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ABSTRACT

Surface waves introduce velocity correlations that bias and often dominate Reynolds stress estimates
made using the traditional variance method for acoustic Doppler current profilers (ADCPs). This analysis
shows that the wave bias is the sum of a real wave stress and an error due to instrument tilt, both of which
have a large uncertainty. Three alternative extensions to the variance method for calculating Reynolds
stress profiles from ADCP measurements in wavy conditions are analyzed. The previously proposed vari-
ance fitting method (Variance Fit) is evaluated and two more general methods that use along- and between-
beam velocity differencing with adaptive filtering (Vertical AF and Horizontal AF) are derived. The three
methods are tested on datasets containing long-period monochromatic swell (Moorea, French Polynesia)
and shorter-period mixed swell (Santa Barbara, California). The Variance Fit method leaves a residual
wave bias in beam velocity variances, especially for intermediate waves, but gives physically reasonable
Reynolds stress estimates because most of the residual wave bias cancels when the variance method is
applied. The new Vertical AF method does not produce inherent wave bias in beam velocity variances, but
yields comparable Reynolds stresses to the Variance Fit method. The Horizontal AF method performs
poorly for all but monochromatic waves. Error remaining after one of the above methods is applied can be
attributed to residual wave error, correlation of turbulence between points chosen for differencing, or
correlation between waves and turbulence. A simple procedure is provided for determining the minimum
bin separation that can be used.

1. Introduction

Turbulent stresses, or Reynolds stresses, represent
the transport of momentum by turbulence and thus can
control the vertical structure of turbulent environmen-
tal flows. Knowledge of Reynolds stresses along with
mean velocity profiles allows the eddy viscosity, the
most common parameterization of vertical mixing due
to turbulence, to be computed. In the shallow coastal
ocean, measurement of Reynolds stresses is compli-
cated by the presence of surface waves. Although for
small-amplitude irrotational waves the horizontal and
vertical components of wave orbital velocities are 90°
out of phase and therefore should have zero covari-
ance, very small tilts in sensor alignment, or real wave
stress associated with a sloping bed, for example, lead

to a covariance between horizontal and vertical veloci-
ties that can contaminate or even dominate Reynolds
stress measurements. Additionally, waves often occupy
the same frequency range as turbulence in the shallow
coastal ocean, and therefore wave contamination can-
not be removed by simple frequency filtering.

Historically, two classes of methods have been used
to remove wave bias from Reynolds stress measure-
ments. Pressure–velocity correlation methods remove
components of the velocity signal that are correlated
with pressure or surface elevation (e.g., Benilov and
Filyushkin 1970; Agrawal and Aubrey 1992); however,
these methods fail to adequately remove wave bias
when there is directional spread in the wave field (Her-
bers and Guza 1993). Velocity differencing methods
(Trowbridge 1998; Shaw and Trowbridge 2001; Fedder-
sen and Williams 2007) use the property that the spatial
scale over which wave orbital velocities are coherent is
much larger than the scale over which turbulent veloc-
ity fluctuations are coherent. Direct velocity differenc-
ing between measurements that are separated in space
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has been used successfully to remove the wave compo-
nent of horizontal velocity variations for sensors that
are closely spaced compared with the wavelength of a
wave (Trowbridge 1998). The range of applicability of
this method has been extended by allowing the veloci-
ties at the two locations to be related by a linear trans-
form before differencing (Shaw and Trowbridge 2001;
Feddersen and Williams 2007).

These methods allow Reynolds stress to be measured
in wavy conditions at a limited number of points; how-
ever, the ultimate goal is to measure full profiles of
turbulent quantities. Lohrmann et al. (1990) introduced
a method for calculating Reynolds stress profiles from
four-beam current profiler measurements using the dif-
ference between the velocity variances along opposing
beams. Stacey et al. (1999a), Lu and Lueck (1999), and
Williams and Simpson (2004) extended this work with
analyses of the confidence in Reynolds stress measure-
ments. The variance method has since been applied
successfully in a number of studies of stratified tidal
systems (Stacey et al. 1999b; Rippeth et al. 2002; Fugate
and Chant 2005). Comparisons with independent collo-
cated acoustic Doppler velocimeter (ADV) measure-
ments have validated the method (Souza and Howarth
2005; Nidzieko et al. 2006) and illustrated that the fast
pinging rate mode 12 maintains accuracy while reduc-
ing noise relative to the single ping mode 1 (Nidzieko et
al. 2006; Williams and Simpson 2004). However, appli-
cation of the variance method to coastal seas has illus-
trated that the method fails in the presence of energetic
surface waves (Rippeth et al. 2003; Howarth and Souza
2005; Souza and Howarth 2005).

Uncertainty in the principal axes of wave orbital mo-
tion leads to a wave bias in Reynolds stresses calculated
using the variance method, similar to that described
above for point velocity measurements. Velocity differ-
encing methods are a viable option for removing wave
contamination from Reynolds stress profiles calculated
using the variance method. Whipple et al. (2006, here-
after WLS) proposed a method to remove wave con-
tamination by differencing along-beam velocities mea-
sured at different bins of the same acoustic Doppler
current profiler (ADCP) beam, based on the method
introduced by Trowbridge (1998). The decay of wave
velocity between bins chosen for differencing is deter-
mined from a fit to the vertical profile of the variance of
beam velocity. The variance fitting method assumes
that wave orbital velocities decay with depth in accor-
dance with linear wave theory, that velocities decay in
the same way with depth for opposite beams, and that
velocities at different points along the ADCP beam are
perfectly in phase, a condition that is seldom satisfied.

In this paper, we analyze the limitations of the WLS

Variance Fit method and develop two more general
methods for extracting Reynolds stresses from wave-
contaminated ADCP data. These new methods, based
on Shaw and Trowbridge (2001), make no assumption
about the form of the decay of wave orbital velocities
with depth, and they allow for a phase lag between
measurements used for differencing. We evaluate and
cross-compare the three methods using field measure-
ments containing long-period monochromatic swell
(Moorea, French Polynesia) and short-period mixed
swell (Santa Barbara, California). The remainder of
this paper is organized as follows: section 2 describes
the field sites, deployment details, and hydrodynamic
conditions during the experiments; section 3 sets up the
problem and derives expressions for the bias intro-
duced by waves; section 4 details the Variance Fit
method and presents the two new approaches to re-
moving the wave bias; the three methods are cross-
compared and the limitations of each method are dis-
cussed in section 5, and key findings are summarized in
section 6.

