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Abstract

Experimental exposure of early life stage bivalves has documented negative effects of elevated 

pCO2 on survival and growth, but the population consequences of these effects are unknown. 

Following standard practices from population viability analysis and wildlife risk assessment, we 

substituted laboratory-derived stress-response relationships into baseline population models of 

Mercenaria mercenaria and Argopecten irradians. The models were constructed using inverse 

demographic analyses with time series of size-structured field data in NY, USA, whereas the 

stress-response relationships were developed using data from a series of previously published 

laboratory studies. We used stochastic projection methods and diffusion approximations of 

extinction probability to estimate cumulative risk of 50% population decline during ten-year 

population projections at 1, 1.5 and 2 times ambient pCO2 levels. Although the A. irradians 
population exhibited higher growth in the field data (12% per year) than the declining M. 
mercenaria population (−8% per year), cumulative risk was high for A. irradians in the first ten 

years due to high variance in the stochastic growth rate estimate (log λs = −0.02, σ2 = 0.24). This 

ten-year cumulative risk increased from 69% to 94% and >99% at 1.5 and 2 times ambient 

scenarios. For M. mercenaria (log λs = −0.09, σ2 = 0.01), ten-year risk was 81%, 96% and >99% 

at 1, 1.5 and 2 times ambient pCO2, respectively. These estimates of risk could be improved with 

detailed consideration of harvest effects, disease, restocking, compensatory responses, other 

ecological complexities, and the nature of interactions between these and other effects that are 

beyond the scope of available data. However, results clearly indicate that early life stage responses 

to plausible levels of pCO2 enrichment have the potential to cause significant increases in risk to 

these marine bivalve populations.
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1. Introduction

Atmospheric carbon dioxide emissions have risen to over 400 μatm, exceeding levels 

occurring in the past one million years. Current emission scenarios predict that CO2 

concentrations may rise above 1000 μatm by the end of the century (IPCC 2013). The 

absorption of this rising CO2 by the oceans has caused ocean acidification and associated 

shifts in marine carbonate chemistry, including a decrease in pH, calcium carbonate 

(CaCO3) saturation state (Ω), and carbonate ion concentration (CO3
2-) (Cao and Caldeira 

2008). While atmospheric loading of CO2 drives open ocean acidification, acidification in 

coastal zones is often controlled by additional processes, including eutrophication (Feely et 
al. 2010, Cai et al. 2011, Mucci et al. 2011, Wallace et al. 2014). Specifically, excessive 

nutrient loading into coastal ecosystems results in the accumulation of algal biomass 

followed by microbial degradation. Especially when coupled with seasonal stratification, 

this can create regions of low oxygen, high CO2, and acidification (Borges and Gypens 

2010, Wallace et al. 2014). During the past decade, there have been numerous studies 

documenting the negative effects of altered carbonate chemistry on calcium carbonate-

producing marine organisms (Orr et al. 2005, Kroeker et al. 2010, Doney et al. 2009). Some 

of the most sensitive of these organisms are early life stage bivalves (Green et al. 2009, 

Talmage and Gobler 2009, Gazeau et al. 2013; Waldbusser et al. 2013).

Laboratory studies have demonstrated that low pH and high pCO2 (partial pressure of carbon 

dioxide) reduce the survival and growth of the early life stages of filter feeding bivalves that 

are of commercial importance on the east coast of North America. Two of these are the hard 

clam, Mercenaria mercenaria, and the bay scallop, Arogopecten irradians (Green et al. 2009, 

Gobler and Talmage 2013, Talmage and Gobler 2009, 2010, 2011). Talmage and Gobler 

(2009, 2010, 2011) measured the survival of larval M. mercenaria and A. irradians in 

laboratory experiments under CO2 levels expected in surface oceans later this century and 

beyond (1500 μatm), although these shellfish often experience CO2 levels already this high 

in estuaries during the summer (Wallace et al. 2014). Throughout the summer, many 

temperate coastal systems are at the peak of their net heterotrophy and thus water can be 

supersaturated with CO2 (Blight et al. 1995, Talmage and Gobler 2009, Melzner et al. 2013). 

This is also the period during which larval M. mercenaria and A. irradians are spawned 

(Kennedy and Krantz 1982, Bricelj et al.1987). Miller and Waldbusser (2016) found that 

high variability in calcium carbonate mineral saturation state such as those experienced by 

these two bivalves can affect post-larval stage duration and therefore increase mortality 

rates. They did not estimate population level growth rates presumably because a suitable 

population model into which the impairment could be substituted was not available. Thus, 

although high mortality rates in the larval stage likely result in decreases in population 

fitness, further scrutiny within the context of whole life cycles is clearly needed.

A. irradians and M. mercenaria populations co-occur along the east coast of North America 

but have distinctly different life history strategies and habitat use. A. irradians is typically 

found among eelgrass beds and sandy substrates, reaches maturity at age one, spawns during 

summer and fall when seawater temperatures range from 20–24°C, and has a lifespan of 20–

26 months (Shumway and Parsons 2011, Tettelbach et al. 1999). A. irradians is also one of 

the few bivalve species that does not live buried in the sand or attached to rocks but instead 
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moves freely along benthic habitats. In contrast, M. mercenaria buries itself just below the 

surface of the sediment, typically reaches physiological maturity after two years and peak 

reproductive output at 7 – 12 years (Hofmann et al. 2006), can spawn multiple times per 

year when water reaches the optimal temperature (20 – 24°C), and may live up to forty years 

(Kraeuter and Castagna 2001). Both bivalves are commercially important. Despite the 

extirpation of many populations, M. mercenaria landings in the US were ~$57M in 2016, 

while A. irradians annual landings were ~$3M (Commercial Fisheries Statistics 2016). 

Beyond their direct harvest value, both species are considered ecosystem engineers in 

coastal waters due to their putative ability to mitigate eutrophication through filter feeding 

(Officer et al. 1982, Newell 2004, Pomeroy et al. 2006).

