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ABSTRACT

Pedro L. Baldoni: Statistical Methods for the Analysis of Epigenomic Data
(Under the direction of Naim U. Rashid and Joseph G. Ibrahim)

Epigenomics, the study of the human genome and its interactions with proteins and other cellular

elements, has become of significant interest in the past decade. Several landmark studies have shown that

these interactions regulate essential cellular processes (gene transcription, gene silencing, etc.) and are

associated with multiple complex disorders such as cancer incidence, cardiovascular disease, etc. Chromatin

immunoprecipitation followed by massively-parallel sequencing (ChIP-seq) is one of several techniques used

to (1) detect protein-DNA interaction sites, (2) classify differential epigenomic activity across conditions,

and (3) characterize subpopulations of single-cells in heterogeneous samples. In this dissertation, we present

statistical methods to tackle problems (1-3) in contexts where protein-DNA interaction sites expand across

broad genomic domains.

First, we present a statistical model that integrates data from multiple epigenomic assays and detects

protein-DNA interaction sites in consensus across multiple replicates. We introduce a class of zero-inflated

mixed-effects hidden Markov models (HMMs) to account for the excess of observed zeros, the latent sample-

specific differences, and the local dependency of sequencing read counts. By integrating multiple samples into

a statistical model tailored for broad epigenomic marks, our model shows high sensitivity and specificity in

both simulated and real datasets. Second, we present an efficient framework for the detection and classification

of regions exhibiting differential epigenomic activity in multi-sample multi-condition designs. The presented

model utilizes a finite mixture model embedded into a HMM to classify patterns of broad and short differential

epigenomic activity across conditions. We utilize a fast rejection-controlled EM algorithm that makes our

implementation among the fastest algorithms available, while showing improvement in performance in data

from broad epigenomic marks. Lastly, we analyze data from single-cell ChIP-seq assays and present a

statistical model that allows the simultaneous clustering and characterization of single-cell subpopulations.

The presented framework is robust for the often observed sparsity in single-cell epigenomic data and accounts

for the local dependency of counts. We introduce an initialization scheme for the initialization of the EM
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algorithm as well as the identification of the number of single-cell subpopulations in the data, a common task

in current single-cell epigenomic algorithms.
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CHAPTER 1: INTRODUCTION

Epigenomics, the study of the human genome and its interactions with proteins and other cellular

elements, has become of significant interest in recent years. Such interactions have been shown to regulate

essential cellular functions such as gene expression and DNA packaging (Kim et al., 2018), resulting in

downstream phenotypic impact. The interrogation of how these interactions occur and how they may change

across conditions, such as cell types or treatments, is of marked interest in biomedical research. In cancer

research, for instance, certain types of protein-DNA interactions have been shown to play important roles

in prostate carcinogenesis and progression (Pfister et al., 2015). Several landmark studies have identified

specific genomic regions of changing (differential) epigenomic activity between conditions as drivers of cell

differentiation (Creyghton et al., 2010), cancer progression (Varambally et al., 2002), and a number of human

diseases (Portela and Esteller, 2010).

To quantify local epigenomic activity, a common high-throughput assay is chromatin immunoprecipitation

followed by massively parallel sequencing (ChIP-seq). ChIP-seq experiments begin with cross-linking DNA

and proteins within chromatin structures, which are then fragmented by sonication in a particular sample.

DNA fragments bound to the protein of interest are isolated by chromatin immunoprecipitation, which

are then sequenced via massively parallel high-throughput sequencing to generate short sequencing reads

pertaining to the original fragments. Sequences are then mapped onto a reference genome through sequence

alignment to determine their likely locations of origin. Genomic coordinates containing a high density of

mapped reads, often referred to as enrichment regions (peaks), indicate likely locations of protein-DNA

interaction sites, and all other regions are referred to as background regions.

The detection of enrichment regions in ChIP-seq experiments is challenging for several reasons. Namely,

the diversity of enrichment profiles, the presence of serial correlation in the data, sample-specific character-

istics such as the signal-to-noise ratio, and an excessive number of zeros in the distribution of read counts.

Hence, peak callers need to be tailored accordingly to capture the specific signal of the protein of interest. In

differential peak detection, several other challenges affect the ability of existing methods to accurately detect
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regions of differential activity from the wide range of ChIP-seq experiments (Section 3.2). First, differential

regions may be both short or broad in length, causing difficulty for methods optimized for a particular type of

signal profile (Stark and Brown, 2011; Chen et al., 2015). Second, methods that pool experimental replicates

together (Song and Smith, 2011) often exhibit more false positive calls compared to methods that jointly

model replicates from each condition (Steinhauser et al., 2016). Third, the analysis of ChIP-seq data is often

subject to complex biases that may vary across the genome, as differences in local read enrichment may

depend on the total read abundance in a given region. It is the purpose of this dissertation, divided into three

main chapters, to fill the existing gaps in the literature and present novel approaches to integrate data from

multiple experiments for the detection of consensus and differential protein-DNA binding sites.

In Chapter 2, an integrative approach for the detection of broad regions of enrichment in consensus across

multiple ChIP-seq experiments is proposed. Through a class of zero-inflated mixed effects hidden Markov

models (HMM), the presented model accounts for the main characteristics of broad and diffuse ChIP-seq data

and provides better spatial resolution than current available methods. By including sample-specific random

effects, we show that this novel framework applied to ChIP-seq data integration is able to account for the

long-range correlation present in the data and potential biases due to the different library sizes. Lastly, we

demonstrate that the integration of multiple replicates to call peaks in consensus improves the detection of

protein-DNA interaction sites.

In Chapter 3, we present a statistical model that integrates data from multiple ChIP-seq experiments

(with replicates) and detects broad and short differential regions of enrichment between multiple conditions.

The presented model seeks to detect differential enrichment regions by embedding a mixture of negative

binomial regression models into a three-component HMM. The HMM component with the embedded mixture

model accounts for all possible combinatorial patterns of differential enrichment and background between

conditions. As in Chapter 2, we show that the proposed model shows exceptional performance in detecting

broad and diffuse differential regions of enrichment and that integrating data from multiple broad ChIP-seq

experiments improves the spatial resolution of differential peak calls.

Finally, in Chapter 4 we present a comparative study of existing methods for epigenomic analysis on

data sets generated from single-cell ChIP-seq assays. We show that under realistic scenarios, current methods

have difficulties in characterizing single-cell sub populations due to the sparsity of the data, an issue that

becomes critical in data sets with broad regions of enrichment for sequencing reads. We propose the use

of a model-based approach to cluster single-cells into similar sub populations that share similar structural

2



characteristics. In addition, we present an algorithm for the determination of the existing number of sub

populations in a heterogeneous samples, a necessary task in the analysis using current single-cell epigenomic

algorithms. The presented approach accounts for the local dependency of counts and is able to analyze

single-cell epigenomic data in high genomic resolution, without relying on a set of candidate peaks.

1.1 Literature Review

In this section, a literature review of this dissertation is presented. First, we present in Section 1.1.1 a

review of the biological and technical aspects of the ChIP-seq assay. This review will provide the basis for the

proposed statistical models to be presented in subsequent chapters. Then, Section 1.1.2 gives an overview of

the literature available related to the detection of protein-DNA interaction regions in consensus from multiple

ChIP-experiments. We discuss early approaches used for such purposes and how current methods tackle the

common problems faced in ChIP-seq data analysis. Next, Section 1.1.3 reviews the literature available for the

problem of detecting differential binding sites between multiple conditions. We review the ad hoc strategies

used in early stages of the technology as well as existing gaps not fulfilled by current methods.

1.1.1 Introduction to Epigenomics and the ChIP-seq Assay

The interaction between proteins and DNA is a key event that plays a major role in almost all aspects

of the cellular processes of living organisms. This phenomenon is known to the scientific community for

decades and has gain more relevance in recent years given the reduction of sequencing costs and more data

availability (Bulyk et al., 1999; Park, 2009). These interactions are known to regulate gene expression and

packaging of DNA into condensed units called nucleosomes, influencing biological processes and phenotypes

such as complex human disorders (Jones et al., 2016). Biological relevance of the study of such interactions

include their effect on cell differentiation and how they are affected under different treatment conditions. The

study of such events may reveal critical mechanisms such that these changes lead to treatment effects for a

particular disease of interest.

Histones are proteins found in eukaryotic cells and comprise structural units called nucleosomes which

aid in the packaging of DNA. When these proteins are enzimatically modified by either methylation, ADP-

ribosylation, phosphorylation, glycosylation, or acetylation, their electric charge and shape are affected

along with the structural and functional properties of the chromatin. Consequently, these modifications

directly affect transcription, DNA repair, replication and recombination (Nelson et al., 2008; Bannister and

Kouzarides, 2011). Histones that are directly associated with gene transcription are of particular interest
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given its critical effect on the life of the cell. They can be classified into those associated with gene activation

and those associated with gene repression. An example of the former is the trimethylation of histone H3 at

lysine 36 (H3K36me3), which associates with RNA polymerase II and gene transcription (Li et al., 2002;

Chantalat et al., 2011). On the other hand, the trimethylation of histone H3 at lysine 27 is an example of a

known marker that binds to additional proteins to employ a repressive effect on genes (Cao et al., 2002; Liu

et al., 2016). As all the functionalities of these proteins remain unknown, they have been the focus of studies

in clinical investigation. In cancer research, for instance, the epigenomic mark H3K27me3 has been shown to

play an important role in prostate carcinogenesis and progression while H3K36me3-deficient cancer cells are

acutely sensitive to gene WEE1 inhibition and can be selectively killed by dNTP starvation (Ngollo et al.,

2014; Pfister et al., 2015).

Transcription factors (TFs) form another class of proteins that interacts with the genetic material and

mediates the transcription of information from DNA to messenger RNA (Latchman, 1997). These proteins

bind to enhancer or promoter regions of the genome and controls the transcription of genes next to them

by either blocking or stabilizing the binding of RNA polymerase to the DNA (Gill, 2001). In essence, TFs

exert a critical role in the life of the cell by controlling its cycle and responding to internal and external

signals (Wheaton et al., 1996). Examples of TFs largely studied include the transcription repressor CTCF,

the activating transcription factor 4 (ATF4), and the RE1-silencing transcription factor (REST). These TFs

can act by either down or up regulating the gene production and have been linked to several vital processes

and diseases. As an example, REST is a known repressor that has been linked to colon and lung cancer,

Huntington Disease and other illnesses (Westbrook et al., 2005). Therefore, the study of such class of proteins

with respect to their interaction with the genetic material and their downstream phenotypic impact is an open

area of research for investigators given its biological relevance.

The chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) is a commonly

used technique to detect genome-wide regions of protein-DNA interaction, such as TF binding sites or

regions containing histone modifications (Robertson et al., 2007). Results from ChIP-seq experiments have

been successfully used to understand epigenomic mechanisms in which transcription factors and histone

modifications play an important role (Barski et al., 2007; Robertson et al., 2007). Such mechanisms are

hypothesized to explain heterogeneity at both the molecular level (gene expression, gene silencing, DNA

replication etc.) and on an individual level (cancer incidence, cardiovascular disease, obesity, etc.). In cancer

research, for instance, histone modifications have been shown to play an important role in carcinogenesis,
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progression, and tumor suppression (Ngollo et al., 2014; Lu et al., 2016; Huang et al., 2017). Hence, ChIP-seq

experiments provide a useful way for investigators to explore epigenomic modifications that might lead to

downstream phenotypic impact.

ChIP-seq experiments begin with cross-linking DNA and proteins on chromatin structures followed by

sonication-induced fragmentation. DNA fragments bound to the protein of interest are then isolated by a

technique called Chromatin Immunoprecipitation (ChIP). Finally, the associated fragments are sequenced via

massively parallel sequencing to generate short sequencing reads pertaining to the original fragments. These

sequences are then mapped back to a reference genome through sequence alignment to determine their likely

genomic locations of origin. Genomic coordinates containing a high density of mapped reads, referred to as

enriched regions, are then identified through statistical analysis. These coordinates indicate likely locations

where the protein of interest was bound to the DNA. Here, we refer to all other genomic positions pertaining

to non-enriched regions as background. The majority of methods available for the detection of enrichment

regions compare the distribution of the read counts (signal) in ChIP-seq experiments to similar regions in

matched input control experiments. This comparison helps to more accurately define regions of enrichment in

ChIP-seq samples by accounting for the technical variation in local read density in the input control sample.

These methods calculate the experimental signal by first tiling the genome with non-overlapping windows

(Rashid et al., 2011; Ibrahim et al., 2014; Cuscò and Filion, 2016) or sliding windows (Zhang et al., 2008),

and then computing the number of reads mapped into each window.

The detection of enrichment regions in ChIP-seq experiments is challenging due to several reasons,

including the diversity of enrichment profiles, the presence of serial correlation in the distribution of window

read counts, and sample-specific characteristics such as the signal-to-noise ratio and the input control effect.

In addition, under-sequenced experiments are characterized by an excessive number of observed zeros in

the distribution of read counts, which imposes additional challenges when detecting regions of enrichment

in diffuse data. Therefore, methods to detect regions of enrichment from ChIP-seq experiments need to be

tailored accordingly to capture the specific signal profile of the protein of interest. For instance, TF binding

sites are usually characterized by sharp and punctate read profiles while histone modifications show broad

and diffuse regions of enrichment spanning tens of thousands of base pairs across the genome.

In addition, ChIP-seq experiments usually differ with respect to the total number of mappable reads, here

referred to as the sequencing depth or library size. The heterogeneity across experiments has been shown

to significantly influence the results from ChIP-seq data analysis, whose effect is more pronounced when
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detecting differential protein-DNA interaction sites across multiple experiments (Chen et al., 2012). In this

scenario, samples with higher library sizes tend to dominate the analysis, leading to an increased number of

false positives. This bias has also been seen in other types of next generation sequencing (NGS) data, such as

RNA-seq (Robinson and Oshlack, 2010). In ChIP-seq data, Jung et al. (2014) suggested a practical lower

bound of 40-50 million reads for most of the marks from human cells in order to ensure robust conclusions

from results derived from peak-calling algorithms. However, publicly available ChIP-seq data quite often do

not meet this suggested minimum number of reads and show high variation with respect to their library sizes.

Several methods have been introduced in the literature for data normalization to account for such differences,

such as the trimmed mean of M-values (Robinson et al., 2010), the normalization via gene expression levels

of housekeeping genes (Allhoff et al., 2016), and loess-based normalization for trended biases (Lun and

Smyth, 2015) to name a few. As most of these methods rely on strong assumptions about the data, there is

still no consensus in the literature on how to account for such differences, and the problem of ChIP-seq data

normalization is still an active area of research.

In this dissertation, we aim to present statistical models to detect protein-DNA interaction sites while

tackling the main challenges associated with ChIP-seq data analysis. In particular, the models presented in

Chapters 2.7 and 3.6 address the issues of the excess of zeros found in broad and diffuse data as well as

potential biases due to the different library sizes between experiments.

1.1.2 Statistical Approaches for the Detection of Consensus Peaks

Before the introduction of methods focused on the integration of multiple ChIP-seq experiments, protein-

DNA interaction sites in consensus across multiple experiments were detected by means of ad hoc rules to

combine peaks called independently from multiple samples (Valouev et al., 2008; Bottomly et al., 2010).

The majority of these approaches consisted in using single sample peak callers, such as MACS2, HOMER,

and ZINBA (Zhang et al., 2008; Heinz et al., 2010; Rashid et al., 2011), to detect regions of enrichment

independently across samples and combine the results accordingly. The final set of regions of enrichment

in consensus would be formed by those that were detected across all samples or in the majority of samples.

Yang et al. (2014) presented guidelines on how to combine results from independent peak calls, which were

often subject to the decision in downstream analyses. Specifically, the authors have shown that leveraging

replicates from multiple experiments improved the detection of enrichment sites and recommended calling a

candidate peak as common if it was in consensus in at least two out of three potential ChIP-seq experiments.
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Due to the lack of sound statistical methodologies that integrate multiple ChIP-seq datasets, investigators

often relied on these rules to find peaks from multiple samples.

As well pointed out by others (Ibrahim et al., 2014; Lun and Smyth, 2015; Cuscò and Filion, 2016;

Allhoff et al., 2016), combining results from individual peak calls has several potential pitfalls. As previously

stated, ChIP-seq experiments are characterized by distinct enrichment profiles, show distinct signal to noise

ratios (SNRs), and are sometimes diffuse in signal. In these situations, the spatial resolution of peak calls are

often compromised as the difference in signal intensity across samples is not properly taken into account,

leading to results that are not biologically meaningful. Secondly, as pointed out by Lun and Smyth (2015),

calling individual peaks and combining results using ad hoc rules might lead to a final set of consensus

regions of enrichment that does not contain regions with low signal but are consistently seen in all the datasets,

leading to a increase in the observed proportion of false negatives. Thirdly, combining peaks from several

experiments often leads to a final set of narrow and discontiguous regions of enrichment, as we show in

Chapter 2.7 of this dissertation. This effect is particularly pronounced when analyzing data from broad and

diffuse ChIP-seq experiments, given that enriched domains usually expand thousands of base pairs with

changes in the enrichment profile across the genome.

Alternatively, another approach used in early years and before the introduction of methods to integrate

multiple ChIP-seq experiments was the pooled type of analysis (Niu et al., 2011; Young et al., 2011). In such

an approach, reads from multiple experiments would be pooled together and analyzed as a single experiment.

Then, any single sample peak caller could be potentially used to analyze and call peaks from the combined

data. If using a window-based strategy to compute the ChIP-seq signal, one would sum up the read counts

assigned to genomic windows across all experiments and call peaks as if they were originally generated from

a single experiment.

Even though pooling aligned reads from technical replicates is one of recommended guidelines from the

ENCODE consortium (Dunham et al., 2012), authors have noted that this strategy makes differences in the

enrichment profiles across experiments indistinguishable (Ibrahim et al., 2014). This effect is particularly

pronounced in broad and diffuse data, such that the spacial resolution of single-experiment peak callers

become unrealistic. In this dissertation, we assessed these claims using simulated and biological data. We

observed that the results under this approach tend to show an increased false positive rate as more replicates

are combined (see Chapter 2.7). This is justified by the fact that ChIP-seq experiments are not expected to be

entirely reproducible per se, given the inherent technical variation present in the protocol, even with technical
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or biological replication. For this reason, pooled reads from several experiments tend to lead peak callers to

call broader regions of enrichment than the actual one in consensus.

In the scenario of single sample ChIP-seq data analysis, methods for detecting TF binding sites and broad

enrichment regions from histone modifications have been successfully presented in the literature (Zhang

et al., 2008; Machanick and Bailey, 2011; Xing et al., 2012; Bardet et al., 2013; Wu and Ji, 2014; Rashid

et al., 2014). However, methods focused on peak calling from multiple samples are of growing interest

given the reduction of sequencing costs and higher data availability. Besides leveraging information from

multiple experiments, these methods provide an output that is easier to interpret rather than attempting to

integrate results from individual peak calls. To the best of our knowledge, the literature provides only two

established methods for the detection of consensus regions of enrichment from multiple experiments. From

our experience, these methods perform well in situations with either sharp, punctate, or non-diffuse datasets,

but fail to call broad regions of enrichment from marks such as H3K27me3.

In JAMM, Ibrahim et al. (2014) integrate multiple technical replicates and fit a multivariate Gaussian

mixture model to cluster genomic windows and call regions of consensus. In the presented model, the

extended read counts are mapped back to a reference genome that is divided into narrow and non-overlapping

bins. First, JAMM uses preprocessing rules to select and merge candidate enriched bins into larger and

non-overlapping enriched windows. Secondly, to find consensus peaks across experiments, the presented

model fits either a two- or three- component Gaussian mixture model (based on a priori knowledge of the

data) on the smoothed extended read counts in each window separately. Bins within windows are then

clustered according to the posterior probabilities calculated from an EM algorithm. For a given window, the

mixture component with the largest mean is assumed to be the enrichment cluster and bins assigned to to

this cluster are taken to be enriched and merged if neighboring. If multiple experiments are available, all

replicates must agree with respect to the mixture component assignment in order for a peak to be considered

to be in consensus. JAMM works on normalized counts that are computed as follows. First the geometric

mean of ChIP signal is calculated for each bin across all replicates. Then, JAMM subtracts from it the

background signal and calculate the peak-based average signal. Finally, JAMM executes a Mann-Whitney U

test to compare the enrichment and background ChIP signal followed by a correction of p-values (Benjamini

and Hochberg, 1995).

The key points of JAMM are its improved spatial resolution of peak calls, the universality of the method

to analyze several types of datasets, and the robust peak scoring and sorting. The two-step approach used
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by JAMM leads to a better spatial resolution than the benchmarked competitors when analyzing sharp and

punctate data. The presented framework decides whether bins are enriched over background, merges those

neighboring ones forming genomic windows, and then separately clusters bins within widows to make

the final set of consensus regions of enrichment. This approach ensures that JAMM resolves neighboring

punctate sites and avoid that peaks located nearby are not called as a single enrichment region. Ibrahim

et al. (2014) showed good results from JAMM when analyzing data from transcription factors CTCF, NRSF,

MAX, and SRF, and histone modification H3K4me3. This indicates that JAMM had good performance

when calling peaks from data with distinct (although sharp) signal properties, making it a peak caller that

that is robust for sharp data. JAMM provides a large number of peaks and robustly score them based on the

background-normalized mean signal of peaks and uses the Benjamini-Hochberg corrected p-values.

In general, data from broad and diffuse ChIP-seq experiments are characterized by large domains of

enriched regions. The good spatial resolution of JAMM when analyzing sharp and punctate datasets is not

supported under broad data. Because diffuse enrichment regions usually contain a heterogeneous signal

pattern within their domains, JAMM tends to detect narrow and discontiguous regions of enrichment when in

fact broad regions should be called. We present these results in Chapter 2.7 of this dissertation. One reason

for this is because JAMM does not account for the long-range correlation of read-counts that is characteristic

of diffuse data. In addition, JAMM tends to call an excessively larger number of peaks than the benchmarked

competitors studied in their paper. This leads JAMM to have a limited performance in diffuse data, given that

it calls numerous narrow regions of enrichment that do not correspond to the entire consensus peak.

In Cuscò and Filion (2016), the authors present Zerone, a three-state hidden Markov model (HMM)

with Zero-Inflated Negative Multinomial (ZINM) emission distributions to identify regions of enrichment in

consensus across experiments. Zerone uses a two-step approach to produce the final set of consensus peaks

by first discretizing the ChIP-seq signal with the HMM and then checking the results using a built in quality

control tool to detect low quality and/or non reliable peaks. Their method uses ZINM distributions on the

window level and conditions the read counts from replicates on the total number of mapped reads. The choice

of using a three-component HMM is based on the claim that the baseline signal of ChIP-seq experiments

can show low amplitude and expands through large domains, which would make a two-component HMM

to falsely detect such regions as enriched. Therefore, their first two HMM components are dedicated to

call baseline regions while the third component is aimed to detect the consensus region of interest. The

Baum-Welsch algorithm (Rabiner, 1989) is used to obtain parameter estimates of the model and the Viterbi
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algorithm (Viterbi, 1967) is used to compute the most likely segmentation. The built-in quality control was

based on a trained SVM with 91 datasets with a successful discretization and 91 negative cases obtained by

discretizing controls without immunoprecipitation, all datasets from the ENCODE project. It is important to

note that the success of discretization was subjective, given that there is no gold standard for protein biding.

The key aspects of Zerone include its built-in quality control tool, its efficient running time and the

HMM-based approach to call regions in consensus across replicates. In their paper, Zerone was the fastest

method when benchmarking with BayesPeak (Spyrou et al., 2009), JAMM, and MACS2. In addition, Zerone

showed a smaller memory footprint than the competitor MACS2. The reason for its high efficiency is

likely due to its estimation process during Baum-Welsch cycles, which assumes that provided input controls

captures systematic biases such as batch effects. The built-in quality control provides an alternative tool

to the recommended IDR method recommended by Encode Consortium, as it can analyze more than two

replicates, a key limitation of the IDR. This quality control tool does not assume any signal profile to the data

and can be applied to any number of replicates. In addition, because it uses a HMM approach, Zerone is able

to account for the long range correlation present in broad data, a characteristic that is lacking in JAMM. This

puts Zerone as an alternative approach to call regions in consensus from broad data.

However, in the work presented by Cuscò and Filion (2016), the authors do not present any analysis

of broad and diffuse data from histone modification H3K27me3. They analyzed data from transcription

factor CTCF and histone modification H3K36me3. Even though this histone modification is known to be

characterized by broad peaks, the data resulting from this mark are not as diffuse as the ones from H3K27me3.

In this dissertation, we assessed the performance of Zerone when calling peaks from this mark. However,

Zerone showed limited performance as its called regions were, in general, narrow and discontiguous (see

Chapter 2.7). We believe that the reason for this fact is that the HMM used by Zerone assigns regions with

low enrichment profile that expand across large domains to background, and only those with an elevated

number of read mapped onto are considered to be as enriched. For a histone modification like H3K27me3, it

is critical to classify these low profile regions as enriched. We believe that such regions are still of interest

and should be considered as consensus if the profile is consistent across datasets. In addition, the ’all-or-none’

strategy used by Zerone in its quality control tool is not ideal, as it might miss domains with low signal in

under-sequenced experiments such as those from H3K27me3. Also, when integrating data from multiple

experiments, Zerone combines all available input controls. Because ChIP-seq experiments are not entirely

10



reproducible, even in scenarios of biological and technical replicates, it would be ideal to have sample-specific

input controls taken into account when detecting peaks in consensus.

In general, current approaches that integrate multiple ChIP-seq experiments (Ibrahim et al., 2014; Cuscò

and Filion, 2016) have limited performance with respect to the spatial resolution of their called regions when

analyzing broad and diffuse data, even after leveraging additional data. We observed that the low read density

profile of diffuse histone modifications, such as H3K27me3 and H3K36me3, led the aforementioned methods

to fragment broad regions of enrichment into narrower and discontiguous peak calls. In this dissertation, we

aim to tackle these issues and present in Chapter 2.7 a Zero-Inflated Mixed Effects Hidden Markov Model

(ZIMHMM) to analyze data from multiple ChIP-seq experiments. Our model is tailored to detect broad

consensus regions of enrichment across multiple experiments. ZIMHMM accounts for the excess of zeros,

common to broad and diffuse histone modifications, as well as sample-specific library sizes and ChIP-control

relationship via random effects. To the best of our knowledge, there is no work published in the literature that

proposes a random effects model for joint analysis of multiple ChIP-seq experiments while accounting for

zero inflation and sample-specific effects. Using publicly available ChIP-seq data from both H3K27me3 and

H3K36me3 marks from the ENCODE Consortium (Dunham et al. 2012), we compared the performance of

our method to the current peak callers JAMM, Zerone, and MACS2 (under both independent and pooled

approaches). Based on real data analyses, we show that ZIMHMM outperforms the existing methods for

detection of broad consensus regions of enrichment from multiple ChIP-seq experiments.

1.1.3 Statistical Approaches for the Detection of Differential Peaks

Investigators are often interested in comparing results from data of multiple ChIP-seq experiments in

order to detect differences in binding of a given protein of interest under different conditions. Such conditions

could be different treatments, cell lines, mutated and wild type cells, to name a few (Feng et al., 2014; Koues

et al., 2015; Clouaire et al., 2014). In the early stages of the development of the ChIP-seq technology, ad hoc

methods were used for such purpose. For instance, a common and straightforward approach was to compare

peaks called independently from ChIP-seq experiments to find those that were in consensus or unique across

datasets. Often, a common practice was to use Venn diagrams to represent all possible configurations of

peaks and find those that were differential (Chen et al., 2008).

Several caveats exist in this approach. First, it completely ignores the differences in ChIP signal intensities

across experiments. Quite often ChIP-seq datasets differ with respect to the library size, here defined as the
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total number of reads mapped onto the reference genome. In such cases, it is expected that peaks found

independently in the datasets will show a consistent difference in signal that will not be accounted when

naively comparing the sets of peak calls, leading to an elevated number of false negatives (Chen et al., 2015).

Other sources of bias due to the multi-stage steps of the ChIP-seq protocol might as well lead to the same

problem. Lun and Smyth (2014) have shown that such an approach leads to loss of error rate when comparing

peaks for differential binding. Secondly, the spatial resolution of the differential regions of enrichment could

be compromised for scenarios of sharp and broad domains. Post comparison of inaccurate peak calls might

completely miss sharp events, such as those from TF, or even segment broad and diffuse enrichment regions

into narrow and discontiguous peaks that do not correspond to the actual data. Thirdly, because the set of

differential peaks is restricted to those previously found independently in each sample, this naive approach

cannot detect changes within the broad differential differential domains, an issue that is particularly relevant

for proteins that expand large regions of the genome (Allhoff et al., 2014).

