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Abstract: Drones are easy to operate over metres-to-kilometre scales, making them
potentially useful to monitor species distributions and habitat use in shallow estuaries with
widely varying environmental conditions. To investigate the utility of drones for surveying
bonnethead sharks (Sphyrna tiburo) across estuarine environmental gradients, we deployed
decoys, fashioned to mimic sharks, in the field. Decoys were placed in two flight areas
(0.8 km2 each) in shallow (<2 m) water near Beaufort, N.C., on five days during 2015–2016.
Survey flights were conducted using a fixed-wing drone (senseFly eBee) equipped with a
digital camera. Images were indexed for combinations of six environmental factors across
flights. Images representative of all (N = 36) observed environmental combinations
were sent to a group of 15 scientists who were asked to identify sharks in each image.
Non-parametric rank-sum comparisons and regression tree analysis on resultant detection
probabilities highlighted depth as having the largest, statistically reliable influence on
detection probabilities, with decreasing detection probabilities at increased depth.
Detection probabilities were higher during midday flights, with notable effects of wind
speed and cloud presence also apparent. Our study highlights depth as a first-order factor
constraining the temperate estuarine habitats over which drones may reliably quantify
sharks (i.e., <0.75 m).
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Résumé : Les drones sont faciles à utiliser sur des échelles de mètres à kilomètres, ce qui
fait qu’ils peuvent potentiellement servir pour surveiller la répartition des espèces et
l’utilisation de l’habitat dans les estuaires peu profonds où les conditions environnemen-
tales varient considérablement. Dans le but d’étudier l’utilité des drones pour la
surveillance de requins marteau tiburo (Sphyrna tiburo) dans divers gradients environne-
mentaux estuariens, nous avons déployé des leurres, conçus pour imiter les requins,
dans l’eau. Des leurres ont été placés dans deux zones de vol (0,8 km2 chacune) en eau
peu profonde (2 m) près de Beaufort, en Caroline du Nord, pendant cinq jours en
2015–2016. Les vols pour les levés ont été effectués à l’aide d’un drone à voilure fixe
(senseFly eBee) équipé d’un appareil photo numérique. Les images ont été indexées pour
des combinaisons de six facteurs environnementaux d’un vol à l’autre. Des images
représentatives de toutes les combinaisons environnementales observées (N = 36) ont
été envoyées à un groupe de 15 scientifiques à qui on a demandé d’identifier les requins
dans chaque image. Les comparaisons de la somme des rangs non paramétriques et l’ana-
lyse de l’arbre de régression sur les probabilités de détection résultantes ont mis en
évidence la profondeur comme ayant la plus grande incidence statistiquement fiable
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sur les probabilités de détection, avec des probabilités de détection décroissantes à
une profondeur accrue. Les probabilités de détection étaient plus élevées pendant les
vols de mi-journée, avec des effets notablesde la vitesse du vent et de la présence de
nuages également apparents. Notre étude met en évidence la profondeur comme un
facteur de premier ordre limitant les habitats estuariens tempérés sur lesquels
les drones peuvent quantifier les requins de façon fiable (c.-à-d. < 0,75 m). [Traduit
par la Rédaction]

Mots-clés : systèmes d’aéronefs sans pilote (UAS), biais de visibilité, requin marteau tiburo,
Sphyrna tiburo.

Introduction

Distribution and abundance estimates of sharks have typically been obtained from
capture methods, such as netting or hook-and-line, often in combination with tagging
studies, which together have guided our understanding of shark population dynamics
and movement patterns (Kohler and Turner 2001). While valuable, there are challenges to
interpretation of data gathered by these methods related to the relatively low density and
high patchiness of sharks compared to other taxa, and the need to sample over relatively
large areas to reduce uncertainty with respect to shark numbers (Peterson et al. 2017).
Additionally, capture methods may be inappropriately invasive in some situations for
sampling sharks (e.g., mortality of endangered species), which has inspired the use of less-
invasive methods, such as photo identification (Bansemer and Bennett 2008). Aerial visual
surveys have also been employed over large spatial scales for estimating shark distribution
and abundance (Rowat et al. 2009).