While it is known that high levels of CO2 affect individuals or same-aged cohorts of early 

life stage marine bivalves in the laboratory (Gazaeu et al. 2013), the population-level and 

ecological consequences of acidification are poorly understood. This is primarily because 

the magnitude of an organismal response is rarely predictive of effects at the population 

level. Since knowledge about the full life cycle in the form of vital demographic statistics is 

required to address this problem, common practice is to glean or derive those vital rates from 

disparate biological studies and then assemble them into a synthetic model. For a variety of 

reasons, this can produce extremely unrealistic life history models without the trade-offs and 

correlations that typically exist among vital rates in natural populations. For example, it 

would be problematic to combine a fertility estimate from a high-latitude population and a 

survival estimate from a low latitude population into a single model. We address this 

problem by estimating all the parameters for each model simultaneously from a single set of 

observations of an intact wild population. The approach is described by Grear et al. (2011) 

and others (reviewed in Caswell 2001) and involves an inverse demographic method 

requiring only stage- or age-structured time series of population abundance and sufficient 

natural history knowledge to formulate a basic model structure. In brief, our application 

treats the observed age/stage abundances as a multivariate time series to which a set of linear 

equations in the form of a demographic transition matrix are fitted using maximum 

likelihood.

Knowledge about biological responses to increased pCO2 usually comes from controlled 

laboratory studies of isolated life stages. This is mainly because impairments of a specific 

vital rate (e.g., survival of a specific life stage) are often impossible to measure directly in 

mixed-age populations. Thus, age cohorts are typically isolated and exposed, and then 

responses are tracked. These responses are then substituted into demographic population 

models such as those discussed above to assess higher-level effects. This approach has 

problems resulting from the effects of cohort isolation on biological response (Grear et al. 
2011), but it is standard practice in assessments of population viability (Morris and Doak 

2002; Beissinger and Westpahl 1998; Caswell 2001). Although not yet common in the study 

of ocean and coastal acidification, this was the approach we used for incorporating pCO2 

effects on bivalve early life stages into population models of A. irradians and M. mercenaria.

The overarching goal of this study was to scale the impacts of elevated pCO2 (800 and 1200 

μatm) on early life stages to population response, which we de fined as the probability of 

50% decline in total population size. No pCO2 impairment of juveniles or adults was 
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considered in the scenarios. As described below, our analysis required the use of stochastic 

modeling techniques and diffusion approximations of population trajectories (Dennis et al. 

1991, Caswell 2001, Morris & Doak 2002, Lande et al. 2003). Our combination of field 

population data, inverse demographic estimation, substitution of stress-response 

relationships developed from previous laboratory experiments, and conventional population-

level risk analysis allowed us to estimate changes in risk to northeast marine bivalve 

populations associated with the effects of future increases in pCO2 on early life stage 

survival.

2. Methods

2.1 Bivalve Population Data

Although abundance data exist for M. mercenaria and A. irradians in many ecosystems, the 

data for our study had to meet several criteria to be suitable for inverse demographic models 

(IDMs; Grear et al. 2011, Caswell 2001, Wood 1994). First, abundance for age or size 

classes was needed for a minimum of three consecutive surveys evenly spaced in time. For 

time series with transient departures from the expected stable age/stage distribution, longer 

time series are needed. In addition, the method treats the survey period as a window of time 

during which a single set of stochastically varying survival and reproductive rates is 

sufficient to capture the population dynamics.

For the M. mercenaria analysis, we used data from the Town of Islip, NY, which conducted 

an annual fishery-independent grab-sampling survey in Great South Bay (GSB) NY from 

1977 – 2011 (Table 1; Joseph 1989, Hofmann et al. 2006, Kraeuter et al. 2008). GSB is a 

small (383 km2), shallow lagoonal estuary (mean depth ~2m) located on the south shore of 

Long Island, NY (Schubel et al. 1991), that varies greatly in its physiochemical properties 

(pHNBS range= 6.7 – 9.4 mean = 8.03 ± 0.27 sd, dissolved oxygen range = 0.3–13.4 mg/L, 

mean = 8.17 ± 2.47 mg/L, salinity range = 7.1 – 32.2 mean = 28.32 ± 2.87; SCDHS 2015). 

GSB is reported to have an overall moderately high eutrophication condition with high levels 

of chlorophyll-a, macroalgae, and recurrent harmful algal blooms caused by Aureococcus 
anophagefferens (Bricker et al. 2007, Kinney and Valiela 2011, Gobler and Sunda 2012). M. 
mercenaria in GSB were classified into four size classes based on commercial harvesting 

sizes of shell width (seed = 2 – 25mm, little neck = 26 – 37mm, cherrystone = 38 – 42mm, 

chowder ≥ 43mm) from which matrix parameters could be estimated with inverse 

demography (Fig. 1). Counts were reported as individuals m-2.

A. irradians irradians data were obtained from surveys conducted during spring of each year 

at several locations in the Peconic Estuary on the east end of Long Island, NY (Table 1; 

Tettelbach et al. 2015) from 2005 to 2014. Sites included in the analysis in this study were 

Flanders Bay, Hallock Bay, Northwest Harbor, Sag Harbor, Orient Harbor, Southold Bay, 

Hog Neck Bay and Great Peconic Bay. The Peconic Estuary is a tidally well-mixed estuary 

with conditions typical of a mesotrophic estuary (pHNBS range= 7.8–8.2 mean = 8.0 ± 0.16, 

dissolved oxygen range = 170 – 380 μM, mean = 250 ± 60 μM, salinity range = 24.6–30.8 

mean = 28.1 ± 1.34; SCDHS 2017). Its depth ranges from 2 m on the west to 25 m on the 

east. Data were collected in an age-based survey throughout the spring (March to June) 

where multiple 1 m x 50 m transects were completed at each site for each year (Table 1). 
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Data for this short-lived bivalve species (two years) were divided into age class 0 (offspring 

produced the summer or fall before the survey) and age class one (individuals alive during 

the previous year’s survey) and were reported in the original data as individuals m-2. After 

testing for site-specific dynamics (see below), the analysis focused on rates at the landscape 

level (rather than individual sites), so we did not attempt to account for immigration and 

emigration at individual sites.

2.2 Baseline Demographic Matrix Models

We used inverse demography to estimate population matrix models from field data. 

Demographic matrix models are commonly used by population ecologists, but we 

summarize them briefly here. Typically, the individuals are classified into discrete age, stage, 

or size intervals. Here, size-based models were used, with the abundances within each size 

or age class forming the population state vector. The matrix contains the vital rates that 

describe the transitions between these classes (e.g. survival, growth, birth) during 1 annual 

interval.