To overcome these issues, joint peak callers for the detection of differential binding sites were proposed in

the literature (Zhang et al., 2014; Shen et al., 2013; Lun and Smyth, 2015; Allhoff et al., 2016). The majority

of these methods adopted a window-based approach in which the ChIP signal is calculated across the genome

into non-overlapping or sliding windows. The main goal of these approaches was to reduce the systematic

bias and improve the low spatial resolution from the two-stage strategies that were used to compare peaks

across experiments. Most of the methods that integrate data from multiple experiments for differential peak

call were tailored for particular scenarios. As discussed in this section, however, these methods have been

tailored to analyze data under certain scenarios, such as to detect differential enrichment profiles from sharp

events. Additional benefits of the current methods include the post-processing FDR control of differential

events on the region level, the integration of technical or biological replicates, and the introduction of novel

normalization methods, to name a few. However, we believe that the problem of differential peak call is still

an open problem, as current methods still have limitations regarding the number of possible experiments in

comparison, the detection of broad differential binding sites, and subjective approaches that rely on ad hoc

rules for the classification of regions that make the final results difficult to interpret.

In Zhang et al. (2014), the authors present PePr, a peak caller that identifies consistent or differential

binding sites in ChIP-seq experiments with replicates. The authors use an sliding window approach to model

read counts across replicates and conditions using a local negative binomial model. In their paper, the authors

benchmark PePr with other methods using transcription factor data to find differential peaks across groups.
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PePr is peak caller able to analyze and compare ChIP-seq data from only two groups. This limitation

leaves to the investigator the decision on how to analyze data from multiple groups. In addition, the sliding

window approach used by PePr can be highly sensitive to the window chosen. While large windows are not

ideal to detect small changes in domains of broad data, narrow windows lead to discontiguous peaks that are

difficult to interpret. Another downsides of PePr include its tendency to call peaks larger than other tools and

the observed histone changes, as noted by others (Allhoff et al., 2014), and its inability to account for input

controls to correct for systematic biases due to the library preparation.

In Allhoff et al. (2016), the authors presented THOR, a peak caller for the detection of differential

binding sites. It uses a Hidden Markov Model approach and is able to analyze pairs of biological conditions

with replicates. A negative binomial model used to fit the read counts and account for the overdispersion.

It provides the trimmed mean of M values (TMM) as a normalization method, a method often used when

analyzing gene expression data (Robinson et al., 2010), as well as a novel normalization method based on

housekeeping genes for activating histone marks. As well pointed out by the authors, the normalization

method is crucial for heterogeneous data, specially in cases with distinct signal to noise ratio. However,

quite often the normalization methods used in ChIP-seq data analysis rely on strong assumptions that are

not realistic. For instance, TMM assumes that the counts assigned to enriched domains are constant across

the genome, a not realistic assumption in ChIP-seq data given that different conditions might show distinct

amounts of binding proteins. In their package, the authors provide the complete preprocessing steps necessary

for the data analysis of multiple ChIP-seq experiments, namely the fragment size estimation, GC-content

correction, scaling based on input control, and signal normalization.

One of the main disadvantages of THOR is its ability of analyzing only two groups at a time. In addition,

we observed that differential peaks detected by THOR tend to include those in consensus across both groups.

This fact is possibly explained by the fact that the presented HMM includes only three components in their

model and is not able to separate peaks is in consensus across groups from those that are differential. It

is unclear from their paper how this case is handled in the proposed HMM. In addition, the authors uses

a moment estimator to obtain parameter estimates for the model mean without taking a regression-based

approach that would potentially allow the control for additional covariates of interest. Moreover, the authors

estimate the dispersion parameter of the model using a two step approach. Under this strategy, the authors

assume that the model variance is a quadratic function of the mean, which is previously estimated from the

data, and then the dispersion parameter is estimated using the properties of the negative binomial model.
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The authors do not mention any lower bound constraints in their estimation process to ensure that estimated

dispersion parameter would assume positive values. Additionally, the normalization method presented by

the authors of THOR assumes that the protein of interest being analyzed is positively associated with gene

expression. This leaves the case of normalization for repressive marks as an open problem.

In Lun and Smyth (2015), the authors present csaw, a joint peak caller aimed for differential binding

analysis. To the best of our knowledge, csaw and ChIPComp (Chen et al., 2015) are the only methods

available in the literature able to simultaneously compare more than two groups. It can handle complex

experimental designs with biological replicates and allow quantitative comparisons between DNA samples or

experimental conditions. Csaw addresses the main issues of one- and two-stage differential peak callers that

do not control for the FDR on the region level Ross-Innes et al. (2012); Liang and Keleş (2011); Allhoff et al.

(2016). Because results from ChIP-seq data analyses are often interpreted on domains created after merging

neighboring differential windows, it is key to control for FDR on the regions level. In addition, csaw provides

several tools for batch effect removal and ANOVA-like testing approaches.

Csaw requires replicates in at least one of the analyzed conditions. In their paper, the authors only

address the issues of broad and diffuse data under simulation studies. In our investigations, we observed

that csaw had suboptimal performance when calling peaks from diffuse data, as most of the peaks were

discontiguous and did not cover the entire differential regions of enrichment across groups (see Chapter 3.6).

Moreover, the authors do not present in their paper a genome-wide quantitative comparison of their method

with competitors, leaving the final conclusions based on visual inspections of the results. For the results from

diffuse data, the authors states that csaw was not able to detect the differential regions of enrichment and

argue that a possible solution would be to increase the window size, if such events are of interest. However,

we believe that this introduces an additional subjective level in their framework given that it is left for the

investigator the choice of the window size. The paper do not discuss the trade-off between the increase the

window size and the loss of spatial resolution of broad domains. In their analyses of TF data with sharp

peaks, csaw did not exhibit any power advantage over the competitor Diffbind in their simulation study. In

this dissertation, we evaluate the performance of csaw under publicly available data and observed a limited

performance when analyzing diffuse datasets (see Chapter 3.6)
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1.1.4 Current approaches for the analysis of single-cell ChIP-seq data

In recent years, several methods designed for the analysis of single-cell epigenomic data have proposed

in the literature (González-Blas et al., 2019; Fang et al., 2019; Cusanovich et al., 2018; Baker et al., 2019).

Utilizing data from the single-cell Assay for Transposase Accessible Chromatin using sequencing (scATAC-

seq), the ultimate goal of these methods is the clustering (followed by the characterization) of single cells

into homogeneous sub populations of cells exhibiting similar epigenomic profiles regarding the accessibility

of their chromatin landscape. The analysis of scATAC-seq data allows biomedical researchers to study a

number of chromatin-accessibility signatures on the single-cell level that include the binding of transcription

factors that control the expression of nearby genes (Schep et al., 2017). In cancer research, for instance, the

information from the epigenome of individual cells can explain parts of the biological variation found in

treatment responses that are shown to be cell type dependent (Kagohara et al., 2020). The recent advances in

single-cell epigenomic technologies as well as in methods focused on the analysis of these types of datasets

allow researchers to understand much of the biological heterogeneity that was often unexplained in previous

years of bulk sequencing assays.

A recent study compared the performance of such methods in an extensive analysis utilizing simulated

and real data and provide guidelines on their use (Chen et al., 2019). A few characteristics are shared across

nearly all scATAC-seq methods benchmarked by Chen et al. 2019. First, current methods require as input

a set of pre-specified genomic coordinates that are thought to differentiate the sub population of cells well.

Second, methods do not account for or explicitly model the local dependency of single-cell counts in their

analytic framework. Third, all methods rely on a two-step procedure for clustering and subsequent peak

calling within sub populations of cells regarding the epigenomic activity of interest. To this end, the optimal

number of existing sub populations of cells is estimated from the data in an early step of the analysis (Xiong

et al., 2019).

In contrast to scATAC-seq data, data from scChIP-seq experiments pose challenges to these methods.

Since candidate peaks are often specified using bulk data, the choice of the peak calling algorithm and its

parametrization can highly influence the final set of peaks, specially for broad marks, as we show in the

Chapter 2 of this dissertation. Moreover, the low sequencing depth and relatively high noise of scChIP-seq

experiments, in addition to the broadness of regions of activity from certain epigenomic marks, may cause

these methods to have limited performance in the analysis of scChIP-seq data (see Section 4.4). Due to these
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issues and the lack of statistical methods for the analysis of scChIP-data, current analyses of scChIP-seq data

often use ad hoc approaches that are tailored for the particular problem at hand (Grosselin et al., 2019).

In this dissertation, we present a comparative study of scATAC-seq method on simulated data for scChIP-

seq experiments and propose the use of an initialization algorithm for the selection of candidate differential

regions of enrichment from single-cell data. Using scChIP-seq simulated data, candidate differential regions

are shown to better distinguish sub populations of single-cells and improve the performance of current

scATAC-seq method in scChIP-seq data. Existing scATAC-seq methods rely on sets of candidate peaks

detected from aggregated single-cell data. We show in this chapter that such a strategy may compromise the

analysis of scChIP-seq data sets, which often exhibits broad regions of enrichment that, once aggregated,

leads to candidate peaks that mask differences among sub populations of single-cells. In addition, we present

an algorithm for the determination of the existing number of sub populations in a heterogeneous samples,

a necessary task in the analysis using current single-cell epigenomic algorithms. The presented approach

accounts for the local dependency of counts and is able to analyze single-cell epigenomic data in high

genomic resolution, without relying on a set of candidate peaks.
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CHAPTER 2: IMPROVED DETECTION OF EPIGENOMIC MARKS WITH MIXED EFFECTS
HIDDEN MARKOV MODELS

2.1 Introduction

Chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) is a technique to

detect genome-wide regions of protein-DNA interaction, such as transcription factor (TF) binding sites or

regions containing histone modifications (Robertson et al., 2007). These interactions may regulate gene

expression and influence biological processes (Jones et al., 2016). ChIP-seq experiments have been used to

understand epigenomic mechanisms in which TFs and histone modifications play an important role (Barski

et al., 2007). Such mechanisms are hypothesized to explain heterogeneity at both the molecular level (gene

expression, gene silencing, etc.) and on an individual level (cancer incidence, cardiovascular disease, etc.).

In cancer research, histone modifications have been shown to play an important role in carcinogenesis,

progression, and tumor suppression (Huang et al., 2017).

ChIP-seq experiments begin with cross-linking DNA and proteins on chromatin structures followed

by sonication-induced fragmentation. DNA fragments bound to the protein of interest are then isolated by

chromatin immunoprecipitation. The associated fragments are sequenced via massively parallel sequencing

to generate short sequencing reads pertaining to the original fragments. These sequences are then mapped

back to a reference genome through sequence alignment to determine their likely genomic locations of origin.

Genomic coordinates containing a high density of mapped reads, referred to as enriched regions, are then

identified through statistical analysis. These coordinates indicate likely locations where the protein of interest

was bound to the DNA. Here, we refer to all other genomic positions pertaining to non-enriched regions as

background. Methods available for the detection of enrichment regions calculate the distribution of the read

counts (signal) in ChIP-seq experiments by first tiling the genome with non-overlapping windows (Rashid

et al., 2011) or sliding windows (Zhang et al., 2008), and then computing the number of reads mapped into

each window.
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The detection of enrichment regions (peaks) in ChIP-seq experiments is challenging for several reasons.

Namely, the diversity of enrichment profiles, the presence of serial correlation in the data, sample-specific

characteristics such as the signal-to-noise ratio, and an excessive number of zeros in the distribution of

read counts. Hence, peak callers need to be tailored accordingly to capture the specific signal of the

protein of interest. Although single sample ChIP-seq peak callers have been successfully presented in the

literature (Zhang et al., 2008; Xu et al., 2010; Kuan et al., 2011; Song and Smith, 2011; Xing et al., 2012;

Rashid et al., 2014), multi-sample peak callers are of growing interest given the reduction of sequencing

costs. Leveraging additional data into a joint framework leads to a significant improvement when detecting

consensus peaks across samples (Yang et al., 2014). However, current approaches that integrate multiple

ChIP-seq replicates (Ibrahim et al., 2014; Cuscò and Filion, 2016) show poor spatial resolution of peak

calls when analyzing diffuse data due to the low signal profile of broad histone modifications. Under these

scenarios, we observed that broad regions of enrichment are fragmented into narrow and discontiguous peak

calls by the aforementioned methods (see Sections 2.2 and 2.6).

To tackle these challenges, we present a Zero-Inflated Mixed effects Hidden Markov Model (ZIMHMM)

to analyze data and detect broad peaks in consensus across multiple ChIP-seq technical or biological replicates.

The ZIMHMM accounts for the excess of zeros as well as sample-specific sequencing depth and ChIP-control

relationship via random effects. Using data from H3K27me3 and H3K36me3 ChIP-seq experiments on

human cells from the ENCODE Consortium and the Roadmap Epigenomics Project (Dunham et al. 2012;

Bernstein et al. 2010; see Appendix A for details), we compared the performance of the ZIMHMM to the

current multi-sample peak callers JAMM and Zerone, as well as the single-sample methods BCP, CCAT,

MACS2, MOSAiCS, and RSEG. Based on real data analyses, we show that the ZIMHMM outperforms

the existing approaches for detection of broad consensus regions of enrichment from multiple ChIP-seq

experiments (see Section 2.6).

2.2 Background

Histones are proteins found in eukaryotic cells and comprise structural units called nucleosomes which

aid in the DNA packaging. When these proteins are enzimatically modified by either methylation, ADP-

ribosylation, phosphorylation, glycosylation, or acetylation, their electric charge and shape are affected along

with the structural and functional properties of the chromatin. Consequently, these modifications directly

affect transcription, DNA repair, replication and recombination (Bannister and Kouzarides, 2011). From
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all the variant forms of histones, the trimethylation of histone H3 at lysines 36 and 27 (H3K36me3 and

H3K27me3) are of particular interest due to their association to actively transcribed genes and gene repression,

respectively (Liu et al., 2016). In cancer research, for instance, the epigenomic mark H3K27me3 has been

shown to play an important role in prostate carcinogenesis and progression while H3K36me3-deficient cancer

cells are acutely sensitive to gene WEE1 inhibition and can be selectively killed by dNTP starvation (Pfister

et al., 2015).

ChIP-seq experiments usually differ with respect to the number of mappable reads, referred to as the

sequencing depth. Jung et al. (2014) suggested a practical lower bound of 40-50 million reads for most of

the marks from human cells in order to ensure robust conclusions from results derived from peak-calling

algorithms. In general, publicly available ChIP-seq data do not meet this suggested minimum number of

reads and show high variation regarding their sequencing depths. We observed that this variation mediates the

effect of the input control on the distribution of ChIP signal across different experiments and regions of the

genome (see Section 2.6 and Figure A.1 in Baldoni et al. 2019b). While the input controls might well explain

the technical variation in ChIP read counts on enrichment regions from highly sequenced experiments, their

effect is not pronounced in under-sequenced data.

When analyzing diffuse or under-sequenced data, we observed that current multi-sample peak callers

fail to call sufficiently broad regions of enrichment. In general, such methods call narrow and discontiguous

peaks that do not correspond to the entire range of protein-DNA binding site. Under the pooling type of

analysis, methods tended to call the union of individual peaks as the ChIP-seq signals were combined by

merging reads from multiple samples (Ibrahim et al., 2014). In addition, these data are characterized by a

low read density profile and an excess of zeros that one would not expect to observe if modeling the signal

with either a Poisson or Negative Binomial (NB) distribution. In this scenario, we find that the Zero-Inflated

Negative Binomial (ZINB) model appears to accurately capture the excess of zeros present in background

regions of the genome (Figure 2.1).

Before the introduction of methods focused on the integration of multiple ChIP-seq experiments, con-

sensus regions of enrichment were detected by using ad hoc rules to combine peaks called independently

from different samples (Valouev et al., 2008). Alternatively, aligned reads from all experiments available

could be pooled and analyzed by single-sample procedures (Young et al., 2011). However, we observed that

peak calls from pooled samples usually correspond to the union of individual enrichment regions (see Figure

D.1 in Baldoni et al. 2019b). In recent years, a few methods have focused on the joint analysis of ChIP-seq
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Figure 2.1: Low and broad signal profile of histone modifications H3K36me3 (top panels) and H3K27me3
(bottom panels). On the left, pooled read counts of technical replicates of diffuse histone marks ChIP-seq on
human Huvec and Nhek cells, respectively, and peaks called by some of the current methods. On the right,
bar plots of the observed count distribution of ENCODE background regions on these cells and expected
proportions under the Poisson, NB, and ZINB models. This figure appears in color in the electronic version
of this article.
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data to call consensus peaks. JAMM integrates multiple technical replicates and fits a multivariate Gaussian

mixture model to cluster genomic windows and call regions of consensus. Zerone fits a three-state HMM

with Zero-Inflated Negative Multinomial emission distributions to identify regions of enrichment. As shown

in Figure 2.1, these methods do not perform well when capturing broad regions of enrichment in consensus

across multiple samples.

2.3 Methods

Here, we first introduce an immediate extension of the single-sample HMM proposed by Rashid et al.

(2014) in Section 2.3.1. Such an extension is aimed to call consensus regions of enrichment from multiple

ChIP-seq experiments by fitting a two-state fixed effects multivariate Zero-Inflated HMM. In Section 2.3.2,

we present the ZIMHMM, a mixed effects version of the extended model motivated by the work from Altman

(2007). Both models capture the excess of background zeros from diffuse data and, in addition, the ZIMHMM

accounts for sample-specific differences via random effects.

2.3.1 Multi-sample Zero-Inflated HMM

From here onwards, all models will be presented under a two-state HMM with ZINB and NB emission

distributions associated with the background and enrichment states, respectively. For genomic window j of

experiment i, j = 1, . . . ,M and i = 1, . . . , N , let Yij and Xij denote the random variables pertaining to

the ChIP and log-transformed input control read counts, respectively. Here, yij and xij denote the observed

values of Yij and Xij , respectively. For multiple experiments sharing the same input control, we have

Xij = Xi′j for all i 6= i
′
. We assume a single latent discrete time stationary Markov chain Z = {Zj}Mj=1,

Zj ∈ {1, 2}, with state-to-state transition probabilities γ = (γ11, γ12, γ21, γ22)
′

and initial probabilities

π = (π1, π2)
′
. Conditionally upon Zj , we observe the vectors of independent counts Y.j = (Y1j , . . . , YNj)

′

and X.j = (X1j , . . . , XNj)
′
, for all windows j = 1, . . . ,M and across all N replicated experiments.

Let ψzj denote the vector of state-specific parameters, f1 and f2 denote the emission distributions

corresponding to the hidden states, and xij denote the predictor of µzj ,ij , the state-specific mean read count

of Yij . Under this set-up, the observed data Y = {Y.j}Mj=1 follow a multi-sample HMM whose likelihood
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function is

f(y|x; Ψ) =
∑
Z∈Z


2∏

k=1

(
πk

N∏
i=1

fk (yi1|xi1;ψk)

)I(Z1=k)

×

×
M∏
j=2

2∏
k=1

(
N∏
i=1

fk (yij |xij ;ψk)
I(Zj=k)

)
2∏
l=1

γ
I(Zj−1=l,Zj=k)
lk

 , (2.1)

where the emission distributions f1 and f2 are defined as

f1(yij |xij ;ψ1) = Pr(Yij = yij |Zj = 1, Xij = xij ;ψ1) = θijI(yij = 0) + (1− θij)NB (yij |µ1ij , φ1) ,

f2(yij |xij ;ψ2) = Pr(Yij = yij |Zj = 2, Xij = xij ;ψ2) = NB (yij |µ2ij , φ2) , yij ≥ 0. (2.2)

Here, I(·) is an indicator function, Ψ = (π
′
,γ
′
,ψ
′
)
′
, and ψ = (ψ

′
1,ψ

′
2)
′
. In addition, NB(yij |µzj ,ij , φzj )

indicates the NB probability mass function with mean µzj ,ij and dispersion φzj such that Var(Yij) =

µzj ,ij(1 + µzj ,ij/φzj ), log(µzj ,ij) = βzj ,1 + βzj ,2xij , zj ∈ {1, 2}, and log(θij/1− θij) = λ1 + λ2xij . For

ChIP-seq experiments with a single input control, we allow the probabilities θij , i = 1, . . . , N , to differ

across replicates by including the log-transformed total number of ChIP read counts as an offset in the model.

This is particularly important as replicates with different amount of mapped reads are likely to have different

distributions of observed zeros in the background regions. We describe the EM algorithm to obtain parameter

estimates from Equation 2.1 in Section 2.4.

2.3.2 Multi-sample Zero-Inflated Mixed Effects HMM

Here we present the ZIMHMM, an immediate mixed effects extension of the model presented in Section

2.3.1 and a special case of the model proposed by Altman (2007), as it assumes a single sequence of hidden

states common to all experiments to ensure the detection of consensus peaks. Let the latent random vector

B = (B1, . . . , BN )
′

be an N -dimensional vector of sample-specific scalar random effects to be included

in the linear model. We will assume that B ∼ NN (0, σ2I), where I denotes an N × N identity matrix.

For better computational stability and efficiency, we will make use of the change of variables B to random

effects U following the ideas presented by Bates et al. (2014). Define the linear transformation from a

N -dimensional spherical random vector, U, to B as B = σU, U ∼ NN (0, IN ). We will assume that,

conditional on the random effects U, and the Markov chain Z, the observed data Y = {Y.j}Mj=1 follow a

HMM, and observations from different experiments are independent. In addition, conditionally upon the
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unobserved realization ui of Ui, we model Yij according to ZINB and NB emission distributions associated

with background and enriched states, respectively.

Let rij denote the design variable associated with the random effects indicating whether the model has

either sample-specific random intercept (rij = 1) or random slope (rij = xij). In addition, let λ = (λ1, λ2)
′
,

β = (β11, β12, β21, β22)
′
, φ = (φ1, φ2)

′
, and Ψ = (π

′
,γ
′
,λ
′
,β
′
,φ
′
, σ)

′
denote the vectors of all model

parameters. The likelihood function of the ZIMHMM is

f(y|r,x; Ψ) =

∫
u∈RN

∑
z∈Z


2∏

k=1

π
I(Z1=k)
k ×

M∏
j=1

2∏
k=1

N∏
i=1

fk (yij |ui, rij , xij ;ψk, σ)I(Zj=k)×

×
M∏
j=2

2∏
k=1

2∏
l=1

γ
I(Zj−1=l,Zj=k)
lk

× f(u)du, (2.3)

where ψ1 = (λ
′
,β
′
1, φ1)

′
, ψ2 = (β

′
2, φ2)

′
, and βzj = (βzj ,1, βzj ,2)

′
, for zj ∈ {1, 2}. Here, f1 and f2

are defined as in Equation 2.2 with log(µzj ,ij) = βzj ,1 + βzj ,2xij + σui, zj ∈ {1, 2}. In ChIP-seq peak

calling, a model with random intercepts would account for differences in the sequencing depth of replicates

by modeling sample-specific random shifts in the mean model of read counts. Conversely, a random slope

model would be particularly interesting when modelling experiments with input controls having differential

relationships with the distribution of read counts. Different datasets might exhibit different ChIP-control

relationships due to differences in immunoprecipitation (IP) efficiency across experiments (Chen et al., 2015;

Lun and Smyth, 2015). While efficient IP shows strong peaks in read coverage at binding sites and a mild

control effect (in adjusting for technical variability in enrichment regions), inefficient IP will result in weaker

peaks and a larger control effect in enrichment regions, as it is harder to separate technical variability from

the true signal in such cases.

Under this model setup, the inclusion of random effects has a critical impact on the marginal covariance

structure of read counts. Specifically, it is possible to show that Cov(Yij , Yij′ )→ κ > 0, as |j − j′ | → ∞

(Altman 2007; see Appendix A for technical derivations). For the fixed effects model presented in Section

2.3.1, however, such a long-range positive dependence decays to zero. We propose an EM algorithm to

estimate the model parameters from the likelihood function in Equation 2.3, which is presented in Section

2.4.
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2.4 Estimation

Besides the unknown parameters Ψ = (π
′
,γ
′
,λ
′
,β
′
,φ
′
, σ)

′
, the likelihood in Equation 2.3 contains

two unobserved quantities: the M -dimensional vector of the state path Z ∈ Z , Z = {1, 2}M , and the

N -dimensional vector of sample-specific random effects U ∈ RN . In the sth step of the EM algorithm, the

Q function of the complete data log-likelihood can be written as

Q
(
Ψ|Ψ(s)

)
=

∫
u∈RN

E
(

log (f(y, z,u|r,x; Ψ)) |y,u, r,x; Ψ(s)
)
f
(
u|y, r,x; Ψ(s)

)
du.

We make use of the Laplace’s approximation to maximize the Q function with respect to Ψ. Following

the notation presented in Altman (2007), the Q function can be rewritten as (see Appendix A for technical

derivations)

Q
(
Ψ|Ψ(s)

)
=

∫
u∈RN

{
2∑

k=1

P
(
Z1 = k|y,u, r,x; Ψ(s)

)
log(πk)+ (2.4)

+

M∑
j=1

2∑
k=1

N∑
i=1

P
(
Zj = k|y,u, r,x; Ψ(s)

)
log (fk(yij |ui, rij , xij ;ψk, σ)) +

+
M∑
j=2

2∑
k=1

2∑
l=1

P
(
Zj−1 = l, Zj = k|y,u, r,x; Ψ(s)

)
log(γlk) + log(f(u))

×
×

(
A(s)

∏M
j=2 C

(s)
j I
)
f(u)∫

u∈RN

(
A(s)

∏M
j=2 C

(s)
j I
)
f(u)du

du =

∫
u∈RN

h
(
u; Ψ,Ψ(s)

)
× g

(
u; Ψ(s)

)
du,

where A(s) =
(
A

(s)
1 , A

(s)
2

)
, A

(s)
k = π

(s)
k fk

(
y.1|u, r.1,x.1;ψ(s)

k , σ(s)
)
,C

(s)
j is a 2×2 matrix with elements

C
(s)
j,lk = γ

(s)
lk fk

(
y.j |u, r.j ,x.j ;ψ(s)

k , σ(s)
)

for all l and k in {1, 2}, and I is a 2-dimensional vector of ones.

The integral in Equation 2.4 is approximated by its integrand evaluated at u = û such that Jg|u=û = 0. Here,

Jg|u=û denotes the Jacobian of the function g evaluated at u = û. Note that neither g nor its Hessian matrix

depends on Ψ.

In the E-step, we compute û via numerical optimization of g using the BOBYQA algorithm (Powell,

2009). The posterior probabilities from Equation 2.4 can be calculated by a standard Forward-Backward

algorithm (Rashid et al., 2014). In the M-step, the Q function is maximized with respect to the unknown
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parameters Ψ. It is possible to show (see Appendix A) that one can approximate the Q function as

Q
(
Ψ|Ψ(s)

)
≈

2∑
k=1

P
(
Z1 = k|y, û, r,x; Ψ(s)

)
log(πk)+

+

M∑
j=1

2∑
k=1

N∑
i=1

P
(
Zj = k|y, û, r,x; Ψ(s)

)
fk(yij |ûi, rij , xij ;ψk, σ)+

+
M∑
j=2

2∑
k=1

2∑
l=1

P
(
Zj−1 = l, Zj = k|y, û, r,x; Ψ(s)

)
log(γlk). (2.5)

In this setting, one can obtain closed forms for the estimates of the initial and transition probabilities. We

perform conditional maximizations to compute estimates of (ψ
′
1,ψ

′
2)
′
, and σ using the BFGS algorithm

(Fletcher, 2013). The EM algorithm iterates until the maximum absolute relative change in the parameter

estimates three iterations apart is less than 10−3 for three consecutive iterations. For better efficiency, we

use a rejection-controlled EM (RCEM; Ma et al. 2006) with threshold 0.05 and a weighted maximization

approach on aggregated data. The final set of posterior probabilities can be used to determine the hidden

path of the states Z and segment the genome into either enriched or background windows. By denoting

pj = P
(
Zj = 1|y, û, r,x; Ψ(s)

)
the probability of window j belonging to background, one could classify

window j to be enriched if pj ≤ α, where α is chosen such that the total false discovery rate (FDR) is∑M
j=1 pjI(pj ≤ α)/

∑M
j=1 I(pj ≤ α) (Efron et al., 2001). Alternatively, the Viterbi algorithm (Viterbi,

1967) can be used to determine the most likely sequence of background and enrichment windows without

the need of a subjective choice of an FDR threshold. Finally, regions of enrichment are created by merging

adjacent windows either meeting a cutoff α or belonging to the same Viterbi’s predicted state.

2.5 Simulation Study

In this study, we evaluated the performance of the ZIMHMM under a set of different scenarios where

experimental replicates differed with respect to sequencing depth and ChIP-input control relationship. We

compared the ZIMHMM to its fixed-effects version (ZIHMM) and to a naı̈ve multi-sample HMM that does

not account for zero-inflation (HMM). For each scenario, we simulated a hundred ChIP-seq multi-sample data

under random intercept and random slope models mimicking the main characteristics of H3K27me3 ChIP-seq

data. First, we generated a sequence of hidden states with lengthM = 25, 000 from a first-order Markov chain

with two states and transition probabilities γ11 = γ22 = 0.95 to ensure broad background and enrichment

regions. Secondly, for a given path of states, a set of N input control read counts was independently simulated
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following a NB distribution with parameters (µ, φ)
′

= (9, 2.5)
′
. Thirdly, N sequences of ChIP read counts

with length M was simulated as a function of the log-transformed input control counts following a mixture

of random effects ZINB and NB distributions. Here, we simulate data under scenarios with N = {2, 3, 6, 9}

ChIP-seq replicates and explored scenarios with low, medium, and high levels of heterogeneity across the N

simulated ChIP replicates. These levels of heterogeneity are represented by different values of the variance

component σ2 for both the random intercept and random slope models (see Figure C.1 in Baldoni et al.