Visual surveys via manned aircraft have also been utilized extensively to study other
large marine animals. In the case of marine mammals and seabirds, aerial visual surveys,
along with shipboard surveys, are perhaps the most widely used means of obtaining infor-
mation on distribution and abundance globally (Buckland et al. 2001; Kaschner et al.
2012). With recent technological advances, the use of digital imagery has become competi-
tive with visual methods in manned aerial surveys for these animals, resulting in similar
to substantially larger estimates of abundance (Buckland et al. 2012; Koski et al. 2013).
Importantly, the use of manned aircraft has a number of logistical and scientific drawbacks,
such as prohibitive cost, disturbances to wildlife, and the difficulty of covering smaller
survey areas (Christie et al. 2016).

Recently, there have been considerable advances in the use of unoccupied aircraft
systems (UASs), creating an attractive platform for both terrestrial and marine ecological
surveys (Anderson and Gaston 2013). These UASs are advantageous with respect to aerial
manned visual surveys due to the remotely controlled, smaller, and quieter aircraft, as well
as the digital imagery component, which could potentially lead to more reliable, reviewable
estimates. Marine mammal surveys, which have traditionally been carried out via manned
aircraft for many species, have been conducted with UASs for several species, such as
dugongs, seals, and sea lions (Jones et al. 2006; Hodgson et al. 2013; Sweeney et al. 2015).
UASs are also used in a broad range of ecological studies on marine mammals from estimat-
ing size or body condition of individuals to collecting exhaled breath condensate for DNA
and hormonal analyses (reviewed in Johnston 2019). Surveys for seabirds and sea turtles
appear to benefit from the use of drones, particularly with respect to time and (or) costs
when compared to ground- or water-based counts (McClellan et al. 2014; Rees et al. 2018).
Finally, Kiszka et al. (2016) examined shark and ray densities by drone surveys in shallow-
water reef systems off Moorea, French Polynesia, demonstrating the potential value of this



approach to survey for sharks and showing how the technology was not limited to only
those species that are required to surface for respiration.

The bonnethead shark, Sphyrna tiburo, is a small coastal shark species often found in
estuaries, shallow bays, and channels, where pupping females are most common
(Compagno et al. 2005). Bonnetheads are also commonly found in high densities, with
multiple individuals encountered within an area of 50 m2 (Myrberg and Gruber 1974). The
resulting patchiness in their distribution makes UASs an attractive survey platform.
Drones are easy to operate over mesoscale ranges (<3 km) and at low altitude (<100 m),
making them potentially useful to monitor bonnethead distributions and habitat use in
shallow-water estuarine habitats. Due to the widely varying environmental conditions
found in temperate estuaries, determining the effects of particular environmental variables
on detection rates of sharks from drone surveys is important for understanding the efficacy
of this approach in estimating patterns of distribution and abundance. There is also mount-
ing interest in utilizing drones in nearshore waters for public safety to help minimize
interactions between larger sharks and humans, and thus understanding potential limita-
tions of this approach in different environmental contexts also has very practical applica-
tions (Colefax et al. 2019).

Visibility bias, which results from observers missing animals, has been a fundamental
problem in the use of observer-based surveys, particularly in aerial surveys (Caughley
1974). The missing animals are either potentially visible to observers, but not seen (percep-
tion bias) or are concealed, often by turbid water (availability bias), although these two
biases are difficult to separate in practice (Marsh and Sinclair 1989; Pollock et al. 2006;
Barlow 2015). In mid-Atlantic estuaries, turbidity extremes due to frequent resuspension
of sediment and plankton by wind and tides have obvious, large effects on light penetration
throughout the water column (Kirby-Smith and Costlow 1989). We designed a series of field
experiments using shark decoys photographed from overhead by drones to test effects of
environmental parameters on visibility bias. Given the aforementioned effect of turbidity
on potential visibility bias, even in shallow water columns, we hypothesized that the inter-
action between turbidity and decoy depth would have the greatest effect on detection
probability.

