
 
1 

Comparison of multiple approaches to calculate time-varying biological reference points in 1 
climate-linked population-dynamics models 2 
Cecilia A. O’Leary 1 *, James T. Thorson2, Timothy J. Miller3, Janet A. Nye4 3 

* Corresponding author. Tel.: +001 585 409 0220; E-mail address: caoleary@uw.edu 4 

1 Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, 5 
Washington 98105, USA 6 

2 Habitat and Ecosystem Process Research Program, Alaska Fisheries Science Center, National 7 
Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point 8 
Way NE, Seattle WA 98115, USA 9 

3 Northeast Fisheries Science Center, National Marine Fisheries Service, National Oceanic and 10 
Atmospheric Administration, 166 Water Street, Woods Hole, MA 02543, USA 11 

4 School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 12 
11794, USA 13 

14 



 
2 

Abstract 15 

Fisheries managers use biological reference points (BRPs) as targets or limits on fishing 16 

and biomass to maintain productive levels of fish stock biomass. There are multiple ways to 17 

calculate BRPs when biological parameters are time-varying. Using summer flounder 18 

(Paralichthys dentatus) as a case study, we investigated time-varying approaches in concert with 19 

climate-linked population models to understand the impact of environmentally-driven variability 20 

in natural mortality, recruitment, and size-at-age on two commonly-used BRPs (B0(𝑡𝑡) and F35% 21 

(𝑡𝑡)). We used two approaches to calculate time-varying BRPs: dynamic-BRP and moving-22 

average-BRP. We quantified the variability and uncertainty of different climate dependencies 23 

and estimation approaches, attributed BRP variation to variation in life-history processes, and 24 

evaluated how using different approaches impacts estimates of stock status. Results indicate that 25 

the dynamic BRP approach using the climate-linked natural mortality model produced the least 26 

variable reference points compared to others calculated. Summer flounder stock status depended 27 

on the estimation approach and climate model used. These results emphasize that understanding 28 

climate dependencies is important for summer flounder reference points and perhaps other 29 

species, and careful consideration is warranted when considering what time-varying approach to 30 

use, ideally based upon simulation studies within a proposed set of management procedures. 31 
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Introduction 39 
 40 

In fisheries management, an estimate of the fish stock state is compared with a biological 41 

reference point (BRP) to define the stock status. The BRP is typically related to a biologically 42 

sustainable population size. This comparison is critical to determine if a stock is overfished and 43 

whether any changes are needed in current management to meet targets (Gabriel and Mace 1999, 44 

Quinn and Deriso 1999, Collie and Gislason 2001, Hilborn 2002, Haltuch et al. 2008). Harvest 45 

control rules are guidelines that determine how much fishing can occur based on the current state 46 

of the system relative to target and/or limit reference points for the stock size and catch/fishing 47 

effort (Deroba and Bence 2008). Harvest control rules attempt to balance biological, economic, 48 

and social sustainability and often use BRPs to define the limit and target for catch.  The goal of 49 

a BRP-based management framework is to regulate fishing by setting a quota such as a fishing 50 

mortality rate or biomass threshold that is based on BRPs. For example, the fishing quota 51 

produced using the spawning potential ratio (SPR), a common metric used in fisheries 52 

management, is based on a preset fixed ratio of fished and unfished spawning biomass per recruit 53 

(SBPR) (Gabriel et al. 1989, Goodyear 1993, Williams and Shertzer 2003).  54 

The BRPs are based on parameters that reflect the long-term productivity of the fish 55 

stock, such as growth, recruitment, and mortality (Williams and Shertzer 2003, Maunder 2012), 56 

all of which can vary in response to a variety of factors. Productivity can vary over time for 57 

many different reasons, such as changes in the environment, available food, predation mortality, 58 

or fishing pressure, and this directly affects the management process (Jackson et al. 2001, 59 

Pitchford et al. 2005, Vert-pre et al. 2013, Nye et al. 2014, Pershing et al. 2015, Koenigstein et 60 

al. 2016, Collie et al. 2017, Stock et al. 2017, Barrow et al. 2018). Climate can impact 61 

productivity directly through physiological effects in response to temperature conditions and a 62 

change in the allocation of energy between growth and reproduction (Buckley et al. 2004, 63 

Baudron et al. 2011, 2014). Climate can also impact productivity indirectly through predator-64 

prey interactions (such as a change in community composition and overlap of a predator or prey), 65 

fish behavior, or recruitment via reproductive potential, timing of spawning or migration, and 66 

larval growth (Blanchard et al.2005, Laurel et al. 2007). Many studies have found that fish 67 

population fluctuations are associated with large-scale climate variability (Lehodey et al. 2006, 68 

Brander 2007, Brander 2010, Holsman et al. 2012, Barange et al. 2014, Free et al. 2019). Not 69 
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accounting for productivity changes may lead to errors in biological reference point estimation 70 

(Whitten et al. 2013, Audzijonyte et al. 2016, Karp et al. 2019). One approach to deal with 71 

temporal variability is to calculate BRPs using the average stock dynamics over the most recent 72 

3-5 years or across the entire period being modeled.  73 

More recently, as part of the move to include a broader set of considerations in stock 74 

assessments, fisheries scientists have attempted to incorporate environmental effects into 75 

fisheries models (Hare et al. 2016, Tommasi et al. 2017b). There are uncertainties regarding the 76 

fish stock’s dynamics and interaction with its environment (Hilborn and Walters 1992, Quinn 77 

and Deriso 1999, Maunder 2012). Given that environmental variability changes vital rates such 78 

as recruitment and natural mortality and progress has been made to incorporate these processes 79 

explicitly in stock assessments, understanding BRPs in the context of climate is crucial (Mantua 80 

and Hare 2002, A’mar et al. 2009, Thorson et al. 2015, O’Leary et al. 2018). Demographic 81 

changes due to variation in fish vital rates can change BRPs and thus, stock status and catch 82 

quotas. The magnitude of the effect of these changes on BRPs depends on the BRP used (Gerber 83 

and Heppell 2004, Frisk et al. 2005, Thorson et al. 2015). Miller et al. (2018) found that 84 

incorporating environmental indices into a stock-assessment model not only influenced Georges 85 

Bank Atlantic cod (Gadus morhua) demographic estimates and BRPs but also increased the 86 

uncertainty in BRP estimates. Therefore, tailoring BRPs to climate state is a particularly 87 

important management strategy if future population conditions differ from past conditions due to 88 

a changing climate and a consequent regime shift; that is, an abrupt change within the population 89 

(A’mar et al. 2009, Punt et al. 2016). If past stock conditions are used to estimate future stock, 90 

these catch targets are often unsustainable (Haltuch et al. 2009, Punt et al. 2016). If the influence 91 

of climate on a fish stock is understood and successfully modeled, there is still a choice on how 92 

to incorporate these temporal dynamics into BRP calculations that likely will influence the BRP 93 

estimate (Berger 2018). 94 

Two main approaches can be used to incorporate temporal dynamics (and consequently 95 

climate influence) into BRP calculation; (1) dynamic-BRPs and (2) moving-average-BRPs. The 96 

dynamic-BRP is a generalization of the dynamic-B0 from MacCall et al. (1985) that calculates 97 

the SBPR following each cohort through time at a set fishing pressure (F*) given estimated 98 

parameters for stock productivity from an unfished population (MacCall et al. 1985, Haltuch et 99 

al. 2009, Punt and Donovan 2007). The dynamic approach is referred to as ‘dynamic’ because it 100 
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generalizes ‘dynamic-B0’, i.e., where it projects dynamics from t-1 to t in the absence of fishing 101 