2. Overview of field deployments

This paper draws on data from two experiments, one
in Moorea, in December 2005, and the other in Santa
Barbara, in March 2005. For each experiment, a 1.2-
MHz four-beam broadband ADCP (RD Instruments
Workhorse monitor) was deployed on the bottom,
looking upward, in approximately 10 m of water. The
instrument was programmed to operate in fast pinging
mode 12, recording one velocity profile per second.
Each recorded velocity was the average of six measure-
ments (subpings) at a 40-ms separation. Velocities were
recorded in beam coordinates; that is, one along-beam
velocity was obtained for each of the instrument’s four
acoustic beams. Local wave statistics and thermal strati-
fication were measured in both experiments (Sea-Bird
SBE26, SBE26!, SBE39). The following two sections
give background information about the two field sites,
details relating to the individual deployments, and a
summary of hydrodynamic conditions during the ex-
periments.

a. Moorea deployment: 8–18 December 2005

The Moorea experiment was conducted approxi-
mately 1.2 km offshore of the north shore of Moorea
(17°28.8"S, 149°50.4"W; Fig. 1a). This part of the
Moorea shoreline is characterized by a shallow back-
reef area (0–1 km from shore), a sharp reef crest where
wave breaking occurs, and a forereef area (1–1.5 km)
from shore. Beyond the forereef, the seafloor drops off

FEBRUARY 2008 R O S M A N E T A L . 287



quickly, reaching a 500-m depth at about 2 km from
shore. Thus, the site is fully exposed to long-period
ocean swell, which is commonly generated in the North
Pacific during the austral summer (Bromirski et al.
2005). The forereef is characterized by raised reef areas
inhabited by fine corals and deeper sand channels run-
ning perpendicular to the shore. The instruments were
deployed near the head (shoreward end) of one of
these sand channels in water 11.7 m deep, although the
adjacent reef area was as shallow as 6–8 m. The tidal
range is very small (about 0.2 m) at this site.

The ADCP bin size was 0.25 m, with the first bin 1.0
m above bottom. The ADCP was deployed to be as
level as possible, but the instrument tilt varied between
0° and 3° during the experiment because of scour
around the frame. The instrument heading (angle
clockwise from north to beam 3, y axis) was 240°. The
thermistor string contained 10 loggers (Sea-Bird,
SBE39), recording temperature every 5 s, positioned at
1-m intervals from 0.5 to 9.5 m above bottom. Tem-
perature data are not available for the first 2.5 days of
the experiment because of a delay in the thermistor
string deployment.

Observed conditions during the experiment are sum-
marized in Fig. 2. Currents near the bed remained low
(less than 0.05 m s#1) throughout, presumably because
the instrument was located in a deeper sand channel,
with raised reef areas immediately alongshore in both
directions. Velocities near the surface reached 0.2
m s#1, and the majority of velocity shear occurred be-
tween 4 and 8 m above bottom. During the first part of
the experiment, gradient Richardson numbers indicate
that the water column was well mixed, without suffi-
cient vertical stratification to suppress shear generation

of turbulence. During the latter part of the experiment,
stratification increased and was usually sufficient to in-
hibit vertical mixing. Significant wave periods ranged
from 12 to 20 s, and significant wave heights reached as
high as 1.5 m. The beginning of the experiment saw the
tail end of a swell event from offshore, a further two
swell events occurred during the experiment period,
and the last four days saw much less wave activity. The
dominant wave direction was from the north (heading
345°–360°), at an angle of 60°–75° from the ADCP y
axis.

b. Santa Barbara deployment: 23 March–8 April
2005

The second field site was offshore of Mohawk Reef
(34°23.7"N, 119°43.8"W), west of the town of Santa Bar-
bara in Southern California (Fig. 1b). The instruments
were deployed in an area with a sandy bottom, about 40
m offshore of a rocky reef that is seasonally covered
with a dense kelp forest. The average water depth at the
measurement location was 9.3 m and the tidal range
was 2 m.

The ADCP bin size was 0.5 m and the first bin was
1.3 m from the bottom. The ADCP pitch and roll re-
mained less than 2.5° throughout the experiment, and
the instrument heading was 261°. A thermistor string
was collocated with the ADCP, with SBE39 tempera-
ture loggers at 1-m intervals between 1 and 7 m above
bottom recording at 30-s intervals.

The hydrodynamic conditions during the Santa Bar-
bara deployment are shown in Fig. 2. Current direction
was predominantly alongshore and reversed on a mixed
semidiurnal/diurnal basis. Current speeds regularly ex-
ceeded 0.3 m s#1, and the majority of the velocity shear

FIG. 1. Maps of the two field sites, (a) Moorea and (b) Santa Barbara, showing the coastline (land area shaded gray), depth contours
relative to MSL, and instrument locations, marked with an X. Instrument orientation is indicated by the x–y axes, with the x axis
directed from beam 2 to beam 1 and the y axis directed from beam 4 to beam 3.
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was near the seabed. Gradient Richardson numbers,
calculated from 10-min-averaged velocity and tempera-
ture profiles, exceeded 0.25 30% of the time in the
lower water column and 55% of the time in the upper
water column, indicating that stratification was often

sufficient to suppress vertical turbulent mixing. Signifi-
cant wave periods ranged from 5 to 15 s, and significant
wave heights varied between 0.5 and 1.3 m. Wave spec-
tra were broad, with both a wide swell peak (7–15 s),
and a wind wave peak (4–5 s). The dominant wave

FIG. 2. Conditions during the experiments: (a), (f) instrument tilt (pitch and roll); (b), (g) 10-min-averaged currents in the x direction;
(c), (h) 10-min-averaged currents in the y direction; (d), (i) Richardson numbers calculated from interpolated velocity and temperature
profiles; and (e), (j) wave amplitude spectral density as a function of wave period and time. The data gap in (e) is due to instrument
servicing.
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direction was from the southwest (220°–240°), at an
angle of 20°–40° from the ADCP y axis.

3. The variance method and wave bias

a. Coordinate systems

A four-beam ADCP typically has two pairs of oppos-
ing transducers that emit acoustic pulses along
“beams,” as depicted in Fig. 3. Along-beam velocities
are calculated by the instrument firmware, from the
Doppler shift in the sound signal returned to the trans-
ducers, yielding four along-beam velocities (u1, u2, u3,
u4), defined to be positive toward the instrument. Beam
velocities can be resolved into an orthogonal coordi-
nate system that is fixed relative to the ADCP. We use
the coordinate system defined by Lu and Lueck (1999),
where x† is the direction from beam 2 to beam 1, and y†

is the direction from beam 4 to beam 3 (Fig. 3). Beam
velocities (u1, u2, u3, u4), expressed in terms of veloci-
ties in the instrument coordinate system (u†, $†, w†), are

u1 % #u† sin! # w† cos!

u2 % u† sin! # w† cos!

u3 % #"† sin! # w† cos!

u4 % "† sin! # w† cos!, &1'

where ( is the half angle between opposing beams (20°
for an RDI Workhorse ADCP). In the case of a per-
fectly level instrument, u† and $† correspond to hori-

zontal velocities and w† corresponds to the vertical ve-
locity.

If an ADCP is tilted by a pitch angle )P about the x
axis (positive counterclockwise) or by a roll angle )R

about the y axis (positive counterclockwise), the trans-
form from the instrument coordinate system (u†, $†, w†)
to a level coordinate system (u, $, w) is

! u

"

w" % ! cos#R 0 sin#R

sin#P sin#R cos#P # sin#P cos#R

# cos#P sin#R sin#P cos#P cos#R
"!

u†

"†

w†" . &2'

For small )P and )R, this expression can be simplified
using Taylor expansions. Retaining only terms to first
order in )P and )R yields

! u

"

w" % ! 1 0 #R

0 1 ##P

##R #P 1 "!
u†

"†

w†" . &3'

Inverting this equation gives an expression for (u†, $†,
w†) in terms of the coordinates (u, $, w):

!
u†

"†

w†" % ! 1 0 ##R

0 1 #P

#R ##P 1 "! u

"

w" . &4'

b. Introduction to the variance method

In the absence of waves, each component of the ve-
locity can be decomposed into a mean (e.g., $) associ-
ated with slowly varying flow and into a fluctuation
(e.g., $") associated with turbulence. Mean values are
calculated over an appropriate time interval (e.g., 10
min) for which the flow is statistically stationary. If each
quantity in Eq. (1) is decomposed in this way, it can be
shown (Lohrmann et al. 1990; Stacey et al. 1999a) that

#u†$w†$ %
u$2

2 # u$2
1

4 sin! cos!

