 

physical activity, smoking, and alcohol intake. 

1 R2 and p-value were calculated using permutational multivariate analysis of variance (PERMANOVA) of all 56 species. 

2 Linear regression was performed on the total relative abundance of the 56 species.  
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Table S6.9. The associations between each 56 microbial short-chain fatty acid (SCFA) producers with plasma SCFAs (n=209)1  

 Butyrate/isovalerate Valerate Isovalerate Total SCFAs  

Species β (95% 

confidence 

interval) 

p β (95% 

confidence 

interval) 

p β (95% 

confidence 

interval) 

p β (95% 

confidence 

interval) 

p Ra-

re2 

Bifidobacterium 

longum 

0 (-0.05, 0.04) 0.84 -0.04 (-0.16, 0.07) 0.46 -0.02 (-0.08, 0.04) 0.54 -0.02 (-0.07, 0.03) 0.45 N 

Bacteroides 

thetaiotaomicron 

-0.04 (-0.12, 0.04) 0.29 0.02 (-0.16, 0.21) 0.81 -0.04 (-0.14, 0.05) 0.38 -0.04 (-0.12, 0.04) 0.36 N 

Bacteroides uniformis 0 (-0.07, 0.08) 0.92 -0.13 (-0.3, 0.05) 0.17 0 (-0.09, 0.1) 0.92 -0.03 (-0.1, 0.05) 0.50 N 

Bacteroides vulgatus -0.03 (-0.12, 0.05) 0.47 -0.08 (-0.28, 0.13) 0.46 -0.04 (-0.14, 0.07) 0.52 -0.04 (-0.13, 0.04) 0.33 N 

Prevotella copri -0.03 (-0.08, 0.03) 0.31 0 (-0.13, 0.13) 0.99 -0.03 (-0.1, 0.04) 0.42 -0.02 (-0.08, 0.03) 0.41 N 

Alistipes putredinis -0.02 (-0.08, 0.04) 0.54 0.04 (-0.11, 0.2) 0.59 -0.03 (-0.11, 0.05) 0.48 -0.02 (-0.08, 0.05) 0.64 N 

Lactobacillus gasseri -0.08 (-0.16, 0.01) 0.07 -0.03 (-0.24, 0.18) 0.78 -0.09 (-0.19, 0.02) 0.12 -0.09 (-0.18, 0) 0.04 N 

Eubacterium hallii 0 (-0.08, 0.07) 0.93 0 (-0.18, 0.18) 0.99 -0.02 (-0.12, 0.07) 0.65 -0.02 (-0.09, 0.06) 0.67 N 

Eubacterium ramulus -0.05 (-0.11, 0.02) 0.19 0.03 (-0.14, 0.2) 0.73 -0.06 (-0.15, 0.02) 0.16 -0.04 (-0.11, 0.03) 0.31 N 

Eubacterium rectale 0 (-0.05, 0.05) 0.99 0.09 (-0.04, 0.22) 0.16 0 (-0.07, 0.06) 0.93 0 (-0.05, 0.06) 0.94 N 
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Eubacterium 

ventriosum 

-0.05 (-0.12, 0.02) 0.18 0.01 (-0.16, 0.18) 0.91 -0.06 (-0.15, 0.03) 0.16 -0.05 (-0.12, 0.02) 0.18 N 

Anaerostipes hadrus 0 (-0.09, 0.09) 0.97 0.08 (-0.14, 0.3) 0.46 -0.01 (-0.12, 0.11) 0.89 0.02 (-0.07, 0.11) 0.71 N 

Ruminococcus gnavus 0.05 (0, 0.11) 0.07 0.05 (-0.09, 0.18) 0.52 0.07 (0, 0.14) 0.05 0.07 (0.01, 0.13) 0.03 N 

Ruminococcus obeum -0.11 (-0.25, 0.02) 0.10 0.15 (-0.17, 0.48) 0.35 -0.16 (-0.33, 0.01) 0.06 -0.07 (-0.21, 0.07) 0.33 N 

Ruminococcus torques 0.03 (-0.13, 0.19) 0.74 0.27 (-0.12, 0.65) 0.17 0.05 (-0.16, 0.25) 0.66 0.1 (-0.06, 0.26) 0.24 N 

Coprococcus catus -0.03 (-0.09, 0.04) 0.39 -0.04 (-0.2, 0.11) 0.58 -0.04 (-0.12, 0.04) 0.28 -0.04 (-0.1, 0.03) 0.26 N 

Coprococcus comes 0.02 (-0.04, 0.08) 0.55 -0.01 (-0.15, 0.13) 0.93 0.02 (-0.05, 0.09) 0.60 0.02 (-0.04, 0.07) 0.60 N 

Lachnospiraceae 

bacterium 5 1 63FAA 

0.06 (-0.03, 0.15) 0.18 0.1 (-0.11, 0.31) 0.36 0.08 (-0.03, 0.19) 0.16 0.08 (-0.01, 0.17) 0.07 N 

Roseburia hominis -0.05 (-0.11, 0.02) 0.17 0.07 (-0.1, 0.23) 0.42 -0.06 (-0.15, 0.02) 0.15 -0.04 (-0.11, 0.02) 0.21 N 

Roseburia intestinalis -0.02 (-0.08, 0.05) 0.62 -0.19 (-0.35, -

0.04) 

0.01 -0.02 (-0.1, 0.06) 0.59 -0.05 (-0.12, 0.01) 0.11 N 

Roseburia 

inulinivorans 

0.01 (-0.06, 0.08) 0.78 -0.11 (-0.27, 0.06) 0.21 0.01 (-0.08, 0.1) 0.83 -0.02 (-0.09, 0.05) 0.64 N 

Faecalibacterium 

prausnitzii 

-0.09 (-0.18, 0) 0.06 -0.06 (-0.28, 0.16) 0.61 -0.14 (-0.25, -

0.02) 

0.02 -0.11 (-0.21, -

0.02) 

0.02 N 

Ruminococcus bromii -0.03 (-0.07, 0.02) 0.30 -0.02 (-0.14, 0.1) 0.75 -0.04 (-0.1, 0.02) 0.20 -0.03 (-0.08, 0.02) 0.24 N 
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Clostridium innocuum 0.02 (-0.1, 0.14) 0.70 0.25 (-0.03, 0.54) 0.08 0.04 (-0.11, 0.19) 0.64 0.06 (-0.06, 0.18) 0.33 N 