(to calculate biomass targets from B0) or with different fishing mortality rates (to calculate 102 

exploitation targets from SPR). The moving-average-BRP is an equilibrium approach that 103 

assumes natural mortality, growth, and other biological processes in year t (or a defined time-104 

interval) are held constant (at their value in a single year or average across years) to calculate 105 

stock productivity (Cordue 2012, Punt and Donovan 2007).  106 

More informed management decisions can be achieved by understanding the properties 107 

and assumptions that led to the BRPs used in management, and whether these summaries of 108 

temporal and environmental dynamics are appropriate for stock management (Walters and Parma 109 

1996, McAllister et al. 1999, Punt and Donovan 2007, Kolody et al. 2008, Kurota et al. 2010, 110 

Punt et al. 2016). If changes in fish stock productivity are missed due to an inaccurate 111 

relationship between a stock and environment or summarizing a stock’s dynamics in a way that 112 

smooths over important dynamics, effective BRP-based management is compromised. Therefore, 113 

a comparison of different time-varying approaches to BRP estimation with different forms of 114 

climate-dependencies in those calculations will help illuminate how variability and climate 115 

influence BRP-based management.  116 

The purpose of this paper was twofold, (A) to examine the effects of climate dependency 117 

on BRP variability and uncertainty used in harvest control rules, and (B) to determine how 118 

sensitive estimates of BRPs are to the choice of “dynamic” or “moving-average” BRP 119 

approaches. We use summer flounder, a demersal flatfish found in the Northwest Atlantic, as an 120 

empirical case study to investigate BRPs. To evaluate the implications of both climate 121 

assumptions and estimation approaches on the BRP value output, our objectives were to (1) 122 

quantify the variability over time of climate-dependent vs. climate-independent BRPs 123 

(henceforth “variability”); (2) quantify the standard error for different BRPs and approaches 124 

(henceforth “uncertainty”);  (3) determine whether moving-average- or dynamic-BRPs are more 125 

variable and uncertain over time; (4) attribute trends and variation in BRPs to variation in 126 

mortality, recruitment, and growth processes; and (5) evaluate how different methods impact 127 

estimates of stock status for summer flounder (Paralichthys dentatus). Given the importance of 128 

the BRPs in the management framework and the likely influence of both types of temporal 129 

variability and method of incorporation, we sought to demonstrate the implications of both the 130 

estimation approach and climate dependency on the reference BRP value.  131 
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 132 

Methods 133 

We use two different temporally-varying methods to provide information regarding the 134 

impact of BRP calculation choices on management reference points through direct comparison of 135 

BRP uncertainty and temporal variability differences. Here, we aim to fill the gap in BRP 136 

documentation and methods development by comparing the differences in BRPs calculated from 137 

different climate relationships with biological parameters and different approaches to accounting 138 

for temporal dynamics. 139 

 140 

Population models with climate dependencies 141 

Posterior distributions for parameters used in BRP calculations were drawn from 142 

previously constructed hierarchical population models used to understand changes in past 143 

summer flounder abundance (Figs. 1-2, O’Leary et al. 2018). Summer flounder is a data-rich 144 

stock where fishing pressure and environmental variability were shown to impact population 145 

dynamics. Moving-average- and dynamic-BRPs were compared in three population models that 146 

differed in their link to the environment: a climate-dependent natural mortality relationship 147 

(CM); a climate-dependent recruitment relationship (CR); and no relationship with 148 

environmental conditions (CI) (O’Leary et al. 2018). Here, the climate covariate or 𝑇𝑇𝑡𝑡 represents 149 

the Gulf Stream Index, the index used to describe climate conditions in the Northwest Atlantic, 150 

which is available for every modeled year t. The natural mortality and recruitment estimates for 151 

each model type can be seen in Fig. 2.  These relationships were established and tested in 152 

O’Leary et al. (2018) that found overall the Gulf Stream Index provided information to improve 153 

the estimation of natural mortality and subsequently fishing mortality. The Gulf Stream Index 154 

represents the position of the north wall of the Gulf Stream and provides an integrative 155 

representation of oceanographic conditions of the Northeast US shelf. The Gulf Stream Index 156 

was used to represent the emergent properties of the local environment to which the organisms 157 

are responding. We did not consider models with multiple types of climate effects so that we 158 

could first determine the impact of the mechanism by which   climate affected population 159 

dynamics in isolation. The models considered age-specific population processes and included 160 

both process and observation error. We used two data sources from 1982 – 2015 in the 161 

population models: 1) fisheries-independent annual bottom trawl surveys by the Northeast 162 
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Fisheries Science Center (NEFSC; Azarovitz 1981, Clark et al. 1997) and 2) fisheries-dependent 163 

commercial and recreational landings of summer flounder (Burns et al. 1983) from the NEFSC 164 

fisheries database. Parameters of Bayesian hierarchical models were estimated from empirical 165 

data using Just Another Gibbs Sampler (JAGS; Plummer 2003) integrated through R version 166 

3.2.4 (R Core Team 2017) using R package ‘R2Jags’ (Su and Yajima 2012). As a group, we 167 

refer to these models described in the following sections as estimation models. 168 

 169 

Including the effects of climate on population dynamics 170 

The three population models followed a general structure described below as a simpler 171 

version of the summer flounder stock-assessment model, with variations in either the natural 172 

mortality or recruitment equation. Summer flounder abundance (𝑁𝑁𝑎𝑎,𝑡𝑡) was estimated across time 173 

(t) by age (a) from age-at-recruitment (age 0, a = 0) to age 7 + (any fish age 7 or older is treated 174 

as a part of a single “plus group”) (Eqn. 1 a, b), where initial abundance is defined by 175 

recruitment 𝑅𝑅𝑡𝑡 for year 𝑡𝑡: 176 

𝑁𝑁𝑎𝑎,𝑡𝑡 = �
𝑅𝑅𝑡𝑡 𝑎𝑎 = 0
𝑒𝑒−𝑍𝑍𝑎𝑎−1,𝑡𝑡−1𝑁𝑁𝑎𝑎−1,𝑡𝑡−1  1 ≤ 𝑎𝑎 ≤ 6
𝑒𝑒−𝑍𝑍𝑎𝑎−1,𝑡𝑡−1𝑁𝑁𝑎𝑎−1,𝑡𝑡−1, +  𝑒𝑒−𝑍𝑍𝑎𝑎,𝑡𝑡−1𝑁𝑁𝑎𝑎,𝑡𝑡−1 𝑎𝑎 ≥  7

        .                             (1a) 177 

where survival was specified as 𝑠𝑠𝑎𝑎,𝑡𝑡 = 𝑒𝑒−𝑍𝑍𝑎𝑎,𝑡𝑡, and the total mortality 𝑍𝑍𝑎𝑎,𝑡𝑡 consisted of natural 178 

mortality 𝑀𝑀𝑎𝑎,𝑡𝑡 and fishing mortality 𝐹𝐹𝑎𝑎,𝑡𝑡: 𝑍𝑍𝑎𝑎,𝑡𝑡 =  𝑀𝑀𝑎𝑎,𝑡𝑡   + 𝐹𝐹𝑎𝑎,𝑡𝑡. Recruitment was estimated by 179 

predicting log-recruitment given spawning biomass and a multiplicative lognormal residual 180 

variability. In this study, log() is used to indicate the natural log. Log-recruitment log (𝑅𝑅𝑡𝑡) 181 