#"†$w†$ %
u$4

2 # u$2
3

4 sin! cos!
. &5'

FIG. 3. The ADCP beam geometry and coordinate systems: the
( y†, z†) coordinate system relative to the instrument and the (y, z)
coordinate system relative to earth. The pitch angle is de-
noted )P.
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This is the variance method for calculating Reynolds
stresses from ADCP beam velocities.

Substituting the transformation in Eq. (4) into Eq.
(5) yields

u$2
2 # u$1

2

4 sin! cos!
% #u$w$ # #R&u$2 # w$2' ! #Pu$"$

u$4
2 # u$3

2

4 sin! cos!
% #"$w$ ! #P&"$2 # w$2' # #Ru$"$

Eturb

,

&6'

in agreement with Lu and Lueck (1999). Here, Eturb is
the bias introduced to Reynolds stress estimates by in-
strument tilt in the absence of waves. For the worst case
of highly anisotropic turbulence, u"2 # w"2 * u"$" *
5u"w" (e.g., Lu and Lueck 1999; Gross and Nowell
1983), yielding a maximum bias of 50% for a tilt of 3°
(0.05 rad). However, in general, bias terms will be
smaller, and for isotropic turbulence u"2 # w"2 → 0 and
u"$" * u"w", yielding a bias of about 5% for a tilt of 3°.

c. Bias introduced by waves

In the presence of waves, the situation is somewhat
more complicated. We derive the equations and
present results for the y direction in this section; how-
ever, the analysis for the x direction is identical and the
results are similar. The instantaneous velocity can be
decomposed into a mean (e.g., $) associated with the
slowly varying flow, a component associated with the
waves (e.g., $̃), and a fluctuation associated with the
turbulence (e.g., $"). For example,

" % " ! "̃ ! "$
w % w ! w̃ ! w$. &7'

Since the wave and turbulence components cannot be
separated by simple frequency filtering, direct applica-
tion of the variance method gives

&ũ4 ! u$4'2 # &ũ3 ! u$3'2

4 sin! cos!
% #&"̃† ! "†$'&w̃† ! w†$'

% #"̃†w̃† # "†$w†$. &8'

The simplification in the second line of Eq. (8) assumes
that the wave and turbulence components of the signal
are uncorrelated. Equation (8) can then be transformed
to a level coordinate system using Eq. (4):

&ũ4 ! u$4'2 # &ũ3 ! u$3'2

4 sin! cos!

% #"$w$ #"̃w̃
Ews

! #P&"̃2 # w̃2' # #Rũ"̃

Etilt

! #P&"$2 # w$2' # #Ru$"$

Eturb

. &9'

As in the no-waves case, the turbulence contribution to
the error, Eturb, is less than 50% for tilts less than 3°;
however, as we show below, the wave terms in Eq. (9)
can dominate the Reynolds stress estimates as the wave
orbital velocities can be orders of magnitude larger
than turbulent fluctuations. The errors due to wave bias
can be categorized as 1) Ews, the real wave stress
(#$̃w̃), or 2) Etilt, the error due to the interaction of
wave orbital velocities and instrument tilt [)P($̃2 # w̃2)
# )Rũ$̃]. For an instrument with one pair of beams
aligned with the direction of wave motion, )Rũ$̃ → 0.
Note also that for deep water waves with near-circu-
lar particle orbits, $̃2 + w̃2 and thus )P($̃2 # w̃2) → 0.

A tilt in the principal axes of wave orbital motion
from the horizontal, associated with a sloping bed, for
example, can lead to a large Ews. If $w and ww are the
wave velocities in a coordinate system rotated to the
principal axis of wave orbital motion, , is the angle
between the y axis and the direction of wave propaga-
tion, and - is the angle between the principal axis of
wave orbital motion and the horizontal, then the result-
ing wave stress is

Ews % #"̃w̃
% #&"w cos% cos& # ww sin%'&"w sin% cos& ! ww cos%'

% #&"w
2 cos2& # ww

2 ' sin% cos% # "www cos2% cos&

+ # &"w
2 cos2& # ww

2 ' sin% cos%, &10'

which is nonzero even if the correlation between com-
ponents of wave orbital velocity in the rotated coordi-
nate system ($www) is zero.

The effect of wave bias can be seen in the uncor-
rected Reynolds stresses, obtained by applying the vari-
ance method [Eq. (5)] directly to the Moorea and Santa
Barbara measurements (Fig. 4). The wave biases due to
instrument tilt (Etilt) and wave orbital orientation (Ews)
were calculated using Eqs. (9) and (10), respectively. In
this calculation, it was assumed that wave velocities did
not vary significantly between opposite beams, and thus
the beam velocities could be combined in a sensible
way, using Eqs. (1) and (2), to calculate the instanta-
neous horizontal and vertical components of wave or-
bital velocities. Additionally, turbulent velocity fluctua-
tions were assumed to be small compared to wave ve-
locities, and total de-meaned velocities were therefore
used in Eqs. (9) and (10).

The uncertainties in the ADCP pitch and roll cause
an uncertainty in the calculated Etilt and Ews. The ac-
curacy and precision of the tilt sensor are each 0.5° (RD
Instruments 2005). Because N % 600 individual pitch
and roll measurements were averaged to obtain the 10-
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min averages, and the precisions of )P and )R in Eq. (9)
and - in Eq. (10) are 0.5°/.N % 0.0204°. As the accu-
racy is not reduced by averaging, the total uncertainties
(accuracy plus precision) in the 10-min-averaged )P,

)R, and - are 0.53°. The uncertainties in Etilt and Ews as
a result of the tilt uncertainty were computed using
standard propagation of error procedures. Fractional
uncertainties in Ews are small for the Moorea dataset

FIG. 4. Effect of wave contamination on computed Reynolds stress values: (a), (g) uncorrected Reynolds stress profiles calculated
directly using the variance method; (b), (h) uncorrected Reynolds stresses (1.3 mab, black) near bottom and (8 mab for Moorea, 6.8
mab for Santa Barbara, gray) near surface; (c, i) contoured error due to instrument tilt [Etilt, Eq. (10)]; (d), (j) fractional uncertainty
in Etilt (black) near bottom and (gray) near surface; (e), (k) contoured error due to variation of the principal axis of wave orbitals from
horizontal [Ews, Eq. (9)]; and (f), (l) fractional uncertainty in Ews (black) near bottom and (gray) near surface.
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but large for the Santa Barbara dataset, and fractional
uncertainties in Etilt are large in both experiments
(Fig. 4).

The main source of wave bias in the Moorea Reyn-
olds stress estimates is Ews, which is larger near the
bottom where wave motion was aligned with the
steeply sloping seafloor. The fractional uncertainties in
the estimates of Ews for Moorea are relatively small
because the angle between the horizontal and the wave
principal axis (8°–25°) is much larger than the accuracy
of the tilt sensor (0.5°). In the Santa Barbara Reynolds
stress estimates, Ews and Etilt are similar in magnitude
but opposite in direction and largest near the surface
where wave orbital velocities were greatest. However,
the fractional uncertainties in these terms are large be-
cause the tilt sensor accuracy is large compared with the
instrument tilt and compared with the angle between
the horizontal and the wave orbital motion. The sum of
Ews and Etilt explains 99% of the variance of the un-
corrected Reynolds stress near the bottom for the
Moorea data and 97% of the observed variance near
the surface. For the Santa Barbara data, the wave bias
terms explain 95% of the variance of uncorrected
Reynolds stress near the bottom and 80% near the sur-
face.

