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A B S T R A C T   

Time series indicators are widely used in ecosystem-based management. A suite of indicators is typically 
calculated for a static region or multiple subregions and presented in an ecosystem assessment (EA). These are 
used to guide management decisions or determine environmental status. Yet, few studies have examined how the 
spatial scale of an EA influences indicator behavior. We explore this question using the Northwest Atlantic 
continental shelf ecosystem (USA). We systematically divided the ecosystem at six spatial scales (31 unique 
units), covering spatial extents from 250,000 km2 to 20,000 km2. The same 22 indicators were calculated for 
each unit, assessed for trends, and evaluated as 31 independent EAs. We found that the detected signals of in
dicator trends depended on the spatial scale at which the ecosystem was defined. A single EA for the whole 
region differed by 23% (in terms of the 22 indicator trend tests) relative to ones for spatially nested 120,000 km2 

subunits, and by up to 36% for EAs at smaller scales. Indicator trend disagreement occurred because (most 
common) a localized trend was perceived as widespread, (common) a local trend was obscured by aggregating 
data over a large region, or (least common) a local trend switched direction when examined at a broader scale. 
Yet, there was variation among indicators in their scale sensitivity related to trophic level. Indicators of tem
perature, chlorophyll-a, and zooplankton were spatially coherent: trends portrayed were similar regardless of 
scale. Mid-trophic level indicators (fish and invertebrates) showed more spatial variation in trends. We also 
compared trend magnitude and indicator values to spatial extent and found relationships consistent with scaling 
theory. Indicators at broad scales produced subdued trends and values relative to indicators developed at smaller 
spatial scales, which often portrayed ‘hotspots’ of local abundance or strong trend. Our results imply that sub
sequent uses of indicators (e.g., determining environmental status, risk assessments, management decisions) are 
also sensitive to ecosystem delineation and scale. We suggest that indicators and EAs should be done at multiple 
spatial scales and complimented with spatially explicit analysis to reflect the hierarchical structure of ecosys
tems. One scale is not best, but rather we gain a new level of understanding at each scale examined that can 
contribute to management decisions in a multiscale governance framework characterized by goals and objectives 
with relevance at different scales.   

1. Introduction 

Integrating information across disciplines in marine science is often 
facilitated by indicators, which we define here as quantitative mea
surements that represent key attributes of interest. When a vetted suite 
of indicators is assembled, it can be used to assess ecosystem status, 
drivers of change, and performance of management actions (Rice and 
Rochet, 2005; Shin and Shannon, 2010; Shin et al., 2010). Indicators 
have come to play a central role in implementing Ecosystem Based 
Management (EBM) and an Ecosystem Approach to Fisheries Manage
ment (EAFM); they are widely considered an important bridge between 

science and policy (Turnhout et al., 2007). Some governments require or 
strongly request indicators to support ecosystem and environmental 
impact assessments through formal policy (e.g., determining Good 
Environmental Status in the European Union under the Marine Strategy 
Framework Directive, Australia’s Environment Protection and Biodi
versity Conservation Act, US National Environmental Policy Act), while 
others have turned to indicator suites to fulfill or guide a variety of 
interconnected regulatory mandates (Levin et al., 2013; Foran et al., 
2016; Link et al., 2019). For example, in the US, indicators are a key 
aspect of regional integrated ecosystem assessments (IEAs) (Levin et al., 
2013; Harvey et al., 2017) 
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Given their increasingly prominent role in ecosystem science and 
management of marine systems, a large body of research has focused on 
how to select the best indicators (Rice and Rochet, 2005; Queirós et al., 
2016; Tam et al., 2017; Otto et al., 2018; Bundy et al., 2019). Other studies 
provide advice on how to use indicators in the context of marine ecosystem 
management (Large et al., 2013; Large et al., 2015; Levin and Möllmann, 
2015; Burthe et al., 2016; Bal et al., 2018; Gaichas et al., 2018). This body 
of work emphasizes indicator selection, aggregation, interpretation, and 
use for management, yet the sensitivity of commonly used indicators to 
spatial scale is a relatively unexplored but very important topic. 