Field-based matrix models for the 2 study species were estimated from existing bivalve field 

surveys using IDMs, which treat the age- or size-abundance for each year as a stochastic 

realization of a multivariate process (Dennis et al. 1995, Grear et al. 2011). The estimation 

method represents this multivariate process as a set of linear algebraic equations (i.e. the 

rows in the matrix model) and seeks to identify the set of matrix parameters that maximizes 

the fit between the predicted and observed stage abundances using likelihood methods (joint 

probability of the observed data given the model; Dennis et al. 1995). The method eliminates 

the ‘synthetic matrix’ problem discussed above but does have limitations. Conceivably, there 

are multiple model solutions that could accurately describe the observed data, but most are 

eliminated when biologically plausible constraints are imposed (e.g. all transitions must be 

non-negative, survival rates cannot exceed 1.00, terms below row 1 but above the diagonal 

must be 0 since large individuals cannot transition into small ones).

We treated the fitted matrix models as baseline cases into which we would substitute 

biological responses from Talmage and Gobler (2009, 2010, 2011) and Gobler and Talmage 

(2013). For M. mercenaria, the baseline model represents the dynamics of a depleted 

population (Kraeuter et al. 2008), whereas the model for A. irradians is for a recovering 

population (Tettelbach et al. 2013, 2015). Female M. mercenaria in the little neck size class 

and above produce eggs (Bricelj and Malouf 1980), so the model took the following form:

A =

0 F2 F3 F4
P1 0 0 0
0 P2 0 0
0 0 P3 PA

(Equation 1)

nt + 1 = Ant (Equation 2)

where Fi is per capita fertility for size i individuals, which can be decomposed into a product 

of the number of offspring (spat) produced by adults right after the census and their 
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probability of survival to the next annual census (P0). Pi is the probability of survival from 

size i to size i+1 in one census interval, PA is the survival probability for adults of size 4 and 

above, and nt is the population vector (size abundances) at time t. We reduced the number of 

free parameters in the model by relying on the study of M. mercenaria fecundity in Great 

South Bay by Bricelj and Malouf (1980), which found that fecundity of little necks was 

~40% of the mean of cherrystone and chowder clams and that the fecundity of cherrystone 

and chowder clams were statistically indistinguishable. These relationships were used as 

optimization constraints in the model fitting process described below (F2 <= 0.4 × F3; F3 = 

F4) but the magnitudes of the fertilities were only constrained to be > 0. This approach 

assumes similar fertilization success and larval survival among the three parental size 

classes.

Although A. irradians irradians can live for two years or more (Tettelbach et al. 1999), two-

year-olds were rare in the Peconic Estuary surveys that we used to construct the model. 

Also, there is evidence of fall spawning events in NY for A. irradians irradians (Tettelbach et 
al. 1999), but the fall set is smaller and presumably less important in Peconic Bay than in 

other populations (e.g., Hall et al. 2015). New cohort numbers were low in most fall surveys 

at the study sites (Tettelbach unpublished data). During the spring surveys used, there were 

two generations present (0 and 1 year-olds), but this overlap did not span an entire annual 

cycle. Since the age 0 class replaces the age 1 class by the next annual survey, the observed 

population can be modeled with non-overlapping generations. In this case, population 

growth is simply the replacement rate of the age 0 class. This leads to the following 

formulation for A. irradians:

A =
F 0
p0 0 (Equation 3)

to be substituted into Eq. (2) along with the 2-element population vector n. F is the 

contribution of offspring to the next survey by offspring counted at the current survey and p0 

is the survival of age 0 individuals at the present survey to age 1 in the next survey. In this 

formulation, the fertility term (F ) is also equal to the population growth rate (λ) and is the 

product of spat produced after the survey (m) and their annual survival to the next survey, 

which we assume to be equal to age 0 survival (p0). The estimate for maternity rate (m) thus 

becomes m = F / p0. The parameters in this matrix for A. irradians (Eq. 3) were estimated in 

the same manner as described for M. mercenaria using inverse demography.

In the fitting process for the IDMs, the bivalve populations were projected forward in time 

from the observed population state at time t (Equations 2 and 4) and the residual in log space 

was calculated between the projected and observed values at t+1 to determine the likelihood 

of the data given the set of candidate parameters in matrix A. The candidate values where 

this likelihood is largest (i.e., the maximum likelihood estimates) and their standard errors 

were computed using likelihood profile methods (Pawitan 2013). Further details of this IDM 

approach are given in Grear et al. (2011); an application to marine crustaceans is described 

in Grear (2016). After estimating the matrix model, we computed population growth rate 

(λ), defined as the dominant right eigenvalue and, for the more complex M. mercenaria 
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model, performed elasticity analysis to assess the effect of small proportional perturbations 

of each matrix parameter on λ (Caswell 2001).

To assess whether the multi-site data for A. irradians should be aggregated and treated as a 

single population time series in our risk projections, we conducted an additional analysis 

using multivariate autoregressive state-space models (MARSS), as developed and 

implemented in the R package MARSS by Holmes et al. (2012, 2013). In state-space 

models, the process of interest x (t), population growth in this case, is obscured from the 

observer, such that the observations y (t) incorporate a hidden process and an observation 

process, both of which have their own Gaussian errors (i.e., MVN = multivariate normal). 

The hidden and observational processes can be summarized on the natural log scale as:

yt = xt + vt, vt MVN 0, R (Equation 4)

xt = xt−1 + u + wt, wt MVN 0, Q (Equation 5)

where x and y are vectors with the elements representing each size class. The hidden process 

x (i.e., bivalve scalar abundance trend) is affected by u (e.g., population growth) and process 

error w, which can result from environmental and/or demographic stochasticity and has 

mean = 0 and variance-covariance matrix Q among the multiple time series. Layered on top 

of this is the observational process y, which may have a consistent offset (not shown) plus 

observation error v with mean = 0 and variance-covariance structure R. The MARSS 

package uses recursive time series methods (i.e., the Kalman filter) to separate these 

processes and allows the user to compare evidence for differing processes and error 

structures R and Q using information-theoretic methods via AIC (Akaike Information 

Criterion; Burnham and Anderson 2004). A MARSS model using the T = 10-yr time series 

from each of n = 8 sites (transects were averaged within each of the 8 sites, Table 1) was fit 

to the A. irradians data from Peconic Estuary (details for sites in Tettelbach et al. 2015). Of 

the n x T = 80 possible abundance estimates, there were 9 missing values and 5 zero values. 