Above, we estimated the uncertainty in Etilt and Ews

based on the uncertainty in instrument tilt alone. Non-
linear waves can result in a nonzero correlation be-
tween wave velocity components even if velocities are
rotated to the principal axes of wave orbital motion
(i.e., $www / 0). Also, we are unable to determine wave
velocities accurately because opposing beams are sepa-
rated in space. These factors further increase the un-
certainty in estimates of Etilt and Ews computed from
Eqs. (9) and (10). As it is not possible to determine Etilt

and Ews accurately enough to isolate the true Reynolds
stresses, we seek alternative methods for removing
wave contamination from the beam velocities prior to
applying the variance method.

4. Wave bias correction methods

In this section we present three methods for remov-
ing wave bias from beam velocities and subsequent
Reynolds stress estimates: the Variance Fit method of
WLS, a vertical differencing method incorporating
adaptive filtering (Vertical AF), and a horizontal (be-
tween beam) differencing method incorporating adap-
tive filtering (Horizontal AF).

a. Variance Fit method

The Variance Fit method, based on Trowbridge
(1998) and extended to ADCPs by WLS, assumes that

wave orbital velocities are in phase along any one
ADCP beam and decay with depth according to linear
wave theory. The analysis presented in this section il-
lustrates that the first of these assumptions is usually
poor, even for the case of low-frequency linear waves,
because the along-beam velocity contains components
of both horizontal and vertical wave orbital velocities,
which are 90° out of phase and decay with depth below
surface in a different way.

Transforming the theoretical expressions for ũ and w̃
from linear wave theory (e.g., Dean and Dalrymple
1991) into beam coordinates yields the following ex-
pression for the beam velocity variance, for a beam axis
aligned with the direction of wave propagation:

ũbeam
2 % c10coshc2&z ! h' # cos2!1, &11'

where

c1 %
H2'2

16 sinh2kh

c2 % 2k

,

ũbeam is the wave component of the beam velocity, ( is
the half angle between opposing beams, H is wave
height, 2 is wave frequency, k is wavenumber, h is the
total water depth, and z is the vertical coordinate, de-
fined to be zero at the surface and to be positive up-
ward.

WLS assume that one of the ADCP beam pairs is
oriented parallel to the direction of wave propagation.
However, it can be shown that for a beam pair oriented
at some angle , to the direction of wave propagation,
the expression for beam velocity variance as a function
of depth is

ũbeam
2 % c10&cos2& sin2! ! cos2!' coshc2&z ! h'

! &cos2& sin2! # cos2!'1, &12'

where c1 and c2 are defined as in Eq. (11).
The beam velocity time series are segmented into

intervals over which the flow is statistically stationary
(3t, here 10 min), and the means are removed from the
beam velocities over these time intervals. Henceforth,
ubeam refers to the de-meaned beam velocity. The di-
rection of wave propagation relative to the instrument
(,) is computed from the principal axes of wave orbital
motion for each interval. Here ubeam

2 is calculated over
each interval, and the expression in Eq. (12) is fit to
each variance profile to obtain the parameters c1 and c2.
To remove the wave component of the beam velocity,
two bins are selected at levels z(1) and z(2), centered on
the height at which the Reynolds stress is required and
spaced far enough apart that the turbulence is not cor-
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related. The appropriate choice of bin separation is dis-
cussed in section 5c. The beam velocities at the two
heights are differenced according to

(ubeam % ubeam
&1' # )ubeam

&2' , &13'

where

) %# &ũbeam,fit
&1' '2

&ũbeam,fit
&2' '2

&14'

is computed from the variance fit [Eq. (12)]. Then,

(ubeam % u$&1'
beam # )u$&2'

beam ! (ũbeam

(ubeam
2 % u$&1'

beam
2 ! )2u$&2'

beam
2 ! *wave ! *turb ! *wt,

&15'

where

*turb % #2)u$&1'
beamu$&2'

beam

*wave % (ũbeam
2

*wt % 2&u$&1'
beam # )u$&2'

beam'(ũbeam.

Here 4turb is the error due to the correlation between
the turbulence components at the two points chosen for
differencing, which should reduce to zero for sufficient
bin separation, 4wave is the residual wave error, and 4wt

is the error that arises if there is a correlation between
the velocity fluctuations due to waves and turbulence.

If the wave velocity decay factor 5 is the same for
opposing beams, then application of the variance
method [Eq. (5)] gives

(u4
2 # (u3

2

4 sin! cos!
+ # "$w$&1' # )2"$w$&2'. &16'

In WLS, 5 is chosen to be the average of the 5 values
calculated for the two opposing beams. An estimate of
the Reynolds stress in the y direction, between z(1) and
z(2), is therefore

#"$w$&1#2' +
(u4

2 # (u3
2

4 sin! cos!&1 ! )2'
. &17'

The equation for #u"w" is analogous.
The Variance Fit method assumes that 1) the wave

orbital velocities at the two chosen points are perfectly
in phase, 2) the wave velocities decay with depth in
accordance with linear wave theory, 3) the decay of the
wave orbital velocities along opposite beams is the
same (53 % 54 % 534), and 4) the waves are narrow
spectrum and the wave period does not change substan-
tially over the chosen averaging interval.

The first of these assumptions is usually poor and can
lead to a large residual wave error in differenced beam
velocity variances. The total phase difference between
selected bins is the sum of two contributions. A small
phase difference exists because of the time taken for a
wave to propagate from the horizontal location of the
first bin to the horizontal location of the second bin. For
a vertical separation of 2 m, and a wave traveling par-
allel to a beam pair, there is a corresponding horizontal
separation of 2cos(, which is 0.7 m for a 20° beam angle.
The shallow- and deep-wave phase speeds are 9.9 and
6.2 m s#1, respectively, in a 10-m water depth, leading
to a maximum time delay between bins of 0.07–0.12 s
for a wave traveling parallel to the beam.

There is also a phase difference due to the different
relative amplitudes of the horizontal and vertical wave
velocities at the selected bins. The amplitude of vertical
velocity oscillations (w̃) decreases relative to the am-
plitude of horizontal velocity oscillations ($̃) with in-
creasing depth below surface. Because w̃ and $̃ are 90°
out of phase, this leads to a phase difference between
along-beam velocities at different heights in the water
column.

To assess the time delay and the size of the residual
wave error in the corrected beam velocities due to this
second type of phase difference, we applied the Vari-
ance Fit method to monochromatic waves with wave
velocities computed from linear wave theory. Two
waves are considered initially: a 4-s period, 0.3-m-high
wave in 10 m of water, similar to the waves in the
dataset used by WLS, and a 15-s period, 1-m-high wave
in 10 m of water, similar to the waves seen in the
present datasets. The variance fit [Eq. (12)] is com-
puted from the wave parameters, and Eq. (13) is ap-
plied to a pair of points near the bed (1 and 3 m above
bottom) and a pair of points near the surface (7 and 9
m above bottom). The resulting residual wave error in
differenced beam velocity variance (Fig. 5) is small for
the shorter 4-s waves. For the longer 15-s period waves,
the residual wave error is reduced by two orders of
magnitude by the Variance Fit method. However, the
wave error in differenced beam velocity variances re-
mains O(10#4) m2 s#2, similar to the Reynolds stresses
we are trying to measure.