(defined as abundance at a = 0), was parameterized as recruitment deviations:  182 

log(𝑅𝑅𝑡𝑡) = 𝑓𝑓(𝑆𝑆𝑆𝑆𝑡𝑡) +𝜀𝜀𝑡𝑡                     .                                                                                          (1b) 183 

where 𝑓𝑓(𝑆𝑆𝑆𝑆𝑡𝑡) is the Beverton-Holt function predicting log-recruitment as a function of spawning 184 

stock biomass,185 

𝑓𝑓(𝑆𝑆𝑆𝑆𝑡𝑡) = �
𝑙𝑙𝑙𝑙𝑙𝑙  ( 𝑆𝑆𝑆𝑆𝑡𝑡−1

𝛽𝛽+𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡−1
) 𝑖𝑖𝑓𝑓 𝑢𝑢𝑠𝑠𝑖𝑖𝑢𝑢𝑙𝑙 𝐶𝐶𝐶𝐶 𝑙𝑙𝑜𝑜 𝐶𝐶𝑀𝑀 𝑚𝑚𝑙𝑙𝑚𝑚𝑒𝑒𝑙𝑙

𝑙𝑙𝑙𝑙𝑙𝑙 ( 𝑆𝑆𝑆𝑆𝑡𝑡−1
𝛽𝛽+ 𝛼𝛼𝑆𝑆𝑆𝑆𝑡𝑡−1

𝑒𝑒𝑐𝑐𝑐𝑐) 𝑖𝑖𝑓𝑓 𝑢𝑢𝑠𝑠𝑖𝑖𝑢𝑢𝑙𝑙 𝐶𝐶𝑅𝑅 𝑚𝑚𝑙𝑙𝑚𝑚𝑒𝑒𝑙𝑙
                         ,                           (2) 186 

and recruitment deviations are the normally distributed variable 𝜀𝜀𝑡𝑡~𝑁𝑁𝑙𝑙𝑜𝑜𝑚𝑚𝑎𝑎𝑙𝑙(−
𝜎𝜎𝑟𝑟2

2
,𝜎𝜎𝑟𝑟2) (Eqn. 1b; 187 

Terceiro 2015, 2016, Methot and Taylor 2011). Climate-covariate effects (c) on recruitment were 188 

allowed in the general model.  The recruitment-environment relationship used in the CR model is 189 
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controlling recruitment (as opposed to limiting or masking), where climate is expected to 190 

influence recruitment via the larval/young fish mortality rates (Iles and Beverton 1998, O’Leary 191 

et al. 2018), while in the CI and CM model it was the standard Beverton-Holt form. The 192 

recruitment estimates for each model type can be seen in Fig. 2.  193 

The R package ‘Fish Life’ was used to provide a starting point for an informative prior 194 

for 𝛼𝛼 to the nearest integer (log-normally distributed with a log-mean of 3 and a log-standard 195 

deviation of 1; Thorson et al. 2017). Fish Life was also used to create an informative prior for the 196 

standard deviation of recruitment deviations,𝜎𝜎𝑟𝑟2 (bounded between 0.1 and 0.9) to be used in the 197 

estimation of the variance 𝜀𝜀𝑡𝑡 (Thorson et al. 2017). Log-abundance, log�𝑁𝑁𝑎𝑎,1�, for each age 𝑎𝑎 in 198 

the first modeled year was assigned a uniform prior distribution with realistic biological bounds 199 

selected such that the prior distribution did not qualitatively affect model results. Spawning stock 200 

biomass (𝑆𝑆𝑆𝑆𝑡𝑡) was dependent upon the abundance at age a at time t (𝑁𝑁𝑎𝑎,𝑡𝑡), weight-at-age a at 201 

time t (𝑤𝑤𝑎𝑎,𝑡𝑡;  𝐹𝐹𝑖𝑖𝑙𝑙. 1), maturity at age a (𝑚𝑚𝑎𝑎) up to the final age class 𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 202 

𝑆𝑆𝑆𝑆𝑡𝑡 = 1
2
∑ 𝑤𝑤𝑎𝑎,𝑡𝑡𝑚𝑚𝑎𝑎𝑁𝑁𝑎𝑎,𝑡𝑡  
𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚
𝑎𝑎=1                                         (3) 203 

where we specify that females represent 50% of total abundance.   204 

 For all three estimation models, we modeled natural mortality (𝑀𝑀𝑎𝑎,𝑡𝑡) as a time- and age-205 

varying process, with values drawn from a lognormal distribution with log-mean (𝑉𝑉𝑎𝑎,𝑡𝑡; 206 

hyperparameter for natural mortality) and variance (𝜎𝜎𝑀𝑀2 )207 

 log�𝑀𝑀𝑎𝑎,𝑡𝑡�  ~ 𝑁𝑁𝑙𝑙𝑜𝑜𝑚𝑚𝑎𝑎𝑙𝑙�𝑉𝑉𝑚𝑚,𝑎𝑎,𝑡𝑡,𝜎𝜎𝑀𝑀2 �              ,                                                   (4) 208 

where the specification of 𝑉𝑉𝑚𝑚,𝑎𝑎,𝑡𝑡 differs among models m.   209 

In the climate-dependent mortality model (CM), the log-mean of natural mortality 210 

(𝑉𝑉𝑚𝑚,𝑎𝑎,𝑡𝑡) followed a quadratic function of climate, while it was constant for CI and CR models: 211 

𝑉𝑉𝑚𝑚,𝑎𝑎,𝑡𝑡 = �
𝑥𝑥0 𝑖𝑖𝑓𝑓 𝑢𝑢𝑠𝑠𝑖𝑖𝑢𝑢𝑙𝑙 𝐶𝐶𝐶𝐶 𝑙𝑙𝑜𝑜 𝐶𝐶𝑅𝑅 𝑚𝑚𝑙𝑙𝑚𝑚𝑒𝑒𝑙𝑙𝑠𝑠

𝑥𝑥0 + 𝑥𝑥1𝑇𝑇𝑡𝑡 +  𝑥𝑥2𝑇𝑇𝑡𝑡2 𝑖𝑖𝑓𝑓 𝑢𝑢𝑠𝑠𝑖𝑖𝑢𝑢𝑙𝑙 𝐶𝐶𝑀𝑀 𝑚𝑚𝑙𝑙𝑚𝑚𝑒𝑒𝑙𝑙
                 .                         (5) 212 

We incorporated the estimate of natural mortality 𝑀𝑀𝑎𝑎,𝑡𝑡 for each age and year (Eqn. 4 – 5) into the 213 

survival equation. The log-quadratic relationship of the Gulf Stream Index -natural mortality 214 

relationship is suggested to be related to both preferred warmer temperatures that occur at high  215 