Eubacterium biforme 0 (-0.05, 0.06) 0.88 0.09 (-0.03, 0.22) 0.16 0 (-0.06, 0.07) 0.89 0.02 (-0.04, 0.07) 0.51 N 

Dialister invisus -0.04 (-0.12, 0.03) 0.25 0.11 (-0.07, 0.28) 0.25 -0.06 (-0.16, 0.03) 0.19 -0.02 (-0.1, 0.05) 0.57 N 

Megamonas 

funiformis 

-0.03 (-0.1, 0.04) 0.39 0.01 (-0.16, 0.19) 0.89 -0.02 (-0.11, 0.07) 0.63 -0.02 (-0.09, 0.06) 0.62 N 

Veillonella parvula 0.06 (-0.03, 0.15) 0.19 -0.03 (-0.25, 0.19) 0.80 0.1 (-0.02, 0.21) 0.09 0.05 (-0.04, 0.14) 0.31 N 

Akkermansia 

muciniphila 

-0.03 (-0.09, 0.02) 0.23 0.07 (-0.06, 0.21) 0.29 -0.05 (-0.12, 0.02) 0.19 -0.02 (-0.08, 0.03) 0.41 N 

Bifidobacterium 

adolescentis 

0.11 (-0.18, 0.39) 0.46 -0.12 (-0.82, 0.57) 0.73 0.14 (-0.22, 0.51) 0.45 0.08 (-0.21, 0.38) 0.59 Y 

Bifidobacterium 

bifidum 

0.01 (-0.35, 0.37) 0.96 -0.54 (-1.4, 0.33) 0.22 0.04 (-0.41, 0.5) 0.85 -0.03 (-0.4, 0.34) 0.88 Y 

Odoribacter 

splanchnicus 

-0.12 (-0.4, 0.16) 0.39 -0.05 (-0.73, 0.63) 0.89 -0.17 (-0.53, 0.19) 0.34 -0.15 (-0.44, 0.13) 0.29 Y 

Porphyromonas 

gingivalis 

0.36 (-0.32, 1.03) 0.30 0.57 (-1.07, 2.21) 0.49 0.43 (-0.43, 1.29) 0.33 0.46 (-0.23, 1.15) 0.19 Y 

Lactobacillus 

acidophilus 

0.5 (-0.56, 1.55) 0.35 2.08 (-0.46, 4.62) 0.11 0.49 (-0.85, 1.83) 0.47 0.61 (-0.47, 1.69) 0.27 Y 
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Lactobacillus 

rhamnosus 

-0.17 (-0.48, 0.15) 0.29 0.34 (-0.43, 1.1) 0.39 -0.25 (-0.65, 0.15) 0.22 -0.19 (-0.51, 0.14) 0.25 Y 

Clostridium 

beijerinckii 

-0.32 (-1.85, 1.2) 0.68 1.94 (-1.75, 5.62) 0.30 -0.15 (-2.09, 1.79) 0.88 0.18 (-1.39, 1.75) 0.83 Y 

Clostridium butyricum 0.36 (-0.26, 0.97) 0.26 -0.82 (-2.31, 0.68) 0.28 0.53 (-0.25, 1.31) 0.18 0.28 (-0.36, 0.91) 0.39 Y 

Clostridium sp. L2 50 0.34 (-0.18, 0.86) 0.20 1.04 (-0.21, 2.3) 0.10 0.41 (-0.25, 1.07) 0.23 0.48 (-0.05, 1.01) 0.08 Y 

Clostridium 

symbiosum 

-0.12 (-0.39, 0.15) 0.37 0.58 (-0.07, 1.22) 0.08 -0.07 (-0.41, 0.27) 0.69 0 (-0.27, 0.28) 0.99 Y 

Anaerofustis 

stercorihominis 

0.08 (-0.27, 0.44) 0.64 -0.72 (-1.58, 0.14) 0.10 0.02 (-0.44, 0.47) 0.95 -0.12 (-0.48, 0.25) 0.54 Y 

Eubacterium limosum 0.04 (-0.25, 0.32) 0.80 -0.24 (-0.92, 0.44) 0.49 0.13 (-0.23, 0.48) 0.48 0.07 (-0.22, 0.36) 0.65 Y 

Anaerostipes caccae -0.14 (-0.61, 0.33) 0.56 -0.13 (-1.27, 1.02) 0.83 -0.2 (-0.8, 0.4) 0.51 -0.19 (-0.68, 0.3) 0.44 Y 

Blautia 

hydrogenotrophica 

-0.06 (-0.52, 0.4) 0.80 -0.29 (-1.4, 0.81) 0.60 -0.09 (-0.67, 0.49) 0.75 -0.08 (-0.55, 0.39) 0.73 Y 

Butyrivibrio crossotus -0.25 (-0.68, 0.17) 0.24 0.67 (-0.36, 1.7) 0.20 -0.41 (-0.95, 0.13) 0.13 -0.2 (-0.63, 0.24) 0.38 Y 

Coprococcus eutactus 0.2 (-0.13, 0.54) 0.23 0.38 (-0.44, 1.2) 0.36 0.26 (-0.17, 0.69) 0.24 0.26 (-0.09, 0.61) 0.14 Y 

Clostridium difficile 0.17 (-0.22, 0.56) 0.39 0.15 (-0.79, 1.09) 0.75 0.32 (-0.17, 0.81) 0.20 0.22 (-0.18, 0.61) 0.28 Y 
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Anaerotruncus 

colihominis 

-0.31 (-0.7, 0.07) 0.11 -0.58 (-1.51, 0.35) 0.22 -0.31 (-0.79, 0.18) 0.22 -0.37 (-0.76, 0.02) 0.07 Y 

Ruminococcaceae 

bacterium D16 

0.24 (-0.51, 0.99) 0.53 1.46 (-0.35, 3.27) 0.11 0.29 (-0.67, 1.24) 0.55 0.6 (-0.17, 1.37) 0.13 Y 

Subdoligranulum 

variabile 

0 (-0.41, 0.41) 1.00 1.18 (0.19, 2.17) 0.02 -0.09 (-0.62, 0.43) 0.72 0.16 (-0.26, 0.59) 0.45 Y 

Eubacterium 

cylindroides 

-0.13 (-0.6, 0.34) 0.58 0.45 (-0.69, 1.59) 0.44 -0.26 (-0.85, 0.34) 0.40 -0.06 (-0.54, 0.42) 0.81 Y 

Eubacterium dolichum 0.32 (0, 0.64) 0.05 -0.33 (-1.1, 0.45) 0.41 0.43 (0.02, 0.83) 0.04 0.24 (-0.09, 0.57) 0.15 Y 