To generate any quantitative indicator for testing and eventual use, 
one must first define a spatial region (or regions) over which to collect or 
summarize data. Regions for which indicator time series are calculated 
may be the entire ecosystem or different ecosystem subunits (e.g., 
ecological production units in the US or assessment regions of regional 
seas in the European Union). In any case, scientists and managers must 
decide: (1) how large of a spatial extent is appropriate to define the 
ecosystem; (2) how and where the exact boundaries should be drawn; 
(3) whether ecosystem subunits should be defined; and (4) how and 
where subunit boundaries should occur. These decisions should ideally 
integrate an understanding of spatial structure in key ecosystem pro
cesses with jurisdictional boundaries and policies (Levin et al., 2013). 
This latter consideration is a major challenge (Crowder et al., 2006). 
What works politically might make little ecological sense (or vice versa). 
Regardless of the reasoning or methods used to draw boundaries, any 
boundary system is likely to have some impact on how indicators 
perform (Fig. 1). Moreover, since indicators are central to many next 
steps in EBM or EAFM (e.g., ecosystem assessment, risk assessment, 
management strategy evaluation; Bunnefeld et al., 2011; Gaichas et al., 
2018), the sensitivity of indicators to spatial scale could be manifested 
across the entire management process. 

Ecological theory and a broader recognition of spatial structuring in 
ecosystems all but guarantee some indicators are sensitive to spatial 
scale. The ‘problem of scale’ (sensu Levin, 1992) is that processes can 
show different trends or relationships depending on the focal region of a 
study (i.e., the spatial extent) and the spatial units used to sample or 
analyze data (i.e., the spatial grain). For example, Rose and Leggett 
(1990) demonstrate that the correlation between a predator and its prey 
is scale dependent; at large sampling grain predators and prey show 
strong positive correlation (co-occur in space, as predators follow prey), 
but at fine sampling grain predator avoidance is detected and correla
tions become negative. The main lesson is that when processes are 
spatially structured, choices related to extent and grain of analysis can 
markedly influence results (Levin, 1992). And since advances in spatial 
statistics, geographic information systems, and genomics continue to 
reveal that spatial structure is pervasive in marine ecosystems (e.g., 
marine heatwaves, Oliver et al., 2018; zooplankton, Morse et al., 2017; 
fish, Ciannelli et al., 2008; Bradbury et al., 2013; penguins, Lynch et al., 
2012; humans, Colburn et al., 2016), exploring the consequences of 
spatial structure to indicator behavior is a pressing need. 

We conceptually illustrate some potential issues related to defining 
boundaries as they pertain to indicators (Fig. 1). For a process operating 
systematically across a large spatial domain it would matter little how 
the boundaries of an ecosystem were defined (Fig. 1A). All treatments of 
any data subset would reveal the same trend. Such an indicator might be 
considered robust to ecosystem delineation or the spatial scale of anal
ysis. However, if there is spatial heterogeneity in a trend (i.e., a north to 
south gradient, an east to west gradient, or patchy populations and 
metapopulation dynamics, Fig. 1B–D) then how one defines the spatial 
boundaries of the ecosystem will alter the perceived trend. If the four 
processes are considered at the same time, we find that any particular 
boundary system chosen might work well for some processes, but not 
others. 

Here, we recreate the conceptual analysis portrayed in Fig. 1 with 
data from the Northeast United States Continental Shelf (NES) large 
marine ecosystem (Sherman, 1991) to explore indicator scale sensitivity. 

Specifically, our objectives were to: (i) determine how changing the 
spatial extent and region covered by an ecosystem assessment (EA) al
ters one’s perception of trends; (ii) examine which indicators are most 
sensitive to spatial scale; and (iii) explore the relationship between 
grain, trend strength, and values of indicators. The NES is an ideal region 
for this exploration because there is abundant long-term data, and a 
great deal of empirical work on specific ecosystem processes (i.e., fish
eries, zooplankton, oceanography) and EAs to provide context for our 
exploratory results (Link et al., 2002; EcoAP, 2009, 2011; NEFSC, 
2017a, 2017b, 2018a, 2018b). Our goal therefore is not to elucidate 
novel ecological or oceanographic trends in the NES, re-define or eval
uate how boundaries are currently defined in the NES, or develop new 
and thoroughly vetted indicators for application. Rather, our study is 
intended to highlight issues to be aware of when developing EAs that use 
indicators. The potential issues related to scale highlighted in this study 
will apply to any scenario where boundaries are drawn and indicators 
are calculated, and so should be globally applicable in both marine and 
terrestrial systems. 