Materials and methods

Shark decoys
To investigate the utility of UASs in surveying bonnethead sharks, we deployed decoys

that were fashioned to have the appearance of bonnetheads from overhead. The decoys
(n = 9) were cut from plywood using the outline from a ∼1 m bonnethead shark that did
not survive the transition to captive display at the North Carolina Aquarium at Pine Knoll
Shores (NC Aquarium). This particular specimen was a gravid female and thus representa-
tive of the size range of bonnetheads typically found within the Newport River Estuary,
N.C. The plywood decoys were epoxied (Nos. 105 & 207, West System, Mich.) to resist water
damage. Decoys were then sanded and spray-painted to mimic the shark’s countershading
pattern from above using a combination of colors (Nos. 86014, 68181, 84230, and 63000,
Valspar, Minn.) To confirm that the decoys had the appearance of bonnetheads, one was
placed in a holding tank at the NC Aquarium with a live bonnethead while photos were
taken from overhead with Cannon Powershot S110 digital cameras used during drone sur-
veys (Fig. 1). Finally, one decoy was made to have the shape of a more generic shark
species, an Atlantic sharpnose, Rhizoprionodon terraenovae. This was accomplished by simply
trimming the “rostrum” of the bonnethead-shaped decoy to produce a conical snout
(i.e., without cephalophoil), thereby allowing us to assess the potential of identifying decoys
as bonnetheads or non-bonnetheads. Decoys were positively buoyant, and had to be



anchored during deployment by 20 cm lines at the head and caudal region, which were con-
nected to standard bricks that rested on the seabed.

Drone flights
Bonnethead sharks are commonly found within the Newport River Estuary,

a shallow water body (<3 m average depth), so decoys were placed in two flight areas in
shallow waters surrounding Pivers Island in Beaufort, N.C., on five separate days
during the fall of 2015 as well as in the spring and fall of 2016 (Fig. 2). Selected quadrats
(0.0001° latitude × 0.0001° longitude, approximately 10 m × 10 m) within our flight areas tar-
geted a depth range of 0–2 m. Within the flight areas, we haphazardly positioned decoys
across the available range of depths. Depth measurements (to the nearest 0.1 m) were taken
using transect tape for each decoy that was deployed (eight or nine decoys per flight day) at
the time of deployment. GPS coordinates (decimal degrees) were also recorded for each
decoy.

Each day, environmental variables, cloud cover, and secchi disk depth were recorded.
Cloud cover was recorded as a categorical variable, with either not cloudy (no clouds visible
overhead on the days we conducted the surveys) or cloudy (cloud cover >37% overhead
on the days we conducted surveys, based on National Oceanic and Atmospheric
Administration (NOAA) definition of partly cloudy), using the Weather Underground
Forecast Android phone application, which used data from the Dakota station
(KNCBEAUF23), approximately 2 km from our flight areas (Weather Underground 2011).
Secchi depth was measured once within the flight area immediately before or after
deploying decoys, using a 20 cm secchi disk, which was lowered by a string with marks
every 0.1 m into the water until the disk was no longer visible, at which point the depth
measurement was recorded. Mean wind speed was also recorded for each flight using
Weather Underground data (Weather Underground 2011). Each day, to the extent possible,
we scheduled three flights (one per spectral filter, see following paragraph) at low-, mid-,
and high-tides to make full use of the local tidal amplitude (∼1 m) and expand our depth
interval coverage (Table 1). Depth measurements for decoys in subsequent flights were
recorded as the sum of the original depth measurement and change in tidal height, esti-
mated from NOAA water level data for the Beaufort, Duke Marine Lab, N.C., station
(8656483), <0.5 km from our flight areas (NOAA 2018).

Fig. 1. Photograph of live bonnethead (bottom left corner) and bonnethead decoy (slightly off-center) taken at the
North Carolina Aquarium at Pine Knoll Shores.