Megasphaera elsdenii 0.43 (-0.59, 1.46) 0.41 1.98 (-0.49, 4.45) 0.12 0.51 (-0.79, 1.81) 0.44 0.67 (-0.38, 1.72) 0.21 Y 

Fusobacterium 

mortiferum 

0.18 (-0.08, 0.43) 0.18 0.05 (-0.58, 0.68) 0.87 0.28 (-0.05, 0.61) 0.10 0.27 (0.01, 0.54) 0.04 Y 

Fusobacterium 

nucleatum 

0.02 (-0.33, 0.37) 0.93 0.26 (-0.58, 1.11) 0.54 -0.04 (-0.48, 0.4) 0.86 0.06 (-0.3, 0.41) 0.76 Y 

Fusobacterium 

ulcerans 

0.59 (-0.07, 1.26) 0.08 1.08 (-0.53, 2.7) 0.19 0.8 (-0.05, 1.64) 0.07 0.76 (0.08, 1.44) 0.03 Y 

Fusobacterium varium 0.28 (-0.46, 1.01) 0.46 1.02 (-0.76, 2.8) 0.26 0.5 (-0.44, 1.43) 0.30 0.51 (-0.24, 1.27) 0.18 Y 

1 The 56 microbial SCFA producers were selected from literature and the full list with references is in Table S2. The relative abundance of each 

SCFAs and the sum of the all three SCFAs were log2 transformed. The raw counts of each species and the total counts of the 56 species were 
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normalized and log10 transformed. Model was adjusted for age, sex, batch, province, urbanization, income, education, total energy, insoluble fiber, 

physical activity, smoking, and alcohol intake. β coefficients can be used in the following formula: (2^(β)-1)*100% to estimate the percent change 

in butyrate associated with per 1 unit increase in log10 of the total relative abundance of SCFAs-producing gut microbiota.  

2 Microbiota presented in at least 25% of the sample were denoted as non-rare microbiota and kept as continuous variables in linear regression. 

Microbiota present in less than 25% of the sample were denoted as rare microbiota and included as binary variables (yes/no present in the sample) 

in linear regression.   
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Table S6.10. Sensitivity analysis of the associations between plasma short-chain fatty acids (SCFAs) with body mass index (BMI) and waist-to-

height ratio (WHtR) 

  BMI (n=462) WHtR (n=460) 

 Mean (SD) β (95% confidence 

interval) 

p-value β (95% confidence interval) p-value 

Butyrate/isobutyrate -0.03 (0.76) 0.36 (-0.02, 0.75) 0.07 0.01 (3E-03, 0.02) 0.01 

Valerate -0.11 (1.74) 0.01 (-0.16, 0.18) 0.91 2E-03 (-2E-03, 4E-03) 0.36 

Isovalerate 0.08 (0.94) 0.18 (-0.13, 0.50) 0.24 0.01 (-4E-04, 0.01) 0.07 

Total SCFAs 1.51 (0.76) 0.27 (-0.11, 0.65) 0.17 0.01 (2E-03, 0.02) 0.01 

Participants who took antibiotics, pre/probiotics, or had diarrhea, irritable bowel syndrome, or inflammatory bowel disease were additionally 

excluded from the analysis. The mean (SD) for BMI (kg/m2) and WHtR was 24.01 (3.15) and 0.52 (0.06), respectively. Because the SCFAs 

abundance were log2 transformed, the linear model coefficients are interpreted as units of BMI and WHtR associated with a fold increase in 

SCFAs. Model was adjusted for age, sex, batch, province, urbanization, income, education, total energy, insoluble fiber, physical activity, 

smoking, and alcohol intake.  
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Table S6.11. Sensitivity analysis of the interaction between dietary precursors of short-chain fatty acids (SCFAs) and overweight in models of 

SCFAs [% change (95% CI)], corresponding to Figure S6.21 

n=462 Butyrate/isobutyrate Valerate Isovalerate Total SCFAs 

Insoluble fiber (ref. = low)2 

Middle  -14.03 (-27.72, 2.25) -12.85 (-41.67, 30.19) -15.74 (-32.15, 4.63) -14.27 (-28.07, 2.18) 

High  0.26 (-16.23, 20) -13.04 (-42.62, 31.79) -0.24 (-20.29, 24.85) 0.75 (-15.99, 20.84) 

Middle X High BMI 23.97 (-1.94, 56.71) 15.05 (-33.12, 97.89) 28.73 (-3.93, 72.5) 23.9 (-2.26, 57.05) 

High X High BMI 1.45 (-19.72, 28.19) 38.81 (-19.22, 138.53) 4.52 (-21.96, 39.98) 7.43 (-15.21, 36.12) 

Interaction p-value3 0.133 0.491 0.196 0.197 

Carbohydrate (ref. = low)2 

Middle  5.21 (-11.46, 25.01) 15.22 (-22.55, 71.4) 5.34 (-15.05, 30.61) 5.28 (-11.52, 25.27) 

High  0.26 (-17.8, 22.28) -11.79 (-44.16, 39.36) -5.32 (-26.09, 21.28) -4.18 (-21.56, 17.06) 

Middle X High BMI -1.03 (-21.74, 25.17) -26.29 (-57.08, 26.59) -1.48 (-26.49, 32.04) -3.67 (-23.98, 22.06) 

High X High BMI 9.74 (-13.39, 39.05) 17.45 (-31.91, 102.59) 15 (-14.39, 54.5) 18.63 (-6.55, 50.6) 

Interaction p-value3 0.645 0.238 0.530 0.194 

Fiber foods (ref. = low)2 

Middle  -4.88 (-19.87, 12.91) -6 (-36.74, 39.65) -5.74 (-23.85, 16.68) -7.72 (-22.37, 9.69) 

High  -3.21 (-18.95, 15.58) 20.39 (-20.08, 81.36) -0.83 (-20.48, 23.68) -0.51 (-16.81, 18.98) 
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Middle X High BMI -9.08 (-27.98, 14.79) -6.31 (-45.3, 60.49) -15.5 (-36.78, 12.94) -9.6 (-28.53, 14.34) 

High X High BMI -5.21 (-25.03, 19.83) -22.43 (-54.86, 33.31) -6.27 (-30, 25.49) -7.8 (-27.21, 16.79) 

Interaction p-value3 0.724 0.635 0.517 0.670 

1 Participants who took antibiotics, pre/probiotics, or had diarrhea, irritable bowel syndrome, or inflammatory bowel disease were additionally 

excluded from the analysis. BMI≥24 kg/m2. The abundance of each SCFAs and the sum of the all three SCFAs were log2 transformed. The % 

change relative to the reference level was calculated using the following formula: (2^(β)-1)*100%, where β was the linear model coefficient. 