2. Methods 

2.1. Study area background and existing spatial delineations 

The NES is a large marine ecosystem (Sherman, 1991) that covers a 
spatial area of 250,000 km2 extending from Cape Hatteras (USA, North 

Fig. 1. Hypothetical scenarios of how spatial extent and boundaries influence 
indicator trends. A ‘true’ spatial pattern of temporal trend exists in each domain 
(left boxes, color gradient), but the perception of trend is scale dependent. Solid 
blue circles (left panels) represent a large region over which one might sum
marize data and generate an indicator (shown as solid blue trendline, right 
panels). Green hatched circle (left panels) represents a smaller region over 
which one might summarize data and generate an indicator (green hatched 
trendline, right panels). Scenarios include (A) consistent trends perceived at all 
spatial scales; (B) when no trend is perceived at a large extent, but strong local 
trend(s) exist within the spatial domain; (C) when a trend is perceived at large 
extent, but driven by a highly localized trend; (D) when a trend is present at 
large extent, but a different trend is perceived at a local scale within this region. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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Carolina) in the South to Novia Scotia (Canada) in the North (34–45 
degrees N, Fig. 2A). Fisheries are currently managed from a single- 
species perspective by two regional fisheries management councils, 
yet there is growing interest and commitment to implement EBFM 
(Levin et al., 2013). To this end, an IEA has been adopted as the 
cornerstone of the federal approach to integrating ecosystem informa
tion to inform management decisions (Levin et al., 2013; Harvey et al., 
2017). Indicators are a foundational component of the IEA and are 
regularly calculated for four distinct spatial regions within the NES 
(Lucey and Fogarty, 2013). These include the Gulf of Maine (69,000 
km2), the Scotian Shelf (31,000 km2), Georges Bank (58,000 km2), and 
the Mid-Atlantic Bight (126,000 km2). These are considered, at present, 
the appropriate spatial scale to conduct an IEA (DePiper et al., 2017). 
Indicators used are multidisciplinary time-series contributed by over 30 
scientists each year, which are assembled, analyzed with a consistent 
trend fitting technique, and presented in an EA report. This provided a 
good model with well-developed indicators, based on extensive survey 
data, to explore our research questions. 

2.2. General approach 

We created a suite of 31 assessment region boundaries that can be 
thought of in a similar way as Ecological Production Units, or in the 
context of the MSFD, these are akin to subregions within a regional sea 
(Fig. 2A). We then developed the same 22 indicator time series for each 
of these units (31 units × 22 indicators = 682 total, Table 1). Each set of 
indicators is treated as an independent assessment (i.e., a mini EA). 
Conceptually, we follow the procedure shown in Fig. 1 but with real 
data, then explore the resulting time series in the context of our research 
questions. 

2.3. Defining ecosystem subunit boundaries 

We used the region covered by the NOAA bottom trawl survey 
offshore strata, that are regularly sampled, to define the total geographic 

extent of the NES for this study (Fig. 2A). This survey covers the entire 
NES with 350–400 trawl stations sampled annually (Azarovitz, 1981). 
Next the NES was split in half at the latitude which gave two polygons of 
exactly the same spatial area, resulting in a northern unit and a southern 
unit of ~ 120,000 km2 each. Subsequent ecosystem splits were made 
within the northern and southern units by splitting each into 2, 3, 4, and 
5 units using a more complicated procedure (Fig. 2A, supplementary 
materials). In short, subsequent splits were done in an automated 
manner that maximized evenness in sampling density of the survey data 
used for indicator calculations. Spatial units are an average of 245,000 
(n = 1), 123,000 (n = 2), 59,000 (n = 4), 39,000 (n = 6), 29,000 (n = 8), 
and 23,000 (n = 10) km2, though these numbers are rounded in figures 
and subsequent text for simplicity. These boundaries are naïve to the 
inherent biophysical structure present in the ecosystem, and existing 
governance structure. This was done to focus the results on broader is
sues related to scale sensitivity, rather than nuances of how this 
particular ecosystem is, or should be defined in practice. 