A total of 30 UAS flights were conducted using a fixed-wing drone (eBee, senseFly,
Switzerland), equipped with either a Cannon IXUS 127 HS or Cannon Powershot S110 digital
camera with one of three spectral filters: regular (RGB), red edge (RE), and near-infrared
(NIR). Flight missions were designed and automated using the flight management software
included with the eBee (eMotion, senseFly, Switzerland). Each flight area (approximately
0.8 km2) was divided into eBee overpass transects that were 400 m long and 25 m apart.
Flight altitude was 60 m, flight speed was 13 m s−1, and flights lasted about 15 min. eBee
cameras captured a downward-facing image roughly every 4 s along each transect with an

Fig. 2. Map of study area in Eastern North Carolina with flight areas highlighted in yellow. Map created using QGIS
(QGIS Development Team 2018). Map data: © 2018 Google; © OpenStreetMap contributors.

Table 1. Summary of environmental conditions and flight times for each flight date.

Flight date Cloud cover Wind speed (m s−1) Secchi depth (m)
Approximate local
flight times

22 October 2015 N 2–5 1.24 0930, 1230, 1600 EDT
11 March 2016 Y 4–9 1.6 1000, 1200 EST
16 May 2016 N 2–5 1.15 1040 EDT
29 September 2016 Y 3–5 0.7 0830, 1130 EDT
27 October 2016 Y 4 0.97 1300 EDT

Note: Times are either reported in Eastern Daylight Time (EDT) or Eastern Standard Time (EST).



on-the-ground resolution of <2.7 cm/pixel. Individual footprint area for digital images
ranged from 4200 to 8478 m2.

Image assessments
Images were indexed for factor levels using four continuous variables: time of day

(<1030, 1030–1330), mean wind speed (<4 m s−1, 4–8 m s−1, >8 m s−1), secchi depth (<1 m,
1–1.5 m, >1.5 m), and decoy depth (<0.6 m, 0.6–1 m, >1 m). Images were also indexed by
two categorical variables: filter (RGB, RE, NIR) and cloud presence (cloudy, not cloudy). For
continuous variables, values were discretized into two- or three-level classifications, based
on natural breaks in the data, which was done because the limited range of values observed
during the 30 UAS flights did not allow for full exploration of these variables. This index
was used to construct a matrix of 43 photographs, containing 0–9 shark decoys. Across
the 43 photos, there were 144 bonnethead decoys and 15 non-bonnethead decoys, represen-
tative of the full spectrum of combinations of factor levels (36 unique combinations, largely
driven by multiple depths within any single photo) present within the days of sampling,
with at least two replicates for each level of each factor. The matrix was then utilized to
construct a PDF file containing the 43 images for distribution to be scored. Images were
sent out to a group of fisheries and estuarine scientists (n = 15) who volunteered to score
each photo for presence of sharks. Without being provided any prior information regarding
the number or identity of decoys that were deployed in the field of view of each image, each
scorer was asked to place symbols directly on top of where they thought sharks were in
each image, with separate symbols denoting bonnethead or Atlantic sharpnose sharks.
Scorers were also given the option to place a mark in a box denoting no sharks were present
in the image. To standardize scoring efforts, a quadrant grid denoting maximum zoom
frame as well as a 5 min time limit per photograph were specified.

We used a hierarchical coding system to evaluate the series of possible outcomes for
each decoy and (or) image after scoring. For images that contained decoys, each decoy was
assigned a code of 0 if not detected, or a code of 1 if detected (symbol correctly placed).
For a symbol to be considered correctly placed it could not be more than one body length
away from the decoy (per instructions to scorers). Any symbol placed at a greater distance
than 1 m from any decoy was considered a false detection. For decoys that were detected,
a second layer of coding was applied to indicate if the species identification was correct
(0 — incorrect, 1 — correct). Finally, images that contained no decoys were only evaluated
for the number of false detections in each image.