Model was adjusted for age, sex, batch, province, urbanization, income, education, total energy, insoluble fiber, physical activity, smoking, and 

alcohol intake. *, % change p-value<0.05, **, % change p-value<0.01. 

2 Dietary intakes were measured by 3-consecutive 24h dietary recalls and household food inventories. High-fiber foods was calculated as the sum 

of whole grains, legumes, starchy roots, vegetables, mushrooms/seaweeds, fruits, nuts/seeds. Insoluble fiber, carbohydrate, and high-fiber food 

score were categorized by tertiles to represent low, middle, and high intakes. 

3 The statistical significance of the interaction term between dietary factors and overweight was estimated using a Wald test that compared models 

with and without the interaction term.  
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Table S6.12. Sensitivity analysis of the interaction between dietary precursors of short-chain fatty acids (SCFAs) and abdominal obesity in 

models of SCFAs [% change (95% CI)], corresponding to Figure S6.31 

n=460 Butyrate/isobutyrate Valerate Isovalerate Total SCFAs 

Insoluble fiber (ref. = low)2 

Middle  -18.6 (-33.56, -0.27) -16.01 (-47.74, 34.99) -19.59 (-37.68, 3.76) -19.36 (-34.38, -0.9)* 

High  0.7 (-18.25, 24.06) -13.12 (-46.63, 41.44) 1.15 (-22.15, 31.42) 0.3 (-18.84, 23.95) 

Middle X High WHtR 26.33 (-0.89, 61.04) 16.67 (-33.83, 105.71) 28.24 (-5.44, 73.92) 27.34 (-0.47, 62.92) 

High X High WHtR 0.32 (-21.43, 28.09) 22.74 (-30.65, 117.24) 1.3 (-25.45, 37.67) 5.46 (-17.71, 35.15) 

Interaction p-value3 0.099 0.762 0.201 0.132 

Carbohydrate (ref. = low)2 

Middle  2.77 (-16.34, 26.24) -19.57 (-50.03, 29.46) 0.54 (-22.3, 30.11) -5.69 (-23.46, 16.21) 

High  13.75 (-9.6, 43.14) -42.92 (-66.46, -2.87)* 12.45 (-15.68, 49.97) -0.95 (-21.55, 25.07) 

Middle X High WHtR 3.5 (-18.9, 32.08) 36.39 (-22.42, 139.77) 6.67 (-21.41, 44.79) 15.24 (-10.03, 47.6) 

High X High WHtR -10.79 (-30.57, 14.63) 110.58 (17.9, 276.14)* -13.63 (-36.92, 18.25) 8.26 (-16.06, 39.63) 

Interaction p-value3 0.473 0.042 0.396 0.530 

High-fiber foods (ref. = low)2 

Middle  -13.95 (-29.69, 5.31) -1.38 (-38.39, 57.87) -18.65 (-36.82, 4.75) -15.49 (-31.12, 3.69) 

High  -5.29 (-23.05, 16.58) 7.9 (-33.49, 75.06) -2.38 (-24.73, 26.6) -4.14 (-22.33, 18.3) 
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Middle X High WHtR 7.96 (-15.22, 37.47) -10.78 (-49.19, 56.66) 9.64 (-18.98, 48.36) 5.64 (-17.29, 34.93) 

High X High WHtR -2.45 (-23.42, 24.28) 1.1 (-42.48, 77.7) -4.53 (-29.49, 29.26) -1.67 (-23.05, 25.65) 

Interaction p-value3 0.701 0.893 0.669 0.840 

1 Participants who took antibiotics, pre/probiotics, or had diarrhea, irritable bowel syndrome, or inflammatory bowel disease were additionally 

excluded from the analysis. Waist-to-height ratio≥0.5. The abundance of each SCFAs and the sum of the all three SCFAs were log2 transformed. 

The % change relative to the reference level was calculated using the following formula: (2^(β)-1)*100%, where β was the linear model 

coefficient. Model was adjusted for age, sex, batch, province, urbanization, income, education, total energy, insoluble fiber, physical activity, 

smoking, and alcohol intake. *, % change p-value<0.05, **, % change p-value<0.01. 

2 Dietary intakes were measured by 3-consecutive 24h dietary recalls and household food inventories. High-fiber foods was calculated as the sum 

of whole grains, legumes, starchy roots, vegetables, mushrooms/seaweeds, fruits, nuts/seeds. Insoluble fiber, carbohydrate, and high-fiber food 

score were categorized by tertiles to represent low, middle, and high intakes. 

3 The statistical significance of the interaction term between dietary factors and abdominal obesity was estimated using a Wald test that compared 

models with and without the interaction term.  
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Table S6.13. Sensitivity analysis of the association between the overall and the total relative abundance of 56 microbial short-chain fatty acid 

(SCFA) producers with body mass index (BMI) and waist-to-height-ratio (WHtR) 

   Overall1 Total2 

 n Mean (SD) R2 P-value β (95% CI) P-value 

BMI 192 24.38 (3.12) 0.008 0.13 -0.95 (-2.82, 0.93) 0.32 

WHtR 191 0.53 (0.06) 0.007 0.20 -0.03 (-0.06, 0.01) 0.14 

Participants who took antibiotics, pre/probiotics, or had diarrhea, irritable bowel syndrome, or inflammatory bowel disease were additionally 

excluded from the analysis. The raw counts of each species and the total counts of the 56 species were normalized and log10 transformed [22]. 

Model was adjusted for age, sex, batch, province, urbanization, income, education, total energy, insoluble fiber, physical activity, smoking, and 

alcohol intake. 