As is typical in population time series analysis, the log transformation of the counts served 

to normalize the error distribution but resulted in the conversion of the 5 zero counts to 

missing values.

Our primary question concerning population growth in the MARSS analysis was whether 

there was support for using a single A. irradians population growth rate across all sites. Four 

different MARSS models were fitted to these multivariate data (Table 2). Differences 

between models included constant vs. site-specific variance in observation error and constant 

vs site-specific population growth rate and process error variance. We compared the 

population growth rate from the most parsimonious of these models (based on AIC) to the 

growth rate estimated from the same data using IDM. We did not perform this analysis for 

the M. mercenaria data, which consisted of a single time series of size-abundance.

We tested for density dependence in both populations using methods described by Dennis & 

Taper (1994). Specifically, we fitted their Model 1 (stochastic exponential) and Model 2 
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(stochastic-logistic) to the time series of annual totals and then compared them via corrected 

AIC (AICc; Burnham & Anderson 2002):

Model 1: Xt + 1 = Xt + a + σZt (6)

Model 2: Xt + 1 = Xt + a + bNt + σZt (7)

where Xt is the log of the total abundance at time t (Nt), σ is the SD of the transitions in Xt, 

and Zt is a normally distributed random variate with zero mean and unit variance. 

Exponential growth is captured by a (on the log scale); the effect of density on growth is 

captured by b (<0 in the case of negative density dependence). AICc was computed from the 

likelihood formulation given as Eq. (15) in Dennis & Taper (1994; also see applications in 

Morris & Doak 2002 and Grear et al. 2009). Based on these analyses (see Section 3), we 

determined that neither of the bivalve matrix population models should incorporate density 

dependence.

2.3 Assessing Impairment of Wild Populations due to pCO2

Following the estimation of wild population matrices, the next step was to determine what 

levels of pCO2 impairment to substitute into the models. This was done using results from 

laboratory response experiments with early life stages (larval and in some cases early post-

larval up to 40 d in total age since hatching) of M. mercenaria and A. irradians, as described 

by Talmage & Gobler (2009, 2010, 2011, 2012), Gobler & Talmage (2013), and Gobler et al. 

(2014). These experiments involved varying sample sizes and durations (usually <40 d). 

Among the various studies, there were 16 pCO2 treatment levels for M. mercenaria and 15 

for A. irradians. Rounding to the nearest 50 μatm, the levels for M. mercenaria (and the 

number of experiments that used them) can be grouped as 200 (1), 250 (1), 350 (1), 400 (4), 

500 (1), 600 (1), 650 (1), 700 (1), 750 (2), and 1500 μatm (3) (note that the raw treatment 

levels were used in the regressions described below). For A. irradians, these values were 250 

(3), 350 (2), 400 (2), 450 (1), 700 (1), 750 (2), 850 (1), 1400 (1), 1550 (1), and 1600 (1) 

μatm. All experiments were initiated with larvae spawned from broodstock local to the field 

survey areas. Survival responses were determined from the proportion of total individuals 

surviving at each time point.

We fitted logistic regressions of survival against both pCO2 and day of observation during 

the survival trials to determine the impairment as a function of pCO2 for both species. 

Replicate responses at each pCO2 level within each experiment, as well as sample sizes (i.e., 

the number of individuals in binomial trial replicates) were pooled into mean survival and 

total sample size per treatment, respectively, for each experiment. This allowed weighting of 

the logistic regression according to the size of each experiment.

Substitution of these laboratory-derived responses into the field-based population models 

required some important assumptions. First, we assumed that early life stage responses to a 

proportional increase above ambient pCO2 in the experiments (i.e., proportion = elevated 

pCO2 treatment / control pCO2) would be indicative of responses to a similarly proportional 

increase in pCO2 above diurnally varying and occasionally supersaturated in situ pCO2 
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conditions. Secondly, we assumed mean in situ pCO2 levels were 350 μatm for M. 
mercenaria and 400 μatm for A. irradians due to the timing of the surveys and the 

approximate associated pCO2 levels for the late 1900s and 2005–2014, respectively. We then 

defined early life stage duration as 40 days. The proportional change in survival to this age 

per unit pCO2 change from baseline pCO2 became the value from the laboratory studies we 

integrated as an impairment factor into the population models. In cases where the duration of 

an experiment was not exactly 40 days, this approach necessitated extrapolation to 40 days 

using the assumption that daily mortality from the end of the experiment to 40 days was 

constant. The effect of this assumption on the estimation of population growth rate is 

proportional to the curvature (second order derivative) of the actual lifetime survivorship 

curve (Grear and Elderd 2008) and is expected to be small when applied to such a short 

portion of the life cycle (i.e., 40 days).

The time step in our bivalve matrix models was annual, meaning that the vital rates for early 

life stages that are days to weeks in length are factors within the longer process of annual 

reproduction. Thus, the fertility term (F ) is a multiplicative product of sub-annual vital 

processes, including brood size, larval survival, the probability of metamorphosis, and 

survival of post-metamorphic individuals to the next annual census. The effect of a 

proportional decrease in any one of these rates can be computed as a proportional decrease 

in F. We calculated the expected early life stage survival (S) from the laboratory models at 3 

pCO2 scenarios (400, 800, and 1200 μatm) and then divided these by S338 and S355 for M. 
mercenaria and A. irradians, respectively, to standardize them to proportional impairments 

(relative to survey con ditions) that could be substituted as factors affecting fertility in the 

population models (i.e. at pCO2 = 800 μatm, F = Fbaseline. S800/S338). For M. mercenaria, 

this substitution was performed for F1, F2, and F3.