2019b).

2.5.1 Simulation Results

Table 2.1 shows the true values, the sample median, 25th, and 75th percentiles of the parameter estimates

from simulated data relative to scenarios with low level of heterogeneity and random intercept model. The

median values of the estimates associated with the parameters from the mean model (λ
′
,β
′
1,β

′
2)
′

appeared

to be symmetric and centered at the true values, suggesting that the proposed Laplace approximation works

relatively well even for a small number of replicates. The estimates of the variance component were close to

the true values in all simulated scenarios. We present the median observed true and false positive rates (TPR

and FPR, respectively) based on the sequence of predicted states by the Viterbi algorithm. Regardless of the

number of replicates, the ZIMHMM performed well when predicting the path of hidden states. We observed

that its classification performance improved in scenarios with higher number of replicates, as expected. This

is particularly important as a common practice in the analysis of multiple ChIP-seq data is to call peaks

utilizing two replicates only. In the analyzed scenario, integrating data from additional replicates improved

the detection of enrichment regions in consensus.

The simulation results indicated that estimates associated with dispersion parameters (φ1, φ2)
′

were

biased even for scenarios with a high number of ChIP replicates. An extensive statistical literature makes

reference to biased estimates of the dispersion parameter in the NB regression model and proposes possible

corrections to it (Robinson and Smyth, 2007). Here, given the good classification performance of the

ZIMHMM regarding the TPR and FPR across all different simulated scenarios, we did not explore alternative

solutions to the estimation of the dispersion parameter as this investigation would be beyond the scope of this

work. Nonetheless, we believe that such a correction would lead to better precision for the parameter estimates.

Thresholding posterior probabilities with different FDR levels allowed us to compare the performance of

the ZIMHMM with the ZIHMM and HMM. The ZIMHMM had a better classification performance than the
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Table 2.1: Median (first, and third quantiles) of parameter estimates under random intercept models (low
heterogeneity).

Parameter True value Two rep. Three rep. Six rep. Nine rep.

β11 1.50 1.63 (1.31, 1.97) 1.46 (1.30, 1.69) 1.50 (1.40, 1.66) 1.51 (1.40, 1.67)
β12 0.75 0.75 (0.74, 0.75) 0.75 (0.75, 0.75) 0.75 (0.75, 0.75) 0.75 (0.75, 0.75)
β21 2.50 2.66 (2.34, 3.02) 2.47 (2.31, 2.71) 2.50 (2.40, 2.67) 2.52 (2.41, 2.67)
β22 0.50 0.50 (0.50, 0.50) 0.50 (0.50, 0.50) 0.50 (0.50, 0.50) 0.50 (0.50, 0.50)
φ1 5.00 4.95 (4.81, 5.01) 4.71 (4.34, 4.93) 4.38 (4.02, 4.66) 4.22 (3.90, 4.47)

φ2 2.50 2.49 (2.44, 2.50) 2.43 (2.33, 2.48) 2.34 (2.24, 2.42) 2.30 (2.21, 2.37)
λ1 -0.75 -0.75 (-0.78, -0.72) -0.75 (-0.78, -0.71) -0.75 (-0.77, -0.73) -0.75 (-0.77, -0.74)
λ2 -0.60 -0.60 (-0.61, -0.58) -0.60 (-0.61, -0.59) -0.60 (-0.61, -0.59) -0.60 (-0.60, -0.59)
σ2 0.10 0.12 (0.00, 1.47) 0.09 (0.02, 0.28) 0.11 (0.05, 0.23) 0.12 (0.06, 0.18)
TPR 0.94 (0.94, 0.95) 0.96 (0.96, 0.97) 0.98 (0.98, 0.99) 0.99 (0.99, 0.99)

FPR 0.07 (0.07, 0.08) 0.05 (0.04, 0.05) 0.02 (0.02, 0.02) 0.01 (0.01, 0.01)

misspecified models ZIHMM and HMM in all the scenarios (see Figure 2.2). However, we observed a higher

relative performance of the ZIMHMM over the ZIHMM and HMM when a low number of replicates was

analyzed. In the context of heterogeneous replicates, these results suggest that accounting for sample-specific

biases boosts the detection of consensus regions of enrichment and its improvement is particularly significant

when only a few replicates are available.

2.6 Data Applications

We applied the ZIMHMM with sample-specific random intercepts to detect consensus regions of

enrichment from multiple ChIP-seq experiments of H3K27me3 and H3K36me3 marks from the ENCODE

Consortium and the Roadmap Epigenomics Project. Data were analyzed in two different scenarios. In Section

2.6.1, we report results from the analysis of technical replicates from H3K36me3 and H3K27me3 experiments

of Huvec and Nhek cell lines, respectively. In this standard scenario of multi-sample ChIP-seq peak calling,

technical replicates are expected to show low spatial heterogeneity regarding the signal profile across the

genome. In Section 2.6.2, we present results of the analysis of H3K36me3 and H3K27me3 experiments from

white blood cell lines CD4 memory, CD4 naı̈ve, CD8 naı̈ve, and CD34 primary cells. In this scenario, white

blood cell lines are assumed to be similar but show a certain level of heterogeneity regarding the signal profile

and genomic locations of protein-DNA binding sites.

We sought to benchmark the genome-wide performance of the ZIMHMM to the multi-sample peak

callers JAMM and Zerone, as well as single-sample peak callers under the pooling approach BCP-P, CCAT-P,

MACS2-P, MOSAiCS-P, and RSEG-P. We compared methods regarding peak accuracy, broadness, coverage
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Figure 2.2: Classification performance of the proposed models on simulated random effects data (top:
intercepts, bottom: slopes) for two, three, six, and nine ChIP-seq experimental replicates assuming a low
level of heterogeneity across experiments.
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of the observed read density from both analyzed marks, coverage of active and inactive genomic regions,

and running time. To assess the benefits of the random effects approach, results from the fixed effects model

ZIHMM presented in Section 2.3.1 are shown. Read counts were computed using non-overlapping windows

of 500bp in both scenarios. For the ZIMHMM and the ZIHMM, enrichment regions were defined by merging

neighboring predicted enriched windows using the Viterbi algorithm. A discussion about the choice of the

window size and a comparison between the Viterbi algorithm and the FDR thresholding approach is presented

in Section 2.6.1.

2.6.1 Analysis of ChIP-seq Data From Technical Replicates

For benchmarking purposes, we created a set of measures and associations that were first introduced by

Xing et al. (2012) (Table 2.2). First, we calculated the median size of called peaks (in kbp) by each method.

For both analyzed marks, we observed that the ZIMHMM called substantially broader regions of enrichment

than the multi-sample peak callers JAMM and Zerone, but narrower than the regions of the single-sample

peak callers BCP-P and RSEG-P. Next, we defined the read coverage as the proportion of reads from the

analyzed mark mapped on called peaks out of the total number of mapped reads. Read counts were previously

normalized by the median log-ratios of each sample over the geometric mean (after adding 1 pseudo count to

avoid undefined ratios in windows with zero counts). Results showed that the ZIMHMM covered most of the

mapped reads while still maintaining a low size of peak calls. While RSEG-P had a reasonable coverage of

counts, its called peaks were often excessively large and did not capture minor changes in the signal profile

(Figure 2.3). This is a known characteristic of the pooling type of analysis of single-sample peak callers and

the results highlight the improved accuracy of the peaks called by the multi-sample peak caller the ZIMHMM.

Here, the ZIHMM was fitted using the total sum of read counts as an offset to attempt the correction of

differences in sequencing depth across replicates. However, the inclusion of replicate-specific random effects

led to a better coverage of read counts across the genome.

To asses whether the high sensitivity of the ZIMHMM was indeed due to an improved segmentation, we

computed empirical TPRs and FPRs based on the coverage of actively transcribed genes and reads of the

reverse mark (see Figure 2.5). Histones H3K36me3 and H3K27me3 are known to be associated with gene

transcription and repression, respectively. For the former (latter), enrichment regions are usually deposited on

genes with high (low) expression and are nearly mutually exclusive, although the activity of H3K27me3 can

also be seen in genomic regions without any gene bodies (Xing et al. 2012; Figure 2.1).
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Table 2.2: Genome-wide peak calls and common associations for ChIP-seq data of H3K36me3 and
H3K27me3 marks from three technical replicates of Huvec and Nhek cells, respectively. The running
time of each method is shown in hours.

Coverage

Mark Method Peaks Median Size Reads Active Regions Inactive Regions Time

BCP-P 6852 29.298 0.400 0.497 0.027 1.618
CCAT-P 94181 1.026 0.345 0.345 0.015 17.642
JAMM 66751 0.300 0.123 0.105 0.007 5.376
MOSAiCS-P 3626 17.704 0.184 0.178 0.004 0.512
MACS2-P 53950 1.616 0.353 0.356 0.018 0.132
RSEG-P 8259 33.204 0.470 0.623 0.043 1.659
Zerone 16913 7.322 0.336 0.346 0.016 0.024
ZIHMM 14867 18.064 0.508 0.682 0.049 0.324

H3K36me3

ZIMHMM 12574 22.948 0.517 0.709 0.055 6.336

BCP-P 6618 16.114 0.412 0.032 0.147 1.335
CCAT-P 193893 0.978 0.504 0.034 0.165 30.758
JAMM 109855 0.303 0.253 0.012 0.058 6.925
MOSAiCS-P 4726 4.090 0.159 0.004 0.024 1.829
MACS2-P 89258 1.147 0.394 0.019 0.100 0.148
RSEG-P 12801 20.997 0.564 0.047 0.246 0.981
Zerone 34397 1.465 0.240 0.008 0.040 0.027
ZIHMM 51276 5.859 0.622 0.053 0.262 0.642

H3K27me3

ZIMHMM 54994 5.845 0.634 0.056 0.272 12.307

Using RNA-seq data, we determined cell line-specific actively transcribed genes and computed the

coverage of active and inactive regions. Specifically, we used RNA-seq experimental data from the ENCODE

Consortium on Nhek and Huvec human cells to define sets of actively transcribed genes in each cell as

follows. First, we used Salmon (Patro et al., 2017) to quantify transcript expression from cell-specific

RNA-seq experiments. We then calculated, using the R package tximport (Soneson et al., 2015), estimated

counts using abundance estimates (transcripts per million, TPM) scaled up to the average transcript length

over samples and library size. This step ensures that counts computed from Salmon are not correlated with

the average transcript length. Secondly, we defined the set of actively transcribed genes in each cell by fitting

a two-components Gaussian mixture model on the log-transformed TPM (LTPM) and selecting genes with

an LTPM greater than the estimated mean of the upper Gaussian component. Finally, using the genomic

ranges of the actively transcribed genes, we calculate the coverage of active and inactive genomic regions as

empirical measure of TPR and FPR, respectively, for H3K36me3 peaks. For H3K27me3 peaks, the coverage

of active and inactive regions are taken to be empirical measures of FPR and TPR respectively. Here, we
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Figure 2.3: Pooled read counts of three technical replicates of histone modifications H3K36me3 (A) and
H3K27me3 (B) on human cells Huvec and Nhek, respectively. At the top, called peaks from benchmarked
methods. At the bottom, posterior probabilities of enrichment from ZIMHMM, which calls broad peaks in
consensus that better associate with the read counts profile from the analyzed diffuse marks. This figure
appears in color in the electronic version of this article.

define an inactive region to be any genomic region not overlapping an actively transcribed gene, which

includes intergenic regions and inactive genes.

Here, we define an inactive region to be any genomic region not overlapping an actively transcribed

gene, which includes intergenic regions and inactive genes. We observed that the ZIMHMM had the highest

coverage among all methods. Its called peaks for H3K36me3 (H3K27me3) covered most of the active

(inactive) locations, respectively, while still maintaining low false positives. Both multi-sample peak callers

JAMM and Zerone performed poorly under this scenario regarding these metrics (Figure 2.3). Here, single-

sample peak callers had mixed performances and called peaks that were either excessively large and expanded

multiple actively transcribed gene bodies (BCP-P and RSEG-P) or overly segmented (CCAT-P, MACS2-P,

and MOSAiCS-P).
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We observed that peak callers varied substantially regarding their computational time. MACS2-P, Zerone,

and ZIHMM were among the fastest methods under comparison taking no longer than an hour to analyze the

entire human genome. Conversely, CCAT-P, JAMM, and ZIMHMM were the peak callers that took longer to

complete the analysis. The approximate running time of the ZIMHMM was six and twelve hours to analyze

three replicates of H3K36me3 and H3K27me3, respectively. Conversely, CCAT-P had an approximate

running time of 18 and 28 hours for these marks, respectively. It is worth noting that single-sample peak

callers such as BCP-P, MOSAiCS-P, RSEG-P, and MACS2 are in general faster than multi-sample peak

callers simply by the fact that technical replicates are pooled together and analyzed as a single experiment.

We believe that the performance of the ZIMHMM can be further improved and will be left as a project in a

future implementation of the model.

The performance of peak callers under different choices of window sizes was investigated. Results were

consistent across windows of 250bp, 500bp, 750bp, and 1000bp, although peaks from ZIMHMM became

larger for wider window sizes (see Tables D.1-D.3 in Baldoni et al. 2019b). In Ibrahim et al. (2014), the

authors propose the use of a cost function to select the window size. Here, we choose to report results based

on the window size of 500bp calculated as a function of the average fragment length, an approach also used

by MACS2. Moreover, we compared peaks called by the ZIMHMM via both the Viterbi algorithm and FDR

thresholding. The Viterbi peaks were similar regarding the metrics used in this paper to peaks based on a

FDR cutoff of 0.05. An increasing (decreasing) trend in sensitivity (specificity) across the different thresholds

was observed (see Table 2.3 and Tables D.4-D.7 in Baldoni et al. 2019b).

Table 2.3: Genome-wide performance of ZIMHMM with Viterbi and FDR thresholding methods (Window
size 500bp).

Coverage

Mark Method Peaks Median Size Reads Active Regions Inactive Regions Time

Viterbi 12574 22.948 0.517 0.735 0.066 0
FDR = 0.01 15162 17.089 0.508 0.711 0.061 0
FDR = 0.05 14611 19.528 0.527 0.751 0.071 0
FDR = 0.10 15315 19.041 0.540 0.780 0.080 0

H3K36me3

FDR = 0.20 23775 7.812 0.566 0.823 0.101 0

Viterbi 54994 5.845 0.634 0.053 0.269 0
FDR = 0.01 70362 3.905 0.590 0.043 0.225 0
FDR = 0.05 67243 4.395 0.634 0.053 0.266 0
FDR = 0.10 69724 4.395 0.660 0.060 0.292 0

H3K27me3

FDR = 0.20 81648 4.102 0.699 0.074 0.336 0
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We compared the performance of the ZIMHMM under the whole-genome analysis presented in this

paper with peaks called chromosome-wise. We observed a better sensitivity/specificity of the whole-genome

analysis over the chromosome-wise analysis for small chromosomes (see Figure 2.4 and Figures D.3 and D.4

in Baldoni et al. 2019b). A possible explanation for the increase in performance is that small chromosomes

may have less data to better resolve peak regions. In addition, chromosomes with less gene activity are likely

to have fewer enrichment regions for certain marks. The whole-genome analysis could be a workaround for a

potential convergence issues in a chromosome where most of the reads are coming from background.

2.6.2 Analysis of ChIP-seq Data From Multiple Cell Lines

We analyzed data from CD4 memory, CD4 naive, CD8 naive, and CD34 mobilized primary cell lines

from the Roadmap Project. We expected these cell lines to be heterogeneous regarding the enrichment profile

of read counts and, therefore, served as a basis for a sensitivity analysis for the benchmarked consensus

peak callers. The measures presented in Section 2.6.1 were also used in this scenario. Using RNA-seq data,

genes were considered to be actively transcribed in consensus across cell lines if they were simultaneously

active in all white blood cells. Specifically, we downloaded RNA-seq experiments from the Roadmap Project

on human white blood cells CD4 memory, CD4 naive, CD8 naive, and CD34 mobilized primary cells, and

quantified the transcript expression using Salmon. Then, using abundance estimates adjusted for transcript

length and library size, we measured the log-transformed TPM (LTPM) and fitted a two-component Gaussian

mixture regression model on the LTPM values of the set of Ensembl genes (Zerbino et al., 2017) to define the

set of actively transcribed genes. A two-component Gaussian mixture model was fitted on the gene-level

LTPM values of all four distinct human cell lines and genes were classified to be actively transcribed if their

cell-specific LTPM values were uniformly above the larger estimated mean across all four cell lines. Results

are presented in Table 2.4.

In this analyzed scenario, we observed that peak callers performed similarly for the H3K36me3 mark

regarding the coverage of read counts, although BCP-P and MOSAiCS-P had a slightly higher coverage

of actively transcribed gene bodies than the ZIMHMM. However, regions called by these two methods

were consistently larger than actual gene bodies and did not show a reasonable spatial resolution when

detecting minor changes in enrichment profile across cells (see Figures D.1 and D.2 Baldoni et al. 2019b). As

noted, these are known characteristics of the pooling type of analysis from single-sample peak callers. For

H3K27me3, we observed a significant improvement of the ZIMHMM over current multi- and single-sample
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Table 2.4: Genome-wide peak calls and common associations for ChIP-seq data of H3K36me3 and
H3K27me3 marks from CD4 memory primary, CD4 naive primary, CD8 naive primary, and CD34 mobilized
primary cell lines. The running time of each method is shown in hours.

Coverage

Mark Method Peaks Median Size Reads Active Regions Inactive Regions Time

BCP-P 8572 26.368 0.331 0.595 0.030 3.150
CCAT-P 38735 1.075 0.131 0.150 0.003 11.247
JAMM 72470 0.571 0.219 0.317 0.012 5.955
MOSAiCS-P 15941 12.573 0.334 0.579 0.029 1.586
MACS2-P 64331 1.478 0.310 0.489 0.025 1.036
RSEG-P 6936 27.833 0.280 0.478 0.021 4.033
Zerone 28913 2.930 0.210 0.289 0.009 0.024
ZIHMM 31852 5.370 0.345 0.578 0.032 0.588

H3K36me3

ZIMHMM 29747 5.371 0.328 0.538 0.028 20.183

BCP-P 6872 12.208 0.191 0.015 0.120 2.379
CCAT-P 8725 1.026 0.028 0.001 0.007 3.012
JAMM 118528 0.295 0.106 0.009 0.054 8.123
MOSAiCS-P 16630 8.508 0.190 0.015 0.107 1.503
MACS2-P 91632 0.792 0.158 0.012 0.077 1.113
RSEG-P 855 13.673 0.029 0.004 0.014 10.578
Zerone 29304 2.929 0.118 0.010 0.061 0.038
ZIHMM 58117 8.301 0.520 0.071 0.394 0.947

H3K27me3

ZIMHMM 51655 9.277 0.543 0.076 0.424 12.559

peak callers regarding the coverage of read counts and gene bodies. Specifically, benchmarked methods

covered no more than 20% of the mapped reads and had a low genome-wide coverage of inactive regions. In

this scenario, accounting for cell line-specific shifts in the signal profile of read counts significantly improved

the detection of enrichment regions in consensus across cells. Here, the ZIMHMM was more time consuming

than other approaches, specially single-sample peak callers that call peaks with pooled

2.6.3 Association of H3K36me3, H3K27me3, and Gene Expression

We further compared peak callers regarding the genome-wise association of peaks with gene expression

data as well as the coverage of the reads from the opposite mark. Called peaks were sorted with respect to

the number of mapped reads and the coverage of active and inactive regions by the top- and bottom-most

peaks were calculated, respectively. Peaks were also sorted regarding their read counts and the coverage of

H3K27me3 and H3K36me3 reads mapped onto the top- and bottom-most peaks, respectively, was calculated.

These quantities provide measures of association between the two analyzed marks and their role on gene
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activation and suppression. In all the scenarios, read counts were previously normalized by the median

log-ratios as in Section 2.6.1. Results are presented in Figure 2.5.

Overall, top peaks called by the ZIMHMM had a superior performance than all other methods in most

of the scenarios. The proposed model covered more of actively transcribed gene bodies and read counts

for H3K36me3 and H3K27me3, respectively. We observed that the performance of all methods but CCAT-

P, JAMM, and Zerone was homogeneous when calling H3K36me3 peaks from white blood cells. Both

multi-sample peak callers performed poorly for the two analyzed diffuse marks in all the scenarios.

2.7 Discussion

Here, we presented the ZIMHMM, a statistical model tailored to call broad peaks in consensus across

multiple ChIP-seq technical or biological replicates. The ZIMHMM models the excess of zeros of broad and

diffuse marks and accounts for sample differences via random effects.

The ZIMHMM should be applied in multiple biological or technical ChIP-seq replicates with broad

regions of signal, such as those pertaining to epigenomic marks. Methods focused on peak calling from

multiple samples are of growing interest given the reduction of sequencing costs and higher data availability.

Prior work from multi-sample peak callers has shown the benefits of data integration in ChIP-seq data analysis.

However, there is no consensus in the literature on how to integrate results from multiple replicates and

current approaches perform poorly in finding epigenomic marks with broad peaks. In this paper, we analyzed

H3K36me3 and H3K27me3, marks that are associated with gene activation and gene suppression, respectively.

For the former mark, in particular, enrichment regions detected by the ZIMHMM better associated with

activated gene bodies than any other benchmarked peak caller. These results could trigger, for instance, new

insights to investigators interested in detecting cell-specific activated genes, for instance. The ZIMHMM is

comparable to most of the current peak callers in terms of computing time and has been implemented into an

R package that is available for download (see Appendix A for details).
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Figure 2.5: Genome-wide performance of ZIMHMM and other peak callers. We analyzed diffuse histone
modifications H3K36me3 and H3K27me3 under scenarios of technical replicates and multiple cell lines.
ZIMHMM showed superior performance in most of the scenarios, better associating with gene expression
and read counts than other methods. Overall, peaks called by ZIMHMM showed a reasonably low number of
false positives, here characterized by the coverage of inactive (active) regions by H3K36me3 (H3K27me3)
peaks and coverage of reads from the other mark. This figure appears in color in the electronic version of this
article.
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CHAPTER 3: EFFICIENT DETECTION AND CLASSIFICATION OF EPIGENOMIC CHANGES
UNDER MULTIPLE CONDITIONS

3.1 Introduction

Epigenomics, the study of the human genome and its interactions with proteins and other cellular elements,

has become of significant interest in recent years. Such interactions have been shown to regulate essential

cellular functions such as gene expression and DNA packaging (Kim et al., 2018), resulting in downstream

phenotypic impact. Therefore, the interrogation of how these interactions may change across conditions,

such as cell types or treatments, is of marked interest in biomedical research. Several landmark articles have

identified specific genomic regions of changing (differential) epigenomic activity between conditions as

drivers of cell differentiation (Creyghton et al., 2010), cancer progression (Varambally et al., 2002), and a

number of human diseases (Portela and Esteller, 2010). Within differential regions, the delineation of specific

patterns of change across conditions is also of interest, for example classifying the gain-of- or loss-of-activity

in genomic loci due to treatment (Clouaire et al., 2014). The identification of specific combinations of

processes acting locally may also be informative, such as for segmenting the genome into regulatory states

(Kundaje et al., 2015).

To quantify local epigenomic activity, a common high-throughput assay is chromatin immunoprecipitation

followed by massively parallel sequencing (ChIP-seq). ChIP-seq experiments begin with cross-linking DNA

and proteins within chromatin structures, which are then fragmented by sonication in a particular sample.

DNA fragments bound to the protein of interest are isolated by chromatin immunoprecipitation, which

are then sequenced via massively parallel high-throughput sequencing to generate short sequencing reads

pertaining to the original fragments. Sequences are then mapped onto a reference genome through sequence

alignment to determine their likely locations of origin. Genomic coordinates containing a high density of

mapped reads, often referred to as enrichment regions (peaks), indicate likely locations of protein-DNA

interaction sites, and all other regions are referred to as background regions. This local read density is often

summarized by counting the number of reads mapped onto non-overlapping windows of fixed length tiling
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the genome (window read counts), forming the basis for downstream analyses. Across multiple conditions,

regions exhibiting enrichment in at least one condition, but not across all conditions, indicate the presence of

differential activity pertaining to the protein-DNA interaction of interest.

To date, many differential peak callers (DPCs) have been proposed (Song and Smith, 2011; Stark and

Brown, 2011; Shen et al., 2013; Chen et al., 2015; Lun and Smyth, 2015; Allhoff et al., 2016). However,

several challenges affect their ability to accurately detect regions of differential activity from the wide range of

ChIP-seq experiments (Section 3.2). First, differential regions may be both short or broad in length, causing

difficulty for methods optimized for a particular type of signal profile (Stark and Brown, 2011; Chen et al.,

2015). Second, methods that pool experimental replicates together (Song and Smith, 2011) often exhibit

more false positive calls compared to methods that jointly model replicates from each condition (Steinhauser

et al., 2016). Third, the analysis of ChIP-seq data is often subject to complex biases that may vary across the

genome, as differences in local read enrichment may depend on the total read abundance in a given region.

DPCs that solely rely on sample-specific global scaling factors or control subtraction methods (Stark and

Brown, 2011; Shen et al., 2013; Chen et al., 2015; Allhoff et al., 2016) may be prone to detecting spurious

differences due to the lack of non-linear normalization methods (Lun and Smyth, 2015). Reflecting these

limitations, a recent comparison of DPCs demonstrated that current methods tend to detect either a large

number of short peaks (low sensitivity) or exhibit a high number of false positive calls (low specificity) in

ChIP-seq experiments with broad regions of enrichment (Steinhauser et al., 2016). Moreover, few methods

are able to simultaneously test for differential activity across three or more conditions (Chen et al., 2015; Lun

and Smyth, 2015), or can classify specific differential combinatorial patterns. Altogether, these limitations

can impact the drawing of accurate insights from modern epigenomic studies.

Here, we propose an efficient and flexible statistical method to identify differential regions of enrichment

from epigenomic experiments with diverse signal profiles and collected under common multi-replicate,

multi-condition settings. Our method overcomes the limitations of current DPCs with three major features.

First, it uses a hidden Markov model (HMM) to account for the diversity in differential enrichment profiles

that may result from short and broad epigenomic ChIP-seq data sets. Second, it captures specific differen-

tial combinatorial patterns through a novel finite mixture model emission distribution within the HMM’s

differential state. Each mixture component pertains to a particular differential combinatorial pattern that

is formed by the presence or absence of local enrichment across conditions, where a generalized linear

model (GLM) is used to model the specific differential combinatorial pattern while accounting for sample-
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and window-specific normalization factors via offsets. Third, it enables the simultaneous detection and

classification of epigenomic changes under three or more conditions, a novelty not yet available in any other

DPC algorithm. The presented method offers additional benefits over current HMM-based DPC algorithms

(Song and Smith, 2011; Allhoff et al., 2016) that include a GLM-based framework with an embedded mixture

model, which allows the modeling of covariates of interest as well as the inclusion of model offsets for

non-linear normalization, and a fast and accurate parameter estimation scheme via rejection-controlled EM

algorithm (RCEM).

3.2 Data

Histones are proteins that interact and condense DNA in eukaryotic cells into structural units called

nucleosomes. Multiple types of enzymatic modifications may be applied to histones, resulting in changes

in local DNA packaging and chromatin accessibility mediated by nucleosomes (Bannister and Kouzarides,

2011). In turn, cellular processes such as gene transcription, gene silencing, DNA repair, replication, and

recombination are also affected. Proteins that interact with DNA and alter its functional properties are

often referred to as epigenomic marks. For example, the trimethylation of histone H3 at lysines 36 and

27 (H3K36me3 and H3K27me3) are two types of histone modifications that tend to occur in genomic

loci containing actively transcribed and repressed genes (Liu et al., 2016), respectively, and exhibit broad

enrichment profiles. These marks have been investigated in cancer studies, where their absence is often

observed in multiple cancer types (Wei et al., 2008). As a result, H3K36me3 and H3K27me3 are considered

to be key prognostic indicators in patients with breast, ovarian, and pancreatic cancer. EZH2, a major

component of the polycomb complex PRC2 that catalyzes the methylation of H3K27me3 (Margueron and

Reinberg, 2011), is another example of a protein with experimental signal characterized by broad enrichment

domains and co-occurs with the activity of H3K27me3.