1 R2 and p-value were calculated using permutational multivariate analysis of variance (PERMANOVA) of all 56 species.  

2 Linear regression was performed on the total relative abundance of the 56 species. 
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Figure S6.1. Sample flow chart. 
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Figure S6.2. Sensitivity analysis of the associations between dietary precursors of short-chain fatty acids 

(SCFAs) and plasma SCFAs by overweight. Overweight: BMI≥24 kg/m2. Vertical axes represent model 

predicted (marginal means) SCFAs abundance. Dietary intakes were categorized by tertiles to represent 

low, middle, and high intakes. Linear model was adjusted for age, sex, batch run, province, urbanization, 

income, education, physical activity, total energy intake, insoluble fiber, alcohol, and ever smoking. P-

value for the interaction between each dietary precursor of SCFAs and overweight was derived using a 

Wald test. P-value>0.05 for all comparisons of plasma SCFA abundance at a given level of a dietary 

precursor by overweight.     
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Figure S6.3. Sensitivity analysis of the associations between dietary precursors of short-chain fatty acids 

(SCFAs) with plasma SCFAs by abdominal obesity. Abdominal obesity: waist-to-height ratio≥0.5. 

Vertical axes represent model predicted (marginal means) SCFAs abundance. Dietary intakes were 

categorized by tertiles. Linear model was adjusted for age, sex, batch run, province, urbanization, income, 

education, physical activity, total energy intake, insoluble fiber intake, alcohol, and ever smoking. P-value 

for the interaction between each dietary precursor of SCFAs and AOB was derived using a Wald test. *, 

p-value<0.5; **, p-value <0.01 for comparisons of plasma SCFAs abundance at a given level of intake by 

abdominal obesity 
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CHAPTER 7. SYNTHESIS 

 

Overview of findings  

The overall goal of this research was to understand the microbial and metabolic pathways 

underlying the dietary etiology of cardiovascular disease (CVD) risk factors. We also aimed to investigate 

these complex associations and provide insights into potential biomarkers and therapeutic targets to 

improve interventions and treatments. To achieve these purposes, we investigated the relationships 

between diet, gut microbiota, circulating metabolites, and CVD risk factors in free-living adults using 

well-characterized data from the China Health and Nutrition Survey (CHNS), which provided gut 

microbiota data across 12 provinces and three megacities and paired plasma metabolite data from four 

adjacent southern provinces. We also had access to high-quality diet data obtained from both three 

validated 24-h diet recalls and household food inventories, CVD risk factors assessed by trained 

clinicians, and detailed data of sociodemographic and health behavioral factors.  

Our research addressed two major gaps in current literature of microbiota and metabolomics, the 

lack of strong population-based evidence and the lack of integrated analysis of microbiota and 

metabolites. We first showed gut microbiota and plasma metabolome were associated with sodium and 

potassium consumption, two key dietary risk factors for CVD, after accounting for geographic variation 

in diet and microbial communities. Second, we identified biologically plausible patterns of metabolites 

and assessed the associations between these patterns and the individual metabolites underlying these 

patterns with blood pressure in middle-aged adults during critical period for CVD development. We also 

examined the association between the overall gut microbial community and specific microbial groups 

with blood pressure. Last, we quantified the association between circulating short-chain fatty acids 
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(SCFAs), which have been shown to be involved in multiple pathways that modulate CVD risk factors, 

with body mass and abdominal adiposity measures. We additionally examined the roles of diet and 

microbiota in the SCFA-adiposity relationship. In this section, we provide a brief summary and synthesis 

of our findings.   

 

Are gut microbiota and host metabolites involved in dietary sodium and potassium-associated CVD risk?  

We examined associations between sodium and potassium consumption with gut microbiota and 

host metabolome. We analyzed of the overall microbial community and metabolome (distance-based 

redundancy analysis, dbRDA), as well as specific taxa and metabolites (multivariable-adjusted linear 

regression). To understand whether the associations between dietary sodium and potassium with host 

metabolome were potentially mediated by microbiota, we additionally examined the associations between 

specific taxa and metabolites that have shown associations with sodium and/or potassium consumption.  

After accounting for geographic variation, we found that energy-adjusted sodium, potassium, and 

Na/K ratio consumption were associated with between-person gut microbial diversity and several specific 

genera. While in a few provinces, sodium tended to be positively associated with infectious pathogenic 

bacteria and genera shown to be linked to hypertension and obesity in the literature, potassium tended to 

be positively associated with SCFAs-producing commensals. These diet factors were also associated with 

the overall metabolome and several individua metabolites. Specifically, sodium consumption was 

negatively associated with the anti-inflammatory microbial-derived phenolics, while positively associated 

with SCFAs and pro-inflammatory fibrinogen cleavage peptide and eicosanoids, all of which are involved 

in CVD risk development. The positive associations between a few taxa with phenolics indicated that 

microbiota are indeed involved in the association between dietary sodium and microbiota-mediated 

metabolites. In addition, as energy-adjusted sodium, potassium, and Na/K ratio consumption were 

positively with several specific microbiota [both genus- and operational taxonomic unit (OTU)-level] and 

metabolites in some provinces and megacities, but negatively associated with them in other provinces and 



 

225 

 

megacities, our results suggested that geographic variation should be considered in future analyses. 

Investigating geographic variations in microbiota and metabolites may improve the understanding of 

regional- and inter-individual differences in CVD risk attributable to high sodium and low potassium 

consumption [95]. Altogether, our results indicate that gut microbiota and circulating metabolites may 

play important roles in the dietary etiology of CVD and suggest potential routes of diet intake in relation 

to health outcomes. Thus, gut microbiota and related metabolites could be potential targets for sodium 

and potassium intervention to curb the CVD epidemic. 

 

What are the underlying microbial and metabolic pathways of blood pressure regulation? 

 By examining the association between gut microbiota and plasma metabolites with blood 

pressure, we aimed to test whether microbiota and metabolites that have been shown to regulate blood 

pressure in animal models, like SCFAs [80] and glycerrhetinic acid-like factors (GALFs) [28,33], were 

associated with blood pressure in a free-living general adult population. We analyzed the overall 

microbial community (permutational multivariate ANOVA) and specific genera and metabolites 

(multivariable-adjusted linear regression), as well as metabolite patterns derived from principal 

component analysis. 