The final step was to incorporate variance in the model parameter estimates for projections 

of population risk. Following standard practice, this involved estimation of a stochastic 

population growth rate on the log scale (log λs) and its variance (see detailed descriptions in 

Caswell 2001 and Morris and Doak 2002). These were computed by first constructing 

distributions for each population model parameter. At each of T time steps, random variates 

were drawn from these distributions and substituted into the population model, which was 

then used to project the population vector forward one time step (Eqn 2). Following Caswell 

(2001, section 14.3.6), the stochastic growth rate was calculated from the results of these 

simulations as

logλs = 1
T ∑

t = 0

T − 1
log Nt + 1/Nt (8)

where Nt is total population size at time t. The variance (σ2) was computed from the term 

shown after the summation operator. Estimates of log λs and σ2 were then used to calculate 

the cumulative probability of population abundance dropping by 50% over time (Dennis et 
al. 1991). This method exploits the tendency for geometric population growth to be well-

approximated as a diffusion process with Gaussian errors when the real or simulated 

abundances are transformed to the log scale (Dennis et al. 1991, Caswell 2001, Lande et al. 
2003).
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The above-mentioned statistical distributions for the survival and fertility rates were 

modeled as beta and lognormal distributions, respectively (Morris & Doak 2002). The beta 

distributions for survival were constructed using the means and standard errors from the 

IDMs. Means for the lognormal fertility distributions were the F400, F800, and F1200 values 

for each species. We had no direct estimates of standard errors (SE) for the predictions of F 

at future pCO2 levels, so we assumed they would be the same proportion of the mean as 

computed for the baseline population model fitted from the field data (e.g. SE800 = SEbaseline 

x F800 / Fbaseline)

3. Results

3.1 Mercenaria mercenaria

The 1977–2011 surveys of the Islip M. mercenaria population in GSB indicated a steady 

decline in all 4 stages (Fig. 1). The difference in AICc between the stochastic-logistic and 

stochastic-exponential population model of total abundance was small (ΔAICc < 1), 

meaning the uncertainty introduced by adding a density-dependent parameter was too large 

relative to any gain in fit. Thus, we did not incorporate density dependence into the 

Mercenaria matrix model.

Maximum likelihood estimates using IDM produced the following density-independent 

transition matrix for the wild population of M. mercenaria (standard errors from the profile 

likelihoods are in parentheses; none of these profiles exhibited multiple local maxima):

A =

0 0.24 0.03 0.61 0.07 0.61 . 07
0.90 0.08 0 0 0

0 0.43 0.03 0 0
0 0 0.39 0.12 0.66 0.07

(9)

The fertilities in the top row could be decomposed into maternity (m) and p0 if either of 

these values were known from other sources. For example, if GSB females produce 5.7 × 

106 eggs (cherrystones; Bricelj & Malouf 1980), 0.1% of these survive to the larval stage 

(arbitrary assumption), and roughly 20% of these larvae survive to the spat stage (based on 

lab results analyzed here, see below), then m = 11 400 and p0 = F/m = 5 ×10−4.

The largest standard error in the matrix model is in the stage 3 transition and survival (P3). 

Large errors at the beginning of the time series (Fig. 1) are due to the difference of the initial 

population state vector (i.e. size abundances at t = 0) from the stable size class distribution in 

the fitted matrix A (i.e. the right eigenvector associated with the dominant eigenvalue). The 

fitted model appears to capture the general trends in abundance data (Fig. 1).

The computed population growth rate from the M. mercenaria model was λ = 0.92. The 

sensitivity of this value to small proportional perturbations of the nonzero parameters (i.e. 

elasticity) was:
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E = aij
λ

δλ
δaij

=

0 0.06 0.07 0.10
0.23 0 0 0

0 0.17 0 0
0 0 0.10 0.26

(10)

The fertility values in A would have to be increased by 38% to produce a population growth 

rate of λ = 1, if no other rates were changed. Alternatively, a 15% increase in survival of the 

upper 3 stages would also give rise to λ = 1.

The general linear model (GLM) fit of early life stage survival in previous laboratory studies 

as a function of their pCO2 treatment levels and days of exposure produced the following 

logit-linear model of early life stage survival (S) for M. mercenaria (Fig. 2):

θCO2 = 1.221 − 0.001 × pCO2 − 0.054 × day (11)

SCO2 = exp θCO2 / 1 + exp θCO2 (12)

The first equation is the linear function on the logittransformed variable θ; the second 

equation backtransforms θ to the natural scale. Analysis of deviance of the logistic 

regression indicated a significant pCO2 effect (Δ deviance = 688, df = 1, p = Pr [> x2] < 

0.0001). Substitution of pCO2 (μatm) and day (up to Day 40) into these equations allows 

computation of early life-stage impairment based on the combined laboratory studies. In the 

800 and 1200 μatm scenarios, these fitted functions produce 40 d survival rates that are 67 

and 48% of the 400 μatm estimate, respectively (S400 = 0.21, S800 = 0.14, and S1200 = 0.10). 

The survival model can be reformulated to compute 40 d survival as a product of daily 

survival rates using:

∏
day = 0

39
SpCO2, day + 1/SpCO2, day (13)

with the S terms computed using Eqs. (11 & 12). By sub stituting day- specific pCO2 values, 

this would allow computation of 40 d survival under varying or decreasing daily pCO2 

scenarios. However, 40 d survival estimates produced in this way give virtually the same 

result as computing the mean pCO2 during the season and then using it in the above 

equations. This is simply because in any function that assumes a constant geometric process 

(i.e. survival from day t to day t +1 is nearly constant for all t in Eqs. 11 & 15), as we were 

forced to do given available data, the mean of the function over varying levels of the 

predictor (pCO2) will be identical to applying the function directly to the mean of the 

predictor.

Substitutions of the impaired fertility values into the stochastic matrix models produced 

stochastic pop ulation growth rates for M. mercenaria of log λs,400 = −0.10 (σ2 = 0.01), log 

λs,800 = −0.17 (σ2 = 0.01), and log λs,1200 = −0.23 (σ2 = 0.02). As theoretically expected, 
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the stochastic growth rate of the baseline model is lower than the growth rate from its 

deterministic equivalent (ln [λ] = −0.08) due to Jensen’s inequality (Ross 2010). The 

cumulative probability of the population declining by 50% within 5 yr in creases from 25% 

percent at 400 μatm to 79 and 97% in the 800 and 1200 μatm daytime pCO2 scenarios (Fig. 

3). Estimated risk of 50% decline within 5 years exceeds 80% if daytime pCO2 exceeds 

1200 μatm for several days during the early life stage (Fig. 4).

3.2 Argopecten. irradians

In the MARSS analysis of multi-site data, the best model based on AICc was the one with 

no site-specific effects on growth rate or error structures (Table 2). This indicated that it was 

most appropriate to fit the IDM for A. irradians using the sum of abundances across all sites. 

The estimated growth rate for the MARSS model was λ = 1.12.