Data analysis
Detection probability (number of times detected/number of scorers) was calculated for

each decoy, a metric for the probability of detection by the “average” observer, which was
the value that all subsequent tests were applied to, except in the case of false detections.
To examine the range of detection probabilities, mean detection probability and standard
error was computed across all decoys (across factor-levels) using the R package psych
(Revelle 2017). The effects of five parameters on detection probability were further explored
via the Mann–Whitney U test (two-level) or Kruskal–Wallis H test (three-level) among factor-
level groupings: time of day, filter type, cloud presence, wind, and decoy depth, using the
R package coin (Hothorn et al. 2008). Because wind and tide conditions changed across sur-
vey flights on each flight day, which would affect turbidity, and we failed to sample this
variable frequently enough, we decided to exclude secchi depth from our analyses. These
non-parametric rank-sum tests were utilized because detection probabilities could not be
assumed to be normally distributed within groupings. We considered p values, patterns of



detection probability, and variances to evaluate strength of evidence for environmental
conditions on detection probability (sensu Murtaugh 2014).

We used regression tree analysis (in R package rpart, Therneau et al. 2015) to rank the
relative importance of environmental factors in explaining the variance in detection
probabilities. In addition to their flexibility (i.e., non-parametric), these models have
strengths in their robustness as well as their relative ease of use and interpretation, comple-
menting traditional statistical techniques (De’Ath and Fabricius 2000). We considered five
factors and chose continuous input for numerical variables (time of day, depth, and wind
speed) as this provided more informative (i.e., variance reducing) splits of detection
probabilities, along tree branches. We pruned the tree using the 1–SE rule (as in Breiman
et al. 1984).

To determine if detected sharks could be reliably identified as bonnethead or non-
bonnethead, misidentification rates (number of times incorrectly identified/number of
scorers who detected decoy) were calculated for all decoys detected by at least one scorer.
Misidentification rates were segregated by species (bonnethead or non-bonnethead)
to determine if misidentified decoys would lead to “class 1” or “class 2” misidentification.
In this context, “class 1” would be the misidentification of a bonnethead as a
non-bonnethead (Atlantic sharpnose), which would lead to a bias of underestimation of
bonnethead abundance; whereas “class 2” would be the misidentification of a non-
bonnethead as a bonnethead and lead to a bias of overestimation of bonnethead
abundance. These rates were then aggregated by factor-level to look at effects of environ-
mental parameters on misidentification. These groupings were also compared using non-
parametric rank sum tests.

False detections were summed across scorers for each image, aggregated by factor-level
and compared using non-parametric rank sum tests to examine possible environmental
effects on perceiving sharks when they were not actually present, excluding decoy depth
as we had no way to determine at what depth a falsely identified decoy was perceived. All
statistical analyses and plotting of data were conducted in R (R Core Team 2016), using the
following packages: diplyr (Wickham and Francois 2016), tidyr (Wickham 2017), ggplot2
(Wickham 2009), and rpart.plot (Milborrow 2017).

Results

Detection probability for all 159 individual decoys ranged from 0 (never detected) to 1
(always detected), with an overall mean value of 0.27 ± 0.03 (mean and standard error).
Mean detection probabilities for environmental factor combinations ranged from 0 to
0.96 (Table 2). For the 73 decoys that were detected by at least one observer, individual mis-
identification rates also ranged from 0 (correctly identified by all scorers who detected) to 1
(misidentified by all scorers who detected), with an overall mean value of 0.24 ± 0.03 SE.
Mean false detections for individual images ranged from 0 to 0.4, with an overall mean
value of 0.04 ± 0.01 SE across 15 inspections of each photo.