 We found that blood pressure varied across between-person gut microbial diversity assessed by 

principal coordinate analysis (PCoA), with the fourth dimension of dissimilarity matrix positively 

associated with systolic blood pressure. A lipid pattern was positively associated with blood pressure, 

independent of estimated glomerular filtration rate (eGFR) and BMI, a potential mediator. Individual 

metabolites contributing to this pattern (e.g., acyl-carnitines and long-chain polyunsaturated and saturated 

fatty acids) and a few sphingomyelins and phosphatidylinositol were also positively associated with blood 

pressure. In random forest models, host sociodemographic and behavioral factor, microbiota, and 

metabolite data had comparable accuracy in predicting blood pressure, indicating that these data are 

equally valuable in studying blood pressure. Our findings also suggest that instead of a few specific 
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microbes, the overall microbiome may be involved in blood pressure regulation. Thus, interventions may 

need to modulate the whole microbial community to modulate high blood pressure. Similarly, a collection 

of circulating lipids, especially sphingomyelins, acyl-carnitine, and long-chain fatty acids, may need to be 

strictly monitored. Although we did not fully replicate the findings from studies using animal models (i.e., 

no association found for SCFAs and GALFs), our results shed light on effective management of high 

blood pressure targeting microbiota and specific groups of metabolites. 

  

Circulating SCFAs and adiposity: How do diet and gut microbiota play a part? 

 We examined the association between individual plasma SCFAs and the total abundance of 

SCFAs with two adiposity measures, BMI and waist-to-height ratio (WHtR), using multivariable adjusted 

linear regression. To test whether subjects with higher adiposity had higher capacity to harvest energy 

through gut microbial production of SCFAs from carbohydrate fermentation, we first assessed whether 

the associations between dietary precursors of SCFAs and plasma SCFAs varied across levels of BMI and 

WHtR, and then we tested the associations between bacterial species shown to produce SCFAs with BMI 

and WHtR.  

We found positive associations between SCFAs with BMI and WHtR, including 

butyrate/isobutyrate, isovalerate, and the total SCFAs. The associations between insoluble fiber with 

butyrate/isovalerate and total SCFAs and between total carbohydrate and valerate were slightly differed 

by WHtR levels. We also observed a differential association between insoluble fiber and 

butyrate/isovalerate across levels of BMI. For example, whereas valerate decreased as total carbohydrate 

intake increased in adults with normal WHtR, valerate tended to increase as total carbohydrate intake 

increased in adults with high WHtR. There was no association between the total relative abundance of 

SCFA-producing bacteria with BMI and WHtR. Our results indicate that the higher SCFAs associated 

with higher adiposity may reflect an interplay of diet and gut microbiome. Our results also inform future 
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design of dietary interventions for obesity the importance of considering potential inter-individual 

differences in the abilities of gut microbiota to digest dietary carbohydrates.  

 

Strength and limitations 

Limitations 

One of the biggest challenges of the current research is the cross-sectional design. We were 

unable to establish the temporalities or causal-relationships between diet, microbiota, metabolites, and 

CVD risk factors. It is possible that the observed associations were due to reverse causation. That is, 

instead of leading to increased CVD risk, certain microbiota or metabolites may reflect the increased 

CVD risk. There are a few ways to infer causality in cross-sectional studies, for example, Mendelian 

randomization [203], which uses the host genetics as an instrumental variable for a single or a group of 

microbiota or metabolite. However, due to weak polygenetic score instrument for metabolites (i.e., low 

explained variance R2≤2%, small sample size), we were unable to assess the causality using this 

approach. In addition, we were unable to test the stability of microbiota and metabolite data given the lack 

of repeated measures. There may be large within-individual variations in omics data, especially for 

circulating metabolites. As such, associations based on a single measure of metabolites could be biased 

when the intra class correlation<0.5, which indicates that the within-individual variance is large relative 

to the between-individual variance [139]. To reduce the variability in metabolites, we have restricted the 

metabolomics sample to middle aged adults from two adjacent southern provinces with similar customs 

and collected fasting blood samples at the same day per examination center following the same 

standardized protocol. In addition, we have previously reported that the CHNS gut microbiota samples 

were stable over two weeks [119]. 

Another challenge of our research is the lack of an independent replication sample. Many of our 

analyses were hypothesis-generating steps to delineate various biological pathways associated with diet 

and CVD risk factors. These analyses need to be repeated in other cohorts in order to confirm our findings 
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and inform the next steps in establishing causal roles of these pathways. Our exclusion criteria including 

the antibiotic use were based on a priori knowledge that they may affect the gut microbiome [53]. 

However, it is possible that these exclusions may create systematic differences in characteristics including 

socioeconomic status and health consciousness, making the analysis sample less representative of the 

general population and thus may leading to deviated results from the future replication cohort. Moreover, 

given that our unique Chinese cohort may have different dietary habits and dietary sources than other 

race/ethnic groups, for example, the extremely high sodium and low potassium intake, we acknowledge 

that our findings may have limited generalizability to other populations, like those with lower sodium and 

higher potassium intake than our cohort. Despite that the majority of our sample consumed excessed 

sodium and deficient potassium, we were still able to examine large variation in sodium and potassium 

consumption. 

We cannot exclude the possibility of measurement errors, especially for diet assessment tools. 

Measurement errors in dietary intakes of sodium are common across studies [204] and the use of 24-h 

recall has shown less accurate estimation of sodium intake than 24-h urine in China [138]. Our use of 

both three-consecutive 24-h recalls and three-day household inventories, validated by three-consecutive 

24-h urine, reduced these potential measurement errors. Nevertheless, in analysis of fiber intake, our diet 

assessment tools did distinguish fibers types, preventing us from conducting more detailed analysis of 

fermentable versus non-fermentable fibers. Measurement errors in covariates may exists as well and could 

lead to residual confounding. For example, we were unable to adjust for more detailed classification of 

smoking like former/current smoking due to small numbers of former smokers, though our definition of 

never/ever smokers was based on repeated measures in previous survey rounds to reduce miss 

classification.   

An inherent limitation of 16S rRNA data is that it only provides microbial community structures, 

and not specific pathways based on microbial functional genes. We were unable to infer microbial and 

metabolic pathways directly from our 16S rRNA results. Though we have gut metagenome data in the 
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sub-sample, which aided us in identifying specific bacteria species that produce SCFAs, we may have 

limited statistical power owing to the small sample size (n=213) and limited comparability to current 

literatures that primarily based on genus-level 16S data. While we had similar or larger sample size than 

previous studies, we may still lack statistical power to test numerous potential interactions in our analyses 

(i.e., variations in geographic locations and adiposity levels). Because we examined thousands of specific 

taxa and metabolites, it is almost impossible to tailor our model for each taxa and metabolites. Our 

analyses were primarily based on linearity assumption and thus were preliminary steps to identify 

differential associations across provinces/megacities. It is a promising area for further regional-specific 

analysis to fully understand these variations. 