Using ChIP-seq data pertaining to histone modifications H3K27me3, H3K36me3, and the enhancer

EZH2 from the ENCODE Consortium, we find that current DPCs have difficulty in accurately detecting

broad regions of differential enrichment between several common cell lines (Figure 3.6). In line with previous

findings (Steinhauser et al., 2016), we observe that even current DPCs designed for broad data (Song and

Smith, 2011; Allhoff et al., 2016) tend to detect either overly fragmented differential peaks or call regions

exhibiting no difference in experimental signal between conditions as differential (Figure 3.6A). The low

specificity and sensitivity of such methods may impair the biological interpretation of the resulting peak calls
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in downstream analyses. Methods that rely on candidate peaks may also exhibit a compromised performance

due to the limitations of single-sample peak callers in broad data (Stark and Brown, 2011; Chen et al., 2015).

In addition, most current DPCs restrict their application to the analysis of two experimental conditions. For

methods that are tailored for the analysis of three or more conditions, the classification of specific differential

combinatorial patterns across conditions (or across various epigenomic processes) is still an open problem.

The classification of such patterns would allow researchers to, for example, quantify treatment responses

on the epigenomic level (Clouaire et al., 2014), or identify sets of processes working together to regulate

local chromatin state. We find that the performance of such methods exhibit low sensitivity and specificity in

calling differential regions in broad marks (Figure 3.6B).

We assessed the performance of our model on ChIP-seq experiments characterized by broad peaks

(H3K36me3, H3K27me3, and EZH2) and short peaks (H3K27ac, H3K4me3, and the transcription factor

CTCF). In simulations (Section 3.4) and in data sets from the ENCODE Consortium (Landt et al., 2012),

we show that our model addresses the issues of the current peak callers in broad data (Section 3.5.1), while

being flexible for short peaks (Section 3.5.2) and comparable to the fastest DPCs regarding the computation

time. We show that our method can also be utilized for genomic regulatory state segmentation when studying

multiple types of epigenomic processes from a single condition or cell line (Section 3.5.3). The Appendix B

presents the data accession codes and the data pre-processing steps, respectively. Code implementing the

method and to replicate the presented results are available in Appendix B.

3.3 Methods

3.3.1 Statistical Model

Let Yhij denote the random variable pertaining to the ChIP read count for genomic window j from

sample i of condition h, where j = 1, . . . ,M , i = 1, . . . , nh, h = 1, . . . , G, and let yhij be the observed

count. Here, nh is the number of samples in condition h and N =
∑G

h=1 nh is the total number of samples

across the G conditions. At the jth window, let y..j = (y11j , . . . , yGnGj)
′ denote the N × 1 vector of ChIP

window read counts across all samples and conditions, and let y = (y′..1, . . . ,y
′
..M )′ denote the corresponding

NM × 1 vector of window read counts spanning all windows, samples, and conditions. We assume that each

window belongs to one of three possible hidden states: consensus background (state 1), differential (state 2),

and consensus enrichment (state 3). Windows exhibiting low (high) enrichment across all conditions will be

modeled by an emission distribution pertaining to the consensus background (enrichment) state. Windows
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Figure 3.6: Performance of current DPC methods on calling differential enrichment regions in broad marks
under a false discovery rate control of 0.05. (A): Differential peak calls between cell lines Helas3 and Hepg2
for the H3K36me3 histone modification. (B): Differential peak calls between cell lines Helas3, Hepg2, and
Huvec for the H3K27me3 histone modification. Only ChIPComp, csaw, and DiffBind are designed for DPC
under three or more conditions. Shaded regions indicate observed differential enrichment, and each vertical
line type bordering each region represents a different combinatorial pattern of enrichment across cell lines.
Optimal DPCs would call broad peaks inside shaded regions and no peaks outside them.
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exhibiting enrichment under at least one condition, but not all conditions, will be modeled by an emission

distribution pertaining to the differential state. If G conditions are of interest, there are L = 2G − 2 possible

differential combinatorial patterns of enrichment and background across conditions at a given window. The

emission distribution pertaining to the differential state models all L possible differential combinatorial

patterns via a mixture model with mixture proportions δ = (δ1, . . . , δL)′, such that
∑L

l=1 δl = 1 (see Figure

B.1 in Baldoni et al. 2019a).

To model transitions between states, we assume a single latent discrete time stationary Markov chain

Z = {Zj}Mj=1, Zj ∈ {1, 2, 3}, with state-to-state transition probabilities γ = (γ11, γ12, . . . , γ33)
′ and initial

probabilities π = (π1, π2, π3)
′, such that

∑3
s=1 γrs = 1 and

∑3
s=1 πs = 1 for r ∈ {1, 2, 3}. To facilitate

the notation, let fr(y..j |ψr) denote the emission distribution corresponding to the rth hidden state, where

Ψ = (π′,γ ′, δ′,ψ′)′ denotes the vector of all model parameters, ψ = (ψ′1,ψ
′
2,ψ

′
3)
′ denotes each state’s set

of emission distribution-specific parameters, and Z denotes the set of 3M possible state paths of length M .

Then, the likelihood function pertaining to the proposed HMM may be written as

f(y|x; Ψ) =
∑
Z∈Z


3∏
r=1

πI(Z1=r)
r ×

 M∏
j=2

3∏
r=1

3∏
s=1

γ
I(Zj−1=r,Zj=s)
rs

 × (3.6)

×

 M∏
j=1

f1 (y..j |ψ1)
I(Zj=1) f2 (y..j |x; δ,ψ2)

I(Zj=2) f3 (y..j |ψ3)
I(Zj=3)

 .

Here, x is a fixed G× L design matrix enumerating each of the L possible differential combinatorial

patterns in terms of the presence or absence of enrichment across each of the G conditions, only in the

emission distribution of the differential state.

We assume that read counts pertaining to genomic windows from the consensus background (r = 1)

and consensus enrichment (r = 3) states follow a Negative Binomial (NB) distribution with state-specific

parameters ψr = (µ(r,hij), φr)
′, with mean µ(r,hij) and variance µ(r,hij)(1 + µ(r,hij)/φr). Assuming

independence of read counts across experiments and samples, conditional upon the HMM state, the emission

distribution of the consensus background and consensus enrichment states, respectively, can be written as
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fr(y..j |ψr) =
G∏
h=1

nh∏
i=1

Γ(yhij + φr)

yhij !Γ(φr)

(
φr

µ(r,hij) + φr

)φr ( µ(r,hij)

µ(r,hij) + φr

)yhij
, r ∈ {1, 3}, (3.7)

with yhij ∈ {0, 1, 2, . . .}, such that log(µ(1,hij)) = β1 + uhij , log(φ1) = λ1, log(µ(3,hij)) = β1 +

β3 + uhij , and log(φ3) = λ1 + λ3. The offset uhij adjusts for technical artifacts and allows the non-linear

normalization of the signal profile across genomic windows, conditions, and samples (Appendix B). When

uhij = 0, β1 and λ1 represent the log-mean and log-dispersion, respectively, of read counts pertaining to

consensus background state windows, whereas β3 and λ3 represent the difference in log-mean and log-

dispersion of read counts from consensus enrichment state windows relative to consensus background state

windows.

For windows belonging to the differential state (r = 2), we assume that the corresponding read counts are

modeled by a L-component finite mixture model with mixture components that follow a Negative Binomial

distribution, where each component corresponds to a particular differential combinatorial pattern. To define

these patterns, let us consider the sets S1, . . . , SL that delineate the subset of the G conditions that are

enriched in each of the L differential combinatorial patterns. For instance, if G = 3, the sets S1 = {1},

S2 = {2}, S3 = {3}, S4 = {1, 2}, S5 = {1, 3}, and S6 = {2, 3} define the six possible differential

combinatorial patterns of enrichment and background across three conditions. That is, the set S1 denotes

enrichment in only the first condition and background in all others, whereas the set S6 denotes enrichment in

conditions 2 and 3 and background in condition 1. The presence or absence of enrichment in each of the L

sets is encoded into each column of x = (x1, . . . ,xL), such that xl = (x1l, . . . , xGl)
′, and xhl = I(h ∈ Sl)

for l = 1, . . . , L and h = 1, . . . , G. That is, xl is the G × 1 vector of binary indicator variables denoting

which subset of conditions are enriched in pattern (mixture component) l. A graphical illustration of our

proposed model is provided in Figure B.1 in Baldoni et al. 2019a.

Let ψ2 denote the state-specific parameter vector pertaining to the differential state and let ψ(2,l) denote

the set of parameters pertaining to the lth mixture component. Assuming independence of read counts across

conditions and samples, conditional upon the differential HMM state, the finite mixture model emission

distribution can be written as
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f2(y..j |x; δ,ψ2) =
L∑
l=1

δl

[
G∏
h=1

nh∏
i=1

Γ
(
yhij + φ(2,l,h)

)
yhij !Γ

(
φ(2,l,h)

) (
φ(2,l,h)

µ(2,l,hij) + φ(2,l,h)

)φ(2,l,h)
×

×
(

µ(2,l,hij)

µ(2,l,hij) + φ(2,l,h)

)yhij]
, yhij ∈ {0, 1, 2, . . .}, (3.8)

where µ(2,l,hij) and φ(2,l,h) are the mean and dispersion, respectively, pertaining to read counts originating

from window j and sample i in condition h from the mixture component l. We assume that log(µ(2,l,hij)) =

β1 + β3xhl + uhij and log(φ(2,l,h)) = λ1 + λ3xhl. That is, in the mixture component l, we utilize the same

consensus background (consensus enriched) log-mean and log-dispersion from Equation 3.7 in all conditions

that are specified by xl to be background (enriched) in the lth differential combinatorial pattern. There are

several advantages to such a parametrization for the differential emission distribution. For example, it ensures

that windows exhibiting differential enrichment across conditions share means and dispersions that are

common between the consensus background and consensus enrichment states, a reasonable assumption that

significantly increases computational efficiency. Utilizing a mixture model as the differential state emission

distribution avoids the computational burden that would come from assuming separate hidden states for each

of the L differential combinatorial patterns, particularly as G increases. We evaluate the strength of these

assumptions through multiple simulations and a real data benchmarking analysis in Sections 3.4 and 3.5.

Two novel features result from our proposed approach that are relevant to the context of differential en-

richment detection from ChIP-seq experiments. By using a modified version of the Expectation-Maximization

(EM) algorithm to estimate the model parameters, we are able not only to detect differential enrichment

regions across multiple conditions, but we can also classify various differential combinatorial patterns of

enrichment within broad and short differential enrichment domains. With state-specific parameters, the

current implementation of the method allows the direct modeling of continuous covariates (e.g. input controls;

Appendix B), for which a state-level testing of their effects on the read count distribution could be performed.

In a simulation study and in real data analyses, however, we did not observe a significant improvement in

performance in differential peak detection after accounting for the effect of input controls (Appendix B), a

fact that has also been observed by others (Lun and Smyth, 2015).
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3.3.2 Estimation

To simplify the parameter estimation in Equation 3.9, we introduce another set of latent variables W =

(W′
1, . . . ,W

′
M )′, such that Wj = (Wj1, . . . ,WjL)′ for j = 1, . . . ,M . We assume that W is a sequence

of independent random vectors such that Wj |(Zj = 2) ∼ Multinomial(1, δ) and Wj |(Zj = r) = 0 with

probability 1 if r = {1, 3}. Under this setup, one may define the data generating mechanism when Zj = 2

(differential state) and Wjl = 1 (lth differential combinatorial pattern) such that read counts pertaining

to genomic window j are sampled from f(2,l) given ψ(2,l) and xl. Let W denote the set of LM possible

combinations of latent vectors W. Hence, the likelihood function of the observed data (Equation 3.6) can be

rewritten as

f(y|x; Ψ) =
∑
Z∈Z

∑
W∈W


 3∏
r=1

πI(Z1=r)
r

M∏
j=2

3∏
r=1

3∏
s=1

γ
I(Zj−1=r,Zj=s)
rs

×
 M∏
j=1

(
L∏
l=1

δ
Wjl

l

)I(Zj=2)
×

×

 M∏
j=1

f1 (y..j |ψ1)
I(Zj=1)

(
L∏
l=1

f(2,l)(y..j |xl;ψ(2,l))
Wjl

)I(Zj=2)

f3 (y..j |ψ3)
I(Zj=3)

 ,

(3.9)

where f(2,l)(y..j |xl;ψ(2,l)) is defined as in Equation 3.8. In the tth step of the EM algorithm, the Q

function of the complete data log-likelihood can be written as

Q
(
Ψ|Ψ(t)

)
= EZ

(
EW|Z

(
log (f(y,W,Z|x; Ψ)) |y,x; Ψ(t)

)
|y,x; Ψ(t)

)
,

= Q0(π,γ|Ψ(t)) +Q1(ψ1|Ψ(t)) +Q2(δ,ψ2|Ψ(t)) +Q3(ψ3|Ψ(t)), (3.10)

where Q0(π,γ|Ψ(t)), Q1(ψ1|Ψ(t)), Q2(δ,ψ2|Ψ(t)), and Q3(ψ3|Ψ(t)) are defined in Appendix B. In

the E-step of the EM algorithm, we compute the posterior probabilities from Equation 3.10. The quantities

Pr
(
Zj = r|y,x; Ψ(t)

)
and Pr

(
Zj−1 = r, Zj = s|y,x; Ψ(t)

)
, defined in Appendix B, can be calculated

through the Forward-Backward algorithm (see Appendix B) and Pr(Wjl = 1|Zj = 2,y..j ,x; Ψ(t)) =

f(2,l)(y..j |xl;ψ
(t)
(2,l))δ

(t)
l /

∑L
k=1 f(2,k)(y..j |xk;ψ

(t)
(2,k))δ

(t)
k for l = 1, . . . , L.

The Q function is maximized with respect to the parameters Ψ = (π′,γ ′, δ′, β1, β3, λ1, λ3)
′ during the

M-step of the algorithm. Estimates for the initial and transition probabilities can be directly calculated as
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π̂
(t+1)
r = Pr

(
Z1 = r|y,x; Ψ(t)

)
and γ̂(t+1)

rs =
∑M

j=2 Pr(Zj−1 = r, Zj = s|y,x; Ψ(t))/
∑M

j=2 Pr(Zj−1 =

r|y,x; Ψ(t)), respectively, restricted to
∑3

r=1 π̂
(t+1)
r = 1 and

∑3
s=1 γ̂

(t+1)
rs = 1, for r ∈ {1, 2, 3}. We per-

form conditional maximizations to compute estimates of the remaining model parameters (δ′, β1, β3, λ1, λ3)
′.

First, mixture proportions can be estimated as δ̂(t+1)
l =

∑M
j=1 Pr(Zj = 2|y,x; Ψ(t))Pr(Wjl = 1|Zj =

2,y..j ,x; Ψ(t))/
∑M

j=1 Pr(Zj = 2|y,x; Ψ(t)). Estimating (β1, β3, λ1, λ3)
′ from Equation 3.10 can be seen

as obtaining parameter estimates from a series of weighted NB regression models with shared mean and

dispersion parameters. We jointly estimate these quantities via the algorithm BFGS (Fletcher, 2013).

The estimation scheme is robust to situations where certain differential combinatorial patterns of enrich-

ment are rare (Figure 3.13). This unique characteristic results from the fact that ChIP-seq experiments often

provide enough data (usuallyM > 107 non-overlapping windows of 250 bp fixed size for the human reference

genome) to estimate the parameters (β1, β3, λ1, λ3)
′, which are shared across all L mixture components and

HMM states. If pruning differential combinatorial patterns of the differential mixture component is of interest,

the optimal number of mixture components L∗, L∗ < L, can be selected via the Bayesian Information

Criterion (BIC) for HMMs. We observed that selecting the optimal number of mixture components based on

BIC agrees with the pruning of rare differential combinatorial patterns that we would not biologically expect

to observe in real data (see Appendix B for a discussion).

To obtain the parameter estimates Ψ̂, the EM algorithm iterates until the maximum absolute relative

change in the parameter estimates three iterations apart is less than 10−3 for three consecutive iterations. To

reduce the computation time, we make use of a RCEM algorithm with threshold 0.05. Briefly, the RCEM

algorithm substantially reduces the dimensionality of the data during the M-step by randomly assigning a

zero posterior probability to genomic windows unlikely to belong to each of the HMM states. The current

estimation set up allows genomic windows exhibiting equal distribution of read counts to have their posterior

probability aggregated during the M-step of the algorithm. Often, the distribution of read counts along

the genome is highly concentrated on a particular set of values, such as 0, 1, and 2 for instance. Genomic

windows exhibiting a particular pattern of counts across samples and conditions can have their posterior

probability aggregated during the M-step, which further reduces the dimensionality of the objective function

during the numerical optimization and leads to a fast gradient-based optimization.

Once the algorithm reaches convergence, the final set of HMM posterior probabilities can be used to

segment the genome into consensus background, differential, or consensus enrichment windows. Approaches
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that control the total false discovery rate (FDR) via posterior probabilities (Efron et al., 2001) or that

estimate the most likely sequence of hidden states (Viterbi, 1967) can be used for such purposes. Let

ρ̂j2 = Pr
(
Zj = 2|y,x; Ψ̂

)
denote the estimated posterior probability that the jth genomic window belongs

to the differential HMM state, j = 1, . . . ,M . For a cutoff of posterior probability α, the total FDR is∑M
j=1(1− ρ̂j2)I(ρ̂j2 ≥ 1− α)/

∑M
j=1 I(ρ̂j2 ≥ 1− α), where I(·) is an indicator function. The posterior

probability cutoff is then chosen by controlling the total FDR. Differential regions of enrichment are formed

by merging adjacent windows that either meet a given FDR threshold level for the differential HMM state

or belong to the same Viterbi’s predicted state. Additional details of proposed EM algorithm and the

implemented code are available in the Appendix B.

We evaluated the FDR approach using cutoffs 0.01, 0.05, 0.10, 0.15, and 0.20. We compared the results

between the two approaches using window sizes of 250bp, 500bp, 750bp, and 1000bp. Overall, we observed

that the Viterbi sequence of states led to similar results than the sequences based on FDR control cutoffs

across all choices of window size. Specifically, we observed that the sensitivity and specificity of the sequence

of Viterbi states were close to those from FDR control, in particular for FDR control 0.10. These results are

shown in Figure 3.7 and in Baldoni et al. (2019a). These facts are also reflected by the length and number

of called peaks. In Figure 3.8 and in Baldoni et al. (2019a) we show examples of peak calls from all FDR

control cutoffs and the Viterbi sequence of states. Overall, we observed minor differences regarding the

size of peak calls of the Viterbi and FDR control sequences across different choices of window sizes. These

differences were mainly present in the data for H3K27me3, which is known to be a histone mark that expands

through broader domains than H3K36me3. Finally, it is worth noting that the Viterbi algorithm gives us a

way to call peaks that does not depend on the choice of the FDR cutoff.

3.4 Simulation Studies

We evaluate the presented model in two independent simulation studies of broad epigenomic marks. In

the first study (Section 3.4.1), we simulated read count-based data to assess the precision of the parameter

estimation scheme, the performance of differential peak detection, and the accuracy of the classification of

specific differential combinatorial patterns of enrichment within differential peaks. In the second simulation

study (Section 3.4.2), we utilize the simulation pipeline presented in (Lun and Smyth, 2015) to generate

synthetic ChIP-seq reads from in silico experiments with broad differential peaks. The aim of the second
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Figure 3.7: FDR-based results from broad marks (500bp) and Viterbi-based result from mixNBHMM.

simulation study was to compare our model with other DPCs in a more realistic scenario with broad peaks,

while also avoiding the assumption of a parametric model for the data.

3.4.1 Read Count Simulation

Read counts were simulated under different scenarios that varied regarding the type of histone modifi-

cation mark (H3K36me3 and H3K27me3), genome length (M , 105, 5 × 105, and 106 windows), number

of conditions (G, 2, 3, and 4), and number of replicates per condition (n, 1, 2, and 4). We further assessed

our model under different Signal-to-Noise Ratio (SNR) levels. We define the SNR as the ratio between the

means of consensus enrichment and consensus background emission distributions. Mean and dispersion

parameters used in this simulation study were estimated from ENCODE data and are presented in Table 3.5

and in Baldoni et al. (2019a) for all the remaining scenarios. Different SNR levels were defined by decreasing

the ratio of the means in decrements of 10% while maintaining the mean-variance relationship. Read counts

were assumed to follow a NB distribution and were simulated using a first-order Markov chain with 2G

states, representing every combination of background and enrichment across G conditions. We aimed to

assess whether our model was able to assign all 2G − 2 simulated differential states to the differential HMM

state, while maintaining a precise parameter estimation scheme and accurate classification of differential

combinatorial patterns.
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3.4.1.1 Simulation Results

Table 3.5 shows the true values and the average relative bias of parameter estimates (and the 2.5th, 97.5th

percentiles) from a hundred simulated data sets relative to the scenario of H3K27me3 with 105 genomic

windows (see Baldoni et al. (2019a) for additional details). Results are shown for different levels of SNR,

number of conditions, and number of replicates per condition. Overall, no significant differences regarding

the relative bias of parameter estimates were observed across simulations under different genome lengths.

Depending on the number of conditions, the observed relative bias and the range of the reported percentiles

tended to decrease as more replicates were included in the analyses. This effect was particularly significant

in scenarios with four conditions with respect to parameters β3 and λ3. In general, scenarios with higher

SNR showed lower relative bias and variability of the parameter estimates in comparison to scenarios with

lower SNR, regardless of the number of conditions or replicates per condition. In scenarios with lower SNR

levels or higher number of conditions, these results also highlight the importance of experimental replicates

to achieve precise parameter estimates. The proposed estimation approach via EM algorithm led to precise

parameter estimates and was robust to a data generating mechanism that was different than the one assumed

by the proposed model.

Next, we assessed the sensitivity of our method to detect simulated differential regions of enrichment.

First, differential regions were defined from the HMM posterior probabilities pertaining to the differential

state by controlling the total FDR as defined in Section 3.3.2. For different nominal FDR threshold levels,

the model sensitivity was estimated as the proportion of windows correctly assigned as differential out of

the total number of simulated differential windows. Additionally, the observed FDR was calculated as the

proportion of genomic windows incorrectly called as differential out of the total number of called differential

windows. Figure 3.9A shows the average observed true positive rate (y-axis) and the observed FDR (x-axis)

for different nominal FDR levels across a hundred simulated data relative to the scenario of H3K27me3

with M = 105 genomic windows. Results are shown for different levels of SNR, number of conditions, and

number of replicates per condition. Overall, we observed that the number of replicates per condition played

a major role on the sensitivity levels of the model, in which scenarios with two and four replicates had the

best results regardless of the number of conditions and SNR levels. For scenarios with either high number of

conditions or low SNR levels, more replicates were needed to achieve higher sensitivity.
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Table 3.5: Read count simulation. True values and average relative bias of parameter estimates (and 2.5th,
97.5th percentiles) across a hundred simulated data sets are shown for H3K27me3 with 105 genomic windows.
Scenarios with observed SNR and 70% of observed SNR are shown.

One Replicate Two Replicates Four Replicates

SNR Conditions Parameter True R. Bias (P2.5,P97.5) R. Bias (P2.5,P97.5) R. Bias (P2.5,P97.5)

β1 1.116 0.000 (-0.004, 0.004) 0.000 (-0.002, 0.002) 0.000 (-0.002, 0.002)
β3 0.808 -0.001 (-0.012, 0.008) 0.000 (-0.005, 0.006) 0.000 (-0.003, 0.004)
λ1 1.281 0.000 (-0.016, 0.013) 0.000 (-0.010, 0.010) 0.000 (-0.008, 0.007)

Two

λ3 -0.232 -0.001 (-0.109, 0.110) 0.000 (-0.078, 0.067) 0.000 (-0.058, 0.048)
β1 1.116 0.002 (-0.005, 0.013) -0.003 (-0.007, 0.001) -0.001 (-0.002, 0.001)
β3 0.808 -0.156 (-0.233, -0.098) -0.014 (-0.025, -0.005) -0.001 (-0.004, 0.003)
λ1 1.281 0.005 (-0.033, 0.032) 0.004 (-0.006, 0.014) 0.001 (-0.006, 0.007)

Three

λ3 -0.232 0.898 (0.679, 1.083) 0.130 (0.012, 0.242) 0.015 (-0.033, 0.061)
β1 1.116 0.001 (-0.005, 0.020) -0.012 (-0.017, -0.008) -0.010 (-0.014, -0.007)
β3 0.808 -0.145 (-0.256, -0.120) -0.087 (-0.098, -0.075) -0.032 (-0.062, -0.015)
λ1 1.281 0.016 (-0.028, 0.033) 0.028 (0.016, 0.041) 0.017 (0.007, 0.028)

70% of
Observed
SNR

Four

λ3 -0.232 0.947 (0.819, 1.083) 0.769 (0.672, 0.877) 0.366 (0.211, 0.613)

β1 1.116 0.000 (-0.004, 0.004) 0.000 (-0.003, 0.002) 0.000 (-0.002, 0.002)
β3 1.165 0.000 (-0.005, 0.005) 0.000 (-0.003, 0.003) 0.000 (-0.002, 0.003)
λ1 1.281 0.000 (-0.015, 0.018) -0.001 (-0.010, 0.008) 0.001 (-0.004, 0.007)

Two

λ3 0.124 -0.012 (-0.231, 0.174) 0.008 (-0.108, 0.129) -0.008 (-0.107, 0.085)
β1 1.116 -0.004 (-0.008, 0.001) -0.001 (-0.003, 0.002) 0.000 (-0.002, 0.002)
β3 1.165 -0.010 (-0.019, -0.002) 0.000 (-0.003, 0.003) 0.000 (-0.002, 0.002)
λ1 1.281 -0.001 (-0.012, 0.012) 0.000 (-0.008, 0.009) 0.000 (-0.006, 0.007)

Three

λ3 0.124 -0.422 (-0.697, -0.068) -0.026 (-0.171, 0.083) -0.003 (-0.085, 0.081)
β1 1.116 -0.013 (-0.019, -0.008) -0.008 (-0.014, -0.003) 0.000 (-0.002, 0.001)
β3 1.165 -0.111 (-0.121, -0.101) -0.005 (-0.010, -0.001) 0.000 (-0.002, 0.002)
λ1 1.281 -0.011 (-0.025, 0.001) 0.009 (-0.002, 0.018) 0.001 (-0.004, 0.006)

Observed
SNR

Four

λ3 0.124 -3.526 (-3.782, -3.239) -0.438 (-0.740, -0.217) -0.009 (-0.084, 0.059)
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Finally, we used the estimated mixture model posterior probabilities Pr(Wjl = 1|Zj = 2,y..j ,x; Ψ̂),

j = 1, . . . ,M , to classify the differential combinatorial patterns of enrichment of detected differential

windows. To this end, we first calculated the maximum estimated mixture model posterior probability across

all L components to determine the most likely differential combinatorial pattern from genomic windows

assigned to be part of the differential state. Then, we compared the window-based classification with the

true window-based simulated states from the Markov Chain (states 2, . . . , G− 1). Figure 3.9B shows the

confusion matrices of classified (x-axis) and simulated (y-axis) differential windows for a scenario with

three conditions and data simulated from H3K27me3 with 105 genomic windows. Differential combinatorial

patterns of enrichment are represented by the sequences of letters ’E’ (enrichment) and ’B’ (background),

such that each letter corresponds to the status of a given condition. The number of windows (averaged over a

all simulated data sets) is shown as entries of the matrices and represented by the color scale. Darker colors

on the diagonal entries indicate better agreement between simulated and classified patterns. By utilizing

the posterior probabilities from the mixture model, we observed a good performance when classifying the

differential combinatorial pattern of enrichment from differential windows. Results were best under scenarios

with higher number of replicates or SNR.

Overall, simulated scenarios with higher number of replicates or a higher SNR led to less biased and

more precise parameter estimates, higher accuracy of differential peak detection, and best classification of

the differential direction of enrichment. To the best of our knowledge, the classification capability of the

proposed model in settings with more than two conditions is a novelty not yet available in any other method

for the detection of differential protein-DNA binding sites. Although (Lun and Smyth, 2015) presented a DPC

tailored for multiple conditions, its current implementation does not allow the classification of differential

combinatorial patterns of enrichment under three or more conditions.

3.4.2 Sequencing Read Simulation

We performed a second simulation study aiming to compare the proposed model with the current DPCs

ChIPComp, csaw, DiffBind, diffReps, RSEG, and THOR. We used the simulation pipeline presented by (Lun

and Smyth, 2015) where data were generated in a more general scheme without a particular read count model

assumption. Here, sequencing reads from broad ChIP-seq experiments were generated for two conditions and

two replicates per condition. For the differential peaks callers ChIPComp and DiffBind that require sets of

candidate regions, we followed the analyses presented by (Lun and Smyth, 2015) and called peaks in advance
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using HOMER. Peaks were then used as input in the respective software for differential call. A hundred

simulated data sets were generated and peaks were called by all the methods under multiple nominal FDR

thresholds. For our method and RSEG, window-based posterior probabilities were used to control the total

FDR as described in Section 3.3.2.