2.4. Indicators 

We used a total of 22 indicators to represent each spatial unit. Five 
described the physical environment, eight represented lower trophic 
level processes, and nine represented mid trophic level processes. We 
required indicators with long-time series known to be useful for 
describing the ecosystem, so we used indicators commonly appearing in 
federal EAs for the NES. All but two of our final 22 indicators (Spiny 
Dogfish and Silver Hake) have been used in previous federal EA reports 
and have been vetted and selected from much broader lists of potential 
indicators (Link et al., 2002; Methratta and Link, 2006; EcoAP, 2009, 
2011; NEFSC, 2018a, 2018b, 2019a, 2019b). Spiny dogfish and Silver 
Hake are abundant and important mid trophic level taxa that also pro
vided interesting contrasts of spatial variation in trends (Nye et al., 
2011). The methods used for all zooplankton indicators and those based 
on the NEFSC trawl survey (Table 1) are all identical to those from 
NEFSC (2019a) so are not described in detail in the main text 

Fig. 2. The Northeast US Atlantic Continental Shelf Large Marine Ecosystem, split into 31 units (A) with the average spatial extents of ecosystem units shown 
(above). Panel B shows the number of significant indicator trends (out of 22 tested) within each spatial unit assessed with a Mann-Kendall test and a Bonferroni 
correction. Each point corresponds to a unit in panel A. The same results using a consistent alpha of 0.05 are shown in panel C. 

K.C. Heim et al.                                                                                                                                                                                                                                 



Ecological Indicators 125 (2021) 107522

4

(supplementary materials). All indicators end at 2018 or 2017 and have 
variable start dates (Table 1). The minimum length for a time series was 
37 years and the maximum was 48. 

2.4.1. Indicators using world Ocean data 
Indicators for in situ bottom temperature, surface temperature, 

stratification, and chlorophyll-a (in situ) were developed with data from 
the World Ocean Database, which includes contributions from various 
agencies (including all NMFS surveys) and researchers. There were 
58,554 CTD casts available for temperature and stratification indicators, 
and 17,379 casts that contained chlorophyll-a measurements. Because 
these represent a broad collection of datasets (i.e., CTD casts are not 
random in space or time) we used generalized additive models (GAMs) 
to develop an annual index that accounted for spatial unevenness and 
the month the CTD casts were taken (Table 1, supplementary materials). 

The GAMs were fit using the “mgcv” package in the R statistical pro
gramming environment (Wood, 2001; R Development Core Team, 
2019). We used the default thin plate regression spline option (bs = “tp”) 
and restricted maximum likelihood to fit the models (method =
“REML”). Models were first run including all data for the NES to assess 
fit and identify appropriate transformations before running for data 
subset to each spatial unit. The annual coefficient value for Year from the 
model was used as the indicator (Table 1). Similar methods are regularly 
used to standardize fisheries sampling data and assess chlorophyll trends 
(Maunder and Punt, 2004; Boyce et al., 2010). 

2.4.2. Indicators using satellite data 
We used the NOAA Optimum Interpolation ¼ degree Daily Sea Sur

face Temperature Analysis (OISST) to calculate an indicator of summer 
sea surface temperature (SST) and a count of days classified as Marine 
Heatwaves (MHWs) per year (Reynolds et al., 2007; Hobday et al., 
2016). For the summer SST indicator, we averaged SST measures 
occurring within a spatial unit by year including only data from July to 
September (day-of-year 182 to 273). For the MHW indicator, we first 
built a single time series of average daily temperatures within a spatial 
unit. This was then used to detect marine heatwave events according to 
methods described in Hobday et al. (2016) and implemented in the R 
package heatwaveR (Schlegel and Smit, 2018). We defined a MHW as an 
anomalously warm water event (>90th percentile based on a clima
tology from 1981 to 2012) that lasted for more than 5 days. The indi
cator represents a count of all days per year, that were classified as MHW 
days. An indicator of chlorophyll-a was developed using satellite data 
from the Ocean Colour - Climate Change Initiative dataset (4.0), a recent 
data product that merges data from several satellite missions 
(Sathyendranath et al., 2019). We averaged daily chlorophyll-a esti
mates, occurring within each spatial unit annually to produce the 
indicator. 

2.5. Data analysis 

The resulting 682 time series (31 spatial units × 22 indicators) were 
assessed for a monotonic trend with a Mann-Kendall non-parametric test 
to classify each as increasing, decreasing, or stationary (Mann, 1945; 
Kendall, 1957). The Mann-Kendall test was chosen because it is 
commonly used in EAs to assess indicator trends (NEFSC, 2017a, 2017b; 
Gaichas et al., 2018). A Bonferroni correction was included to account 
for multiple testing within each scale by dividing alpha (0.05) by the 
number of tests done. For example, for indicators done at the 20,000 
km2 scale (i.e., 1/10th of the NES) we used an alpha of 0.05/10, for the 
30,000 km2 we used 0.05/8. Theil-sen slopes and intercepts were also 
calculated for each time series (Sen, 1968; Theil, 1992). All time series 
were independently scaled and centered (subtracting mean and dividing 
by standard deviation) prior to analysis to focus this analysis on trends, 
rather than absolute values. 