The phase lag between bins and the resulting residual
wave bias that can be expected in beam velocity vari-
ances after application of the Variance Fit method are
shown in Fig. 6 as a function of kh and z. The residual
wave error is small for short (deep water) waves be-
cause wave orbitals are close to circular, and the ratio of
the amplitude of w̃ to the amplitude of $̃ varies little
with vertical position, leading to relatively constant
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phase in the along-beam component of wave orbital
velocity with depth. The largest residual wave error
occurs for intermediate waves with kh between 0.5 and
2 and is greatest in the lower part of the water column.
For intermediate waves, the assumption of constant
phase with depth is poor because w̃ decreases relative
to $̃ with increasing depth below surface. For shallow-
water waves, the assumption of constant phase is some-

what better than for intermediate waves because w̃ is
always much smaller than $̃; thus the phase of the beam
velocity signal is always dominated by the phase of the
horizontal component of wave velocity.

b. Vertical differencing with adaptive filtering

Here we develop a new method using vertical differ-
encing with adaptive filtering (Vertical AF) that is de-

FIG. 5. Theoretical residual wave errors for Reynolds stresses calculated with the Variance Fit method for a monochromatic wave
using linear wave theory. (left) A 4-s period, 0.15-m amplitude wave in 10 m of water; (right) a 15-s period, 0.5 m-amplitude wave in
10 m of water. (top) 8 m above bottom; (bottom) 2 m above bottom. Within each set of four time series, first: along-beam component
of wave orbital velocity; second: ratio of velocity at the upper height to the velocity at the lower height, with (dotted) corresponding
5 from Eq. (13); third: square of the along-beam velocity prior to differencing, with (dotted) resulting wave bias; and fourth: remaining
wave bias in along-beam velocity after correction, with (dotted) residual wave error.
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signed to relax three assumptions associated with the
Variance Fit method: 1) constant phase across the wa-
ter depth, 2) decay with depth in accordance with linear
wave theory, and 3) identical decay along opposite
beams. The Vertical AF method is based on the
method of Shaw and Trowbridge (2001), but it is ex-
tended here for use with ADCPs. Again we select two
heights in the water column, z(1) and z(2), spaced a suf-
ficient distance apart that turbulent velocity fluctua-
tions are not coherent. Rather than assuming the wave
velocity at z(2) is a constant multiplier of the wave ve-
locity at z(1), we now assume that the wave velocity at
z(2) is a linear function (L) of the wave velocity at z(1).
That is,

ũbeam
&1' &t' % L &ũbeam

&2' ' % $
#+

+

s&t*'ũbeam
&2' &t # t*' dt*, &18'

where t is time, t* is the integration variable, and s(t) is
a continuous function that relates ũ(2)

beam to ũ(1)
beam.

In practice, we choose a time window size (L) and
compute a linear function that best relates a velocity
measurement at z(1) with a discrete sequence of velocity
measurements of length L at z(2). That is, the predicted
velocity ũ̂ beam at height z(1), based on measurements at
z(2), is

ũ̂ beam
&1' &ti' % 6

j%#
1

2
&L#1'

1

2
&L#1'

sjubeam
&2' &ti!j', &19'

where, again, ubeam implies the de-meaned beam veloc-
ity and s is now a vector of weights of length L that
relate the discrete ũ(2)

beam and ũ(1)
beam.

If A is a windowed matrix of the velocity data at point
z(2), that is, the ith row of A is [u(2)

beam(ti#1/2(L#1)), . . . ,
u(2)

beam(ti!1/2(L#1))], Eq. (19) can be written in matrix
form

ũ̂beam
&1' % As. &20'

The vector of weights s % (s1, . . . , sL) is chosen to
minimize the sum of squared differences between pre-
dicted and measured beam velocities over each 10-min
interval. We compute the weights following Shaw and
Trowbridge (2001), whereby the estimator of the
weights is

ŝ % &ATA'#1ATubeam
&1' . &21'

The velocity difference at z(1) is then

(ubeam
&1' % ubeam

&1' # ũ̂ beam
&1'

% u$&1'
beam # L &u$&2'

beam' ! (ũbeam
&1' , &22'

FIG. 6. Variation of (a) Variance Fit method residual wave error (4wave) and (b) time lag between beam velocities at z(1) and z(2) with
wavelength and height above bottom for a monochromatic linear wave [where wave height is 1 m, water depth is 10 m, and separation
between z(1) and z(2) is 2 m]. Wavenumber (k) and depth below surface (z) are normalized by the water depth (h). The range of wave
conditions (kh) tested by WLS and those observed in the Moorea (M) and Santa Barbara (SB) deployments are indicated above the
graphs.
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and the beam velocity variances are computed as

(ubeam
&1' ubeam

&1' % 0u$&1'
beam # L&u$&2'

beam' ! (ũbeam
&1' 10u$&1'

beam ! ũbeam
&1' 1

% u$&1'
beam

2 ! *wave ! *turb ! *wt, &23'

where

*wave % ũbeam
&1' (ũbeam

&1'

*turb % #L &u$&2'
beam'&u$&1'

beam'

*wt % 2 ũbeam
&1' u$&1'

beam # L &u$&2'
beam'ũbeam

&1' # L &ũbeam
&2' 'u$&1'

beam.

7ere, 4wave is the residual wave error, 4turb is the error
due to correlation between turbulence at z(1) and the
linear transform of the turbulence component at z(2),
and 4wt is the wave–turbulence correlation error. Since
the Vertical AF method allows a phase difference be-
tween the chosen points, we expect that the residual
wave error will be much smaller than that of the Vari-
ance Fit method. If the bins for differencing are sepa-
rated sufficiently, then 4turb will be zero. The wave–
turbulence correlation error 4wt is the sum of an error
due to the correlation between waves and turbulence at
z(1), and an apparent correlation will appear between
waves and turbulence due to the method used to com-
pute the linear transform L.

The Reynolds stresses can then be computed by ap-
plying the variance method; for example, for the y di-
rection,

(u4
&1'u4

&1' # (u3
&1'u3

&1'

4 sin! cos!
+ # "$w$&1'. &24'

The expression for the x direction is analogous.
Note that the Vertical AF method is set up here as

the product of a differenced quantity and an undiffer-
enced quantity. It can be shown (see the appendix) that
for the Vertical AF method the variance computed
from the differenced along-beam velocity multiplied by
the undifferenced along-beam velocity [3u(1)

beamu(1)
beam] is

exactly equivalent to the variance computed from the
square of the differenced along-beam velocity [3u(1)

beam
2]

because of properties of the linear transform L. That is,
the errors associated with the two computation meth-
ods are mathematically identical.