3.4.2.1 Simulation Results

Figure 3.10 shows the main results of our second simulation study. Out of 100 simulated data sets, RSEG

either failed to analyze the data due to internal errors or called the entire genome as differential in 26 and in 3

instances, respectively. Similar issues have been previously reported in other studies (Starmer and Magnuson,

2016). We observed that our method showed the highest observed sensitivity among all DPCs, regardless of

the nominal FDR thresholding level, while maintaining a moderate observed FDR (Figure 3.10A). Methods

such as diffReps, RSEG, and THOR showed higher observed FDR levels than the nominal threshold due to the

excessive number of differential peaks called outside true differential regions (shaded area in Figure 3.10D).

While diffReps and THOR called an excessive number of short and discontiguous peaks, RSEG called regions

that were usually wider than the observed differential enrichment regions. These results are further illustrated

in Figure 3.10B, where we present the average ratio of the number of called and simulated peaks (y-axis) and

the average number of called peaks intersecting true differential regions (x-axis). Regarding the computation

time, the HMM-based algorithms RSEG and THOR appeared to be the most computationally intensive and

required longer amounts of time to analyze the data. In Figure 3.10C, we present the box plots of computing

time (in minutes) across a hundred simulated data sets for all benchmarked methods. While still being an

HMM-based algorithm, our method was among the fastest tools for differential peak detection due to the

implemented strategies to improve the computation time of the EM algorithm (Section 3.3.2). Figure 3.10D

shows an example of a genomic region with simulated data and called peaks from various methods using

nominal FDR threshold 0.05. As shown, our method was able to consistently cover most of true differential

regions with broad peaks while exhibiting a limited number of false discoveries (see Baldoni et al. (2019a)

for additional examples and results).

3.5 Application to ENCODE Data

We applied our method to ChIP-seq data from the ENCODE Consortium (Section 3.2) to detect differen-

tial regions of enrichment of several epigenomic marks across distinct cell lines. First, we analyzed broad

data from the histone modifications H3K36me3 and H3K27me3 as well as data from the enhancer EZH2
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Figure 3.10: Sequencing read-based simulation from the csaw pipeline. (A): average observed sensitivity
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0.05. Shaded areas indicate true differential peaks.
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(Section 3.5.1). Secondly, we assessed the performance of the presented model on ChIP-seq experiments

from the transcription factor CTCF and the histone modifications H3K27ac and H3K4me3 characterized

by short peaks (Section 3.5.2). For H3K27ac and H3K4me3, enrichment peaks are usually deposited on

the promoter regions of actively transcribed genes and several studies have associated their role with gene

transcription (Creyghton et al., 2010; Lauberth et al., 2013). The transcription factor CTCF is a protein

that binds to short DNA motifs and is responsible for several cellular processes that include the regulation

of the chromatin 3D structure and mRNA splicing (Shukla et al., 2011). Two technical replicates for each

epigenomic mark were used in the analysis.

Using RNA-seq experimental data from the ENCODE Consortium, we assessed the practical significance

of our results by associating the detection and classification of differential combinatorial patterns from called

peaks of H3K36me3, H3K27me3, and EZH2 with the direction of gene expression (Section 3.5.3). The

quantification of gene expression for the analyzed data proceeded as follows. First, we used Salmon (Patro

et al., 2017) to quantify transcript expression from cell-specific RNA-seq experiments. We then calculated,

using the R package tximport (Soneson et al., 2015), estimated counts using abundance estimates (transcripts

per million, TPM) scaled up to the average transcript length over samples and library size. This step ensures

that counts computed from Salmon are not correlated with the average transcript length.

For the three cell line analysis presented in Baldoni et al. (2019a), we calculated the number of ChIP-seq

reads from H3K4me3 and H3K27ac overlapping gene promoters. Promoter regions extend around the

transcription start site 2000 base pairs upstream and 200 base pair downstream. Read counts from RNA-seq

and ChIP-seq were normalized for sequencing depth using DESeq2. For the two cell line scenario (Section

3.5.1), differentially transcribed genes were defined through log2 fold changes of H3K36me3 ChIP-seq read

counts. We observed several cases in which differentially expressed genes (defined by RNA-seq data) did not

exhibit differential enrichment for H3K36me3. However, due to the activating roles of H3K36me3 on gene

transcription, we follow the ideas presented by (Steinhauser et al., 2016) and (Ji et al., 2013) and defined

differentially transcribed genes based on log2 fold changes of H3K36me3 ChIP-seq read counts.

Sensitivity and specificity metrics were calculated on the window-level as follows. For non-overlapping

genomic windows b1, . . . , bM , let gj = I(bj ∈ differentially transcribed gene) and dj = I(bj ∈ differential peak)

denote the indicators of genomic windows being associated with either differential gene bodies or differential

peaks, respectively, for j = 1, . . . ,M , for a given method and nominal FDR level. Then, the observed

sensitivity (TPR), specificity (1-FPR), and FDR were calculated as follows:
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Sensitivity =

∑M
j=1 gjdj∑M
j=1 gj

Specificity =

∑M
j=1 (1− gj)(1− dj)∑M

j=1 (1− gj)

FDR =

∑M
j=1 (1− gj)dj∑M

j=1 dj

We compared the genome-wide performance of the presented model with the current DPCs ChIPComp,

csaw, DiffBind, diffReps, RSEG, and THOR. For the methods that require a set of candidate regions to be

specified a priori, ChIPComp and DiffBind, peaks were called in advance using MACS (Zhang et al., 2008)

and used as input to the software for differential call. We benchmarked methods regarding the coverage

of differentially transcribed gene bodies, the number and average size of differential peak calls, log2 fold

change (LFC) of read counts, Spearman correlation of log2-transformed read counts between cell lines, and

computation time. Metrics for sensitivity and specificity were defined on the window level and based on

the coverage of differentially transcribed gene bodies by called peaks. For broad marks, read counts were

computed using non-overlapping windows of 500bp. For the remaining short marks, we computed read

counts using non-overlapping windows of 250bp. Results presented in this section pertain to the analysis of

two cell lines, namely Helas3 and Hepg2. A discussion about the choice of the window size is presented in

Section 3.3.2. Results from the analysis of more than two cell lines are presented in Baldoni et al. 2019a. Data

accessing code, data pre-processing steps, method-specific parameters, and code to replicate the presented

results are detailed in Appendix B.

3.5.1 Analysis of ChIP-seq Data From Broad Marks

Methods were benchmarked regarding the coverage of differentially transcribed gene bodies. The histone

modification H3K36me3 is known to be associated with gene transcription and enriched regions of this mark

are usually deposited on transcribed gene bodies. Hence, the location of differential peaks of H3K36me3 is

expected to agree with the location of differentially expressed genes. Following the analysis presented by

(Steinhauser et al., 2016), we defined a set of protein coding genes exhibiting |LFC| > 2 of ChIP-seq read

counts between the two analyzed cell lines as true differentially transcribed genes. Results using different

threshold levels are presented in Baldoni et al. 2019a and agree with those presented here. Protein-coding
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genes with total read count across cell lines under the 25th percentile were excluded from the analysis.

Normalization by the median log-ratios of each replicate over the geometric mean was performed to avoid

spurious differences due to sequencing depth.

In Figure 3.11A, we show receiver operating characteristic (ROC) curves for various methods and

different nominal levels of FDR threshold for differential peaks of H3K36me3. Similar to the analysis of

broad histone modification marks presented by Xing et al. (2012), we computed the observed true positive

rates (false positive rates) on the window-level as the proportion of windows called as differential out of the

total number of windows associated (not associated) with differentially transcribed genes. Our method had

the best overall performance among all DPCs as its differential peaks were able to cover most of differentially

transcribed gene bodies while still maintaining a low number of false positives. Methods that tended to

call short peaks, such as ChIPComp and DiffBind, were the ones with the lowest sensitivity among all

methods. ChIPComp and DiffBind have been previously shown to be dependent on the set of candidate peaks

and to perform best in scenarios with short peaks (Figure 3.11B; Steinhauser et al. (2016); Lun and Smyth

(2015)). In Figure 3.11C, we show the observed sensitivity (y-axis) and the average differential peak size

(kbp; x-axis) for various methods under different nominal FDR levels (the observed FDR is annotated next to

each data point). Our model and RSEG, two HMM-based methods, tended to call broader differential peaks

and exhibited better sensitivity than other methods. Yet, differential peaks called by RSEG often did not

correspond to differential regions of enrichment (Figure 3.11D), a behavior that has been noted by others

(Starmer and Magnuson, 2016) and also seen in simulated data (Figure 3.10). Our HMM-based method with

a non-linear normalization scheme via model offsets allowed us to maintain a low observed FDR and a higher

sensitivity than other DPCs. In Figure 3.11F, we show examples of differential peak calls for the enhancer

EZH2. Our method was among the fastest algorithms due to our computational scheme, taking approximately

1 hour to analyze genome-wide data (Figure 3.11E).

3.5.2 Analysis of ChIP-seq Data From Short Marks

We further evaluated the performance of the proposed method on data sets characterized by short peaks,

namely the histone modifications H3K4me3 and H3K27ac and the transcription factor CTCF. The goal of our

analysis was to assess whether our method was robust to different types of data and still able to call short

differential regions of enrichment. In these scenarios, differential peaks are usually observed in isolated

genomic regions and exhibit a high SNR. It has been shown that certain HMM-based approaches, including
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Figure 3.11: Analysis of broad ENCODE data. (A): ROC curves of H3K36me3 differential peak calls. (C):
average number (y-axis) and size (x-axis) of H3K27me3 called peaks for various methods and different
nominal FDR thresholds. (B), (D), and (F): example of peak calls from H3K36me3, H3K27me3, and EZH2,
respectively, under a nominal FDR control of 0.05. Posterior probabilities of the HMM differential state are
shown at the bottom of each panel. (E): computing time of genome-wide analysis from various methods.
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RSEG, have low accuracy under short histone modification marks and TF data (Hocking et al., 2016). As we

show, the model proposed in this article performs comparably to the evaluated DPCs known to perform best

in short data (ChIPComp, DiffBind; (Steinhauser et al., 2016)) and appeared to be more efficient regarding

the computation time in certain scenarios.

We calculated the LFC and the Spearman correlation between cell lines Helas3 and Hepg2 based on

ChIP-seq read counts mapped onto differential peaks called by each method. Read counts were previously

normalized by the median log-ratios of each replicate over the geometric mean to avoid spurious differences

due to sequencing depth. As these marks are characterized by short peaks, ideal methods would show high

absolute LFC and negative correlation between read counts mapped on differential peaks. Figure 3.12 shows

the main results from our analysis using short data sets. In Figures 3.12 A and C we show the median LFC

and the Spearman correlation of ChIP-seq counts for differential CTCF and H3K4me3 peak calls (sorted by

the absolute LFC), respectively, under a nominal FDR control of 0.05. We present separate curves regarding

the signal of observed enrichment to better characterize the direction of change. The results show that the

HMM-based methods RSEG and THOR were among those with the lowest absolute LFC among all methods,

which confirms their sub optimal performance in the scenario of short peaks (Hocking et al., 2016). In

addition, we observed that ChIPComp had the best performance overall as it was able to call differential

peaks with the highest absolute LFC and the lowest correlation between read counts of the two analyzed cell

lines. Our model was able to properly call truly short differential peaks (Figures 3.12 B, D, and F) and was

comparable to the non-HMM based methods regarding the computation time (Figure 3.12E), jointly calling

differential peaks in less than 1.5 hour.

3.5.3 Genomic Segmentation and Classification of Chromatin States

Lastly, we analyzed data from the cell line Helas3 to segment its genome regarding the activity of

marks H3K36me3, H3K27me3, and EZH2. We considered each mark as a separate experimental condition

(G = 3) and sought to jointly classify local chromatin states in Helas3 based upon the presence or absence of

enrichment from each mark. It is known that EZH2 catalyzes the methylation of H3K27me3, a repressive

mark, and H3K36me3 is associated with transcribed genes (Section 3.2). Hence, we expected regions of

enrichment in consensus for these marks to be rare and differential regions to be mostly represented by either

transcribed chromatin states (enrichment for H3K36me3 alone) or repressed chromatin states (enrichment

co-occurrence for H3K27me3 and EZH2). The analyses presented in this section highlight the applicability
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Figure 3.12: Analysis of short ENCODE data. (A) and (C): median LFC and correlation between cell
lines of ChIP-seq counts from differential peaks for CTCF and H3K4me3, respectively. (B), (D), and (F):
example of peak calls from CTCF, H3K4me3, and H3K27ac, respectively. Posterior probabilities of the
HMM differential state are shown at the bottom of each panel. (E): computing time of genome-wide analysis
from various methods. Results are shown under a nominal FDR control of 0.05.
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of our method in the context of genomic segmentation (Ernst and Kellis, 2012), a distinct problem not tackled

by current DPCs.

First, we segmented the genome using the Viterbi sequence of most likely HMM states to understand the

distribution of genomic regions associated with consensus background, differential, and consensus enrichment

states (Figure 3.13). While the majority of the genomic regions exhibited no enrichment for any of the

analyzed marks, regions of consensus enrichment were rare and represented only 2% of the analyzed genome

(Figure 3.13A), as expected. Consensus background and differential regions mostly covered intergenic

(66%) and protein-coding genic regions (61%), respectively. Differential genomic windows were mostly

representing either transcribed chromatin states or repressed chromatin states (Figure 3.13B). All differential

combinatorial patterns expected to be rare had associated mixture proportion estimates less than 0.02 (see

Appendix B for a discussion on pruning rare states).

These results suggest that protein-coding genes overlapping differential regions should be either silenced

(e.g. genes associated with repressed chromatin states) or highly expressed (e.g. genes associated with

transcribed chromatin states). To assign combinatorial patterns to differential peaks, we chose the combination

pertaining to the most frequent mixture component across windows by using the maximum estimated mixture

model posterior probability, Pr(Wjl = 1|Zj = 2,y..j ,x; Ψ(t)), j = 1, . . . ,M . For genes overlapping

differential regions associated with either transcribed or repressed chromatin states, we computed the

distribution of transcripts per million (TPM) from matching RNA-seq experiments. Genes associated with

transcribed chromatin states had a significantly higher distribution of TPM counts than genes associated with

repressed chromatin states (Figure 3.13C). We detected broad differential regions of enrichment and the

classification of differential combinatorial patterns agreed with their biological roles as well as the expression

levels of associated gene bodies. Figure 3.13D shows an example of a genomic region with differential

enrichment for the analyzed marks. We compare our results to ChromHMM with 3 states, a method developed

for chromatin segmentation. Our method offers the benefit of simultaneously detecting differential peaks and

classifying the combinatorial pattern of enrichment through mixture model posterior probabilities even in the

context of genomic segmentation with highly diverse epigenomic marks (Figure 3.14). By using the BIC for

model selection (Appendix B), one can choose the number of biologically relevant mixture components to

be included in the model, a task that may not be as straightforward in methods such as ChromHMM (see

Supplementary Figure 4 in Ernst and Kellis (2012)).
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Figure 3.13: Genomic chromatin state segmentation and classification. (A): distribution of base pairs (y-
axis) and the Viterbi sequence of states (x-axis). (B): estimated mixture probabilities and the associated
differential combinatorial patterns. (C): density estimate from expression of genes intersecting differential
peaks associated with the enrichment of H3K36me3 alone or the enrichment of H3K27me3 and EZH2 in
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Figure 3.14: Genomic segmentation analysis of H3K36me3 and CTCF in Helas3 cell line. The chosen model
parametrization and the normalization for non-linear biases via model offsets allow the segmentation of
highly diverse epigenomic marks. The implemented hidden Markov model is able to properly account for the
differences in length of enrichment regions between CTCF (short) and H3K36me3 (broad). Results from
ChromHMM are shown for comparative purposes.
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3.6 Discussion

We presented a flexible and efficient statistical model designed to call differential regions of enrichment

from ChIP-seq experiments with multiple replicates and multiple conditions. Our model has three main

advantages over current methods tailored for differential peak detection. First, it uses an HMM-based

approach that accounts for the local dependency of ChIP-seq counts and is able to precisely detect broad

and short differential regions of enrichment. Second, it utilizes a GLM-based framework with model offsets

that account for potential non-linear biases in the data as well as a constrained parametrization across HMM

states and mixture components. Our implementation of the RCEM algorithm led to genome-wide analyses of

ChIP-seq data under a computational time comparable to some of the fastest current methods and was at least

5 times faster than current HMM-based algorithms. Lastly, our method allows the simultaneous detection

and classification of differential combinatorial patterns of enrichment from its embedded mixture model and

the associated posterior probabilities under any number of conditions. Our software has been implemented

into an R package and is available for download (see Appenidix B).
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CHAPTER 4: DEVELOPING STATISTICAL METHODOLOGY FOR THE ANALYSIS OF SINGLE-
CELL CHIP-SEQ DATA: A COMPARATIVE STUDY OF CURRENT ALGORITHMS AND METHOD-

OLOGICAL ADVANCES

4.1 Introduction

In the past decade, advances on single-cell epigenomic profiling of heterogeneous samples have allowed

researchers to characterize previously unknown regulatory mechanisms within and between subpopulations

of cells (Clark et al., 2016). Scientific areas that have recently benefited from such advances include

developmental biology (Rotem et al., 2015; Buenrostro et al., 2018), cancer research (Grosselin et al.,

2019; Granja et al., 2019), and immunology (Abdelsamed et al., 2020; ElTanbouly et al., 2020). Many

single-cell transcriptomic studies have also benefited from the advances of single-cell epigenomic sequencing

technologies, such as the single-cell Assay for Transposase Accessible Chromatin using sequencing (scATAC-

seq; Cusanovich et al. (2018)), which overcame technological limitations and made the simultaneous analysis

of thousands of cells possible. Utilizing either array-based, droplet-based, or combinatorial indexing coupled

with split-pooling (Chen et al., 2019), scATAC-seq assays have become increasingly popular in recent

years by allowing the discovery of open chromatin landscapes in individual cells, therefore providing an

additional source of information to downstream transcriptomic applications. Yet, scATAC-seq allows a partial

understanding of the mechanisms that form the epigenome, which also contains interactions between cellular

elements and the genetic material that may affect processes within and between individual cells.

Single-cell chromatin immunoprecipitation followed by sequencing (scChIP-seq) is another single-cell

epigenomic assay that allows the detection of biologically active regions in the chromatin with respect

to a particular histone modification of interest (Rotem et al., 2015). The state of the art of scChIP-seq

assays utilizes droplet microfluidics and unique molecular barcodes to simultaneous profile the activity of an

epigenomic mark in thousands of cells. Recent studies utilizing scChIP-seq technologies have successfully

assessed the roles of the histone modifications H3K27me3 and H3K4me3 on human breast cancer patient-

derived xenografts (PDX) samples as well as H3K4me3 and H3K4me2 in mixed populations of embryonic

cells and embryonic fibroblasts (Grosselin et al., 2019; Rotem et al., 2015). By utilizing the scChIP-seq
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technology, these studies have explained parts of the heterogeneity seen in single-cell transcriptomic assays

due to the activity of activating and repressing epigenomic marks in subpopulations of cells, a task that would

not be possible to accomplish with conventional bulk assays.

In recent years, several methods designed for the analysis of scATAC-seq data have been proposed in

the literature (González-Blas et al., 2019; Fang et al., 2019; Cusanovich et al., 2018; Baker et al., 2019). A

recent study compared the performance of such methods in an extensive analysis utilizing simulated and real

data (Chen et al., 2019). In summary, the ultimate goal of these methods is the clustering followed by the

subsequent peak calling within subpopulations of cells exhibiting similar epigenomic profiles regarding the

accessibility of their chromatin landscape. A few characteristics are shared across nearly all scATAC-seq

methods benchmarked by Chen et al. (2019). First, current methods require as input a set of pre-specified

genomic coordinates that are thought to characterize well the subpopulation of cells. Second, methods do

not account or explicitly model the local dependency of single-cell counts in their analytical framework, a

common characteristic of data resulting from single-cell and bulk ChIP-seq assays. Third, methods rely on a

two-step procedure for clustering and characterization of subpopulations of cells regarding the epigenomic

activity of interest. Although these features may be suitable for the analysis of scATAC-seq data, data

resulting from scChIP-seq pose challenges to these methods. Since candidate peaks are often specified using

bulk data, the choice of the peak calling algorithm and its parametrization can highly influence the final set

of peaks, especially for broad marks, as we show in the Chapter 2 of this dissertation. Moreover, the low

sequencing depth and relatively high noise of scChIP-seq experiments, in addition to the broadness of regions

of activity from certain epigenomic marks, may cause these methods to have a limited performance in the

analysis of scChIP-seq data (see Section 4.4). Due to these issues, current analyses of scChIP-seq data often

use ad hoc approaches that are tailored for the particular problem at hand (Grosselin et al., 2019) without

proper statistical justification on their use. Hence, there is a rising need for the development of statistical

methods tailored for the analysis of scChIP-seq data.

Here, we present a benchmarking study of scATAC-seq methods on simulated scChIP-seq and scATAC-

seq data (Section 4.4). In an extensive simulation study, we show that existing methods designed for

scATAC-seq data are not optimized for some of the key characteristics of scChIP-seq experiments, namely

the local dependency of counts, low signal to noise ratio, and low sequencing depth. Utilizing real data from

scChIP-seq experiments (Grosselin et al. (2019); Section 4.2), we show that these methods exhibit varying
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performance and that the results can be highly dependent on the choice of window size, a common problem

in the analysis of bulk ChIP-seq experiments with broad regions of enrichment.

The methodological advances presented in this chapter are two-fold. First, we present a statistical model

tailored to select candidate regions with differential activity of the epigenomic mark of interest from sparse

scChIP-seq data. Utilizing simulated data, we show that selected differential regions better discriminate

subpopulation of cells in downstream analysis by methods commonly used for single-cell clustering. This

procedure is in contrast to detecting candidate enriched regions from pooled/aggregated data, a standard

initial step in scATAC-seq data analysis. As a result, methods originally developed for scATAC-seq data

exhibit a significant improvement in performance when clustering subpopulations of cells from scChIP-seq

data. Finally, we propose the use of a model-based framework for joint clustering and characterization of

structurally distinct cells (e.g., cells exhibiting varying patterns of enrichment of counts). The presented

model is based on a class of mixture of hidden Markov models tailored for single-cell epigenomics (Section

4.3). For such a class of models, which accounts for the local dependency of sparse counts under a high

resolution, we adapt the initialization algorithm presented by Smyth (1997) for fast initialization of the

algorithm based on single-cell epigenomics data. The presented algorithm helps in the identification of the

number of homogeneous population of cells regarding the activity of the epigenomic mark of interest, a

necessary task in all scATAC-seq methods.

4.2 Analysis of scChIP-seq Data From Human Breast Cancer Patient-Derived Xenografts

Here, we utilize data from a scChIP-seq experiment from the histone modification mark H3K27me3

of human breast cancer patient-derived xenograft (PDX) samples (Grosselin et al., 2019). Specifically,

scChIP-seq data from a pair of luminal estrogen receptor-positive breast Tamoxifen-resistant (n = 200

tumor cells) and Tamoxifen-sensitive (n = 622 tumor cells) PDXs were produced and the enrichment for

H3K27me3 on 50 kb non-overlapping genomic windows was measured for all encapsulated single cells.

Upon normalization of the raw counts and exclusion of outlier cells with total read counts less than 1600 or

above the upper first percentile, principal component analysis (PCA) was applied and a consensus clustering

algorithm was used to cluster the remaining cells (n = 373) into similar groups regarding the activity of

H3K27me3. Grosselin et al. (2019) showed the existence of a subpopulation of cells from the drug-sensitive

tumor that shared common characteristics with cells from resistant tumors. Specifically, these cells displayed

similar loss of H3K27me3 activity, a mark associated with stable transcriptional repression, associated with
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marker genes known to promote resistance to Tamoxifen treatment. Their analysis revealed differences in

cells subpopulations that would be undetectable utilizing bulk ChIP-seq assays.

Due to the lack of statistical methods tailored for scChIP-seq data in the literature, we applied some of

the current scATAC-seq methods on the scChIP-seq data from Grosselin et al. (2019) (Figure 4.15A-B). We

observed that these methods exhibit varying performance on the scChIP-seq data regarding the clustering

assignments of single cells (Figure 4.15C). While certain model-based algorithms tailored for scATAC-seq

data exhibited a somewhat similar clustering assignment to the one from the annotated data set from Grosselin

et al. (2019) (via adjusted Rand index, ARI; Rand (1971)), others failed to discriminate clusters of cells by

(Figure 4.15D).

In Figure 4.16, we show results from current scATAC-seq methods with read counts calculated under

different window sizes. It is worth noting that genomic windows of 50,000bp are not ideal for the analysis

of H3K27me3, for which the enrichment can be present in much narrower windows. However, we include

these results here for comparison purposes with the original analysis presented by (Grosselin et al., 2019). As

methods rely on a set of candidate peaks (called on bulk data) to scrutinize single-cell subpopulations, results

can be highly sensitive to the choice of window size, as reflected by the low ARI values for certain methods

(e.g. SnapATAC). On the other hand, methods such as cisTopic, Cusanovich2018, and Scasat, exhibited

very minor changes in clustering assignments under different data resolutions, as reflected by their high ARI

values.

The lack of proper methods tailored for this type of data and the high variability of results from scATAC-

seq methods make the choice of the best approach for the problem of clustering cells with scChIP-seq data

challenging. We show in Section 4.4 of this chapter that the clustering performance of these methods can be

highly sensitive to the sparsity, the low signal to noise ratio, and the local dependency present in scChIP-seq

counts. By relying on a two-step approach for single-cell clustering (peak calling on the bulk data followed

by clustering of single-cells based on candidate peaks), these methods exhibit poor performance in realistic

scenarios. To the best of our knowledge, there is a lack of methods in the literature to detect differential

regions of enrichment from single-cell data, which compromises the performance of current scATAC-seq

methods in scChIP-seq data. As we show in Section 4.4.2, differential regions detected with single-cell data

better discriminate sub populations of single-cells and their use as candidate regions improves the clustering

assignments of existing approaches.
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Figure 4.15: Analysis of H3K27me3 scChIP-seq data from drug sensitive (HBCx-22) and drug resistant
(HBC-22-TamR) human breast cancer PDXs samples (Grosselin et al., 2019) with scATAC-seq methods. (A):
original data from bulk and annotated pseudo bulks (clusters) using 50kb non-overlapping windows. (B):
UMAP representation of original results from Grosselin et al. (2019). (C): UMAP projections of results using
scATAC-seq methods, (D): total size of differential regions of enrichment between pseudo bulk of clustered
cells for each method and different FDR values. Differential peaks were called using the methods presented
in Chapter 3.
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Figure 4.16: Application of current scATAC-seq methods on scChIP-seq data (Grosselin et al., 2019) under
different resolutions. For each method, ARI compares clustering assignments between consecutive genomic
resolutions.
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To address some of the limitations of current scATAC-seq methods, this chapter present two strategies

for single-cell clustering from scChIP-seq data. First, we introduce a hidden Markov model tailored to

detect genomic regions with differential protein-DNA binding activity from epigenomic marks. Regions

with differential activity better discriminate single-cell subpopulations and lead to a substantial improvement

in current scATAC-seq methods’ performance. Second, we propose the use of a class of mixture of hidden

Markov models (Smyth, 1997) for simultaneous clustering and characterization of single-cells. Such a model

is able to detect structural differences among single-cells, while accounting for the local dependency of sparse

counts in high resolutions. Cells exhibiting similar structural patterns can then to be clustered together by

making use of cluster-cell membership posterior probabilities. In addition, we propose a modified version

of the initialization scheme presented by Smyth (1997) for the implemented EM algorithm that is based

on Hellinger distances between cells. The presented scheme helps with the convergence of the clustering

framework and helps with choosing the appropriate number of single-cell clusters, a necessary task for all

benchmarked clustering methods for scATAC-seq data.

4.3 Methods

4.3.1 A Hidden Markov Model for Selecting Differentially Enriched Genomic Regions From
Single-cell Data

4.3.1.1 Model Setup

Let Yij denote a binary indicator for the presence of sequencing reads on window i of cell j, for all

i = 1, . . . ,M and j = 1, . . . , N . The binarization of read counts counts is a technique used by several

existing algorithms (Cusanovich et al., 2018; González-Blas et al., 2019; Baker et al., 2019; Fang et al., 2019)

and helps with challenges arising due to differences in sequencing depth among cells as well as the effects of

PCR amplification artifacts (Chen et al., 2019). In addition, we assume that data is collected from diploid

organisms in which no more than two copies of the DNA pertaining to a given genomic coordinate can be

selected from an encapsulated single-cell. The data from N single-cells across M genomic windows can be

organized in a M ×N matrix Y = (Y1, . . . ,YN ), such that Yj = (Y1j , . . . , YMj)
′ for all j = 1, . . . , N . At

the ith window, let yi. = (yi1, . . . , yiN )′ denote theN×1 vector of observed scChIP-seq window read counts

across all single cells, and let y = (y1, . . . ,yN ) denote the corresponding observed matrix of single-cell

read counts. We assume that each genomic window belongs to one of three possible hidden states: consensus

background (state 1), differential (state 2), and consensus enrichment (state 3). Windows exhibiting low
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(high) enrichment across all cells will be modeled by an emission distribution pertaining to the consensus

background (enrichment) state. Windows exhibiting differential enrichment will be modeled by an emission

distribution pertaining to the differential state.