As was the case for M. mercenaria, addition of a density dependence parameter was not 

justified. AICc was smaller (better) for the stochasticexponential model than for the 

stochastic-logistic model (ΔAICc = 2.2). Thus, we did not incorporate density dependence 

into the A. irradians matrix model.

Inverse demography calculations from the aggregated data resulted in the following annual 

time step transition matrix (with standard errors) for the wild A. irradians population:

A = 1.12 0.37 0
0.03 0.03 0 (14)

Projections of total abundances showed good fit to the data at the start of the time series 

(Fig. 4). The A. irradians counts showed a large degree of variability halfway through the 

time series that the deterministic projection of the model failed to capture, but the MARSS 

analysis suggests some of this variability could be due to observation uncertainty. We did not 

perform elasticity analysis on the A. irradians model since it is essentially a scalar process 

governed by F = 1.12. Retention of the matrix formulation served to facilitate fitting via 

IDM and predicting the stable age distribution at census time (97% and 3% for age 0 and 

age 1, respectively).

Decomposition of F into its maternity (spat production) and spat survival factors (F = m × 

p0) gives m = F / p0 = 37.3 spat produced per age 0 A. irradians alive just before the 

spawning event. According to the model, 3% of these spat survive one year to be counted as 

age 1 individuals in the next annual survey.

The GLM model fit of early life stage survival in previous laboratory produced the following 

logit-linear model for A. irradians (Fig. 2):

θCO2 = 2.475 − 0.002 × pCO2 − 0.033 day (15)

which can be transfored to SCO2 as in Eq. (12).
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Analysis of deviance of the logistic regression indicated a significant pCO2 effect (Δ 

deviance = 2626, df = 1, p = Pr [> x2] < 0.0001). Substitution of impaired fertility rates into 

the stochastic version of the matrix produced stochastic population growth rates for A. 
irradians of log λs,400 = −0.02 (σ2 = 0.24), log λs,800 = −0.61 (σ2 = 0.37), and log λs,1200 = 

−1.48 (σ2 = 0.58). The cumulative probability of 50% de cline in abundance occurring 

within 5 yr increases from 56% percent at 400 μatm to 99% and >99% in the 800 and 1200 

μatm daytime pCO2 scenarios (Fig. 3). Estimated risk of 50% decline within 5 yr 

approaches 100% if daytime pCO2 exceeds 1200 μatm for several days during the early life 

stage (Fig. 4b).

4. Discussion

We substituted laboratory pCO2 response relationships for early life stage bivalves into 

fieldparameterized matrix population models and then performed stochastic simulations of 

these substitution models to estimate population-level risk under scenarios of increased 

pCO2. Our results show that the levels of impairment observed in laboratory experiments 

have the potential to cause increased risk to marine bivalves in the northeastern USA. These 

findings are contingent upon several assumptions, the most important of which are that 

pCO2 affects only early life stage survival and that the impairments observed in the 

laboratory would also occur in situ. In addition, we assume that pCO2 effects combine 

additively with other forms of environmental stress (e.g. harvest, disease, harmful algal 

blooms), that the increases in mortality from pCO2 would not lead to compensatory changes 

in other vital rates due to changes in competition or predation, and that adaptive evolution 

(e.g. Thomsen et al. 2017) would not occur within the time frame we explored.

The Mercenaria mercenaria population in GSB is declining, as indicated in the growth rate 

estimated fromthe survey data (0.92).Thepotential causes of this decline during the surveys 

are complex, non- singular, and probably include overharvesting (Kraeuter et al. 2005, 

2008), recurrent harmful algal blooms (Gobler & Sunda 2012), and other factors (e.g. low 

dissolved oxygen, acidification, predation, recruitment limitation due to low spawner 

density). For example, our results showed that a population growth rate of λ = 1 could be 

achieved in the model by increasing the baseline fertilities by 38%. This sheds light on the 

magnitude of the fertility deficit that would be required, if acting alone, to explain the 

observed population trend. However, the same effect was produced when survival of the 

little neck, cherrystone, and chowder stages was increased by only 15%, as might occur if 

harvest pressure were re duced. In other words, a small change in upper life stage survival 

produced the same growth rate estimate as a large change in fertility. This is consistent with 

theoretical life history predictions for long-lived species (Stearns 1992) and with the 

elasticity matrix (E), in which the sum of survival elasticities (0.77) is larger than the sum 

for fertilities (0.23).

Although a direct comparison of M. mercenaria and Argopecten irradians is not possible, 

their differing life history strategies and population growth rates (and the variance of those 

rate estimates) combine to produce differing estimates of risk. As ex pected for populations 

with stochastic growth rates that are both high and variable (Dennis et al. 1991), baseline 

risk accumulates more quickly and then levels off for A. irradians (Fig. 3). In addition, the 
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elevated pCO2 scenarios caused a larger increase in risk for A. irradians than for M. 
mercenaria. This is a mathematical consequence of the stronger effects of pCO2 on early life 

stage survival observed in the laboratory and reflected in the fertility rates that were 

substituted into the model. The difference in risk is also affected by the greater adult 

longevity of M. mercenaria captured in the matrix model. An interpretation consistent with 

life history theory (e.g. Stearns 1992) is that the low elasticity for fertility relative to survival 

indicates lower selective pressure on offspring survival and lower population sensitivity to 

offspring mortality than would be the case for shorter-lived species.

The levels of pCO2 used in the laboratory experiments and in our population models have 

already been observed seasonally in field studies in estuaries near where the field data used 

in our population models were collected (Melzner et al. 2013, Hunt et al. 2014, Wallace et 

al. 2014), suggesting that M. mercenaria and A. irradians may already be exposed to levels 

of coastal acidification that could negatively affect these populations. Estuarine pCO2 levels 

can be highly dynamic, however, and values higher and lower than the critical levels we 

present may be experienced throughout the larval cycle (Wootton et al. 2008, Waldbusser & 

Salisbury 2014, Baumann et al. 2015). We showed that there is no reason to simulate time-

varying pCO2 within a single season, given the simple survival model we were able to 

develop from available data. A more sophisticated survival model would capture carryover 

effects, delayed response (e.g. White et al. 2014), acclimation, or age-dependent effects of 

acidification on daily survival (e.g. accelerating or decelerating curves, sensu Deevey 1947, 

Grear & Elderd 2008, Miller & Waldbusser 2016) and would allow risk estimates to go 

beyond the non-varying pCO2 scenarios we used. Based on data from Wallace et al. (2014), 

pCO2 in bottom waters of the enriched western end of Long Island Sound exceed 1800 μatm 

at the onset of the spawning season and increase by 100–150 μatm by mid-summer. The 

timing of spawning in relation to this pattern would affect mean pCO2, and therefore, would 

affect risk estimates in our analysis. The ampli tude of this seasonal cycle is smaller in 

surface waters and in eastern Long Island Sound, but may be larger in shallow productive 

areas. In these areas, diurnal variation is likely a more significant omission from our 

analysis, since it has been shown to affect bivalve growth characteristics (Clark & Gobler 

2016, Miller & Waldbusser 2016). However, data necessary to formulate this effect in a 

quantitative risk analysis were not available. This necessitated our assumption that diurnally 

varying pCO2 around a particular mean daytime level is suitably represented by constant 

exposure to that same level in the laboratory experiments.