Mean detection probability was negatively related to decoy depth (χ2 = 49.61, df = 2,
p < 0.001), from 0.55 ± 0.05 SE at depths <0.6 m to 0.03 ± 0.02 SE at depths >1 m (Fig. 3).
Mean detection probability increased from 0.14 ± 0.04 SE in the early morning period
(before 1030) to 0.38 ± 0.04 SE in the midday period (1030–1330; Z=−4.34, p < 0.001) (Fig. 3).
Overall mean detection probability was higher on not cloudy days, 0.40 ± 0.08 SE compared
to 0.26 ± 0.04 SE on cloudy days, although not well supported statistically (Z= 1.5, p= 0.134)
(Fig. 3). Conversely, mean detection probability trended lower with increasing mean wind
speed, from 0.4 ± 0.08 SE at winds below 4 m s−1 to 0.14 ± 0.06 SE at winds above 8 m s−1,
although due to the high overall variability in the data, we failed to detect a statistically



consistent difference (χ2 = 3.08, df = 2, p = 0.215) (Fig. 3). The only factor that did not affect
mean detection probability was filter (χ2= 0.67, df= 2, p = 0.713) (Fig. 3).

Higher detection probabilities (0.55 ± 0.05 SE) were associated with shallow depths
(<0.72 m). Within the shallow depths, the highest detection probabilities (0.78 ± 0.05 SE)
were associated with low wind speed (<4.2 m s−1). At higher wind speeds (≥4.2 m s−1), there
were also relatively high detection probabilities (0.62 ± 0.14 SE) associated with the shallow-
est depths (<0.35 m). Detection probabilities were lower (0.22 ± 0.06 SE) when depths
were intermediate (<0.72 m, ≥0.35 m), and with high wind speed (≥4.2 m s−1). The lowest
detection probabilities (0.05 ± 0.01 SE) were associated with the deepest depths
(≥0.72 m) (Fig. 4).

Misidentification rates yielded no clear patterns among factor-level comparisons or
between “species”: time of day (class 1, Z = 0.99, p = 0.320; class 2, Z= 0.09, p= 0.932), filter
(class 1, χ2= 1.08, df= 2, p= 0.582; class 2, χ2= 0.22, df= 2, p= 0.896), cloud presence (class 1,
Z= 0.95, p= 0.342; class 2, Z= 0.26, p= 0.798), wind (class 1, χ2= 1.6, df= 2, p= 0.450; class 2,
χ2 = 0.09, df = 2, p = 0.958), and decoy depth (class 1, χ2 = 0.92, df = 2, p = 0.631; class 2,

Treatment Time of day Filter Clouds
Mean wind
speed (m s−1)

Secchi
depth (m)

Decoy
depth (m)

Mean
detection
probability

Standard
error

1 <1030 NIR N <4 1–1.5 <0.6 0.17 0.17
2 1030–1330 NIR N <4 1–1.5 <0.6 0.87 0.11
3 <1030 RE N <4 1–1.5 <0.6 0.56 0.28
4 1030–1330 RE N <4 1–1.5 <0.6 0.87 0.13
5 <1030 NIR N <4 1–1.5 0.6–1 0.00 0.00
6 1030–1330 NIR N <4 1–1.5 0.6–1 0.24 0.21
7 <1030 RE N <4 1–1.5 0.6–1 0.00 0.00
8 1030–1330 RE N <4 1–1.5 0.6–1 0.00 0.00
9 1030–1330 NIR N <4 1–1.5 >1 0.02 0.02
10 1030–1330 RE N <4 1–1.5 >1 0.00 0.00
11 1030–1330 RGB Y >8 >1.5 <0.6 0.18 0.09
12 <1030 RGB Y 4–8 >1.5 0.6–1 0.01 0.01
13 1030–1330 RGB Y >8 >1.5 0.6–1 0.05 0.03
14 <1030 NIR Y 4–8 >1.5 0.6–1 0.03 0.03
15 <1030 RE Y 4–8 >1.5 0.6–1 0.12 0.12
16 <1030 RGB Y 4–8 >1.5 >1 0.00 0.00
17 1030–1330 RGB Y >8 >1.5 >1 0.23 0.23
18 <1030 NIR Y 4–8 >1.5 >1 0.05 0.05
19 <1030 RE Y 4–8 >1.5 >1 0.00 0.00
20 1030–1330 RGB N <4 1–1.5 <0.6 0.96 0.02
21 1030–1330 RGB N <4 1–1.5 0.6–1 0.07 0.07
22 <1030 RGB Y 4–8 1–1.5 0.6–1 0.67 0.33
23 <1030 RGB Y 4–8 1–1.5 >1 0.01 0.01
24 <1030 RE Y 4–8 1–1.5 0.6–1 0.67 0.33
25 <1030 RE Y 4–8 1–1.5 >1 0.00 0.00
26 <1030 NIR Y 4–8 1–1.5 0.6–1 0.64 0.32
27 <1030 NIR Y 4–8 1–1.5 >1 0.05 0.04
28 1030–1330 RGB Y 4–8 <1 <0.6 0.80 0.20
29 1030–1330 RGB Y 4–8 <1 0.6–1 0.07 0.05
30 1030–1330 RE Y 4–8 <1 <0.6 0.92 0.06
31 1030–1330 RE Y 4–8 <1 0.6–1 0.10 0.08
32 1030–1330 NIR Y 4–8 <1 <0.6 0.68 0.14
33 1030–1330 NIR Y 4–8 <1 0.6–1 0.11 0.08
34 1030–1330 RGB Y 4–8 1–1.5 <0.6 0.51 0.18
35 1030–1330 NIR Y 4–8 1–1.5 <0.6 0.26 0.12
36 1030–1330 RE Y 4–8 1–1.5 <0.6 0.51 0.20