Although the Vertical AF method theoretically al-
lows for a phase shift between beam velocities at the
heights selected for differencing, typical phase shifts in
the range of 0.1 to 0.5 s can cause substantial residual
wave error (Fig. 6). Because our measurement fre-
quency is 1 Hz (the maximum ping rate for mode 12),
we are unable to fully resolve such phase shifts, leaving
potential for residual wave bias in Reynolds stress es-
timates. The use of a sequence of measurements (rather

than a single measurement as in the Variance Fit
method) for computing the linear transfer function is
expected to improve the phase resolution beyond the
sample interval of 1 s.

c. Horizontal differencing with adaptive filtering

Here we derive a second method (Horizontal AF)
incorporating adaptive filtering, which involves hori-
zontal (between beam) differencing rather than vertical
(within beam) differencing. For a standard 20° ADCP
beam angle, the horizontal distance between opposite
beams at any vertical location is 0.73 multiplied by the
height above the instrument. Since the largest turbu-
lence length scales at any height in the water column
are typically equal to or less than the height above bot-
tom, we assume that the requirement that turbulent
velocities are not correlated between points is auto-
matically satisfied. The Horizontal AF method in-
creases the range of heights at which Reynolds stresses
can be calculated because it does not require a pair of
points that are separated in the vertical. Additionally, it
has the potential to decrease the wave bias error further
because both points used for differencing are at the
same depth below surface, and thus the highest fre-
quency detectable waves will be the same for both
points.

The velocity at some height z along beam a is pre-
dicted from the measurement at the same height z
along the opposite beam b. Here, A becomes a win-
dowed matrix of the beam b velocity at height z, and
the predicted beam a velocity is given by

ũ̂a % Abs. &25'

The weights s are computed using Eq. (21). The veloc-
ity difference at z is

(ua % ua # ũ̂ a, &26'

and the variance method is applied as in Eq. (24) to
calculate the Reynolds stresses.

5. Discussion and method evaluation

a. Cross-comparison of results from the three methods

The three methods described in section 4 were ap-
plied to bin pairs throughout the water column for both
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the Moorea and Santa Barbara measurements. A ver-
tical bin separation of 2 m was used for the Variance Fit
and Vertical AF methods (see section 5c for details on
bin separation). For the Vertical AF method, window
lengths (L) of 9 and 7 s were used for the Moorea and
Santa Barbara measurements, respectively, close to half
of the dominant wave period during times of higher
wave energy. For the Horizontal AF method, a window
length close to one full wave period was used (17 s for
Moorea, 13 s for Santa Barbara). Choice of window
lengths involved some trial and error, but were even-
tually chosen such that the peak of the transfer function
s was well within the window length and weights re-
duced to zero at either end of the window. An averag-
ing period of 10 min was used throughout. Results for
the x and y directions were qualitatively similar. We
present only the results for the y (beams 3 and 4) di-
rection here, which most closely aligned with the dom-
inant current direction and thus was the direction with
a larger Reynolds stress signal.

To evaluate each method, beam velocity power spec-
tra were computed before and after correction. Spectra
of beam 3 velocities throughout the water column are
shown in Fig. 7 for a selected 6-h time period when both
waves and currents were large. The uncorrected along-
beam velocity spectra have wave peaks that are greatest
near the surface, where wave orbital velocities are high-
est, and decay with depth. Note that the effects of wave
energy at lower frequencies (e.g., the 20-s Moorea
peak) are felt deeper into the water column than the
effects of wave energy at higher frequencies (e.g., the
4-s Santa Barbara peak), as predicted by wave theory
(e.g., Dean and Dalrymple 1991). It can be shown, in a
similar way to the derivation of the variance method,
that the cospectra of u and w can be computed as

P#uw %
Pu4u4 # Pu3u3

4 sin! cos!
, &27'

where Pu3u3 and Pu4u4 are the power spectra of beam 3
velocity and beam 4 velocity, respectively, and ( is
again the half angle between opposing beams. The
magnitudes (absolute values) of the cospectra com-
puted using Eq. (27) are shown in the bottom panels of
Fig. 7.

The Variance Fit method removes the majority of the
wave contamination in the beam velocities but leaves a
residual wave bias at the dominant low-frequency wave
peak for both datasets (0.05 Hz at Moorea, 0.08–0.1 Hz
at Santa Barbara), as predicted in section 4a. Spectra
for other beams and other time periods during the ex-
periments indicate that the Variance Fit method con-
sistently leaves a residual wave peak in beam velocity
spectra. However, the residual wave peak is largely

eliminated when the power spectra for opposite beams
are differenced, and the wave peak is therefore not
evident in the cospectra (Figs. 7f,l).

The Vertical AF method performs well at removing
the wave peak from the beam 3 power spectrum over
the chosen time period and produces a cospectrum that
is very similar to the Variance Fit method. However, an
examination of spectra for other time periods shows
that the Vertical AF method also often leaves residual
wave peaks. The presence of residual wave error is less
consistent than for the Variance Fit method and de-
pends on the quality of the linear function that can be
obtained relating the beam velocity at z(2) to the beam
velocity at z(1). This linear transformation may be poor
if the phase difference between the two bins is not suf-
ficiently resolved, if the wave period or direction
changes significantly during the 10-min averaging pe-
riod, or if wave orbital velocities are not the dominant
component of velocity variations.

The Horizontal AF method performs poorly, consis-
tently leaving a large residual wave peak in beam ve-
locity power spectra and the cospectra obtained by dif-
ferencing the power spectra for opposite beams. Theo-
retically, the Horizontal AF method should work well
for linear, monochromatic waves because the velocity
components along opposite beams have the same sinu-
soidal form, only shifted in phase. The problems en-
countered with this method in practice are attributed to
the existence of asymmetric wave orbitals and the pres-
ence of a continuous spectrum of wave energy. Asym-
metric wave orbitals may cause the wave orbital veloc-
ity to have a slightly different form along opposite
beams, leading to poor coherence and the inability to
adequately predict the wave velocity along one beam
from the wave velocity along the opposite beam. Ad-
ditionally, since beam velocities are related by a large
phase shift, the Horizontal AF method may fail if the
spectrum contains a superposition of waves of different
frequencies and phases; that is, the wave form at time t
may have a different form at time t ! 8, where 8 is the
phase shift for maximum correlation between the ve-
locities along opposing beams.

Time series of Reynolds stress computed using each
of the three methods are compared with uncorrected
Reynolds stresses and depth-averaged currents in Fig.
8. For each field site, the results are shown for a region
of high mean shear (6 m above bottom for Moorea, 2.3
m above bottom for Santa Barbara). The Horizontal
AF method reduces the wave bias by a factor of about
5, but leaves a residual wave bias that continues to mask
Reynolds stresses. Reynolds stresses computed using
the Vertical AF and Variance Fit methods covary with
mean currents and seem physically reasonable in both
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FIG. 7. The effects of velocity differencing methods on beam velocity power spectra: (a), (b), (c), (d), (g),
(h), (i), (j) power spectra of (read across) beam 3 velocities and their variation with (read upward) height
above bottom for a 3-h time period when wave amplitude was large; (e), (k) line graphs of power spectra
at midwater column; (f), (l) line graphs of cospectra at midwater column computed from Eq. (27).
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size and direction. Drag coefficients, calculated from
the slope of the #$"w" versus V.U2 ! V2 scatterplots,
are 0.006–0.010 for Moorea, and 0.001–0.0012 for Santa
Barbara. These values are consistent with drag coeffi-
cients reported in the literature for coral reefs (Reiden-
bach et al., 2006) and sandy beds (e.g., Dewey and
Crawford 1988). The apparent success of the Variance
Fit method is surprising given that it consistently leaves
a residual wave bias in beam velocity variances (e.g., Fig.
7); however, the residual wave biases in opposing beam
velocities are similar, and a large portion of the error
cancels when the variance method [Eq. (17)] is applied.