Gulf Stream Index when the north wall of the Gulf Stream is pushed further north, and changes 216 

in available habitat (that consequently impacts mobility, predator and prey densities, and 217 
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ontogenetic migration) (O’Leary et al. 2018). For full methods, the remaining equations, prior 218 

distributions, and equation definitions see O’Leary et al. (2018).  219 

 220 

Biological Reference Point Calculation 221 

We calculated twelve time-series of BRPs from 1990 - 2015, formed as the factorial cross 222 

of three estimation models (explained previously) and two approaches to estimating BRPs 223 

(dynamic and moving-average) for two BRPs (a fishing-mortality and a spawning-biomass BRP) 224 

that utilize the spawning potential ratio or SPR, also defined below. The four paired estimation 225 

approaches and BRP calculations were dynamic-𝑆𝑆0(𝑡𝑡), dynamic- F35% (𝑡𝑡), moving-average-226 

𝑆𝑆0(𝑡𝑡), and moving-average- F35% (𝑡𝑡). BRP calculations begin in 1990 because the dynamic-BRP 227 

calculations require information on population processes for the lifespan of summer flounder, in 228 

this case 8 years for the last recorded age class plus group (i.e., initial year of data available 229 

(1982) + full range of age classes in the model (8 years) = 1990.  We calculated each time series 230 

as a posterior predictive distribution given the posterior distribution for parameters in the CI, CR, 231 

and CR models. For consistency with the NOAA stock assessment of summer flounder (Terceiro 232 

2016), we use the SPR-based BRP (F35% (𝑡𝑡)) as a proxy for FMSY (Table 1). Previous research 233 

defined 0.35 as a sufficient ratio to maintain SBPR levels that meet management targets for New 234 

England groundfish (Clark 1991), although Clark (1993) noted that in the presence of randomly 235 

variable recruitment 0.40 was a better ratio than 0.35. 236 

For each BRP, we used 2,850 Markov Chain Monte Carlo samples (r) from the posterior 237 

distribution for parameters in each estimation model. For each posterior sample, we projected 238 

population dynamics for 201 levels of fishing (𝐹𝐹∗) ranging from 0 to 2 in increments of 0.01, 239 

resulting in 572,850 total projections. The following sections detail the calculations used by for 240 

dynamic-BRP and moving-average-BRP approaches for the reference points F35% (𝑡𝑡) and 𝑆𝑆0(𝑡𝑡).  241 

 242 

BRP Calculation Algorithm 243 

The main difference between the dynamic- and moving-average- F35% (𝑡𝑡) and 𝑆𝑆0(𝑡𝑡) are 244 

the method of incorporation of temporal variability. The dynamic approach incorporated the 245 

varying vital rates of a cohort through time to calculate productivity given estimated parameters 246 

for stock productivity from a dynamic 𝑆𝑆0 estimated population. In the dynamic-BRP approach, 247 
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the population was projected using values in year t-1 for each cohort. Therefore, the population 248 

dynamics reflect estimates of demographic parameters (recruitment, natural mortality, growth, 249 

and maturity) for preceding years. The dynamic approach is referred to as ‘dynamic’ because it 250 

generalizes ‘dynamic-B0’, i.e., where it projects dynamics from t-1 to t in the absence of fishing 251 

(to calculate biomass targets from B0) or with different fishing mortality rates (to calculate 252 

exploitation targets from SPR). The moving-average approach is calculated assuming 253 

equilibrium conditions given a set of environmental conditions and demographic parameters in a 254 

given year (or their average over a window of years) at a specified level of fishing over the entire 255 

time-period of the population. 256 

To calculate dynamic-𝑆𝑆0(𝑡𝑡), dynamic-F35% (𝑡𝑡), moving-average-𝑆𝑆0(𝑡𝑡), and moving-257 

average-F35% (𝑡𝑡) we used the following general steps: (1) calculate unfished spawning biomass 258 

per recruit and spawning potential ratio; and (2) calculate total numbers and unfished biomass, 259 

for 201 levels of 𝐹𝐹∗ ranging from 0 to 2 in increments of 0.01. Calculations used a sample 𝛉𝛉𝑟𝑟 for 260 

natural mortality, recruitment deviations, initial age-structure, selectivity, and initial numbers-at-261 

age from an estimation model posterior distribution r. Full algorithms with equations for each 262 

BRP calculation can be found in Supplementary Materials 1. 263 

Evaluation of Estimation Approaches 264 

We calculated the mean, uncertainty, and variability (i.e., the temporal coefficient of 265 

variation due to biological variation) of F35% (𝑡𝑡) and 𝑆𝑆0(𝑡𝑡) over the entire period to address the 266 

first three objectives: (1) quantify the variability over time of climate-dependent vs. climate-267 

independent BRPs over a 26-year period; (2) quantify the standard error for different BRPs and 268 

approaches; and (3) determine whether moving-average- or dynamic-BRPs are more variable 269 

and uncertain over time. We calculated uncertainty as the mean of the CVs across 𝐿𝐿 samples of 270 

the posterior 𝑥𝑥𝑟𝑟 for 𝑌𝑌 years, where 𝐶𝐶𝑉𝑉𝑦𝑦 =  
�1
𝐿𝐿
∑ (𝑚𝑚𝑟𝑟−𝜇𝜇)2𝐿𝐿
𝑟𝑟=1

∑ 𝑚𝑚𝑟𝑟𝐿𝐿
𝑟𝑟=1
𝐿𝐿

 and average 𝑢𝑢𝑢𝑢𝑢𝑢𝑒𝑒𝑜𝑜𝑡𝑡𝑎𝑎𝑖𝑖𝑢𝑢𝑡𝑡𝑢𝑢 =  
∑ 𝐶𝐶𝑉𝑉𝑦𝑦𝑌𝑌
𝑦𝑦=1

𝑌𝑌
. 271 

Temporal variability was calculated as the CVs across a total of Y years for a total of L posterior 272 

samples followed by a mean across samples. Here, 𝐶𝐶𝑉𝑉𝑟𝑟 =  
�1
𝑌𝑌
∑ (𝑚𝑚𝑦𝑦−𝜇𝜇)2𝑌𝑌
𝑦𝑦=1

∑ 𝑚𝑚𝑦𝑦𝑌𝑌
𝑦𝑦=1
𝑌𝑌

 and temporal 273 

𝑣𝑣𝑎𝑎𝑜𝑜𝑖𝑖𝑎𝑎𝑣𝑣𝑖𝑖𝑙𝑙𝑖𝑖𝑡𝑡𝑢𝑢 =  ∑ 𝐶𝐶𝑉𝑉𝑟𝑟𝐿𝐿
𝑟𝑟=1
𝐿𝐿

.  274 
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To address objective (4) to attribute trends and variation in BRPs to variation in 275 

mortality, recruitment, and growth processes, we tested three separate model fits: (1) natural 276 

mortality varied with all other BRP inputs fixed at their averages, (2) weight-at-age (i.e., growth) 277 

varied with all other BRP inputs fixed at their averages, and (3) recruitment varied with all other 278 

𝑆𝑆0inputs fixed at their averages (Miller et al. 2018). Each scenario describes the biological 279 

process that varied while holding all other biological parameters at their average conditions. In 280 

model fits (2) and (3) where natural mortality was constant, it was fixed at the average over time 281 

for each age. To address objective (5) to evaluate how different methods impact estimates of 282 

stock status for summer flounder, we compared the estimation model fishing rate and spawning 283 

stock biomass to estimated moving-average and dynamic F35% (𝑡𝑡)  and 𝑆𝑆35%(𝑡𝑡), or 35% of 284 