Last, while the comprehensive snapshot of systemic metabolic processes captured by non-

targeted metabolomics allowed us to test a wide range of metabolites, we did not examine metabolite 

concentrations or measure all metabolites of our interest. For instance, acetate and propionate with 

molecular sizes below detection level could not be identified in our metabolomics analysis. We also 

lacked fecal and urine metabolomics paired to circulating metabolomics to assess the absorption and 

excretion of microbial-mediated metabolites, which are important to understand the full mechanisms 

underlying the associations across diet, microbiota, metabolite, and CVD risk factors. 

 

Strengths 

Despite these limitations, our research has several strengths, including the well-characterized, and 

population-based cohort, with participants across 12 provinces and megacities and from a range of urban 

and rural communities, allowing us to detect large variations in diet and health factors. Given our diverse 

data, our findings are potentially more generalizable to the Chinese adult population than studies using 

data from single or a few communities. Our previous work has shown the gut microbiota varied 

substantially by provinces and megacities [118] and by urban versus rural areas [119], and thus sampling 

from diverse geographic locations is important for gut microbiome research. Additionally, our unique 
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cohort with low treatment rate for blood pressure enabled us to assess large variations in untreated blood 

pressure and ensured minimal medication effects to associations across microbiota, metabolites and blood 

pressure.   

The CHNS provided high quality individual-, household-, and community-level data, spanning 

from self-reported sociodemographic information and health activities, clinically measured biomarkers, 

blood pressure and anthropometry, to community services, infrastructure and environment collected from 

officials, informants and official records. These rich data allowed use to control for an array of potential 

confounders, including urbanization, education, income, physical activity, smoking, alcohol intake, and 

eGFR. In particular, our diet measurement instruments, three-consecutive 24-h recall and household food 

inventories, had been validated by double labeled water for total energy intake [100] and three-

consecutive 24-h urine excretion for sodium and potassium [95]. Our diet data captured cooking methods 

and all foods consumed within the household, as well as food consumed away from home. Our protocols 

for collections and processing of fecal samples and fasting blood samples were also standardized with 

strict quality control.   

We had access to paired gut microbiota and plasma metabolomics data measured concurrently, 

allowing us to infer host metabolic pathways beyond microbial pathways and conduct integrated omics 

analysis, which further improved our understanding of how diet and microbiota may jointly affect 

metabolites. This feature also enabled us to compare microbiota and metabolite data to provide insight to 

which data had stronger association with or better prediction for host diet and physiology, compared to 

conventionally measured host sociodemographic and behavioral data. To our knowledge, few population-

based studies have reported diet and health factors associated with microbiome and metabolome data.  

Furthermore, we used multiple methodological approaches to more comprehensively analyze the 

unique characteristics of each types of data, which might otherwise be overlooked using a single 

approach. For example, we used partial dbRDA to simultaneously test the statistical significance of the 

main effect (i.e., sodium and potassium consumption) and the interaction effect (i.e., interaction of 
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sodium or potassium with provinces and megacities) on the overall microbial community and 

metabolome, which could not be done using the widely-used permutational multivariate ANOVA. This 

joint test is common in studies testing gene-environment interactions and has been shown to offer more 

statistical power than other methods when interaction exists and similar power to analysis of main effect 

only in the absence of an interaction [124]. We also used principal component analysis (PCA) to extract 

biological possible metabolite patterns given the intricate correlations across metabolites, which cannot be 

accounted for if metabolites were only examined individually. Finally, the use of random forest 

regression, a machine learning approach, allowed us to compare across the whole set of data for 

microbiota, metabolites, and other host factors in association with diet and CVD risk factors.  

 

Public health significance 

Our research has critical implications for improving public health. The prevalence of leading 

CVD risk factors like high blood pressure and overweight/obesity continue to rise around the world 

[6,15,16]. Research on gut microbiota and host metabolites could provide valuable insights into the 

multifactorial systems that regulate blood pressure and body weight, therefore shedding light on effective 

personalized interventions and treatment that ultimately help advancing population health. Findings from 

the current research can also inform future studies about specific hypotheses on relationships across diet, 

microbiota, metabolites and CVD risk factors.  

 

Our results add evidence to the potential deleterious health effects of high sodium and low potassium 

consumption 

 We found that dietary sodium and potassium were positively and negatively associated with 

several pathogenic bacteria like Staphylcoccus, Pseudomonas, and Moraxellaceae, respectively, across a 

few provinces and megacities in our sample. Sodium was also negatively associated with the anti-

inflammatory gut-derived phenolics, while positively associated with pro-inflammatory fibrinogen 
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cleavage peptide and eicosanoid in Guizhou province. Our findings are in line with mouse models 

indicating that the increased inflammation plays a part in high sodium-induced high blood pressure [42]. 

Sodium-induced colon inflammation also exacerbated colitis in mice [136]. Therefore, our research 

supports the urgent needs to increase health consciousness of dietary sodium and potassium intakes. Our 

findings also suggest a possibility to reverse the harmful effects of high sodium and low potassium 

intakes on health by modulating the gut microbiota. For example, Lactobacillus supplementation reduced 

blood pressure in mice with high blood pressure induced by high sodium intake [42]. The substantial 

variations in our results across geographic locations may reflect different basal microbiome and different 

dietary sources of sodium and potassium, indicating that dietary interventions tailored for each region or 

community may be more appropriate than a non-tailored intervention, though more studies are needed to 

confirm this.  