To model transitions between states, we assume a single latent discrete time stationary Markov chain

Z = {Zi}Mi=1, Zi ∈ {1, 2, 3}, with state-to-state transition probabilities γ = (γ11, γ12, . . . , γ33)
′ and initial

probabilities π = (π1, π2, π3)
′, such that

∑3
s=1 γrs = 1 and

∑3
s=1 πs = 1 for r ∈ {1, 2, 3}. To facilitate

the notation, let fr(yi.|ψr) denote the emission distribution corresponding to the rth hidden state, where

Ψ = (π′,γ ′,ψ′)′ denotes the vector of all model parameters, ψ = (β1, β2, β3)
′ denotes each state’s set of

emission distribution-specific parameters, and Z denotes the set of 3M possible state paths of length M .

Then, the likelihood function pertaining to the proposed HMM may be written as

f(y|Ψ) =
∑
Z∈Z

{
3∏
r=1

πI(Z1=r)
r ×

(
M∏
i=2

3∏
r=1

3∏
s=1

γ
I(Zi−1=r,Zi=s)
rs

)
× (4.11)

×

(
M∏
i=1

f1 (yi.|β1)I(Zi=1) f2 (yi.|β2)I(Zi=2) f3 (yi.|β3)I(Zi=3)

)}
.

We assume that read counts pertaining to genomic windows from the consensus background (r = 1),

differential (r = 2), and consensus enrichment (r = 3) states follow a Bernoulli distribution with state-specific

parameter βr. We ignore possible differential combinatorial patterns existing in the data due to single-cell

unknown subpopulations and assume independence of read counts across cells, conditional upon the HMM

state. The emission distribution of the consensus background, differential, and consensus enrichment states,

respectively, can be written as

fr(yi.|ψr) =
N∏
j=1

p
yij
rij(1− prij)

1−yij , r ∈ {1, 2, 3}, (4.12)

with yij ∈ {0, 1}, such that log(prij/(1 − prij)) = βr + uij . The inclusion of offsets uij allows the

adjustments for technical artifacts such as differences in sequencing depth between cells. When uij = 0, βr

represents the log-odds of observing at least a read count on genomics windows associated with state r.

The presented model allows the detection of genomic windows exhibiting differential enrichment for the

epigenomic mark of interest from scChIP-seq studies. As we show in Section 4.4, by utilizing these regions
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as candidate peaks in scATAC-seq methods improves substantially their performance in scChIP-seq data.

State of the art analysis pipelines in single-cell epigenomics rely on sets of candidate regions that are found

to be enriched in bulk (pooled) data or aggregated single-cell counts (Chen et al., 2019). Such an approach

may compromise the downstream analysis in scChIP-seq data as epigenomic marks are often found to be

active in broad genomic domains. As a result, pooled or aggregated single-cell counts may mask, pool, or

even ignore differentially enriched windows that are important to discriminate single-cell subpopulations.

4.3.1.2 Estimation

We utilize the EM algorithm to estimate the parameters of the presented model. In the tth step of the EM

algorithm, the Q function of the complete data log-likelihood can be written as

Q
(
Ψ|Ψ(t)

)
=

3∑
r=1

{
Pr
(
Z1 = r|y; Ψ(t)

)
log(πr)

}
+

+
M∑
i=2

3∑
r=1

3∑
s=1

{
Pr
(
Zi−1 = r, Zi = s|y; Ψ(t)

)
log(γrs)

}
+

+
M∑
i=1

Pr
(
Zi = 1|y; Ψ(t)

)
log f1 (yi.|β1) +

M∑
i=1

Pr
(
Zi = 2|y; Ψ(t)

)
log f2 (yi.|β2) +

+

M∑
i=1

Pr
(
Zi = 3|y; Ψ(t)

)
log f3 (yi.|β3) . (4.13)

In the E-step of the EM algorithm, we compute the posterior probabilities from Equation 4.13. The

quantities Pr
(
Zi = r|y; Ψ(t)

)
and Pr

(
Zi−1 = r, Zi = s|y; Ψ(t)

)
can be calculated through the Forward-

Backward algorithm in a similar fashion as presented in Appendix B. The Q function is maximized with

respect to the parameters Ψ = (π′,γ ′, β1, β2, β3)
′ during the M-step of the algorithm. Estimates for

the initial and transition probabilities can be directly calculated as π̂(t+1)
r = Pr

(
Z1 = r|y; Ψ(t)

)
and

γ̂
(t+1)
rs =

∑M
i=2 Pr(Zi−1 = r, Zi = s|y; Ψ(t))/

∑M
i=2 Pr(Zi−1 = r|y; Ψ(t)), respectively, restricted to∑3

r=1 π̂
(t+1)
r = 1 and

∑3
s=1 γ̂

(t+1)
rs = 1, for r ∈ {1, 2, 3}. Estimating (β1, β2, β3)

′ from Equation 4.13

can be seen as obtaining parameter estimates from a series of weighted logistic regression models. We

independently estimate these quantities via the algorithm BFGS (Fletcher, 2013).

Upon convergence of the algorithm, the final set of HMM posterior probabilities can be used to seg-

ment the genome into consensus background, differential, or consensus enrichment windows. Approaches

that control the total false discovery rate (FDR) via posterior probabilities (Efron et al., 2001) or that

estimate the most likely sequence of hidden states (Viterbi, 1967) can be used for such purposes. Let
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ρ̂i2 = Pr
(
Zi = 2|y; Ψ̂

)
denote the estimated posterior probability that the ith genomic window belongs

to the differential HMM state, i = 1, . . . ,M . For a cutoff of posterior probability α, the total FDR is∑M
i=1(1 − ρ̂i2)I(ρ̂i2 ≥ 1 − α)/

∑M
i=1 I(ρ̂i2 ≥ 1 − α), where I(·) is an indicator function. The posterior

probability cutoff is then chosen by controlling the total FDR. Differential regions of enrichment are formed

by merging adjacent windows that meet a given FDR threshold level for the differential HMM state. These

regions can then be used as candidate peaks in scATAC-seq methods for clustering of single-cells from

scChIP-seq data (Section 4.4.2).

4.3.2 A Mixture of Hidden Markov Models for Simultaneous Clustering and Characteriza-
tion of Single-cells

Here, we present a statistical model defined as a mixture of hidden Markov models (MHMM) for single-

cell clustering. The MHMM has been extensively studied in the literature (Smyth, 1997; Jebara et al., 2007;

Vermunt et al., 2008) and here we present a modification of this model to account the data characteristics

of scChIP-seq counts on a high resolution of read counts. In this context, the purpose of the MHMM is to

cluster similar cells that share common structural characteristics with respect to the local dependency of

observed counts. Specifically, the model assumes that sequences of counts are generated from a latent set of

L hidden Markov models (L known a priori) and it allows the simultaneous estimation of model parameters

and clustering of similar single-cells.

As such, the MHMM does not account for longitudinal differences in the read count distribution across

the genome between cells. For instance, multiple realizations of the same process (or hidden Markov chain)

are deemed similar and clustered together by the algorithm, despite differences with respect to the location

of enrichment regions in the data. Yet, it allows the clustering of cells that share common characteristics of

count enrichment across the genome. The presented model could be used for the purpose of distinguishing

outliers cells, a common task in single-cell epigenomic studies (Jia et al., 2018) that can impact the clustering

performance of current methods (Chen et al., 2019). Hence, the presented statistical model needs further

consideration for the problem of distinguishing multiple realization of the same hidden process and such a

task will be left as a future research project.

4.3.2.1 Model Setup

Let Yij denote a binary indicator for the presence of a sequencing read on window i of cell j, for all

i = 1, . . . ,M and j = 1, . . . , N . The data from N single-cells across M genomic windows can be organized

in a M ×N matrix Y = (Y1, . . . ,YN ), such that Yj = (Y1j , . . . , YMj)
′ for all j = 1, . . . , N . Next, we
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assume that for each cell j there is an associated latent L-dimensional variable Wj = (W1j , . . . ,WLj)
′

that indicates the cell’s membership to one of L (known) possible subpopulations of cells. We assume that

Wj ∼ Multinomial(1, δ) with δ = (δ1, . . . , δL)′ and
∑L

l=1 δl = 1. Let W = (W1, . . . ,WN ) denote the

L×N latent binary matrix of subpopulation-cell membership. The ultimate goal of the presented model is to

estimate the posterior probabilities of subpopulation-cell membership W conditional on the observed data y.

We assume that there is a latent first-order Markov chain Z = (Z1, . . . , ZM )′, such that Zi ∈ {1, . . . ,K}

with K = 2L, that guides the presence and absence of read enrichment for each of the L subpopulations

of cells. Conditionally on cell’s memberships, one can define such a Markov chain in terms of initial

probabilities π = (π1 . . . ,πL)′, with πl = (πl1, πl2)
′ for all l = 1, . . . , L and

∑L
l=1

∑2
u=1 πlu = 1, and

transition probabilities γ such that

γ =



γ1 0 0 . . . 0

0 γ2 0 . . . 0

0 0 γ3 . . . 0

...
...

...
. . .

...

0 0 0 . . . γL


, where γl =

γl,11 γl,12

γl,21 γl,22

 ∀l = 1, . . . , L.

The data generating process according to this model can interpreted as follows. Conditionally on the

jth cell’s cluster membership Wj , a sequence of binary counts indicating the presence of sequencing reads

on genomic windows is generated from one of the l absorbing subchains with transition probabilities γl.

Such a model does not allow transitions between subchains, and each subchain characterizes the data from a

particular subpopulation of cells. This model is a finite mixture of hidden Markov models (MHMM), which

allows the marginal likelihood for the observed data to be written as a mixture of L probabilistic distributions

of independent HMMs (Equation 1, in Smyth (1997)).

Conditionally on Z, we assume independence among cell’s observed and latent data (Yj ,Wj) for all

j = 1, . . . , N . Hence, the complete data likelihood for the the presented MHMM can be written as

Pr(Y,W,Z|Ψ) =

N∏
j=1

Pr(Yj |Wj ,Z; Ψ)Pr(Z|Wj ; Ψ)Pr(Wj |Ψ). (4.14)
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To define each term of the right hand side of Equation 4.15, we first define the set S = (S1, . . . ,SL)

such that Sl = {2l − 1, 2l}, ∀l = 1, . . . , L. Then, we have

Pr(Wj |Ψ) =
L∏
l=1

δ
Wlj

l , (4.15)

Pr(Z|Wj ; Ψ) =

L∏
l=1

{
2∏

u=1

π
I(Zl=Slu,Wlj=1)
lu

M∏
i=2

2∏
u=1

2∏
v=1

γ
I(Zl−1=Slu,Zl=Slv ,Wlj=1)
l,uv

}
, and

Pr(Yj |Wj ,Z; Ψ) =
L∏
l=1

{
M∏
i=1

2∏
u=1

flu(yij |βlu)I(Zl=Slu,Wlj=1)

}
, ∀ j = 1, . . . , N.

We assume that the emission distribution under state Slu (the uth component of the lth subchain),

flu(yij |βlu), is a Bernoulli distribution with parameter p(lu)ij = exp(βlu + oij)/(1 + exp(βlu + oij)). Such a

parametrization allows the inclusion of continuous covariates and offsets oij that are thought to help with the

normalization of counts across cells and genomic windows.

4.3.2.2 Estimation

We utilize the EM algorithm to estimate the model parameters and the posterior probabilities of cluster

membership for each cell, conditional on the observed data. Specifically, the Q-function of the EM algorithm

for the presented model is

Q(Ψ|Ψ(t)) =
N∑
j=1

EZ,Wj

[
log [Pr(yj |Wj ,Z; Ψ)Pr(Z|Wj ; Ψ)Pr(Wj |Ψ)] |yj ; Ψ(t)

]
,

=

N∑
j=1

{
L∑
l=1

P
(
Wlj=1|yj ; Ψ(t)

)
log(δls) +

+
L∑
l=1

2∑
u=1

P
(
Z1 = Slu,Wjl = 1|yj ; Ψ(t)

)
log(πlu)+

+

L∑
l=1

M∑
i=2

2∑
u=1

2∑
v=1

P
(
Zi−1 = Slu, Zi = Slv,Wjl = 1|yj ; Ψ(t)

)
log(γl,uv)+

+
L∑
l=1

M∑
i=1

2∑
u=1

P
(
Zi = Slu,Wjl = 1|yj ; Ψ(t)

)
log flu(yij |βlu)

}
, (4.16)

which follows from the linearity property of expectation and the independence between Wj and Y
′
j , for all

j 6= j
′
.
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The posterior probabilities present in Equation 4.16 can be calculated via Forward-Backward algorithm

for each cell and for each subchain. Let F ji,Slu and Bj
i,Slu

denote the forward and backward probabilities,

respectively, for the jth cell at the ith genomic position associated with the uth state of the lth subchain.

Then, one can show that

P
(
Zi = SluWlj = 1|yj ; Ψ(t)

)
=

F ji,SluB
j
i,Slu

δ
(t)
l∑L

k=1

∑2
v=1 F

j
M,Skv

δ
(t)
k

,

P
(
Zi−1 = Slu, Zi = Slv,Wlj = 1|yj ; Ψ(t)

)
=
δ
(t)
l F j(i−1),Sluγ

(t)
l,uvflv

(
yij |β(t)lv

)
Bj
i,Slv∑L

k=1 δ
(t)
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M,Skv

, and

P
(
Wlj = 1|yj ; Ψ(t)

)
=

δ
(t)
l

∑2
v=1 F

j
M,Slv∑L

k=1 δ
(t)
k

∑2
v=1 F

j
M,Skv

, (4.17)

for all j = 1, . . . , N and l = 1, . . . , L.

The E-step of the EM algorithm proceeds as follows. First, one estimates (in parallel for all l = 1, . . . , L

subchains) the quantities F ji,Slu and Bj
i,Slu

, for all j = 1, . . . , N , i = 1, . . . ,M , and u = 1, 2. Second,

estimates for P
(
Wlj = 1|yj ; Ψ(t)

)
, for all l = 1, . . . , L and j = 1, . . . , N , are calculated using Equation

4.17. Third, one estimates (in parallel for all l = 1, . . . , L subchains) all remaining posterior probabilities

P
(
Zi = SluWlj = 1|yj ; Ψ(t)

)
and P

(
Zi−1 = Slu, Zi = Slv,Wlj = 1|yj ; Ψ(t)

)
. In the M-step, estimates

for δ, π, and γ can be obtained from closed form solutions. Finally, the estimation of the parameters βlu

can be done via weighted logistic regression in parallel for all L subchains. At convergence, the posterior

probabilities P
(
Wlj = 1|yj ; Ψ(t)

)
allow the clustering of cells sharing similar data generating processes of

sequencing reads.

The EM algorithm was efficiently implemented to facilitate the application to a large number of cells and

clusters. By assuming the Bernoulli distribution for the binary counts, one can efficiently store data in memory

from thousands of single-cells in high resolution in sparse matrix format. In addition, the computation of

posterior probabilities during the EM algorithm can be efficiently done in parallel and all output can be

stored (and loaded) during the E-step of the algorithm either in binary or HDF5 format using the C++ library

Armadillo (Sanderson and Curtin, 2016). During the M-step, the aggregation of counts for each subchain

simplifies the problem of estimation for thousands of cells in high resolutions and leads to a fast optimization

via weighted logistic regression.
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4.3.2.3 Initializing the EM Algorithm and Learning the Number of Clusters

We introduce an initialization scheme to obtain the initial parameter estimates from the MHMM for the

EM algorithm, namely Ψ(0) = (π(0),γ(0), δ(0),β(0))′. The presented scheme, which aids the determination

of the number of single-cell clusters, is a modified version of the scheme from Smyth (1997), which can

be time-consuming in the context of single cell epigenomics. Specifically, Smyth (1997) uses a HMM

likelihood-based distance matrix for the initialization of the EM algorithm for the MHMM. For a total of N

cells (where N can be the tens of thousands), their approach would require the evaluation of N2 calculations

of the M -dimensional sets of forward probabilities (where M can be greater than 106). Instead, we propose

the use of a fast cell-to-cell Hellinger distance calculation based on posterior probabilities from enrichment

states from individual HMMs to determine the initial number of clusters and initial parameters of the MHMM:

1. In parallel, fit N 2-state HMMs, one to each single-cell Yj , j = 1, . . . , N , with initial probabil-

ities π(j) = (π
(j)
1 , π

(j)
2 )′, transition probabilities γ(j) = (γ

(j)
11 , . . . , γ

(j)
22 )′, and Bernoulli emission

distributions with parameters 2 and p(ju)i = exp(β
(j)
u + oij)/(1 + exp(β

(j)
u + oij)), for u = 1, 2

and i = 1, . . . ,M . Aggregation of counts and a rejection-controlled EM algorithm can be used for

computational efficiency.

2. From the estimated window-based posterior probabilities of enrichment of each HMM, wij , i =

1, . . . ,M and j = 1, . . . , N , calculate the cell-to cell N ×N Hellinger distance matrix D with entries

djj′ =
√

2
∑M

i=1

(√
wij −

√
wij′

)2, for all j = 1, . . . , N and j′ 6= j.

3. Use the distance matrix D to learn the number of clusters L and cluster cells into L groups.

4. Initialize the MHMM with L clusters and parameters Ψ(0) created by taking cluster-specific averages

across cells of π̂(j), γ̂(j), and β̂
(j)

. Initialize δ(0)l as the proportion of cells assigned to cluster l,

l = 1, . . . , L.

The purpose of the above initialization scheme is to improve the convergence time of the EM algorithm,

in which the information from all cells and genomic windows are then utilized for single-cell clustering. In

simulation studies, (Smyth, 1997) compared different initialization schemes that differed regarding the choice

of the initial transition probability matrix. The presented scheme led to the highest log-likelihood value for the

observed data in comparison to the random initialization with and without block diagonal transition matrices.

Here, we evaluated the performance of the current method with different initialization values and observed
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that the presented scheme leads to the fastest convergence of the EM algorithm with final parameter estimates

close to the true values. However, further consideration is needed to understand the rate of convergence of

the implemented method as a function of the number of cells, genomic windows, and clusters in the data.

Clustering algorithms, such as hierarchical clustering, can be used for the purpose of learning the number

of clusters L in the data, which is a necessary task in current scATAC-seq methods. While the computing

time of steps (1) and (2) can be significantly reduced by utilizing parallel computing, suitable modifications

could be implemented to further reduce the computing burden. These include downsampling single-cells or

genomic windows, using C++ libraries developed for large-scale distance computations of sparse matrices,

which can be created by FDR-thresholding posterior probabilities of enrichment for each cell, or even utilizing

a cell-specific moving-average smoothing in step (1) to reduce the noise and avoid the computations of

individual HMMs.

Figure 4.17 shows the application of MHMM on a simulated dataset. We simulated counts for 150 cells

and 3 clusters (50 cells/cluster; Figure 4.17A) and applied the initialization scheme to compute the initial

values of the EM algorithm (Figure 4.17B). The distance matrix D allows the visualization of the number of

similar subpopulations in the data. Upon convergence of the EM algorithm, one can visualize the cell-cluster

posterior probability membership and group cells into similar subpopulations.

4.4 Simulation Studies

4.4.1 Benchmarking Study of Current scATAC-seq Methods on scChIP-seq Data

We evaluated the performance of current algorithms designed for scATAC-seq data on simulated scATAC-

seq and scChIP-seq assays. Methods were compared regarding their accuracy of clustering assignment by

means of the ARI and the adjusted mutual information (AMI, Vinh et al. (2010)) with the gold-standard labels

of simulated data clusters. In addition, methods we compared regarding the computing time in analyzing the

data. Under similar scenarios regarding sequencing depth and number of cells/clusters, current approaches

failed to characterize subpopulation of cells when the enrichment of reads was not concentrated in short

genomic regions, but rather spread across broad regions, a characteristic of scChIP-seq data.

Read counts were simulated based on real scATAC-seq and scChIP-seq experiments as follows. First, the

genome was tiled intoM non-overlapping windows of 250bp and sequencing reads from annotated single-cell

subpopulations released by Buenrostro et al. (2018) (scATAC-seq) and Grosselin et al. (2019) (scChIP-seq)

were mapped onto the resulting non-overlapping windows and tabulated. For a given sequencing depth level
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Figure 4.17: Application of MHMM on a simulated data. (A): counts for the bulk, pseudobulk, and clusters
of cells. (B): heatmap of the cell-to-cell Hellinger distance matrix D from the initialization scheme. (C):
estimated posterior probabilities of cluster membership for simulated cells upon convergence of the algorithm.
Colors lighter than purple in the continuous scale indicate estimated posterior probabilities lower than 10−20.
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d and noise level z, read counts from window i, i = 1, . . . ,M , of each cell were simulated according to a

binomial distribution with parameters 2 and p(d,n)i = d(1− z)wi/2 + dz/(2M), where wi is the observed

proportion of reads from real data associated with genomic window i. Under this distributional assumption,

the expected sequencing depth of a cell is d. For lower noise levels, the distribution of counts across the

genome resembles the one from real data on the single-cell level. For higher noise levels, the distribution of

counts resembles the one from independent binomial trials. We assume in this simulation study that data

is collected from diploid organisms in which no more than two copies of the DNA pertaining to a given

genomic coordinate can be selected from an encapsulated single-cell. A similar assumption was made in the

simulation study presented in Chen et al. (2019).

We evaluated depth levels of 5,000, 10,000, and 25,000 reads per cell (25,000 read pairs is the rec-

ommended sequencing depth by 10X Genomics for scATAC-seq libraries). In Grosselin et al. (2019), the

median (mean) genome-wide sequencing depth was 3,651 (10,228) reads per cell. Due to the sparsity of

scChIP-seq reads, we only assessed different noise levels for scATAC-seq data (0 and 0.25). A noise level of

0.25 indicates that, on average, read counts from 25% of the genomic windows were simulated under the

assumption that genomic windows had equal probability of having an assigned sequencing read for a given

sequencing depth (see formula in the previous paragraph). In all the scenarios, the sequencing depth and

noise levels were assumed to be constant for all cells, in agreement to the benchmarkinng study presented by

(Chen et al., 2019). By maintining a constant sequencing depth and noise level among single-cells, one can

better measure the performance of current algorithm under contolled scenarios without any nuisance source

of variation. We studied the performance of current methods in scenarios assuming 3 and 6 sub population of

cells. Because the annotated data from Grosselin et al. (2019) only had 2 subpopulations of similar cells, we

used an ad hoc approach to simulate clusters for scChIP-seq data. Specifically, reads from different clusters

were simulated after repeatedly shuffling the observed proportions wi in non-overlapping blocks of size

5000bp across the genome such that nearly either 1% or 5% of the final genome was formed by shuffled

windows (estimated from real data; Figure 4.15). The simulated numbers of cells per cluster were 500, 1000,

and 2500. In Grosselin et al. (2019), the numbers of cells per cluster were 212 and 161. Finally, we also

assessed the capability of current method in detecting rare cell subpopulations in which the total number of

cells for a given cluster was reduced to 10% of its original size. A hundred simulated datasets were generated

for all evaluated scenarios.
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For both scATAC-seq and scChIP-seq simulated data, peaks were called on the bulk data and then

regions of enrichment (and their associated counts) were passed as input to the evaluated methods, which

require a pre-specified set of candidate regions for single-cell clustering. We called peaks using the algorithm

presented in Baldoni et al. (2019a), which is flexible for narrow and broad marks, using counts computed

on non-overlapping windows of 500bp. For each method, we followed the analysis presented in Chen et al.

(2019) and compared the methods’ performance according to three commonly used clustering algorithms on

their final feature matrix, namely K-means, hierarchical clustering, and Louvain (Kiselev et al., 2019). We

used the adjusted Rand index and compared the final set of clustering assignments with the true cluster labels

from simulated data.

4.4.1.1 Simulation Results

Results from this simulation study show that current methods developed for scATAC-seq experiments

presented satisfactory results on scATAC-seq-like simulated data, as expected (Figure 4.18A; scenario with 3

clusters, 500 cells/cluster, and 10,000 reads per cell). The choice of the clustering algorithm did not appear to

have an influence in the overall clustering performance and SnapATAC was the only method that exhibited

difficulty in assigning single-cells to their respective clusters (Figure 4.18B). Regarding computing time,

all methods were able to cluster cells in less than a minute, on average, although cisTopic was consistently

more time consuming than other algorithms (Figure 4.18C). Figure 4.18D shows the UMAP projections

of the feature matrix from each method for a given simulated data set. In general, we observed that most

methods had satisfactory performance in terms of ARI (comparing with true simulated labels) in all simulated

scenarios of scATAC-seq data except when noise was introduced to the data. When noise was present, a

higher sequencing depth was necessary for all methods but SnapATAC to achieve an average ARI (AMI)

greater than 0.87 (Table 4.6).

Next, we applied current methods on scChIP-seq simulated data (Figure 4.19A; scenario with 3 clusters,

500 cells/cluster, and 10,000 reads per cell). We observed that the clustering assignments from current

methods had a moderate to low agreement with the true cluster memberships (Figure 4.19B), despite of the

choice of the clustering algorithm, even in a scenario with excessively high sequencing depth (10,000 versus

a median depth of 3,651 in Grosselin et al. (2019)). Similar to simulated scATAC-seq data, all methods

performed the analysis under a reasonable computing time, although cisTopic was consistently more time

consuming. Figure 4.19D shows the UMAP representation of the feature matrix from each method for a

given simulated data set. Overall, current methods had limited performance in all simulated scenarios for
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Figure 4.18: Results from simulated scATAC-seq data for the scenario with 3 clusters, 500 cells/cluster,
10,000 reads per cell, and no noise, on chromosome 19. (A): simulated counts from the bulk and pseudo bulk
samples (and clusters). (B): distribution of ARI values and computing time across 100 simulated data sets
for different methods and clustering algorithms. (C): UMAP projections of a simulated data for different
methods. Colors indicate true single-cell cluster memberships.
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Table 4.6: Performance of scATAC-seq methods on simulated scATAC-seq data under different sequencing
depths (5,000 and 25,000) and different noise levels (0% and 25%) for 3 clusters, 500 cells/cluster, and no
rare cell sub populations. Average (standard deviation) ARI, AMI, and computing time are shown.

Depth Noise Method ARI AMI Time

Cusanovich2018 0.88 (0.18) 0.88 (0.12) 0.04 (0.00)
Scasat 0.86 (0.02) 0.84 (0.02) 0.05 (0.01)
SnapATAC 0.14 (0.23) 0.15 (0.24) 0.13 (0.01)

0%

cisTopic 0.64 (0.14) 0.68 (0.08) 0.59 (0.05)
Cusanovich2018 0.77 (0.17) 0.78 (0.11) 0.04 (0.00)
Scasat 0.68 (0.04) 0.69 (0.03) 0.05 (0.01)
SnapATAC 0.11 (0.18) 0.12 (0.20) 0.13 (0.01)

5,000

25%

cisTopic 0.53 (0.06) 0.60 (0.03) 0.47 (0.04)

Cusanovich2018 0.89 (0.22) 0.92 (0.17) 0.06 (0.00)
Scasat 1.00 (0.00) 1.00 (0.00) 0.08 (0.01)
SnapATAC 0.57 (0.40) 0.55 (0.38) 0.17 (0.01)

0%

cisTopic 0.91 (0.21) 0.93 (0.16) 2.64 (0.20)
Cusanovich2018 0.87 (0.24) 0.90 (0.18) 0.08 (0.03)
Scasat 1.00 (0.00) 1.00 (0.00) 0.10 (0.05)
SnapATAC 0.46 (0.42) 0.44 (0.41) 0.23 (0.10)

25,000

25%

cisTopic 0.89 (0.22) 0.91 (0.17) 3.27 (1.51)

scChIP-seq data regardless of the number of clusters and number of cells/cluster. The sequencing depth

and cluster-to-cluster difference levels played a major role in the performance of the methods. Specifically,

methods had a satisfactory performance in simulated scChIP-seq only under high sequencing depth levels

(25,000 reads/cell) and high cluster-to-cluster difference levels (5% of differential regions; Table 4.7).

However, these scenarios are somewhat unrealistic for scChIP-seq real datasets, in which the median depth

was 3,651 and the average percentage of differential genomic regions appeared to be around 1% (Grosselin

et al., 2019).

By reducing the signal-to-noise ratio of simulated scATAC-seq data, methods had a slight decrease in

performance, an issue that was ameliorated in scenarios with higher sequencing depths per cell. Depth levels

of 25,000 reads per cell is not unrealistic for scATAC-seq experiments (Chen et al., 2018). However, the

scChIP-seq technology is highly influenced by background noise due to non-specific antibody pull-down

(Clark et al., 2016) and current studies present assays with a moderate to low sequencing depth per cell

(Rotem et al., 2015; Grosselin et al., 2019). Therefore, these findings support the development of robust

algorithms tailored for the sparsity of the data, as well as the local dependency, often observed in scChIP-seq

data.
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Figure 4.19: Results from simulated scChIP-seq data for the scenario with 3 clusters, 500 cells/cluster, 10,000
reads per cell, and no noise, on chromosome 19. (A): simulated counts from the bulk and pseudo bulk
samples (and clusters). (B): distribution of ARI values and computing time across 100 simulated data sets
for different methods and clustering algorithms. (C): UMAP projections of a simulated data for different
methods. Colors indicate true single-cell cluster memberships.
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Table 4.7: Performance of scATAC-seq methods on simulated scChIP-seq data under different sequencing
depths (5,000 and 25,000) and cluster-to-cluster difference levels (1% and 5%). The scenario with 5,000
reads/cell and 1% difference level better approximates real data (Grosselin et al., 2019). Average (standard
deviation) ARI, AMI, and computing time are shown.