Table 2. Summary of treatment factor-level combinations with mean and standard error computed across all 
decoys within each treatment.



Z=−0.09, p= 0.932). We also failed to detect any clear patterns or meaningful differences in
false detections by factor-levels: time of day (Z = 0.76, p = 0.450), filter (χ2 = 1.63, df = 2,
p= 0.442), clouds (Z= 0.79, p= 0.427), and wind (χ2= 1.47, df= 2, p= 0.478).

Fig. 3. Factor-level comparisons for detection probabilities related to each of the five factors. Data are presented as
mean detection probability ± 1 SE.

Fig. 4. Regression tree showing split decisions as well as mean detection probability (#.##) at each node and leaf.
Also shown are the number of cases in each node as a raw number (n) and percentage (%) out of 159 total decoys in
images.



Discussion

By deploying shark decoys across multiple environmental contexts in a temperate estu-
ary we demonstrated that UAS surveys, with the ability to target smaller areas with greater
precision and at higher sampling frequencies relative to manned aircraft, may have poten-
tial for answering specifically targeted ecological questions about sharks in this and similar
environmental systems. The main factor influencing detection probabilities in our study
was decoy depth, constraining surveys to shallow water to reliably detect sharks. This is
likely due to visibility bias from turbidity, as increases in turbidity increase the rate of light
attenuation throughout the water column (Brown 1984), presumably leading to greater con-
cealment of decoys at depth. Robbins et al. (2014) used shark decoys that were slowly raised
from depths of at least 5 m until they became visible to estimate the depth at which the
decoy could be seen from aerial surveys conducted via manned aircraft. In that study, water
turbidity measurements were taken across flight days using a secchi disk and were deeper
than the average depth at which the decoys were observed, suggesting turbidity may not
be the only factor affecting visibility bias (Robbins et al. 2014). Our study suggests that time
of day, wind, and cloud cover may be additional factors affecting visibility bias.

The comparison of time of day (morning versus midday) showed significant differences
in detection probability, with mean detection probability during midday over two times
as high as during the morning. This result was somewhat surprising as we had hypoth-
esized that the high solar altitude at midday would create more glare when photos were
taken from overhead, thereby increasing visibility bias as decoys become concealed
beneath the glare. Total solar irradiance reaches a maximum at noon and the reflectance
of incident solar radiation increases with increasing zenith angle of incidence (Kirk 1994).
This means that while there may be more glare from overhead during midday solar angles,
there is also more light available and greater penetration into the water, which could
increase visibility. There was a notable effect of wind on detection probabilities during
midday, however, with high winds leading to mean detection probabilities less than half
of those at lower winds; this could possibly be explained by the increased scattering of light
at the surface and thus lower availability and penetration of light in the water column.
The availability and penetration of light into the water also likely explains the increased
detection probabilities on days with fewer clouds in the sky.