 

Our findings unravel potential biological pathways underlying high blood pressure  

In our research, a lipids pattern (e.g., long-chain fatty acids), several individual lipid metabolites, 

and a few metabolic pathways (e.g., sphingolipids, long-chain acyl-carnitines) were positively associated 

with blood pressure. Others have shown that the metabolomics-related mechanisms may impact blood 

pressure. For instance, excess acyl-carnitines can stimulate proinflammatory pathways through Nuclear 

factor kappa B (NF-κB) [161], and long-chain fatty acids like linoleate can be metabolized to arachidonic 

acid, a precursor of proinflammatory eicosanoids [162]. Moreover, sphingolipids are candidate 

biomarkers for CVD and can predict coronary artery disease better than LDL-cholesterol and triglycerides 

[165-167]. Thus, our results suggest that these blood lipids may need to be measured in combination with 

other traditional blood markers to thoroughly evaluate individual and population risk for CVD. These 

lipids may also be important targets for CVD prevention and treatment. 
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Our results also provide insights into an interplay of diet and gut microbiota in high adiposity 

We found positive associations between plasma SCFAs and adiposity measures. Studies have 

suggested that SCFAs are a large source of dietary energy extracted by the gut microbiota, adding as 

much as 10% extra energy to adults [86]. Others have also shown that the gut microbiota of people with 

obesity had higher capacity to harvest energy, as measured by SCFA production after fermenting the 

same amount of carbohydrate, than those with normal weight [73,179]. Goffredo et al. [73] showed that 

the microbiota of adolescents with higher body fat was characterized by higher Firmicutes/Bacteroidetes 

ratio and specific genera including Streptococcus, Actinomyces and Blautia. These results suggest that the 

positive associations between SCFAs and adiposity are at least partially due to the higher energy 

harvesting in obese versus lean gut microbiota. In other words, even when consuming the same amount of 

carbohydrate, people with an obese microbial phenotype may potentially obtain more energy than people 

with a lean-associated microbiota. As such, our findings indicate that the gut microbiota may be a 

modifiable target employed with dietary interventions for obesity.  

In addition, our results suggest that high-fiber foods like fruits, nuts/seeds, and whole grains may 

be beneficial for reducing abdominal adiposity by potentially helping decrease energy harvesting as 

indicated by circulating SCFAs. We have shown that these high-fiber foods were negatively associated 

with plasma SCFAs in adults with high WHtR. Similar results were found in a double-blinded, 

randomized-controlled human trial, in which the prebiotic fiber groups had lower fecal SCFAs than the 

placebo group after treatment period [180]. Thus, our findings shed light on the potentiality to monitoring 

microbiota and microbiota-mediated metabolites using diet to decrease one’s susceptibility to accumulate 

adiposity. Overall, our research highlights the importance of considering diet-microbiota interaction as 

candidates for CVD risk factor management. 
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Future directions 

There are many research directions that could be extended from our analyses to further advance 

our understanding the roles of gut microbiota and circulating metabolites in the diet-CVD risk 

relationships.  

A pivotal objective of future research is to establish the temporal relationships across diet, 

microbiota, metabolites, and CVD risk factors. Population-based cohorts with repeated measures of 

microbiota and metabolomics data are needed to determine the longitudinal associations between diet 

with microbiota and metabolites and to identify novel microbiota and metabolite markers predicting 

elevated CVD risk. Our future research using the 2015 and the upcoming round of CHNS will allow us to 

investigate these associations. Ideally, using more reliable dietary measures like doubly-labeled water for 

total energy and urine excretion for sodium and potassium than self-reported data may further improve 

the research. Host genotype could also be employed to infer temporality, as it can act as an instrument 

variable for the exposure, a strategy known as Mendelian randomization [6]. In theory, host genotype is 

unlikely be influenced by the outcome of interest and environment and lifestyle, which are common 

confounding factors of CVD epidemiology, thereby limiting reverse causality and confounding in 

observational studies.  

Randomized-control trials (RCTs) are essential to clarify how a particular diet affects CVD risk 

through alterations in microbiota and metabolites. There are a few cross-over trials examined the 

association between sodium restriction and changes in circulating metabolomics, such as the Dietary 

Approaches to Stop Hypertension (DASH)-Sodium trial [67]. Yet, to date, few large population-

representative RCTs have examined the effects of sodium or other key dietary risk factors for CVD like 

potassium and fiber on both microbiota and metabolomics. Because we observed negative associations 

between fiber-rich foods and SCFAs in adults with high abdominal adiposity, it is of our interest to 

conduct RCTs to examine whether a high fiber diet reduced obesity by shifting the gut microbiota from 

higher to lower energy-harvesting capacity and whether this effect varies by different types of fiber. It is 
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also of our interest to test whether gut microbiota and metabolites explain or reflect individual response to 

diet, like salt sensitivity.  

Future research could add analyses for gut microbial functional genes using the metagenomics 

data to examine the specific microbial pathways influenced by diet and/or affecting CVD risk. 

Specifically, these analyses could help understand why the association between dietary sodium and 

potassium with gut microbiota varied substantially across geographic locations in our sample. These 

analyses could also help us identify groups of microbes with similar functions to test specific hypotheses. 

For example, metagenome analysis allows identification of a full list of bacteria exhibiting nitrogen 

monoxide- and hydrogen sulfide- producing pathways, which are two gases that have been shown to 

reduce blood pressure [205,206]. We can then examine what diet patterns or specific foods and nutrients 

affect these bacteria to inform future diet intervention.  

In addition, based on our results and prior research, several specific hypotheses could be tested, 

such as the microbial-mediated metabolites, GALFs and SCFAs that have established roles in high blood 

pressure [28,33,80]. These specific metabolites may require targeted measures as they may be poorly 

captured by nontargeted metabolomics, especially acetate and propionate with small molecular sizes. 

Multiple types of specimens, including fecal, blood, and urine, may also be needed to better capture 

transient metabolites in circulation, like butyrate [159], and to fully understand the association between 

the production, absorption, and excretion of these metabolites with CVD risk factors. Finally, while we 

only examined three major CVD risk factors (i.e., blood pressure, body mass and abdominal 

circumference), our analyses could be extended to many other risk factors. For instance, the metabolite 

patterns derived from PCA in our research could be further assessed to investigate their associations with 

type 2 diabetes and high c-reaction protein.  

In conclusion, gut microbiota and host metabolome reveal the complex mechanisms linking diet 

with CVD risk factors. Our research has identified a few potential routes of action, including excess blood 

lipids, and provided important insights into future studies. As such, microbiota and metabolites could be 
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promising biomarkers for CVD dietary interventions. However, research in this area is still in its infancy. 

Admittedly, it may take years to develop strong interventions and therapy targeting these candidate 

markers based on our current and future research. In general, more studies are needed to fully elucidate 

the associations and interplays across diet, microbiota, metabolites, and CVD risk factors. 
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