𝑆𝑆0(𝑡𝑡), to determine if the stock was overfished or if overfishing was occurring. We determined 285 

‘overfished’ and ‘overfishing’ status for summer flounder for each BRP estimation approach and 286 

climate-model. Overfishing here is defined as when the current fishing rate is higher than the 287 

BRP fishing value. Overfished is defined as when the stock is unable to maintain biomass levels 288 

at or above 𝑆𝑆35%(𝑡𝑡). This is different than the biomass reference point used in the stock 289 

assessment for summer flounder, where overfishing is calculated by projection method using the 290 

fishing rate at F35% and average recruitment (Terceiro 2016). 291 

 292 

Results 293 

 294 

Objective 1: How variable are climate-linked BRPs? 295 

Overall, the temporal variability in F35% (𝑡𝑡) and 𝑆𝑆0 was greater for the climate-dependent 296 

recruitment (CR) and climate-independent (CI) models than the climate-dependent natural 297 

mortality (CM) model for both estimation approaches (Fig. 3, Table 2). This difference in 298 

variability indicated that the CM model provided the most stable biological reference points. 299 

Additionally, the mean F35% (𝑡𝑡) was lowest for the CM model, indicating that the CM model 300 

estimated the most restrictive fishing mortality threshold.  301 

 302 

Objective 2: How uncertain are climate-linked BRPS? 303 
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Overall, the uncertainty (i.e., CV for the posterior distribution) in both the F35% (𝑡𝑡) and 304 

𝑆𝑆0(𝑡𝑡) was smaller for the CM model than all other models (Fig. 3, Table 2). This likely occurs 305 

because the CM model has a different posterior distribution than the other two models, where the 306 

CM model posterior explains more of the population variance (Fig. 2).   307 

 308 

Objective 3: Are moving-average-BRPs or dynamic-BRPs more uncertain and variable over 309 

time? 310 

The temporal variability in F35% (𝑡𝑡) and 𝑆𝑆0(𝑡𝑡) was greater for the moving-average-BRP 311 

approach than the dynamic-BRP approach for all tested models (Fig. 3, Table 2). These results 312 

suggest that tracking individual cohorts (i.e., dynamic-BRP approach) results in less variable 313 

fishing and biomass reference points than if the population achieves equilibrium given average 314 

demographic rates over a one-year window (i.e., moving-average-BRP approach) because the 315 

dynamic-BRP approach is smoothing across cohorts in a given year.   316 

Variability in the moving-average-BRP approach also depends upon whether calculations 317 

are based on conditions in a single year, 3-year, or 5-year window.  As the window to calculate 318 

the F35% (𝑡𝑡) increased to 3- and 5-years (both with t as the center and terminal year), variability 319 

using the moving-average approach decreased relative to the one-year window (see 320 

Supplementary Materials 2).  Overall, the moving-average approach F35% (𝑡𝑡) was more variable 321 

than the dynamic approach F35% (𝑡𝑡) for all windows (except for the 5-year window with t as the 322 

terminal year for the CM model). As the window to calculate 𝑆𝑆0(𝑡𝑡) increased to 3- and 5-years 323 

(with t as the center and terminal year), the moving-average approach variability decreased again 324 

relative to the one-year window. Overall, the moving-average approach 𝑆𝑆0(𝑡𝑡) was more variable 325 

than the dynamic approach for the 1- and 3-year windows, and less variable than the dynamic 326 

approach for the 5-year window. See Supplementary Materials 2 for the full results for the 327 

moving-average approach using 3- and 5-year window averages with t as the center year and t as 328 

the terminal year. 329 

The uncertainty in the F35% (𝑡𝑡) estimates (i.e., the coefficient of variation of the posterior 330 

distribution) was lower in the dynamic-BRP approach than the moving-average-BRP approach 331 

(Table 2). The uncertainty in the 𝑆𝑆0(𝑡𝑡) estimates was also lower in the dynamic-BRP approach 332 

than the moving-average-BRP approach (Table 2).  333 
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The overall temporal trend for F35% (𝑡𝑡) was different between the moving-average and 334 

dynamic approach results (Fig. 3). Both the moving-average- and dynamic-F35% (𝑡𝑡) decreased 335 

over time for the CR and CI models, and remained relatively constant for the CM model. In the 336 

final 5 years (2011 – 2015), the moving-average- F35% (𝑡𝑡) increased whereas the dynamic- F35% 337 

(𝑡𝑡) continued to decline for the CR and CI models (Fig. 3). The CM model F35% (𝑡𝑡) continued to 338 

remain relatively constant over time using both the moving-average-BRP and dynamic-BRP 339 

approaches. 340 

 341 

Objective 4: Attributing variation in BRPs to changes in natural mortality, recruitment, or 342 

weight-at-age 343 

We explored the impact of each of the three time-varying biological processes in 344 

isolation on BRP estimation to determine the causes of observed variation in BRPs: (1) varying 345 

weight-at-age, (2) varying natural mortality, and (3) varying recruitment. We found that variation 346 

in natural mortality was the largest driver of temporal variation in summer flounder F35% (𝑡𝑡), 347 

followed by changes in weight-at-age. For the CR and CI models, we note that temporal 348 

variation in estimated natural mortality drives the large decrease in B0 (𝑡𝑡) from 2011-2015 in 349 

moving-average approach, and therefore drives an associated increase in F35% (𝑡𝑡) for those two 350 

models. Variation in natural mortality was the largest driver of temporal variation in summer 351 

flounder 𝑆𝑆0(𝑡𝑡) for the moving-average approach. However, recruitment was the largest driver of 352 

variation in summer flounder 𝑆𝑆0(𝑡𝑡) for the dynamic approach. This suggests that the 353 

contribution of temporal variation in natural mortality and recruitment to the BRP variability is 354 

dependent on the estimation approach (Fig. 4; Table 3). Figs. 1 – 2 show the time-varying 355 

parameters for each of the three estimation models. 356 

 357 

Objective 5:  How do these decisions affect estimates of stock status? 358 

To determine the “overfishing” (i.e., 𝐹𝐹(𝑡𝑡)
F35% (𝑡𝑡) 

> 1) and “overfished” (i. e. 𝑆𝑆𝑆𝑆(𝑡𝑡)
𝑆𝑆35%(𝑡𝑡) 

< 1) 359 

status, we calculated the ratio of fishing mortality to F35% (𝑡𝑡) and the spawning stock biomass to 360 

35% of B0(t) (typically called B35% (𝑡𝑡)), for both BRP methods for each year. Stock status was 361 

highly dependent on the climate model and estimation approach. In the moving-average 362 
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approach, the stock was classified as overfished up to 2000 (or 2002 in the case of the CM 363 

model; Fig. 5). From 2000 up to 2013 (or 2002 – 2005 and 2011 in the case of the CM model), 364 

the stock classified as not overfished based upon the moving-average approach BRPs. In the 365 

final 2-3 years, the moving-average-BRP estimated the stock as overfished (Fig. 5). In the 366 

dynamic approach, the stock was classified as overfished up until 1997 for the recruitment (CR) 367 

and natural mortality (CM) models, and up to 1996 for the independent (CI) model (Fig. 5). 368 