Depth Dissimilarity Method ARI AMI Time

Cusanovich2018 0.04 (0.06) 0.04 (0.07) 0.05 (0.02)
Scasat 0.00 (0.01) 0.00 (0.01) 0.06 (0.02)
SnapATAC 0.00 (0.01) 0.00 (0.01) 0.15 (0.05)

1%

cisTopic 0.01 (0.01) 0.01 (0.01) 0.16 (0.06)
Cusanovich2018 0.69 (0.11) 0.64 (0.10) 0.04 (0.00)
Scasat 0.38 (0.23) 0.36 (0.21) 0.05 (0.01)
SnapATAC 0.10 (0.20) 0.10 (0.18) 0.13 (0.01)

5,000

5%

cisTopic 0.31 (0.12) 0.29 (0.11) 0.14 (0.01)

Cusanovich2018 0.54 (0.21) 0.51 (0.19) 0.04 (0.00)
Scasat 0.39 (0.25) 0.37 (0.24) 0.05 (0.01)
SnapATAC 0.14 (0.23) 0.14 (0.22) 0.16 (0.05)

1%

cisTopic 0.13 (0.10) 0.12 (0.09) 0.47 (0.05)
Cusanovich2018 0.97 (0.13) 0.97 (0.10) 0.04 (0.00)
Scasat 1.00 (0.00) 1.00 (0.01) 0.05 (0.01)
SnapATAC 0.80 (0.38) 0.80 (0.38) 0.13 (0.01)

25,000

5%

cisTopic 0.94 (0.13) 0.93 (0.10) 0.47 (0.04)

4.4.2 Improving Single-cell Clustering With Differentially Enriched Candidate Regions

Next, we evaluated the improvement in performance of current scATAC-seq methods by utilizing the

model presented in Section 4.3.1 to define differentially enriched regions as candidate peaks for single-cell

clustering. To this end, we simulated data as follows. Data from three hundred cells from three distinct

subpopulations were simulated according to three independent two-state Markov chains with transition

probabilities γ11 = 0.995 (background-to-background transition probability) and γ22 = 0.99 (enrichment-

to-enrichment transition probability). Sparse binary counts were simulated for each cell such that the mean

(standard deviation) number of windows with at least one sequencing read was 250.16 (16.35), out of a

total of 10,000 genomic windows. Following the simulation setup presented in Section 4.4.1, counts were

simulated according to a Bernoulli distribution and reads were allocated to enrichment and background

regions with a 70:30 proportion.

A total of 100 simulated datasets were generated. For each dataset, scATAC-seq methods were applied to

cluster cells into subpopulations. Candidate peaks were defined in two distinct manners. First, peaks were

called on the aggregated single-cell data (as in Section 4.4.1). Second, differentially enriched regions were
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detected by making use of the statistical model presented in Section 4.3.1. We compared the performance of

current methods for the two peak calling strategies regarding the cluster assignments with the true simulated

cluster labels via the ARI and AMI metrics. We show in Section 4.4.2.1 that the presented model offers

substantial benefits to the selection of candidate peaks from scChIP-seq data and improves the performance

of current methods.

4.4.2.1 Simulation Results

Table 4.8 shows the results from the simulation study with candidate peaks called on pooled data and

those called as differentially enriched regions. We show results for scATAC-seq methods Cusanovich2018,

Scasat, SnapATAC, and cisTopic. Single-cells were clustered with three distinct clustering algorithm, namely

hierarchical clustering, Kmeans, and Louvain. Overall we observed a significant improvement in performance

in scATAC-seq methods by utilizing differentially enriched regions as candidate peaks. All methods exhibited

an improvement in performance when differentially enriched regions were utilized as candidate peaks. From

all methods, cisTopic exhibited the largest gains in performance by comparing the ARI and AMI metrics

from pooled and differential peaks. The variability of the ARI and AMI metrics across a hundred simulated

datasets also exhibited a substantial decrease for all methods but SnapATAC by utilizing the presented strategy

for candidate peak selection. This fact indicates that most methods tend to be more precise in classifying

single-cell subpopulations by utilizing differentially enriched regions as candidate peaks. In agreement to the

simulation study presented in Section 4.4.1, SnapATAC exhibited the lowest performance among all methods

Figure 4.20 illustrate some of the results from the simulation study. As shown in panel D, the UMAP

representation of the feature matrix output by each scATAC-seq method shows a better separation of single-

cell subpopulations for nearly all assessed methods. Such a fact further illustrates the benefit of the presented

model for single-cell clustering from scChIP-seq data. Yet, SnapATAC and its implemented Jaccard similarity

feature matrix did not lead to UMAP representations with sufficiently distinguishable patterns of single-cell

clusters. For this particular method, the selection of differentially enriched regions did not appear to help

much with the clustering of similar cells.

4.5 Discussion

Here, we presented a comparative study of some of the current algorithms for the analysis of epigenomic

data on both simulated and real data from single-cell ChIP-seq experiments. We proposed the use of a

hidden Markov model for the selection of candidate regions exhibiting differential enrichment from sparse
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Figure 4.20: Performance of scATAC-seq methods on simulated scChIP-seq data with candidate peaks called
either on bulk data (Pooled) or on single-cell data with 3-state HMM (Differential).
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Table 4.8: Performance of scATAC-seq methods on simulated scChIP-seq data with candidate peaks called
either on bulk data (Pooled) or on single-cell data with 3-state HMM (Differential).

Pooled Differential

Clustering
Algorithm

Method ARI AMI ARI AMI

Cusanovich2018 0.36 (0.20) 0.36 (0.18) 0.81 (0.13) 0.78 (0.13)
Scasat 0.72 (0.13) 0.68 (0.12) 0.96 (0.05) 0.94 (0.06)
SnapATAC 0.27 (0.15) 0.28 (0.12) 0.39 (0.15) 0.38 (0.13)

Hierarchical

cisTopic 0.32 (0.16) 0.31 (0.15) 0.87 (0.13) 0.85 (0.13)

Cusanovich2018 0.60 (0.21) 0.57 (0.19) 0.88 (0.20) 0.88 (0.17)
Scasat 0.85 (0.11) 0.81 (0.11) 0.99 (0.02) 0.98 (0.03)
SnapATAC 0.20 (0.18) 0.21 (0.18) 0.29 (0.34) 0.30 (0.34)

Kmeans

cisTopic 0.42 (0.19) 0.40 (0.17) 0.90 (0.14) 0.88 (0.12)

Cusanovich2018 0.41 (0.16) 0.38 (0.14) 0.91 (0.09) 0.89 (0.11)
Scasat 0.75 (0.15) 0.70 (0.15) 0.98 (0.03) 0.97 (0.04)
SnapATAC 0.41 (0.14) 0.38 (0.12) 0.48 (0.18) 0.43 (0.15)

Louvain

cisTopic 0.34 (0.19) 0.31 (0.17) 0.90 (0.12) 0.88 (0.13)

single-cell data. Current methods developed for the analysis of scATAC-seq data often rely on the set of

candidate peaks called on the bulk data for single-cell clustering. This approach may be subject to choice

of the peak calling algorithm and its parametrization, and differences in sequencing depth across cells may

mask the experimental signal from under-sequenced cells when calling peaks on the bulk data. Moreover, this

approach may lead to suboptimal performance as enrichment regions from scChIP-seq data are often found

to be extremely sparse and to expand through large genomic domains. In a simulation study, the presented

model led to significant benefits in current scATAC-seq methods.

In addition, we proposed the use of a statistical method to cluster single-cells from heterogeneous samples

into groups of cells sharing similar structural patterns of read count distribution across the genome. The

proposed method allows the analysis of single-cell data on high genomic resolutions, without the need of

relying on a set of candidate peaks for the characterization of single-cell subpopulations. The proposed model

does not rely on a set of candidate peaks and utilizes the available data from all genomic positions, while being

able to account for different sequencing depths in the datasets through model offsets. Lastly, we presented in

this project an initialization scheme for the presented EM algorithm that aids with the determination of the

number of single-cell subpopulations in the data, a task that is often necessary in the analysis of single-cell

epigenomic data with current methods.
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One of the limitations of the presented MHMM is that it lacks the ability to detect longitudinal differences

in the read count distribution across the genome between cells. For instance, multiple realizations of the

same process (or hidden Markov chain) are deemed similar and clustered together by the algorithm, despite

differences with respect to the location of enrichment regions in the data. As a future research project, we

will further consider alternative models and parametrization, such as the hierarchical Dirichlet process hidden

Markov model (HDP-HMM), to properly account for such realizations of the same process.
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CHAPTER 5: CONCLUSION AND FUTURE RESEARCH

In this dissertation, we introduce three statistical methods for the analysis of epigenomic data that are

tailored to address some of the challenges faced by current approaches in contexts where the data is sparse

and counts exhibit a local dependency across the genome.

In Chapter 2, we presented a multi-sample zero-inflated mixed-effects hidden Markov models (HMMs)

to account for the excess of observed zeros in regions without epigenomic activity, the latent sample-specific

differences, and the local dependency of sequencing read counts. We applied the presented methods in an

extensive simulation study and in data sets from the ENCODE and Roadmap Epigenomics Projects and

showed superior performance than current methods in data sets from histone modifications characterized by

broad regions of enrichment, i.e., regions with more sequencing reads than one would expect in background

regions.

In Chapter 3, we presented a statistical model to detect and classify differential epigenomic activity

across conditions in multi-sample multi-condition designs. Our model is flexible for the analysis of broad

(e.g., histone modifications H3K27me3 and H3K36me3) and short data sets (e.g., transcription factor CTCF

and ATAC-seq data). We utilized an efficient implementation of the EM algorithm that allows the genome-

wide analysis of multiple ChIP-seq data sets in a computing time that is comparable to some of the fastest

algorithms available. Although the presented model performed well in both analyzed simulated and real data

sets, more simulation studies are needed to better understand the performance of the model selection approach

using the BIC for HMMs. In the genomic segmentation analysis presented in Section 3.5.3, there was a prior

biological knowledge regarding the roles of the analyzed epigenomic marks (H3K36me3, H3K27me3, and

EZH2) and we knew in advance that the optimal number of mixture components in the HMM differential

state would be 2 (enrichment for H3K36me3 alone, or co-occurrence of H3K27me3 and EZH2). The number

of mixture components from the best model chosen via BIC agreed with the expected optimal number of

components. However, for analyses where there is no prior information regarding the activity of the analyzed

marks, it will be useful to understand whether the use of th BIC for model selection is in fact appropriate.
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In addition, the current implementation of our differential peak caller can be optimized for scenarios where

one of the analyzed epigenomic marks (in a genomic segmentation analysis) is highly different than the

others. In Figure 3.14, for instance, our model was robust to detect and classify differential patterns between

CTCF and H3K36me3 in the Helas3 cell line with the non-linear normalization for sequencing depth via

model offsets. However, as Figure 3.14 shows, it is clear that the mean of the read count distribution from

enrichment regions of CTCF after normalization is not the same as the mean of the respective regions from

H3K36me3. Although our model was robust to these differences, it is important for our differential peak

caller to incorporate condition-specific parameters in the GLM-based framework from a methodological

perspective. Such an implementation is left as a future research project.

In Chapter 4, we presented a comparative analysis of scChIP-seq data using current scATAC-seq

algorithms. We showed that current approaches can have difficulties to deal with the sparsity of the data,

which exhibits a local dependency of counts that is not commonly found in scATAC-seq experiments. One

of the possible explanations for the suboptimal performance of such methods is that they rely on a 2-step

approach by first calling peaks on the bulk data and then performing any sort of dimension reduction technique

(e.g. PCA, SVD, and LDA) followed by the application of a clustering algorithm. We argue that, because

the data is highly sparse, considering candidate peaks from the bulk data might not be ideal for scChIP-seq

data for two reasons. First, it is a difficult task to distinguish differential regions of enrichment from regions

where there is background signal due to sparsity and noisy aspects of the data. Because candidate regions

of enrichment can be excessively broad (as they are obtained from the bulk data), methods might have not

enough power to distinguish subpopulations of cells (as they computations are done on the single-cell level

with sparse counts). Second, consensus regions of enrichment are inevitably considered as candidate regions

by using the 2-step approach. Such regions are not informative to distinguish subpopulations of cells and,

therefore, should be ideally removed from the analysis by these algorithms. The consideration of such regions

in addition to regions that are truly differential may actually worsen the performance of current methods

since it is already a difficult task to distinguish what is a true signal and what is noise in scChIP-seq data.

To address these issues, we introduced a statistical model to clustering single-cells from heterogeneous

scChIP-seq data sets in high resolutions with a initialization scheme that allows the estimation of the number

of sub populations present in the data. As a future research project, we plan on integrating in this model

the ability to distinguish subpopulations of cells by consider not their structural differences regarding their

likelihood for a finite set of HMMs but, in fact, their longitudinal differences regarding the presence/absence
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of enrichment of reads along the genome. We plan also to explore alternative methodologies for unstructured

data that are based on neural networks and deep learning algorithms, a set of tools that has been proven

extremely powerful in other areas such as transcriptomics and proteomics.

In summary, the methods developed in this dissertation aim to address current challenges in the analysis

of bulk and single-cell ChIP-seq data and are relevant for biomedical researchers interested in the field of

epigenomics.
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APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 2

Data

The data utilized in Chapter 1 pertaining to the ENCODE Consortium and Roadmap Project are listed in

Table A.9.

Table A.9: GEO sample accession codes of the analyzed data from the ENCODE Consortium and Roadmap
Project in Chapter 1.

Cell Line H3K27me3 H3K36me3 RNA-seq
H1hesc GSM733748 GSM733725 GSM758566
HelaS3 GSM733696 GSM733711 GSM765402
Hepg2 GSM733754 GSM733685 GSM758575
Huvec GSM733688 GSM733757 GSM758563
Nhek GSM733701 GSM733726 GSM765401
CD4 Memory Primary GSM772998 GSM772964 GSM669618
CD4 Naı̈ve Primary GSM772947 GSM772932 GSM669617
CD8 Naı̈ve Primary GSM772871 GSM772872 GSM669619
CD34 Mobilized Primary GSM669945 GSM621459 GSM909310

The following steps were conducted to process the data. First, we removed PCR duplicates from the BAM

files using SAMTools (Li et al., 2009) and converted the resulting indexed and sorted files to BED format

using BEDTools (Quinlan and Hall, 2010), as JAMM only accepts such a format as input. Then, the fragment

length of each ChIP-seq experiment was estimated using MACS2 and its sub-command predictd. Finally,

using the estimated fragment length, read counts from all cell lines were tabulated for their ChIP replicates

and input control experiments using fixed-step and non overlapping windows of size 250bp, 500bp, 750bp,

and 1000bp through the R package bamsignals (Mammana and Helmuth, 2016). For all non-overlapping

window-based methods (JAMM, MOSAiCS, RSEG, Zerone, and ZIMHMM), we assessed their performance

with different window sizes. See Section D.3 in Baldoni et al. 2019b for a discussion about results with

different window sizes.

All the methods considered in the data applications outputted a set of genomic regions of enrichment that

were used for benchmark purposes. MACS2 and JAMM output a list of peak regions in BED6+3 (broadPeak)

and BED6+4 formats (narrowPeak), respectively. Peak calls from BCP, CCAT, MOSAiCS, and RSEG were

obtained from the output BED files. As recommended by Ibrahim et al. (2014), we used the set of filtered

peaks from JAMM to avoid the inclusion of artifact peaks (single basepair peaks or peaks with very few

reads). For Zerone, we used the outputted Viterbi sequence of predicted states to merge adjacent windows
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and form regions of enrichment. For comparative purposes, enrichment regions detected by our method were

defined in a similar fashion according to the Viterbi sequence of predicted states. We observed a similar

performance by thresholding posterior probabilities using an FDR level of 0.05. For a comparison between

the Viterbi and the FDR thresholding approach, see Table 2.3.

The following parametrization was used when calling peaks from the benchmarked methods. For BPC,

peakranger bcp –format bam –report –verbose –geneannotfile ’gene’ –data ’sample’ –control ’control’

–output ’output’. For CCAT, peakranger ccat –format bam –report –verbose –geneannotfile ’gene’ –data

’sample’ —control ’control’ –output ’output’. For JAMM, JAMM.sh -m normal -r region -w 1 -b ’binsize’ -g

’genome’ -s ’sample’ -c ’control’ -o ’output’. For MACS2, macs2 callpeak –broad -g hs –broad-cutoff 0.1 -f

BAM. For MOSAiCS (R package), we used the following sequence of commands constructBins(fileFormat

= ’bam’), readBins(), mosaicsFit( analysisType=”IO”, bgEst=”rMOM”), mosaicsFitHMM(), mosaics-

PeakHMM(), extractReads(chipFileFormat=’bam’,controlFileFormat=’bam’), findSummit(), adjustBound-

ary(), filterPeak(), with read counts computed in fixed windows of size of 250bp, 500bp, 750bp, and 1000bp.

For RSEG, rseg-diff -verbose -mode 2 -out ’output’ -chrom ’chromosome -deadzones ’deadzones’ ’sample’

’control’ with read counts computed in fixed windows of size of 250bp, 500bp, 750bp, and 1000bp. For

Zerone (R package), zerone(.,returnall=T), with read counts computed in fixed windows of size of 250bp,

500bp, 750bp, and 1000bp.

Software

Regarding the implemented software, the ZIMHMM (Zero Inflated Mixed effects Hidden Mark Model)

was implemented in a R package that is available on https://github.com/plbaldoni/ZIMHMM. ZIMHMM

is a package with a peak caller to detect broad enrichment regions from multiple ChIP-seq experimental

replicates. The main function of the package is ZIMHMM(), which models the zero-inflation of background

counts, accounts for replicate-specific differences via a mixed effects model, and ensures that broad regions

of enrichment are detected by fitting a hidden Markov model. The package also contains ZIHMM(), a fixed

effects version of the peak caller.

The package allows the user to specify a set of parameters that control the Expectation-Maximization

(EM) algorithm. These parameters include, for instance, the convergence (and termination) criteria of

the algorithm and the threshold value for the rejection controlled EM algorithm. These parameters can

be defined by the function controlPeaks(). Other auxiliary functions include plotPeaks(), which plots the
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read counts from ChIP-seq replicates and the called peaks. Please refer to the package documentation (e.g.

?ZIMHMM::ZIMHMM) for additional details.

The EM Algorithm

The presented EM algorithm can be summarized as follows:

1. Initialize π(0),γ(0),λ(0),β
(0)
k ,φ

(0)
k and σ(0) for k ∈ {1, 2}, such that

∑2
k=1 π

(0)
k = 1 and

∑2
l=1 γkl =

1.

2. E step (s ≥ 1),

(a) Calculate û = arg max
u∈RN

{
log
(
A(s−1)(u)

∏M
j=2 C

(s−1)
j (u)I

)
+ log(f(u))

}
, as detailed in Ap-

pendix A

(b) Calculate P
(
Zj = k|y, û, r,x; Ψ(s−1)

)
and P

(
Zj−1 = l, Zj = k|y, û, r,x; Ψ(s−1)

)
for all l

and k in {1, 2} and j = 1, . . . , N via Forward-Backward algorithm as detailed in Appendix A

3. M step (s ≥ 1),

(a) Maximize Equation 2.5 with respect to the initial and transition probabilities to obtain for all l

and k in {1, 2}

π
(s)
k = P

(
Z1 = k|y, û, r,x; Ψ(s−1)

)
γ
(s)
lk =

∑M
j=2 P

(
Zj−1 = l, Zj = k|y, û, r,x; Ψ(s−1)

)
∑M

j=2

∑2
r=1 P

(
Zj−1 = l, Zj = r|y, û, r,x; Ψ(s−1)

)

(b) Maximize Equation 2.5 with respect to βk and φk to obtain β(s)
k and φ(s)

k (see Appendix A for

partial derivatives),

(c) Conditionally upon β(s)
k and φ(s)

k , maximize Equation 2.5 with respect to σ to obtain σ(s) (see

Appendix A for partial derivatives),

(d) Iterate between (b) and (c) until convergence.

4. Iterate between 2. and 3. until convergence.
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Marginal Moments of the Mixed Effects HMM

The marginal moments of the random effects model are presented next. Let xijβk denote the linear

predictor pertaining to the fixed effects of the mean model associated with the kth emission distribution. One

can show using basic properties of conditional expectations that

E(Yij) = exp(σ2/2)
∑
k

πk exp(xijβk),

Var(Yij) = exp(σ2/2)
∑
k

πk exp(xijβk) + exp(2σ2)
∑
k

πk exp(2xijβk) (1/φk + 1)−

− exp(σ2)

{∑
k

πk exp(xijβk)

}2

,

Cov(Yis, Yit) = exp(2σ2)
∑
k

∑
l

P (Zt = l|Zs = k)πk exp(xisβk + xitβl)−

− exp(σ2)

{∑
k

πk exp(xisβk)

}{∑
k

πk exp(xitβk)

}
,∀s < t.

Using a similar notation, the marginal moments of the fixed effects HMM with wi as offsets are

E(Yij) = wi
∑
k

πk exp(xijβk),

Var(Yij) = wi
∑
k

πk exp(xijβk) + w2
i

∑
k

πk exp(2xijβk) [1/φk + 1] ,

Cov(Yis, Yit) = w2
i

∑
k

∑
l

P (Zt = l|Zs = k)πk exp(xisβk + xitβl)−

− w2
i

{∑
k

πk exp(xisβk)

}{∑
k

πk exp(xitβk)

}
, ∀s < t.

Assuming convergence of P (Zt = l|Zs = k)→ πl for a fixed s and t→∞, the dominated convergence

theorem holds under mild conditions and the asymptotic marginal covariance under the random effects model

is non-negative and equal to zero if and only if the distribution of random effects is degenerate (Altman,

2007). For the fixed effects model, such a covariance converges to zero for a fixed s and t→∞.

Technical Derivations of the EM Algorithm

The algorithm for its fixed-effects version can be run in a similar fashion in the sense that the Laplace

approximation used during the E-step of the algorithm is not necessary. All the remaining parts of the

algorithm are similar. First, note that Q function presented in Section 2.4 is a N -dimensional integral of a
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product between (1) the expectation of the complete data log likelihood function taken with respect to the

distribution of Z conditional upon the observed data, the latent random effects u and the estimated parameters

of the sth EM iteration Ψ(s), and (2) the distribution of random effects U conditional upon the observed data

and the estimated parameters of the sth EM iteration Ψ(s). Also, note that the inner expectation of the Q

function can be expressed as

E

 2∑
k=1

I(Z1 = k) log(πk) +
M∑
j=1

2∑
k=1

N∑
i=1

I(Zj = k) log (fk(yij |ui, rij , xij ;ψk, σ)) +

+

M∑
j=2

2∑
k=1

2∑
l=1

I(Zj−1 = l, Zj = k) log(γlk) + log(f(u))|y,u, r,x; Ψ(s)

 =

=
2∑

k=1

P
(
Z1 = k|y,u, r,x; Ψ(s)

)
log(πk)+

+
M∑
j=1

2∑
k=1

N∑
i=1

P
(
Zj = k|y,u, r,x; Ψ(s)

)
fk(yij |ui, rij , xij ;ψk, σ)+

+
M∑
j=2

2∑
k=1

2∑
l=1

P
(
Zj−1 = l, Zj = k|y,u, r,x; Ψ(s)

)
log(γlk) + log(f(u)), (B.18)

where P
(
Zj = k|y,u, r,x; Ψ(s)

)
and P

(
Zj−1 = l, Zj = k|y,u, r,x; Ψ(s)

)
can be calculated by a stan-

dard Forward-Backward algorithm (see Appendix A). Conversely, the distribution of the random effects

U conditional on the observed data and the estimated parameters of the sth EM iteration Ψ(s) can be

re-expressed as

f
(
u|y, r,x; Ψ(s)

)
=
f
(
u,y|r,x; Ψ(s)

)
f
(
y|r,x; Ψ(s)

)
=

∑
z∈Z f

(
y, z|u, r,x; Ψ(s)

)
f(u)∫

u∈RN
∑

z∈Z f
(
y, z|u, r,x; Ψ(s)

)
f(u)du

=

(
A(s)

∏M
j=2 C

(s)
j I
)
f(u)∫

u∈RN

(
A(s)

∏M
j=2 C

(s)
j I
)
f(u)du

, (B.19)

where A(s) =
(
A

(s)
1 , A

(s)
2

)
, A

(s)
k = π

(s)
k fk

(
y.1|u, r.1,x.1;ψ(s)

k , σ(s)
)
,C

(s)
j is a 2×2 matrix with elements

C
(s)
j,lk = γ

(s)
lk fk

(
y.j |u, r.j ,x.j ;ψ(s)

k , σ(s)
)

for all l and k in {1, 2}, and I is a 2-dimensional vector of ones.
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First, note that in Equation B.19, the denominator is the marginal distribution of Y and does not depend

on U. Therefore, we can incorporate this quantity into the function h since it will not affect the calculation of

J. Thus,

Q
(
Ψ|Ψ(s)

)
=

∫
u∈RN

h
(
u; Ψ,Ψ(s)

)
×

× exp

log

A(s)
M∏
j=2

C
(s)
j I

+ log(f(u))− log
(
f
(
y; Ψ(s)

)) du

=

∫
u∈RN

h
(
u; Ψ,Ψ(s)

)
f
(
y; Ψ(s)

) exp

log

A(s)
M∏
j=2

C
(s)
j I

+ log(f(u))

 du

=

∫
u∈RN

h∗
(
u; Ψ,Ψ(s)

)
× exp

(
g∗
(
u; Ψ(s)

))
du, (B.20)

where g∗
(
u; Ψ(s)

)
= log

(
A(s)

∏M
j=2 C

(s)
j I
)

+log(f(u)). Denote û the value of u such that Jg∗ |u=û = 0.

Using a second order Taylor’s series expansion of g∗
(
u; Ψ(s)

)
around û,

g∗
(
u; Ψ(s)

)
≈ g∗

(
û; Ψ(s)

)
− 1

2
(u− û)

′
(−Hg∗ |u=û) (u− û),

where Hg∗ |u=û denotes the Hessian matrix of g∗
(
u; Ψ(s)

)
evaluated at u = û. Therefore, the Q function

(Equation B.20) can be approximated by

Q
(
Ψ|Ψ(s)

)
≈
∫
u∈RN

h∗
(
u; Ψ,Ψ(s)

)
×

exp

{
g∗
(
û; Ψ(s)

)
− 1

2
(u− û)

′
(−Hg∗ |u=û) (u− û)

}
du. (B.21)

If we further expand h∗
(
u; Ψ,Ψ(s)

)
linearly around û as

h∗
(
u; Ψ,Ψ(s)

)
≈ h∗

(
û; Ψ,Ψ(s)

)
+ (u− û)

′
Jh∗ |u=û,
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then we can re-express the Q function as

Q
(
Ψ|Ψ(s)

)
≈
∫
u∈RN

(
h∗
(
û; Ψ,Ψ(s)

)
+ (u− û)

′
Jh∗ |u=û

)
×

× exp

{
g∗
(
û; Ψ(s)

)
− 1

2
(u− û)

′
(−Hg∗ |u=û) (u− û)

}
du

= h∗
(
û; Ψ,Ψ(s)

)
exp

{
g∗
(
û; Ψ(s)

)}
×

×
∫
u∈RN

exp

{
−1

2
(u− û)

′
(−Hg∗ |u=û) (u− û)

}
du+

+ (Jh∗ |u=û) exp
{
g∗
(
û; Ψ(s)

)}∫
u∈RN

(u− û)
′
exp

{
−1

2
(u− û)

′
(−Hg∗ |u=û) (u− û)

}
du︸ ︷︷ ︸

=0

= h∗
(
û; Ψ,Ψ(s)

)
exp

{
g∗
(
û; Ψ(s)

)}
(2π)n/2

∣∣∣ ((−Hg∗ |u=û)
−1
) ∣∣∣1/2 ×

×
∫
u∈RN

(2π)−n/2
∣∣∣ ((−Hg∗ |u=û)

−1
) ∣∣∣−1/2 exp

{
−1

2
(u− û)

′
(−Hg∗ |u=û) (u− û)

}
du︸ ︷︷ ︸

=1

= h∗
(
û; Ψ,Ψ(s)

)
exp

{
g∗
(
û; Ψ(s)

)}
(2π)n/2

∣∣∣ ((−Hg∗ |u=û)
−1
) ∣∣∣1/2 .