Although both the Variance Fit and Vertical AF
Reynolds stress estimates seem physically reasonable,
they do not agree perfectly. Reynolds stresses com-

puted using the Vertical AF method are 30% greater
than those computed using the Variance Fit method for
the upper-water column Moorea measurements, and
40% greater for the near-surface Santa Barbara mea-
surements (Fig. 9). Near the bed, the Santa Barbara
Vertical AF estimates are 25% smaller than the Vari-
ance Fit estimates, and the Moorea Vertical AF esti-
mates are affected by a consistent negative bias. The
following section explores the confidence we can have
in Reynolds stresses estimated using the Variance Fit
and Vertical AF methods.

b. Uncertainty in Reynolds stress estimates

Following the method of Stacey et al. (1999a), we
derive estimates of the uncertainty in Reynolds stresses

FIG. 8. Reynolds stresses calculated using the three velocity differencing methods: (a), (g) uncorrected Reynolds stress time series at
a region of high shear in the water column (6 m above bottom for Moorea, 2.3 m above bottom for Santa Barbara); (b), (h) corrected
Reynolds stresses; (c), (i) depth and time-averaged velocities; and (d), (e), (f), (j), (k), (l) scatterplots of Reynolds stresses versus
10-min-averaged velocities. Dashed lines are linear fits from which drag coefficients were deduced; slopes are indicated in the upper
left, and r-squared values are in the lower right.

300 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 25



computed using the Vertical AF and Variance Fit
methods. If we assume that consecutive 3ubeam values
are independent and that 3u3 and 3u4 values are inco-
herent, then the variance of Reynolds stresses esti-
mated using the Variance Fit method [Eq. (17)] is

var&"$w$ˆ ' %
var&(u3

2̂ ' ! var&(u4
2̂ '

16&1 ! )2' sin2! cos2!
, &28'

where "$w"̂ denotes the estimator of the Reynolds stress

and 3ubeam
2̂ % (1/N)6N

i%13ubeam(ti)
2 is the estimator of

the variance of along-beam velocity fluctuations. As

3u2
beam
ˆ

is computed as the mean of N (here 600) indi-
vidual (3ubeam)2, we can employ the central limit theo-
rem (e.g., Bendat and Piersol 2000) to give

var&(ubeam
2ˆ ' %

1
N

var&(ubeam
2'. &29'

Using Eqs. (28) and (29), the variance of the Reynolds
stress estimate can be computed directly from the indi-
vidual 3ubeam

2 values.
Similarly, for the Vertical AF method, the variance

of Reynolds stress estimates can be computed as

var&"$w$ˆ ' %
var&u3(u3
ˆ ' ! var&u4(u4

ˆ '

16 sin2! cos2!

%
1
N

var&u3(u3' ! var&u4(u4'

16 sin2! cos2!
. &30'

The standard deviations of Reynolds stress estimates,
computed using Eqs. (28)–(30), are shown in Fig. 10. In
the top four panels of Fig. 10, the standard deviation of
Reynolds stress is plotted against the Reynolds stress
estimate, following Williams and Simpson (2004). The
minimum measurement noise, given by the y intercept,

FIG. 9. Comparison of Reynolds stresses calculated using the Vertical AF and Variance Fit methods.
The first row is near surface (3 m below surface) and the second row is near bottom (2 m above bottom).
Open circles correspond to a chosen 3-h high-current, high-wave time period (cHIwHI), squares to a
high-current, low-wave time period (cHIwLO), triangles to a low-current, high-wave time period
(cLOwHI), and crosses to a low-current, low-wave time period (cLOwLO).
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is about 1 9 10#4 m2 s#2 for the Moorea estimates, and
2 9 10#5 m2 s#2 for the Santa Barbara estimates. Ad-
ditionally, the Reynolds stress standard deviations for
the low-wave time periods cHIwLO and cLOwLO are

smaller than for the high-wave time periods cHIwHI and
cLOwHI for the same Reynolds stress.

The variation of Reynolds stress standard deviations
with wave orbital velocities are shown in the lower four

FIG. 10. Uncertainties in Reynolds stress estimates as a function of Reynolds stress for (a), (e) the
Variance Fit method and (b), (f) the Vertical AF method, and as a function of wave orbital velocity for
(c), (g) the Variance Fit method and (d), (h) the Vertical AF method. Results are for 6 m (M) and 2.3
m (SB) above bottom. Circles correspond to cHIwHI, squares to cHIwLO, triangles to cLOwHI, and crosses
to cLOwLO.
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panels of Fig. 10. In all cases, the standard deviation of
Reynolds stress increases monotonically with wave or-
bital velocity. If we assume that the relationship be-
tween Reynolds stress standard deviation and wave or-
bital velocity is linear and project the line of best fit
back to zero wave velocity, then we obtain a minimum
uncertainty of about 1.5 9 10#5 m2 s#2, similar to that
obtained by Williams and Simpson (2004) and Nidzieko
et al. (2006) for an ADCP operating in mode 12 in the
absence of waves.

The uncertainty in Reynolds stress estimates, based
on one standard deviation, for the Moorea measure-
ments is about 1 9 10#4 m2 s#2 when the waves are
small and as large as 3 9 10#4 m2 s#2 when the waves
are large. For the Santa Barbara measurement, the un-
certainty is 2 9 10#5 m2 s#2 when waves are small and
1 9 10#4 m2 s#2 when waves are large. These uncer-
tainties are similar for both the Variance Fit and Ver-
tical AF methods and indicate that when waves are
large, uncertainties can be equal to or even greater than
Reynolds stress estimates. Williams and Simpson
(2004) show that the assumption of independence be-
tween consecutive beam velocities leads to underesti-
mation of the variance of Reynolds stress estimates if
consecutive measurements are correlated. Williams and
Simpson multiply their variance estimates by a correc-
tion factor of :R determined from the autocorrelation
function for u"2

beam. From the autocorrelation function of
3ubeam

2 (Variance Fit) and ubeam3ubeam (Vertical AF)
we estimate that :R varies between 1.8 and 4 for both
methods. The Reynolds stress standard deviations are
therefore a factor of 1.3–2 greater than those plotted in
Fig. 10. To account for the nonindependence of con-
secutive measurements when estimating the uncertain-
ties in Reynolds stresses computed for scientific appli-
cations, the variance can be corrected using the correc-
tion factor introduced by Williams and Simpson (2004).

c. Sensitivity to bin separation for vertical
differencing

Both the Variance Fit method and the Vertical AF
method rely on selecting two bins with sufficient verti-
cal separation that the turbulent components of veloc-
ity are incoherent to eliminate 4turb. However, wave
components must be perfectly coherent between the
two points (perfectly correlated for the Variance Fit
method) to avoid a residual wave error 4wave. Thus, the
bin separation must be selected to provide a compro-
mise between these competing issues. For the Variance
Fit method, which does not allow for a phase difference
between points chosen for differencing, the residual
wave error is expected to increase with increasing bin
separation, as the phase difference between velocities

at the chosen bins increases. Additionally, for both
methods, the residual wave error may increase with bin
separation because shorter period waves are detectable
closer to the surface.

To assess the behavior of the error terms (4wave and
4turb) as a function of chosen bin separation, the beam
variances (beams 3 and 4) and their difference from
which Reynolds stress is derived were computed for a
range of bin separations. The results are shown for a
chosen height at which mean shear was large, for four
time periods with different wave and current conditions
in Fig. 11.