From that year onward, the stock was classified as not overfished for all models up until the final 369 

year 2015 based upon the dynamic approach BRPs. The exception to this was in 2010 for the 370 

CM model, where the stock drops back down to overfished. Overfishing was occurring on the 371 

summer flounder stock throughout the entire time period based upon BRP calculations from both 372 

the moving-average and dynamic approach (Fig. 5), except for in years 1993 and 2002 for the 373 

recruitment (CR) and independent (CI) models.  374 

For some years (e.g., 1993, 2002), classification as “overfished” (or not) depended on the 375 

estimation approach and climate models used. However, it is worth noting how similar the 376 

overfishing status is between the two approaches for a given model. As well, the moving-average 377 

approach resulted in an overfished stock status for a slightly longer duration.  From the 378 

management perspective, these small differences can be important because each stock status 379 

enacts a different series of management actions. As well, the outcome is affected by any 380 

management actions that occurred during this period.  All BRP approaches and estimation 381 

models classified the stock as overfished with overfishing during early years, with a transition to 382 

not overfished with overfishing in later years. The largest difference in stock status between the 383 

two estimation approaches is in the final 6 years for the biomass reference, particularly for the 384 

independent (CI) and recruitment (CR) models (Fig. 5).  385 

 386 

Discussion 387 

In this case study using summer flounder, both the mechanism of climate-dependency in 388 

the underlying empirical model and the temporal-variability used to calculate biological 389 

reference points (BRPs) altered BRP uncertainty, variability, and thus stock status. Specifically, 390 

the dynamic-BRP and climate-natural mortality-linked model (CM) estimated lower fishing rates 391 

and BRPs for a one-year window than the other models and BRPs tested. BRP variability 392 

stemmed principally from varying natural mortality regardless of the estimation approach and 393 
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underlying climate-dependency model.  It is worth noting that O’Leary et al. (2018) 394 

demonstrated that the climate-natural mortality model (CM) was the best-fitting model to capture 395 

past summer flounder abundances. However, because the underlying model used to calculate 396 

BRPs can always be incorrectly specified, a more stable or restrictive BRP does not always 397 

equate to a 'better' reference point. The climate-dependencies represented here demonstrate how 398 

variable fish stock dynamics can be and how the overfishing determination depends on these 399 

defined relationships. Previously developed models with time-varying vital rates used to estimate 400 

BRPs highlight the importance of correctly identifying climate-dependencies when determining 401 

stock status, the large variability in BRP estimates that can result from using climate-dependent 402 

models, and the differences in BRP uncertainty depending on the time-varying properties used 403 

(i.e., current versus a 3-5 year average). 404 

Mangel et al. (2013) discuss the false sense of precision that arises from using point 405 

estimates or posterior samples when using a two-parameter stock-recruit relationship or fixed 406 

natural mortality. Similarly, we suggest that basing reference points on fixed values of life-407 

history parameters will often convey a false sense of precision, given that all populations have 408 

some degree of time-varying growth, mortality, maturity, or other processes. Time-varying BRPs 409 

inherently have much more variability, may be more difficult to understand, and be difficult for 410 

managers to use. We suggest developing time-varying BRPs more generally and comparing them 411 

to “static” BRPs to understand this uncertainty hidden by decisions to use fixed natural mortality. 412 

Empirical analyses, such as the one presented here, will help managers evaluate risks and 413 

priorities through understanding which changing vital rates impact scientific advice to 414 

management the most (Karp et al. 2019).  415 

In this study, time-varying natural mortality resulted in the greatest variability in BRPs in 416 

both the climate-recruitment and climate-independent models. The climate-dependent natural 417 

mortality (CM) model estimated lower, less variable, and more precise natural mortality 418 

parameter estimates than the climate-dependent recruitment (CR) and climate-independent (CI) 419 

models. This is likely due to the incorporation of the relationship between natural mortality and 420 

the Gulf Stream Index. Additionally, natural mortality decreased slightly in the climate-natural 421 

mortality model as the Gulf Stream deviated from average conditions. As natural mortality 422 

decreased, peak SBPR at F35% (𝑡𝑡) decreased and occurred at older ages in the climate-natural 423 

mortality model. The reduction of peak SBPR, in turn, reduced the BRP value and its associated 424 
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uncertainty while also providing less variable mean BRPs over time. These changes in 425 

productivity are consistent with the theoretical rationale that if natural mortality decreases and all 426 

else remains the same, the vital rates describe a longer-lived fish species with productivity 427 

spanning over a longer time frame (i.e., the fecundity over the fish’s lifetime is greater). 428 

Therefore, because of the large influence that time-varying natural mortality has on per recruit 429 

BRPs, strong empirical evidence is needed to support the use of a time-varying natural mortality 430 

in BRP calculations (Legault and Palmer 2015).  431 

The choice to include climate-dependency or temporally varying vital rates in BRP 432 

calculations based on empirical evidence can have implications for stock status. Depending on a 433 

stock’s vulnerability to changing ocean conditions, these differences in BRPs due to assumed 434 

temporal dynamics will need to be considered in any risk assessment evaluation. The methods 435 

herein provide a tool for scientists and managers to consider when preparing their fishery for 436 

both near-term and long-term management under shifting oceanographic conditions.  In the case 437 

of summer flounder, the temporal variability in F35% (𝑡𝑡) and 𝑆𝑆0(𝑡𝑡) was greater for the moving-438 

average-BRP approach than the dynamic-BRP approach for all climate models using a 1-year 439 

window. The assumed temporal dynamics for each cohort can potentially explain the greater 440 

variability in F35% (𝑡𝑡) and 𝑆𝑆0(𝑡𝑡) in the one-year window moving-average-BRP approach 441 

compared to the dynamic-BRP approach. The dynamic-BRP approach tracks cohorts and uses 442 

the time-varying natural mortality from that year and all previous years to calculate F35% (𝑡𝑡) and 443 

B0 (t). The dynamic approach reflected the productivity at each age in the cohort’s lifespan using 444 

the natural mortality specific to that age giving each cohort a different productivity history. 445 

Because we calculated each cohort with age-specific natural mortality values, the productivity 446 

between cohorts within a year was more consistent because it represents a blend of productivities 447 

up to that year. The moving-average-BRP approach, on the other hand, was an equilibrium 448 

approach (i.e., assuming that environmental conditions continue for indefinitely long period such 449 

that the population achieves population equilibrium). The natural mortality was conditioned from 450 

a 1-year period (i.e., ignores the cohort history) and assumed equal to that value for the previous 451 

years of that cohort’s lifespan. Therefore, the productivity of each cohort in any year is 452 

calculated in the moving-average approach assuming its productivity at that point in time. This is 453 

likely why the moving-average BRP from year to year is more variable than the dynamic BRP.  454 
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Trends in both BRPs were primarily attributed to natural mortality (Table 2; varying 455 

natural mortality scenario). This finding supports the suggestions of Brodziak et al. (2011) and 456 