Beyond acidification, the bivalves found in estuaries such as Great South Bay and the 

Peconic Estuary are subject to multiple stressors including harmful algal blooms and 

overfishing that need to be considered in population models when assessing impacts on 

population size and restoration potential (Grall & Chauvaud 2002). Overharvesting of M. 
mercenaria has already resulted in recent declines in this population and has inhibited its 

capacity to recover under multiple stressors (Kraeuter et al. 2008, Casey et al. 2014). 

However, other modeling work on population level processes governing M. mercenaria 
abundances indicate that overfishing cannot entirely explain the decrease in population 

numbers in GSB (Kraeuter et al. 2008). Should M. mercenaria and A. irradians continue to 

experience increasing acidification, our results can be interpreted as an indication that 

reductions in fertility could limit recovery of both bivalve populations regardless of other 

Grear et al. Page 14

Mar Ecol Prog Ser. Author manuscript; available in PMC 2021 June 11.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



stressors. Hofmann et al. (2006) also examined M. mercenaria population dynamics in GSB 

using a model that accounted for food availability and environmental conditions, amongst 

other parameters. Consistent with our results, their study determined that cohort biomass and 

recruitment declined over time and indicated that the inclusion of impairments beyond 

harvesting would exacerbate M. mercenaria population declines (Hofmann et al. 2006).

Synergistic effects of multiple stressors may be the most common drivers of population 

decline (Portner et al. 2005, Rosa & Seibel 2008, Kirby et al. 2009, Hidalgo et al. 2011). 

Recent meta-analyses suggest that nonadditive effects are more common than additive 

effects in the ecological literature (Crain et al. 2008, Darling & Cote 2008, Allgeier et al. 

2011). Indeed, Keppel et al. (2016) observed synergisms be tween hypoxia and low pH in 

the eastern oyster Crassostrea virginica, but these were often positive. For the species studied 

here, pCO2 and low dissolved oxygen can have synergistic negative effects (Gobler et al. 

2014, Clark & Gobler 2016). Although we were unable to incorporate synergisms with 

pCO2 into our analysis, the impacts of coastal acidification may be more detrimental than 

our results indicate. Alternatively, for the impairment expected from ocean acidification to 

occur in these bivalves, there may be a pCO2 threshold above which conditions must remain 

throughout the larval stage (Clark & Gobler 2016). Given that pCO2 levels can fluctuate 

dramatically on a diurnal basis and on other time scales in coastal systems (Wootton et al. 

2008, Waldbusser & Salisbury 2014, Baumann et al. 2015, Baumann & Smith 2018, Pacella 

et al. 2018), the impairment wrought by these cycles on wild populations is not totally clear. 

However, as already noted, recent laboratory studies of larval bivalves (Clark & Gobler 

2016) and mechanistic computer simulations with post set juvenile bi valves suggest that 

severe diurnal cycling of acidification (Miller & Waldbusser 2016) can yield more drastic 

declines in survival than steady exposure to similarly low levels of acidification. 

Demographic modeling with explicit treatment of stochasticity and estimation uncertainty 

provides a powerful tool for understanding how these stage-specific responses affect bivalve 

populations.

Although there are alternatives to the methods we used, one strength of inverse demography 

is its application to data from intact populations when other methods for tracking stage-

specific vital rates are not feasible (e.g. mark–resight methods). In addition, when data from 

multiple independent populations are available, the maximum likelihood framework that 

underlies this method has been shown in crustacean experiments to be suitable for 

discriminating among multiple possible life history mechanisms (e.g. trade-offs) governing 

population responses to pCO2 (Grear 2016). Such an approach would help to address the 

assumed lack of compensatory mechanisms in our analysis if manipulative multi-

generational studies of replicate intact bivalve populations could be performed.

It is critical that ocean and coastal acidification research evaluates the extent to which shifts 

in vital rates alter the growth rates and stability of populations and ecosystems (Gaylord et 

al. 2015). Here, we have attempted to scale laboratory results to populations, but our 

analysis required sufficient population data for estimating a population model into which 

early life stage impairments could be substituted. As previously discussed, inverse 

demographic methods such as the one we used can introduce problems with identifiability, 

but these diminish when natural history is known well enough to constrain solutions in the 
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fitting process. Important alternatives include the more physiological approach used by Guy 

et al. (2014), the synthetic matrix approach used by Cooley et al. (2015), and the integral 

projection model (IPM) suggested by Ellner & Rees (2006) and discussed by Gaylord et al. 

(2015). In the case of IPMs, the requirement for individual-based observations (or 

simulations thereof) was not suitable for our study. In any case, these methods and ours 

provide insight into effects of acidification or other stressors on populations, which are the 

endpoint upon which management is often focused (Conrad 1982).

Evolutionary theory predicts that environmental variation can select for a variety of life 

history strategies, some of which can diminish the effects of sensitive biological traits on 

population fitness and magnify the role of other less sensitive traits (Pfister 1998). In long-

lived species, for example, upper life stage impairments small enough to be virtually un 

detectable by conventional methods may be as im portant to population dynamics as large 

and easily detected impairments of early life stages (e.g. Crouse et al. 1987, Mitro et al. 