Recall that neither the function g∗
(
û; Ψ(s)

)
nor its Hessian matrix Hg∗ depends on Ψ. Therefore, for the

purposes of obtaining parameter estimates in the M-step, the quantity to be maximized is

Q∗
(
Ψ|Ψ(s)

)
= h∗

(
û; Ψ,Ψ(s)

)
=

=
h
(
û; Ψ,Ψ(s)

)
f
(
y; Ψ(s)

) =

∝ h
(
û; Ψ,Ψ(s)

)
=

=
2∑

k=1

P
(
Z1 = k|y, û, r,x; Ψ(s)

)
log(πk)+

+

M∑
j=1

2∑
k=1

N∑
i=1

P
(
Zj = k|y, û, r,x; Ψ(s)

)
fk(yij |ûi, rij , xij ;ψk, σ)+

+
M∑
j=2

2∑
k=1

2∑
l=1

P
(
Zj−1 = l, Zj = k|y, û, r,x; Ψ(s)

)
log(γlk).
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The Forward-Backward Algorithm

In the E-step, the forward and backward probabilities can be calculated as

Forward probabilities fpjk

fp1k = πk

(
N∏
i=1

fk(yi1|ui, ri1, xi1;ψk, σ)

)
, ∀k = 1, 2.

fpjk =
2∑
l=1

γlkf
p
(j−1)l

(
N∏
i=1

fk(yij |ui, rij , xij ;ψk, σ)

)
, ∀j = 2, . . . ,M and k = 1, 2.

Backward probabilities bpjk

bpMk = 1, ∀k = 1, 2.

bpjk =
2∑
l=1

γklb
p
(j+1)l

(
N∏
i=1

fl(yi(j+1)|ui, ri(j+1), xi(j+1);ψk, σ)

)
,

∀j = 1, . . . , (M − 1) and k = 1, 2.

The forward and backward probabilities can be used to calculate marginal and posterior probabilities as

P (Zj = k|y,u, r,x;ψ) =
fpjkb

p
jk∑2

l=1 f
p
Ml

, ∀j = 1, . . . ,M and k = 1, 2.

P (Zj−1 = l, Zj = k|y,u, r,x;ψ) =
fp(j−1)lγlk

(∏N
i=1 fk(yij |ui, rij , xij ;ψk, σ)

)
bpjk∑2

l=1 f
p
Ml

,

∀j = 2, . . . ,M and l, k = 1, 2.

Parameter Estimates and Derivatives

In the M-step, we maximize the Q function with respect to the unknown parameters. In order to avoid

constrained numerical maximization, we reparametrize the dispersion parameters of the NB distribution and

variance component as φk = exp(φk), for k ∈ {1, 2}, and σ2 = exp(2σ). For a Zero-Inflated Mixed Effects

HMM, the partial derivatives of Q with respect to the model parameters ψ1 = (λ
′
,β
′
1, φ1)

′
, ψ2 = (β

′
2, φ2)

′
,

and σ are given by
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∂Q

∂ψ
′
1

=

M∑
j=1

P
(
Zj = 1|y, û, r,x; Ψ(s)

) N∑
i=1


∂f1(yij |û,r,x;ψ1,σ)

∂ψ
′
1

f1(yij |û, r,x;ψ1, σ)

 ,

∂Q

∂ψ
′
2

=
M∑
j=1

P
(
Zj = 2|y, û, r,x; Ψ(s)

) N∑
i=1


∂f2(yij |û,r,x;ψ2,σ)

∂ψ
′
2

f2(yij |û, r,x;ψ2, σ)

 ,

∂Q

∂σ
=

M∑
j=1

P
(
Zj = 1|y, û, r,x; Ψ(s)

) N∑
i=1

{
∂f1(yij |û,r,x;ψ1,σ)

∂σ

f1(yij |û, r,x;ψ1, σ)

}
+

+
M∑
j=1

P
(
Zj = 2|y, û, r,x; Ψ(s)

) N∑
i=1

{
∂f2(yij |û,r,x;ψ2,σ)

∂σ

f2(yij |û, r,x;ψ2, σ)

}
.

Let pij denote the zero-inflation probability associated with the zero-inflation part of the f1 model. In

addition, let NBk(yij) denote the NB emission distribution associated to the kth model component evaluated

at the integer yij . This notation implicitly assumes that the mean and dispersion are µk,i,j and exp(φk),

respectively. In the following derivatives, we will omit the conditional part of the component-specific emission

distributions fk for k = {1, 2}. It is assumed that fk is conditional on the quantities (û, r,x;ψk, σ)
′
. The
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derivatives of the Q function with respect to the parameters of the component-specific densities are:

∂f1(yij)

∂λ0
= I(yij = 0)(pij(1− pij)(1− NB1(0)))+

+ I(yij > 0)(−pij(1− pij)NB1(yij)),

∂f1(yij)

∂λ1
= I(yij = 0)(pij(1− pij)xij(1− NB1(0)))+

+ I(yij > 0)(−pij(1− pij)xijNB1(yij)),

∂f1(yij)

∂β11
= I(yij = 0)(1− pij)

eφ1µ1ij(1− µ1ij)
(µ1ij + eφ1)2

(
eφ1

µ1ij + eφ1

)eφ1
+

+ I(yij > 0)(1− pij)NB1(yij)(yij − µ1ij)
eφ1

µ1ij + eφ1
,

∂f1(yij)

∂β12
= I(yij = 0)(1− pij)

eφ1µ1ij(1− µ1ij)
(µ1ij + eφ1)2

(
eφ1

µ1ij + eφ1

)eφ1
xij+

+ I(yij > 0)(1− pij)NB1(yij)(yij − µ1ij)
eφ1

µ1ij + eφ1
xij ,

∂f1(yij)

∂φ1
= I(yij = 0)(1− pij)µ1ij

(
φ1 − log(µ1ij + φ1)−

1− µ1ij
µ1ij + eφ1

)(
eφ1

µ1ij + eφ1

)eφ1+1

+

+ I(yij > 0)(1− pij)
(

eφ1

µ1ij + eφ1

)
NB1(yij)×

× ((µ1ij + eφ1)(φ1 − log(µ1ij + eφ1) + ϕ(yij + eφ1) + ϕ(eφ1)) + µ1ij − yij),

∂f2(yij)

∂β21
= NB2(yij)(yij − µ2ij)

eφ2

µ2ij + eφ2
,

∂f2(yij)

∂β22
= NB2(yij)(yij − µ2ij)

eφ2

µ2ij + eφ2
xij ,

∂f2(yij)

∂φ2
=

(
eφ2

µ2ij + eφ2

)
NB2(yij)×

× ((µ2ij + eφ2)(φ2 − log(µ2ij + eφ2) + ϕ(yij + eφ2) + ϕ(eφ2)) + µ2ij − yij),

in which ϕ(.) denotes the Digamma function.
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Closed formulas for the initial and transition probabilities can be calculated in the M-step of the algorithm

as

π
(s+1)
1 = P

(
Z1 = 1|y, û, r,x; Ψ(s)

)
and π

(s+1)
2 = 1− π(s+1)

1 ,

γ
(s+1)
kk =

∑M
j=2 P

(
Zj−1 = k, Zj = k|y, û, r,x; Ψ(s)

)
∑M

j=2

∑2
l=1 P

(
Zj−1 = l, Zj = k|y, û, r,x; Ψ(s)

) and γ
(s+1)
kl = 1− γ(s+1)

kk .
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APPENDIX B: TECHNICAL DETAILS FOR CHAPTER 3

Data

The data utilized in Chapter 2 pertaining to the ENCODE Consortium are listed in Table B.10.

Table B.10: GEO sample accession codes of the analyzed data from the ENCODE Consortium in Chapter 2.
Cell Line H3K27me3 H3K36me3 EZH2 H3K4me3 H3K27ac CTCF RNA-seq
H1hesc GSM733748 GSM733725 GSM1003524 GSM733657 GSM733718 GSM733672 GSM758566
HelaS3 GSM733696 GSM733711 GSM1003520 GSM733682 GSM733684 GSM733785 GSM765402
Hepg2 GSM733754 GSM733685 GSM1003487 GSM733737 GSM733743 GSM733645 GSM758575
Huvec GSM733688 GSM733757 GSM1003518 GSM733673 GSM733691 GSM733716 GSM758563

The following steps were conducted to process the data. First, we removed PCR duplicates from the

BAM files using SAMTools (Li et al., 2009) and converted the resulting indexed and sorted files to BED

format using BEDTools (Quinlan and Hall, 2010), as RSEG only accepts such a format as input. Then, the

fragment length of each ChIP-seq experiment was estimated using csaw and its functions correlateReads and

maximizeCcf. Finally, using the estimated fragment length, read counts from all cell lines were tabulated for

their ChIP replicates using fixed-step and non overlapping windows of size 250bp, 500bp, 750bp, and 1000bp

through the R package bamsignals (Mammana and Helmuth, 2016). For all methods using window-based

approaches (csaw, ChIPComp, diffReps, RSEG, THOR, and mixNBHMM), we assessed their performance

with different window sizes. See Section 3.3.2 and Baldoni et al. 2019a for a discussion about results with

different window sizes.

All the methods considered in the data applications and simulation study output a set of differential

genomic regions/windows that were used for benchmark purposes. THOR output a list of differential peaks

in BED6+4 format (narrowPeak) with adjusted p-values. RSEG output a WIG file with genomic windows

and their posterior probabilities for differential enrichment. diffReps output an annotated TXT file with

differential regions of enrichment and their adjusted p-values. DiffBind output a TXT file with differential

regions of enrichment and their respective multiple testing corrected FDR. diffReps output a TXT file with

differential regions of enrichment and their p-values. csaw output a TSV file with differential regions of

enrichment and their FDR adjusted p-values. For a fair FDR thresholding comparison, we control the total

FDR and output the differential regions of enrichment based on the set of posterior probabilities as described

in Section 3.3.2. For a comparison between the Viterbi and the FDR thresholding approach, see Section 3.3.2

and Baldoni et al. 2019a.
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The following parametrization was used when calling peaks from the benchmarked methods. For THOR,

rgt-THOR ’config’ –name ’name’ -b ’bp’ –pvalue 1.0 –output-dir ’output’. For RSEG, rseg-diff -verbose

-mode 3 -out ’output’ -score ’score’ -chrom ’chrom’ -bin-size ’bp’ -deadzones ’deadzonee’ -duplicates

’sample1’ ’sample2’.

For ChIPComp, ChIPComp(makeCountSet(conf,design,filetype=”bam”,species=”hg19”,binsize=bp)).

For diffReps, diffReps.pl –gname hg19 –report ’output’ –treatment ’sample1’ –control ’sample2’ –btr

’control1’ –bco ’control2’ –window ’bp’ –pval 1 –nsd ’marktype’ –meth ’nb’.

For DiffBind, dba.report(dba.analyze(dba.contrast(dba.count(dba(sampleSheet = conf)), categories

= DBA CONDITION, minMembers=2)), th=1). In this parametrization, bp = {250, 500, 750, 100} and

marktype =′ broad′ if H3K27me3, H3K36me3, or EZH2, or marktype =′ sharp′ otherwise. For csaw,

we followed the authors’s recommended settings and the details are presented in (Baldoni et al., 2019a).

For DiffBind under 3 conditions (Figure 3.6), the set of differential peaks included all peaks deemed to

be differential by DiffBind under an FDR control of 0.05 simultaneously for all three pairwise contrast tests

between the cell lines Helas3, Hepg2, and Huvec. In the particular genomic position shown in Figure 3.6B,

no differential peaks were reported by DiffBind.

For ChIPComp and DiffBind, candidate peaks were called in advance using MACS with the syntax

macs2 callpeak -f BAM -g 2.80e+09 -B ’options’ -t ’sample’ -c ’control’ –outdir ’output’ -n ’filename’, such

that options = {–broad –broad-cutoff 0.1} if H3K27me3, H3K36me3, or EZH2, or options = {-q 0.01}

otherwise.

Software

mixNBHMM is available on https://github.com/plbaldoni/mixNBHMM as an R package.

mixNBHMM is a package with a differential peak caller to detect differential enrichment regions from

multiple ChIP-seq experiments with replicates. The main function of the package is mixNBHMM(). The

package allows the user to specify a set of parameters that control the Expectation-Maximization (EM)

algorithm. These parameters include, for instance, the convergence (and termination) criteria of the algorithm

and the threshold value for the rejection controlled EM algorithm. These parameters can be defined by the

function controlEM(). Please refer to the package documentation (e.g. ?mixNBHMM::mixNBHMM) for

additional details and the complete help manual.
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Code

The necessary code to replicate the results presented in the main article and in the supplementary material

can be downloaded from https://github.com/plbaldoni/mixNBHMMPaper.

The EM Algorithm

A pseudo code of the presented EM algorithm is below.

1. Initialize π(0),γ(0), δ(0), β
(0)
1 , β

(0)
3 , λ

(0)
1 , λ

(0)
3 , such that

∑3
r=1 π

(0)
r = 1 and

∑3
s=1 γrs = 1.

2. E step (t ≥ 1),

(a) Calculate Pr
(
Zj = r|y,x; Ψ(t−1)

)
and Pr

(
Zj−1 = r, Zj = s|y,x; Ψ(t−1)

)
for all r and s in

{1, 2, 3} and j = 1, . . . ,M via Forward-Backward algorithm as detailed in Appendix B of the

main article

(b) Calculate Pr(Wjl = 1|Zj = 2,y..j ,x; Ψ(t−1)) for all l {1, . . . , L} and j = 1, . . . ,M as

f(2,l)(y..j |xl;ψ
(t−1)
(2,l) )δ

(t−1)
l /

∑L
k=1 f(2,k)(y..j |xk;ψ

(t−1)
(2,k) )δ

(t−1)
k

3. M step (t ≥ 1),

(a) Maximize Equation 3.10 with respect to the initial and transition probabilities to obtain for all r

and s in {1, 2, 3}

π(t)r = Pr
(
Z1 = r|y,x; Ψ(t−1)

)
γ(t)rs =

M∑
j=2

Pr(Zj−1 = r, Zj = s|y,x; Ψ(t−1))/

M∑
j=2

Pr(Zj−1 = r|y,x; Ψ(t−1))

(b) Maximize Equation 3.10 with respect to δ to obtain δ(t) such that
∑L

l=1 δ
(t)
l = 1.

(c) Conditionally upon δ(t), maximize Equation 3.10 with respect to β1, β3, λ1, λ3 to obtain β(t)1 ,

β
(t)
3 , λ(t)1 , λ(t)3 ,

(d) Iterate between (b) and (c) until convergence.

4. Iterate between 2. and 3. until convergence.
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Adjustments for nuisance effects

Normalization for non-linear biases via model offsets

In our analyses, we observed that the magnitude of the local differences in read counts between conditions

changed with the average of local read coverage. Here, we accounted for these trended differences to avoid

calling spurious differential peaks due to the different magnitude of library sizes across groups. Specifically,

we implemented an approach similar to the non-linear normalization method used by csaw as follows (Lun

and Smyth, 2015). First, we create a reference sample of read counts formed by the geometric mean of read

counts from all replicates and conditions. Then, we fitted a loess curve on the difference between the read

counts of each sample and the reference on the average of those two quantities. A similar approach was

first implemented by (Lun and Smyth, 2015) and is available in their software. Here, we add a continuity

correction of 1 to avoid discarding genomic windows with zero counts. Using the smoothed curve as the

model offset, we observed better results than a simple correction via either the total sum of read counts or

cell-specific median log ratio. The rationale behind this approach is to create a reference library in which

each genomic window is the geometric mean of counts across all conditions and replicates, and then read

counts are properly adjusted by accounting for the smoothed differences between each individual library and

the reference library. A useful way to evaluate the performance of this normalization method is to compare

samples with respect to their adjusted read counts. For example, plotting the ratios between counts and

the calculated offsets yhij/exp(uhij) for all samples in the study. In Figure B.21 we show an example of a

genomic region from three analyzed cell lines and their respective MA plot, unadjusted ChIP counts, and

offset-adjusted ChIP counts. After accounting for the offset, the read counts from Helas3 are adjusted to its

larger library size with respect to the other under sequenced cell lines.

Input control adjustment in differential peak calling

Our implementation allows the optional inclusion of continuous covariates in the model with state-specific

parametrization. The main purpose of the inclusion of such covariates in the model is the adjustment for input

control (or any other continuous variable, such as autoregressive counts) that can be helpful in distinguishing

background from enrichment signal. Several methods for differential peak calling allow the inclusion of

input control in their computational framework (Stark and Brown, 2011; Shen et al., 2013; Chen et al., 2015).

However, Lun and Smyth (2015) point out that ”(...) controls are mostly irrelevant when testing for DB
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Figure B.21: MA plot of read counts from three distinct analyzed cell lines (top), unadjusted ChIP read
counts (center), and offset-adjusted ChIP read counts (bottom) from a given genomic region on chromosome
19. The blue line in the MA plots shows the offset created via loess smoothing.

between ChIP samples.”. To evaluate this claim, we ran an analysis of real data and simulated data while

accounting for the input control effect.

To asses whether accounting for input control effect leads to an improvement in performance, we utilized

the smoothing technique proposed by Chen et al. (2015) to account for input controls and autoregressive

counts. Specifically, we fitted generalized additive models (GAM, instead of loess smoothing) in the data

normalization step while accounting for input control (or autoregressive counts) as a covariate. The resulting

fitted curve was then used in the analysis as model offsets.

First, we analyzed real data by smoothing the input control effect and autoregressive counts with a

two-step approach. Specifically, we first called peaks without the inclusion of extra covariates in the model,

and then utilized the called differential peaks from the first step to smooth the covariates for each HMM

predicted state. Predicted smoothing curves from the GAM approach were then passed as model offsets in a
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second step of analysis. As claimed by Lun and Smyth (2015), we observed minor differences in the results

that would justify their inclusion in the analysis. Results from the histone modification mark H3K36me3 are

presented in Figure B.22.

Figure B.22: ROC curves for H3K36me3 utilizing no input controls (mixNBHMM), input control only
(mixNBHMM + C), autoregressive counts only (mixNBHMM + A), and smoothing of both input controls
and autoregressive counts (mixNBHMM + CA)

Next, we reasoned that our approach of modeling input control effect with state-specific parametrization

could not be ideal, since independent controls were available for every sample and there could exist sample-

specific effects not captured by our model. We then attempted to verify the utility of including input control

into the differential binding analysis by simulating data where ChIP-counts were generated such that their

log-mean had a linear relationship with input controls (Figure B.23). We then fitted three different models

that differed regarding the inclusion of input control: a model without control, a model with control, and

a model with controls where the smoothing was calculated separately for each latent HMM state. Again,

results did not show significant improvement by including the effect of control in the analysis.

Overall, we did not observe a significant improvement in performance by including input control in

differential peak calling. Although several methods do offer the option of including controls in their analysis

pipeline, we did not find that their inclusion was justifiable under our modelling assumptions. Our findings

are in agreement with Lun and Smyth (2015).
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Bayesian Information Criterion (BIC) for Hidden Markov Models

The BIC for hidden Markov models has been discussed by Zucchini et al. (2017). For the presented

three-state HMM, one can calculate the BIC as

BIC = −2 log

(
3∑
r=1

fpMr

)
+ (11 + L) log

(
M

G∑
h=1

nh

)
, (C.22)

where fpMr is the forward probability pertaining to the rth state calculated at the (last) M th genomic window

(as detailed in the Appendix of the main text), L is the number of mixture components, G is the number of

conditions, and nh is the number of replicates pertaining to condition h. The number of model parameters to

be estimated is (11 + L): 6 transition probabilities, 2 initial probabilities, 4 model coefficients pertaining to

the emission distributions, and L− 1 prior probabilities from the mixture model.

As shown in the main text, the proposed HMM is robust to situations where certain combinatorial patters

are rare. However, if pruning rare combinatorial patterns is still of interest, such a task can be performed

by making use of the BIC. For the analysis of G experimental conditions with a given BIC threshold ε, say

ε = 0.01, and L = 2G − 2 mixture components, one can prune rare combinatorial patterns by the following

algorithm.

1. Fit the three-state HMM with L mixture components (model 0) and compute the model BIC, BIC0, as

in Equation C.22.

2. Fit a reduced three-state HMM with L− 1 mixture components (model 1) by excluding the component

associated with the rarest combinatorial pattern of enrichment. Compute its BIC, BIC1.

3. Calculate ∆BIC = (BIC1 − BIC0)/BIC0. If |∆BIC| ≤ ε, set L ← L − 1 and return to 1.. If

|∆BIC| > ε, stop and set the model 0 as the final model.

In scenarios where the number of mixture components is smaller than 2G − 2, the implemented method

initializes the EM algorithm by clustering genomic windows with respect to the posterior probabilities of

enrichment obtained from a initial run of a two-state HMM to classify genomic windows into background

and enrichment windows. Such an initialization improves the overall computation time by reducing the time

to convergence of the presented EM algorithm.

We applied the above approach in real data where the goal was to reduce the number of rare mixture

components. Specifically, we reanalyzed the data presented in Section 5.3 of the main text by refitting
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the presented model with reduced number of combinatorial patterns. Figure B.24 presents the BIC from

various models regarding the number of mixture components on data from epigenomic marks H3K37me3,

H3K36me3, and EZH2. As shown, models with more than 2 mixture components exhibited values of BIC

quite close to each other. Conversely, the model with a single differential component had an excessively

large BIC. These results suggest that, according to the BIC, the parsimonious model with only 2 mixture

components would be the one chosen. As detailed in the main text, the analyzed data sets are characterized by

only 2 combinatorial patterns of enrichment, which are associated with the enrichment of H3K36me3 alone,

and the enrichment of H3K27me3 and EZH2 in consensus. Hence, choosing the model with 2 components

via BIC agrees with the biological roles of the analyzed marks.

The Forward-Backward Algorithm and Posterior Probabilities

The Q-function of the EM algorithm is defined as Q
(
Ψ|Ψ(t)

)
= Q0

(
π,γ|Ψ(t)

)
+Q1

(
ψ1|Ψ(t)

)
+

Q2

(
δ,ψ2|Ψ(t)

)
+Q3

(
ψ3|Ψ(t)

)
, such that

Q0

(
π,γ|Ψ(t)

)
=

3∑
r=1

{
Pr
(
Z1 = r|y,x; Ψ(t)

)
log(πr)

}
+

+
M∑
j=2

3∑
r=1

3∑
s=1

{
Pr
(
Zj−1 = r, Zj = s|y,x; Ψ(t)

)
log(γrs)

}
,

Q1

(
ψ1|Ψ(t)

)
=

M∑
j=1

Pr
(
Zj = 1|y,x; Ψ(t)

)
log f1 (y..j |ψ1) ,

Q2

(
δ,ψ2|Ψ(t)

)
=

M∑
j=1

Pr
(
Zj = 2|y,x; Ψ(t)

) L∑
l=1

Pr(Wjl = 1|Zj = 2,y..j ,x; Ψ(t))×

×
{

log f(2,l)

(
y..j |xl;ψ(2,l)

)
+ log(δl)

}
, and

Q3

(
ψ3|Ψ(t)

)
=

M∑
j=1

Pr
(
Zj = 3|y,x; Ψ(t)

)
log f3 (y..j |ψ3) ,

in which f1 (y..j |ψ1), f(2,l)
(
y..j |xl;ψ(2,l)

)
, and f3 (y..j |ψ3) are defined in Equations 3.7 and 3.8,

respectively.

Define, for j = 1, . . . ,M , the forward probabilities as
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fp11 = π1f1(y..1|ψ1), f
p
12 = π2f2(y..1|x;ψ2), f

p
13 = π3f3(y..1|ψ3),

fpj1 =
3∑
l=1

γl1f
p
(j−1)lf1(y..j |ψ1),

fpj2 =
3∑
l=1

γl2f
p
(j−1)lf2(y..j |x; δ,ψ2),

fpj3 =

3∑
l=1

γl3f
p
(j−1)lf3(y..j |ψ3).

Conversely, for j = 1, . . . ,M , define the backward probabilities as

bpMk = 1, ∀k = 1, 2, 3,

bpj1 =

3∑
l=1

γ1lb
p
(j+1)lf1(y..(j+1)|ψ1),

bpj2 =
3∑
l=1

γ2lb
p
(j+1)lf2(y..(j+1)|x; δ,ψ2),

bpj3 =
3∑
l=1

γ3lb
p
(j+1)lf3(y..(j+1)|ψ3).

Then, we have the following posterior probabilities

P (Zj = k|y,x; Ψ) =
fpjkb

p
jk∑3

l=1 f
p
Ml

, ∀j = 1, . . . ,M and k = 1, 2, 3,

P (Zj−1 = l, Zj = 1|y,x; Ψ) =
fp(j−1)lγl1f1(y..j |ψ1)b

p
j1∑3

l=1 f
p
Ml

,

P (Zj−1 = l, Zj = 2|y,x; Ψ) =
fp(j−1)lγl2f2(y..j |x; δ,ψ2)b

p
j2∑3

l=1 f
p
Ml

,

P (Zj−1 = l, Zj = 3|y,x; Ψ) =
fp(j−1)lγl3f3(y..j |ψ3)b

p
j3∑3

l=1 f
p
Ml

, ∀j = 2, . . . ,M and l = 1, 2, 3.
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HMM Emission Distributions

For the consensus background (r = 1) and consensus enrichment (r = 3) states, the emission distribution

function is

fr(y..j |ψr) =
G∏
h=1

nh∏
i=1

fr(yhij |ψr), r ∈ {1, 3} and yhij ∈ {0, 1, 2, . . .},

=

G∏
h=1

nh∏
i=1

Pr(Yhij = yhij |Zj = r;ψr),

=
G∏
h=1

nh∏
i=1

Γ(yhij + φr)

yhij !Γ(φr)

(
φr

µ(r,hij) + φr

)φr ( µ(r,hij)

µ(r,hij) + φr

)yhij
. (C.23)

For the differential state (r = 2), the emission distribution is

f2(y..j |x; δ,ψ2) =

L∑
l=1

δlf(2,l)

(
y..j |xl;ψ(2,l)

)
, yhij ∈ {0, 1, 2, . . .}, (C.24)

=
L∑
l=1

δl

G∏
h=1

nh∏
i=1

Pr
(
Yhij = yhij |Zj = 2,xl;ψ(2,l)

)
,

=

L∑
l=1

δl

G∏
h=1

nh∏
i=1

Γ
(
yhij + φ(2,l,h)

)
yhij !Γ

(
φ(2,l,h)

) (
φ(2,l,h)

µ(2,l,hij) + φ(2,l,h)

)φ(2,l,h)
×

×
(

µ(2,l,hij)

µ(2,l,hij) + φ(2,l,h)

)yhij
.

Apart from the offset uhij , we will assume that replicates from the same (different) condition share

common (distinct) mean and dispersion parameters under every mixing probability distribution f(2,l). To

define all possible combinations of background and enrichment acrossG conditions, we consider the following

sets of singletons A1, pairs A2, . . ., and (G− 1)-tuples AG−1 such that

A1 =
{
a(1) | a(1) ∈ G+ and a(1) ≤ G

}
,

A2 =
{

(a
(2)
1 , a

(2)
2 ) | (a(2)1 , a

(2)
2 ) ∈ G2

+ and a(2)1 < a
(2)
2 ≤ G

}
,

...

AG−1 =
{

(a(G−1)g )G−1g=1 | (a
(G−1)
g )G−1g=1 ∈ GG−1

+ and a(G−1)1 < . . . < a
(G−1)
G−1 ≤ G

}
.
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The union of all sets A = ∪G−1k=1 Ak contains an exhaustive list of L = 2G − 2 elements that determines the

differential pattern across G conditions such that each element of A indicates which of the G conditions

are enriched. For instance, if G = 3, A1 = {1, 2, 3} and A2 = {(1, 2), (1, 3), (2, 3)} define the six possible

combinations of enrichment and background across three conditions. Then, we define a bijective mapping

A → S1, . . . , SL and let xhl = I(h ∈ Sl) indicate whether the read count of genomic window j from

replicate i of condition h is enriched in the mixture component l. We model the log-mean µ(2,l,hij) and

log-dispersion φ(2,l,h) of mixture l from the emission distribution of Equation C.24 as

log(µ(2,l,hij)) = β1 + β3xhl + uhij , and

log(φ(2,l,h)) = λ1 + λ3xhl.

According to this parametrization, β1 and λ1 are the baseline log-mean and log-dispersion parameters of

the read count distribution from replicates of conditions that are not enriched under the mixing distribution

l. Conversely, β1 + β3 and λ1 + λ3 are the baseline log-mean and log-dispersion parameters of the read

count distribution from replicates of conditions enriched under the mixing distribution l. This choice of

parametrization ensures that windows exhibiting differential enrichment across conditions share means and

dispersions that are common between the remaining non differential HMM states.
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Figure B.23: Results from simulated data (A) where the log-means of ChIP-seq counts were generated as a
linear function of input controls (B). Sensitivity/specificity analyses did not show significant improvement by
including the effect of control in the offset scheme.
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Figure B.24: BIC from various models regarding their number of mixture components on epigenomic marks
H3K36me3, H3K27me3, and EHZ2 (Section 3.5.3)
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