From Eqs. (15) and (23), the error due to turbulence
correlation (4turb) acts to artificially decrease the vari-
ance of the along-beam velocity. The effect of turbu-
lence correlation error is clearly seen in the Vertical AF
results as the beam separation is increased from 0.5 to
1 to 2 m when currents are strong (cHIwHI and cHIwLO)
for both the Moorea and Santa Barbara datasets. This
error term reduces to zero for bin separations greater
than 2 m for the heights shown in Fig. 11. For each
dataset and each z at which we computed Reynolds
stresses, we constructed plots like those shown in Fig.
11 and deduced that 2 m was sufficient vertical separa-
tion. In general, the required bin separation will vary
with position in the water column because of variation
in the vertical length scales of turbulent structures. We
therefore recommend that the analysis outlined above
be done for each height at which Reynolds stresses are
computed.

The residual wave error will always cause overesti-
mation of the variance in along-beam velocities. For the
Vertical AF method, there is little dependence of beam
velocity variances on bin separation beyond the turbu-
lence decorrelation scale; thus the Vertical AF method
does not leave a consistent residual wave bias that is
dependent on bin separation. However, for the Vari-
ance Fit method, the beam velocity variance increases
consistently with increasing bin separation, and the cal-
culated beam variance is strongly dependent on the
chosen bin separation. This trend is likely due to the
increasing phase separation between bins, and hence
increasing residual wave error, with increasing bin pair
separation. Note, however, that the difference between
the velocity variances u2

3 and u2
4 does not vary much as

bin separation increases, confirming that the Reynolds
stress estimate is not significantly affected by this bias.

6. Summary and conclusions

This paper has provided an analysis of the error due
to surface waves in Reynolds stresses computed using
the variance method. Direct application of the variance
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method to wavy ADCP data results in a wave bias that,
for the Moorea and Santa Barbara datasets, is an order
of magnitude larger than the Reynolds stresses we are
trying to measure. This wave bias is the sum of error
due to instrument tilt and a real wave stress associated
with the orientation of the principal axes of wave or-
bital motion. In some situations (e.g., the Moorea mea-
surements) the real wave stress is the dominant bias
term. The Reynolds stresses cannot be isolated by sim-
ply computing and subtracting the error terms, because
the uncertainties in the error terms are too large.

Three methods for removing wave bias from beam
velocities prior to application of the variance method
have been derived and cross-compared. Vertical differ-
encing with variance fitting (Variance Fit), proposed by

WLS, was shown to perform well for short waves near
the surface, where the phase difference between beam
velocities at vertically separated points is small. For
longer waves, a significant residual wave bias remains
in the beam velocities after differencing; however, rea-
sonable Reynolds stress estimates are obtained because
most of the residual wave error is canceled when the
variance method is applied. Vertical differencing with
adaptive filtering (Vertical AF) generally performs
well, although it can also leave a residual wave bias if
the coherence between the vertically separated points is
poor. A third method of horizontal differencing with
adaptive filtering (Horizontal AF), which was pre-
dicted to perform well for sinusoidal, monochromatic
waves, was found to perform poorly for conditions in

FIG. 11. Variation of Reynolds stress estimates with increasing bin separation. Panels within each set of four correspond to averages
over the chosen 3-h periods cHIwHI, cHIwLO, cLOwHI, and cLOwLO.
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the coastal ocean, leaving a very large residual wave
bias.

Error remaining in beam velocities after one of the
differencing methods is applied can be attributed to
residual wave bias, turbulence correlation between the
two points chosen for differencing, or correlation be-
tween the waves and the turbulence. The turbulence
correlation error, which arises if the chosen bin sepa-
ration is too small, causes underestimation of the beam
velocity variances. A marked trend of increasing re-
sidual wave error in beam velocity variance with in-
creasing bin separation was observed for the Variance
Fit method, due to increasing phase difference between
the beam velocities at the chosen bins. However, the
difference between opposing beam velocity variances,
from which the Reynolds stress is derived, was unaf-
fected by bin separation because both opposing beams
were affected by a similar wave bias. Beam velocity
variances computed using the Vertical AF method were
relatively insensitive to bin separation above the lower
limit determined by turbulence scales, suggesting that
the Vertical AF method does not leave a consistent
residual wave bias that is dependent on bin separation.

Reynolds stresses computed using both the Variance
Fit and Vertical AF methods seem physically reason-
able and yield bottom drag coefficients consistent with
those reported in the literature. However, both meth-
ods become less accurate with increasing wave velocity,
suggesting that both methods leave residual wave error.
The Variance Fit method contains inherent wave error
while the Vertical AF method leaves residual wave er-
ror if an adequate linear transfer function relating the
wave velocities at the selected bins cannot be found.
The performance of the Vertical AF method is ex-
pected to improve as faster ping rates become possible
and as single ping velocity measurements become more
accurate. Additionally, hybrid methods utilizing infor-
mation from all four beams as well as pressure mea-
surements offer further potential for improving ADCP
turbulence measurements in wavy environments.
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APPENDIX

Formulation of Vertical AF Method

The Variance Fit method is formulated as a differ-
enced quantity squared; that is,

ubeam$&1#2'2
ˆ

% (ubeam
&1' 2. &A1'

This formulation can be interpreted as an estimate of
the variance somewhere between the measurement lo-
cations z(1) and z(2). The residual wave error is 4wave %
(3ũ(1)

beam)2.
For ease of interpretation, the Vertical AF method

was formulated in this paper as a differenced quantity
multiplied by a nondifferenced quantity; that is,

u$&1'
beam

2
ˆ

% (ubeam
&1' ubeam

&1' . &A2'

This formulation can be interpreted as the estimate of
the variance of the along-beam component of turbulent
velocity fluctuations at one of the measurement loca-
tions z(1). The residual wave error in this case is 4wave %
ũ(1)

beam3ũ(1)
beam.

At first glance, it may seem the first formulation [Eq.
(A1)] leaves a smaller residual wave error, but it can be
shown that, because of properties of the linear trans-
form L, the two formulations [Eqs. (A1) and (A2)] are
identical for the Vertical AF method. Beginning with
the right-hand side of Eq. (A2),

(ubeam
&1' 2 % ubeam

&1' 2 ! 0L&ubeam
&2' '12 # 2ubeam

&1' L&ubeam
&2' '.

&A3'

From Eq. (20), the linear transform can be written
L (u(2)

beam) % As; hence [L(u(2)
beam)]2 % (1/N)(As)TAs and

u(1)
beam

TL(u(2)
beam) % (1/N)u(1)

beam
TAs. Therefore,

0L &ubeam
&2' '12 %

1
N

&As'T&As'

%
1
N

0A&ATA'#1ATubeam
&1' 1As

%
1
N

ubeam
&1' TA&ATA'#1ATAs

%
1
N

ubeam
&1' TAs

% ubeam
&1' L&ubeam

&2' '. &A4'
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Hence,

(ubeam
&1' 2 % ubeam

&1' 2 ! ubeam
&1' L&ubeam

&2' ' # 2ubeam
&1' L&ubeam

&2' '

% ubeam
&1' 2 # ubeam

&1' L&ubeam
&2' '

% ubeam
&1' (ubeam

&1' . &A5'

Thus the two formulations are identical for the Vertical
AF method.
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