2008). This is consistent with the behavior of the fitted baseline M. mercenaria model, 

where computed growth rate (λ) in this long-lived species was more strongly affected by 

impairments of adult survival than by proportionately identical impairments of larval 

survival. Although we can only speculate about the factors leading to this particular life 

history, it is clear that biological sensitivity alone may not be a sufficient basis for 

prioritizing early life stages in studies concerned with effects of acidification at the 

population, community, or ecosystem level. This by no means implies that larval impairment 

is unimportant, but it does suggest that seemingly subtle biological effects on upper life 

stages can be amplified by demographic processes and therefore should be considered. Thus, 

future studies of biological responses to pCO2 should include mid and upper life stages as 

well as effects on egg size or quality. Also, further study is needed to assess (1) the relative 

and concurrent effects of other stressors such as high temperatures, harmful algal blooms, 

and hypoxia and (2) the temporal dynamics of pCO2 in estuaries during periods when 

shellfish larvae, the stage most biologically sensitive to acidification (Talmage & Gobler 

2011, Gazeau et al. 2013, Waldbusser et al. 2013), are present in the water column. In 

addition, future studies should attempt to incorporate more field data to improve upon and/or 

verify growth and fertility parameter estimates, and should focus on populations where the 

estimation of the full life history specific to the local study population is feasible.

5. Conclusion

The assumption that organismal responses are predictive of effects on populations and 

ecosystems has been identified as common practice in assessments of ecological and social 

risk from ocean and coastal acidification (Mathis et al. 2015). Our methods are a step 

forward from this approach, although they require a variety of assumptions and caveats 

familiar to practitioners in quantitative population ecology and conservation. By substituting 

laboratory-derived responses of early life stage survival into field parameterized models of 

intact populations, we illustrated that a doubling of daytime pCO2 levels from 400 to 800 

μatm could increase the risk of 50% population decline within 5 yr from 25 to >79% for 

Mercenaria mercenaria and from 56 to 99% for Argopecten irradians. Such a doubling of 

pCO2 levels through the seasonal period of early life stage development is easily conceivable 
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in the near future through either eutrophication alone or its negative effects on buffering 

against atmospheric CO2.
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Figure 1. 
Observed (points) and projected (lines) densities by stage for the Islip, NY, Mercenaria 
mercenaria population of Great South Bay. Projections are matrix projections from the initial 

population state
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Figure 2. 
Laboratory responses of early life stage survival of (a) Mercenaria mercenaria and (b) 

Argopecten irradians to manipulated pCO2. Points are compiled from previous studies 

(Talmage & Gobler 2009, 2010, 2011, Gobler & Talmage 2013, Gobler et al. 2014). Shaded 

surfaces are the fitted logistic regressions

Grear et al. Page 23

Mar Ecol Prog Ser. Author manuscript; available in PMC 2021 June 11.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Figure 3. 
Cumulative probabilities of 50% population decline computed from log stochastic 

population growth rates and variances for Mercenaria mercenaria and Argopecten irradians. 

The projections included impairment of early life stage survival; no other impairments were 

included. Exposure scenarios are based on daytime pCO2 and assume no additional effect of 

night time increases in pCO2
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Figure 4. 
Cumulative probabilities of 50% population decline within 5 yr at varying magnitudes and 

durations of exposure during the 40 d early life stage for (a) Mercenaria mercenaria and (b) 

Argopecten irradians. Probability is indicated by shade and contour lines. Exposure 

scenarios are based on daytime pCO2 and assume no additional effect of night time 

increases in pCO2
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Figure 5. 
(a) Observed (points) and projected (lines) Argopecten irradians densities for Peconic 

Estuary, NY, by stage (summed across sites). Projections are matrix projections from the 

initial population state using the ambient transition matrix. (b) Observed log densities by site 

and the combined log density estimated from the multivariate autoregressive state-space 

model (MARSS). Shading indicates 95% confidence interval on the estimated states
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Table 1.

Site names and locations for the Mercenaria mercenaria and Argopecten irradians data sets. M. mercenaria 
data were collected by the Town of Islip, NY, using grab samples (1977–2001) and reported as clams m–2 

(Hofmann et al. 2006, Kraeuter et al. 2008). A. irradians data were from multiple 1 × 50 m scuba transects per 

year collected in spring (2005–2014) as described by Tettelbach et al. (2015)

Location Coordinates (°N, °W)

M. mercenaria

 Great South Bay, Islip, NY

A. irradians

 Flanders Bay

  S of Red Cedar Pt 40°54.783’, 72° 34.023’

  Cow Yard 40°55.026’, 72° 35.118’

  North Side 40°55.719’ 72° 36.325’

 Hallock Bay

  Narrow River 41°08.197’, 72° 16.840’

  Bulkhead 41°08.251’, 72° 16.396’

  Central Flats 41°07.951’, 72° 16.389’

  South Channel 41°07.766’, 72° 16.273’

  Other 41°06.301’, 72° 19.552’

 Northwest Harbor

  Sag Harbor 41°00.410’, 72° 17.419’

  Barcelona Neck 41°00.873’, 72° 15.389’

  SWG 41°01.806’, 72° 14.596’

  Inshore Cedar Point 41°02.251’, 72° 15.416’

 Orient Harbor

  East Marion 41°07.714’, 72° 19.641’

  Peter’s Neck 41°07.697’, 72° 17.521’

  Inside Long Beach 41°07.352’, 72° 17.532’

  Outside Long Beach 41°06.766’, 72° 17.682’

  Hay Beach 41°06.308’, 72° 19.555’

  Greenport Jetty 41°06.347’, 72° 20.892’

 Great Peconic Bay

  Robins Island North 40°58.989’, 72° 27.811’

  Robins Island West 40°57.704’, 72° 28.190’

  Mattituck 40°57.609’, 72° 31.924’

Southold Bay 41°03.966’, 72° 24.203’

Hog Neck Bay 41°01.610’, 72° 24.110’
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Table 2.

Akaike’s information criterion (AIC) results for multivariate auto regressive state-space models fitted with the 

‘MARSS’ package (R Core Team 2017, Holmes et al. 2012, 2013). Candidate models differ in terms of 

constraints on the population growth process and ob servation error. k: number of parameters in each model; 

ΔAICc: AIC corrected for small sample size and rescaled to the smallest AICc value

Model Process trend and variance Observational error variance ln Likelihood k ΔAICc AICc weight

1 constant constant −88.34 11 0.00 1.00

2 constant site-specific −84.02 18 15.03 0.00

3 site-specific constant −90.02 25 58.97 0.00

4 site-specific site-specific −83.15 32 90.73 0.00
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