Thorson et al. (2015) that identifying changes in natural mortality should be a priority when 457 

expanding stock assessments to including time-varying biological processes because of their 458 

large influence over spawning biomass and catch management targets. As well, in the varying 459 

natural mortality scenario, the variability in both BRPs were lowest in the climate-natural 460 

mortality model. This suggests that including an environmental index as a covariate in the 461 

estimation of natural mortality successfully constrained variation in natural mortality in the 462 

climate-natural mortality model, whereas natural mortality was estimated as an unconstrained 463 

random process in climate-dependent recruitment and independent models. Different methods of 464 

incorporating temporal variability and climate effects into the fish’s population dynamics 465 

influence the uncertainty and variability of BRPs. Therefore, careful consideration is warranted 466 

when considering which approach to use and how to incorporate climate effects, ideally based 467 

upon management strategy evaluation within a proposed set of management procedures (Karp et 468 

al. 2019). 469 

The variability in the moving-average approach BRPs was highly dependent not only on 470 

natural mortality values, but also on the length of window used to calculate the moving-average-471 

BRP. The assumed dynamics for each cohort over the BRP calculation period likely explain the 472 

different temporal variability in BRPs for each estimation approach. For the one-year window, 473 

this may be due to the large increase in natural mortality in the final year of the models where 474 

climate and natural mortality are not linked. The large increase in time-varying natural mortality 475 

in the final year is due to insufficient information in the parameterization of these models relative 476 

to the climate-linked natural mortality- models. This characteristic is not present in the summer 477 

flounder stock assessment due to a different parameterization of natural mortality.  478 

We can implement these developed approaches for an MSY reference point where the 479 

stock more closely follows a stock-recruit relationship. The models used in this study do contain 480 

a stock-recruit relationship. However, the stock-recruit relationship for summer flounder is weak 481 

and uncertain (Terceiro 2016). The interpretation of an MSY-based reference point, therefore, 482 

was not meaningful or dependable, hence the use of F35% (𝑡𝑡) both here and in the stock 483 

assessment (Maunder 2012). Natural mortality has a considerable influence on FMSY similar to 484 
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F35% (𝑡𝑡) as demonstrated here, and so would be interesting to look at for other stocks (Maunder 485 

2012).   486 

In the 2019 summer flounder stock assessment, the stock was determined not overfished 487 

and no overfishing was occurring. As well, based on the BRPs calculated here, there was no 488 

overfishing of the summer flounder stock despite differences in BRP uncertainty and variability 489 

in this study. Some of the calculated BRPs in this paper did categorize summer flounder as 490 

overfished in recent years, which can potentially trigger a rebuilding plan if the fishing mortality 491 

is not low enough to allow the stock to be projected to be rebuilt in sufficient time. However, the 492 

purpose of this study was not to present the ‘correct’ BRP values or BRP values for 493 

management, but rather to present the consequences of considering multiple model productivity 494 

estimates and BRP calculation approaches within the same stock. The models used to explore the 495 

consequences of the estimation model and estimation approach are simpler than typical stock 496 

assessment models so that we could incorporate time-varying natural mortality and other time-497 

varying processes. For instance, fleets in this study combine landings and discards, likely 498 

influencing the magnitude of BRP values. As well, the climate-dependency models used here are 499 

too simple for determining stock status for management (O’Leary et al. 2018), but rather serve to 500 

demonstrate the relative ramifications of different climate-dependencies when using time-501 

varying reference points. Thus, values should be interpreted only in comparison to the other 502 

BRPs in this study, with the knowledge that the climate-natural mortality model was the best 503 

performing model for this particular stock.  504 

The differences in BRP uncertainty and variability for both approaches and climate-505 

dependencies may be greater if we calculate BRPs for a fish stock with more variable 506 

productivity, productivity closer to a threshold tipping point, or with a greater magnitude 507 

response to climate. This is particularly relevant for the current management process in many 508 

regions, where BRPs include temporal variation by conditioning them on information and stock 509 

assessment estimates from the most recent years. Therefore, we suggest that there should be a 510 

consultative, iterative process with stakeholders to identify the method used to calculate BRPs. 511 

As well, plausible climate hypotheses should be developed and used to test climate-dependencies 512 

relevant to the managed fish stock. Researchers can then optimize management procedures based 513 

upon the BRP input used for management practices. We suggest incorporating the following 514 

steps into management: 515 
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1. Consider the method of incorporating time-variation into the BRP calculation before 516 

harvest control rules and management proceeds. 2. Evaluate how both the dynamic- and 517 

moving-average-BRP approaches influence the BRP calculation based on the longevity 518 

and time-varying population dynamics of the fish stock. Comparing various BRPs 519 

calculated with different modes of temporal variability incorporation is central to 520 

understanding the ramifications of any model choice for management. 521 

3. Following these two BRP calculations, if a Bayesian assessment model is used, a direct 522 

comparison between the BRP posterior distributions can be used to determine the 523 

likelihood of overfishing a fish stock. We suggest performance measures to compare 524 

between BRP outcomes include average catch, revenue, and avoidance of fishery 525 

collapse. A simulation study can be used to determine the trade-off of these performance 526 

measures for each BRP decision and identify control rules that balance the competing 527 

objectives of the fishery, similar to the Wiedenmann et al. (2013) approach used for data-528 

poor fisheries.  529 

4. Take into account the timeline and management goals of the various stakeholders to 530 

determine how to incorporate BRP uncertainty, variability, and probability of overfishing 531 

the stock.  A ‘stable’ reference point does not necessarily imply the ‘best’ advice. For 532 

example, the assessment for summer flounder occurs every 5 years and the Acceptable 533 

Biological Catch (ABC) is set every 3 years. In this case, the moving-average-BRPs are 534 

more uncertain. Therefore, we advise using these moving-average BRPs over a longer 535 

time frame to more cautiously approach 3- 5 year management timeframe of a fish stock 536 

whose natural mortality temporally varies from year-to-year. Using this moving-average 537 

approach, a fish stock’s temporally varying life history and productivity conditions are 538 

more likely captured by the greater uncertainty. 539 

These steps can be used to extend the time-varying BRP methods established here to 540 

provide a quantitative understanding of the risk associated with each BRP decision. Simulation 541 

studies to directly compare and evaluate the implications of BRP temporal variability 542 

incorporation and climate-dependencies on time-varying BRP calculations for their stock of 543 

interest would greatly advance this study. 544 

The use of time-varying biological inputs can smooth the effects of population dynamics 545 

over adjacent years and across cohorts, making emergent trends challenging to interpret. Despite 546 
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this limitation, this study provided evidence that temporally-varying climate-inclusive BRP 547 

calculations resulted in changes in BRP values over time, but did not cause such a large increase 548 

in uncertainty to make BRPs uninterpretable. We also successfully incorporated time-varying 549 

parameters using two different methods without making BRPs uninterpretable, providing a 550 

method to account for variability and evaluate the risk of multiple scenarios in management as 551 

climate conditions continue to change. Importantly, the uncertainty in the time-varying BRPs 552 

would likely increase if forecasted, particularly in cases where climate is incorporated into the 553 

time-varying population processes (Miller et al. 2016). Differences in stock status that depend on 554 

the climate-model used highlight the need to account for the effects of changing climate 555 

conditions on stock productivity if present. 556 

 557 
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Figures 591 

 592 
Figure 1. Weight-at-age from 1982 to 2015 used in all three estimation models. Data was 593 
extracted from the summer flounder stock-assessment tables (Terceiro 2016). 594 
  595 
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 596 
Figure 2. Estimates of recruitment (A) and age 4 natural mortality (B) from 1982 - 2015 for the 597 
three climate models, independent (CI), climate-dependent natural mortality (CM), and climate-598 
dependent recruitment (CR), surrounded by 95% credible intervals. 599 
  600 
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 601 