If a decoy was detected, it generally could be identified as a bonnethead or not in ∼75% of
cases, insensitive to environmental conditions at each decoy. Misidentification rates also do
not appear to vary across bonnethead and non-bonnethead decoys, which means that
biases towards overestimation and underestimation of bonnethead sharks would be driven
mainly by imbalances in abundance of bonnethead versus non-bonnethead species.
Likewise, environmental variability does not appear to significantly alter the possibility of
a decoy being spotted where it does not actually exist. These results suggest that the main
obstacle to reliable estimation of species abundance from aerial drone surveys is visibility
bias due to shark depth, and the likely underestimation of true shark abundance in temper-
ate estuaries based solely on aerial surveys.

While our secchi depth measurements provided a description of the range of visibility
across our flight days, the frequency at which they were taken (once per flight day) was
not sufficient to provide a proxy for turbidity that could be correlated with each of our sur-
vey flights, not to mention the potential for spatial differences across our flight areas.
Nonetheless, our minimum secchi depth value (0.7 m) roughly coincides with the first split
decision in our regression tree (0.72 m decoy depth). There is roughly a 5% chance that a
decoy would be spotted at depths >0.7 m; this is not surprising considering that this depth
was the visibility minimum for our flight days.



Our study is bounded by some constraints that guide the foci of our broader conclusions
regarding the role of UASs in shark surveys. Due to our focus on bonnethead sharks, we
only included decoys of small sharks (∼1 m), which could have an effect on detection prob-
abilities. In addition, we chose to use still images rather than video, which, especially in the
case of surveying living sharks, could potentially influence rates of detections and (or) false
detections. We also were unable to test for the effects of different types of substrate
beneath our decoys on the detection probability. Presumably, different colors or textures
would influence visibility bias depending on how they contrasted with the shark’s counter-
shading pattern; however, it should be noted that in tropical high-transparency water,
benthic characteristics had no effect on shark decoy detectability from drone surveys
(Hensel et al. 2018). While our study was experimental in terms of our control of decoy
placement, it was observational in terms of susceptibility to unpredictable environmental
changes, which limited our sample sizes for some environmental variables. Finally, mainly
due to our study focusing on one UAS platform (fixed-wing), the flight altitude was a varia-
ble we kept constant, which could certainly have an effect on detection probabilities due to
changes in visibility and image resolution at increased altitudes.

In summary, our decoys demonstrated that drone surveys for sharks in a turbid, temper-
ate estuary, such as the Newport River Estuarine System, probably only work in very
shallow water (<0.7 m). Because turbidity increases the rate of attenuation of light at depth,
visibility bias of sharks is increased, particularly at depths that exceed the minimum visibil-
ity or secchi disk depth. Wind could be a mechanism that exacerbates this visibility bias as
it causes further resuspension of solids and alters reflection and refraction of light at the
surface. Increasing solar altitude, while potentially causing increased glare in photographs
taken from overhead, also leads to increased light availability and penetration in the water
column, which could positively affect the detection of sharks from UAS surveys. Our results
are in agreement with Kiszka et al. (2016), who suggested that UASs are particularly attrac-
tive for investigating population trends and habitat use patterns where visibility enables
animal detection from the surface to the bottom of the water column. As interest in this
approach to monitor sharks in coastal environments for public safety is increasing, it is
important to understand the limitations across different coastal environments, some of
which can be quite turbid. We agree with Pollock et al. (2006), who suggest that standard-
ized protocols and strict ceilings on acceptable survey conditions can reduce variation in
detection probabilities. We suggest that in temperate estuarine systems, which can have
high turbidity, UAS surveys may need to be restricted to areas where the depth is shallower
than the visibility minimum.
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