Figure 3. Moving-average-F35% (𝒕𝒕) (panel A), dynamic-F35% (𝒕𝒕) (panel B), moving-average-𝑩𝑩𝟎𝟎(𝒕𝒕) 602 
in mt (panel C), and dynamic-𝑩𝑩𝟎𝟎(𝒕𝒕) in mt (panel D) for climate-independent (CI), climate-603 
dependent natural mortality (CM), and the climate-dependent recruitment (CR) models for t = 604 
1990 – 2015 with ± 50% credible intervals, ± 75% credible intervals, and ± 95% credible 605 
intervals from darkest to lightest grey. 606 
  607 
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 608 
Figure 4. The fully varying BRPs compared to BRPs from three sensitivity analyses attributing 609 
change to varying weight-at-age, varying natural mortality, or varying recruitment in isolation 610 
while holding all other parameters at their average values.  611 
  612 
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 613 
Figure 5. Moving-average-BRP (grey lines) and dynamic-BRP (black lines) stock status plots 614 
for the climate independent (CI), climate-natural mortality (CM), and climate-recruitment (CR) 615 
models. Plots show (top row) estimated instantaneous fishing mortality (F) divided by F35% (𝒕𝒕) 616 
across time and (bottom row) the estimated spawning stock biomass (SB) divided by 𝑩𝑩𝟑𝟑𝟑𝟑%(𝒕𝒕) 617 
across time. A fishing mortality ratio above one indicates overfishing of the stock and below one 618 
indicates no overfishing. A spawning stock biomass ratio below one indicates the stock is 619 
overfished and above one indicates the stock is not overfished. Note that y-axis is plotted using a 620 
log-scale. 621 
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Tables 622 
 623 
Table 1. Biological reference point (BRP) definitions and equations. F* is the instantaneous 624 
fishing mortality, t is the year, 𝛉𝛉𝒓𝒓 is a sample from the posterior distribution of parameters, 𝒏𝒏𝒓𝒓is 625 
the total number of posterior samples, 𝑹𝑹𝒕𝒕,𝐫𝐫 is recruitment in year t for posterior sample r, and 626 
𝑺𝑺𝑩𝑩𝑺𝑺𝑹𝑹(𝑭𝑭∗|𝛉𝛉𝒓𝒓, 𝒕𝒕) is the spawning biomass per recruit under F* moving-average on year t and 627 
posterior distribution 𝛉𝛉𝒓𝒓. 628 

BRP Definition Equation 

F35% (𝑡𝑡) 

The fishing mortality value 
in year t for posterior 
sample 𝛉𝛉𝑟𝑟 at which 

spawning biomass per 
recruit is 35% of the 

unfished spawning biomass 
per recruit, given 

parameters defined in a 
single year t 

Moving-average Dynamic 

 

For a given F* in year t 
 

0.35 =  
𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅(𝐹𝐹∗|𝑜𝑜, 𝑡𝑡) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅(𝐹𝐹∗ = 0|𝑜𝑜, 𝑡𝑡)
 

 

For a given F* in year t, 
 

0.35 =  
𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅(𝐹𝐹∗|𝛉𝛉𝑟𝑟 , 𝑡𝑡)

𝑆𝑆𝑆𝑆𝑆𝑆𝑅𝑅(𝐹𝐹∗ = 0|𝛉𝛉𝑟𝑟 , 𝑡𝑡)
 

 

𝑆𝑆0(𝑡𝑡) 

The spawning biomass in 
year t for posterior sample 

r from past recruitment 
deviations in the absence of 

fishing given estimated 
parameters for stock 

productivity 𝛉𝛉𝑟𝑟 

 

1
𝑢𝑢(𝑜𝑜)

�𝑆𝑆𝑆𝑆(𝐹𝐹∗ = 0|𝑜𝑜, 𝑡𝑡)
𝑛𝑛(𝑟𝑟)

𝑟𝑟=1

 

The spawning biomass when there is 
no fishing pressure (F*) in year t, 

 
𝑆𝑆𝑆𝑆(𝐹𝐹∗ = 0|𝑜𝑜, 𝑡𝑡) 

 
 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 
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Table 2. BRPs using moving-average-BRP and dynamic-BRP approach mean F35% (𝒕𝒕) F35% (𝒕𝒕) 640 
uncertainty, F35% (𝒕𝒕) temporal variability, mean 𝑩𝑩𝟎𝟎(𝒕𝒕), 𝑩𝑩𝟎𝟎(𝒕𝒕) uncertainty, and 𝑩𝑩𝟎𝟎(𝒕𝒕) temporal 641 
variability across years 1990-2015 for the climate recruitment (CR), climate mortality (CM), and 642 
climate independent (CI) models. Uncertainty in F35% (𝒕𝒕) and𝑩𝑩𝟎𝟎(𝒕𝒕) is expressed as the average 643 
coefficient of variation and variability in F35% (𝒕𝒕) and 𝑩𝑩𝟎𝟎(𝒕𝒕) is expressed as the coefficient of 644 
variation over time. 645 
 646 

  Moving-average Dynamic 

  CR CM CI CR CM CI 

F 3
5%

 (𝒕𝒕
) mean 0.35 0.25 0.37 0.34 0.29 0.35 

uncertainty 0.19 0.13 0.20 0.1 0.05 0.11 

variability 0.32 0.14 0.32 0.13 0.06 0.14 

𝑩𝑩
𝟎𝟎(
𝒕𝒕)

 mean (mt) 70016 83544 76938 63988 52037 68877 
uncertainty 0.46 0.26 0.53 0.25 0.16 0.3 
variability 0.49 0.40 0. 56 0. 28 0.24 0.32 

 647 

 648 

 649 

 650 

  651 
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Table 3.  Variability in F35% (𝒕𝒕) and 𝑩𝑩𝟎𝟎(𝒕𝒕) estimates using moving-average-BRP and dynamic-652 
BRP approach and varying natural mortality (Natural Mortality Scenario), varying weight-at-age 653 
(Weight-at-Age Scenario), or varying recruitment (Recruitment Scenario) across years 1990-654 
2015 for the climate recruitment (CR), climate mortality (CM), and climate independent (CI) 655 
models. Variability in F35% (𝒕𝒕) and 𝑩𝑩𝟎𝟎(𝒕𝒕) is expressed as the coefficient of variation over time. 656 
 657 

 F35% (𝑡𝑡) Moving-average Dynamic 

 CR CM CI CR CM CI 

Natural Mortality Scenario Variability 0.35 0.14 0.35 0.15 0.06 0.16 

Weight-at-Age Scenario Variability 0.06 0.06 0.07 0.05 0.05 0.05 

Recruitment Scenario Variability 0.04 0.03 0.05 0.02 0.02 0.02 

𝑆𝑆0(𝑡𝑡) Moving-average Dynamic 

 CR CM CI CR CM CI 

Natural Mortality Scenario variability 0.45 0.27 0.51 0.15 0.09 0.12 

Weight-at-Age  Scenario Variability 0.15 0.11 0.16 0.11 0.11 0.09 

Recruitment Scenario variability 0.23 0.28 0.28 0.28 0.22 0.35 

 658 

 659 

 660 
 661 
 662 
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