To examine how the overall perception of trends change with the 
extent and region of an EA (objective i), we compared one simulated EA 
(i.e., all 22 trend results for a unit) to another EA that was nested within 
it. To assess how a broad-scale EA represents the same trends evaluated 
at a more local scale, trends were classified as significantly increasing, 
decreasing, or not-trending based on the Mann-Kendall test, and then 
assessed for consistency. For example, if trawl biomass was increasing in 
the 250,000 km2 unit but not trending in a nested spatial unit, this is a 
classified as a disagreement. We counted the number of disagreements 
for each comparison and report this as a % of the total comparisons. We 
also tallied disagreements according to their cause (Fig. 1B–D). Masking 
is when a trend is absent at a broad extent but present within a nested unit 
(i.e., the trend occurring at a local scale is ‘masked’ by data aggrega
tion); propagation is when a trend is present at a broad extent but absent 
within a nested unit (i.e., a trend in only a portion of subunits ‘propa
gated’ to the broad scale analysis, thus creating inconsistencies between 
the broad scale trend and those nested units where trends are not 

Table 1 
Indicators used in this study, all indicators run from the start year (shown) to 
2018 unless otherwise noted. Abbreviations are as follows: BT, bottom tem
perature; lat, latitude; lon, longitude; mon, month; yr, year; WOD, world ocean 
database; SST, sea surface temperature; Strat, stratification defined as the dif
ference in water density between the surface and at 50 m; yday, day of year in 
numeric form; OISST, optimally interpolated sea surface temperature; Chyl, 
chlorophyll-a; const., a small constant number; OCCI, Ocean Colour Climate 
Change Initiative; EcoMon, Ecosystem Monitoring survey by the North East 
Fisheries Science Center (NEFSC). Indicators in bold are calculated with the 
exact methods described in NEFSC (2019a) and data using the NEFSC trawl 
survey are from the spring sampling period.  

Category Indicator Description Data Start 
Physical Bottom 

temperaturea 
log(BT + 1) ~ s(lat, lon) 
+ s(mon) + yr 

WOD 1975  

Surface 
temperaturea 

SST ~ s(lat, lon) + s(mon) 
+ yr 

– 1975  

Stratificationa log(Strat) ~ s(lat, lon) + s 
(mon) + yr 

– 1975  

Summer SST Mean (yday 182–273) OISST 1981  
Marine heatwave 
days 

Extensive analysis – 1981 

Lower 
TL 

Chlorophyll-aa log(Chyl + const.) ~ s(lat, 
lon) + s(mon) + yr 

WOD 1980  

Chlorophyll-a (sat) Annual mean Chyl OCCI 1997  
Zooplankton 
volume 

Annual volumetric 
anomaly 

EcoMon 1977b  

Centropages 
typicus 

Annual abundance 
anomaly 

– –  

Pseudocalanaus 
spp. 

– – –  

Temora 
longicornis 

– – –  

Calanus 
finmarchicus 

– – –  

Small/large 
copepod 

– – – 

Mid TL Trawl biomass Biomass tow− 1 NEFSC 1970  
Benthivore Biomass tow− 1 42 

benthivore sp. 
– –  

Benthos Biomass tow− 1 9 benthos 
sp. 

– –  

Piscivore Biomass tow− 1 63 
piscivore sp. 

– –  

Planktivore Biomass tow− 1 20 
planktivore sp. 

– –  

Sea Scallop Biomass tow− 1 Sea 
Scallop 

– –  

American Lobster Biomass tow− 1 American 
Lobster 

– –  

Silver Hake Biomass tow− 1 Silver 
Hake 

– –  

Spiny Dogfish Biomass tow− 1 Spiny 
Dogfish 

– –  

a The annual coefficient value for Year from the model was used as the 
indicator. 

b end year for indicators using EcoMon data is 2017. 
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occurring); divergence is when a trend is present at a broad extent and a 
nested unit but the direction of trends differed. 

In addition to visualizations, we calculated several metrics to assess 
which indicator trends were most sensitive to scale (objective ii). The first 
was the variance of the 31 Theil-Sen slopes for a given indicator. Low 
variance implies the monotonic trendline is consistent, regardless of the 
spatial unit considered. High variance means the slope of the trend 
changes depending on the spatial region considered. We also calculated 
the average pairwise Pearson correlation coefficient between all 31 
units, for a given indicator (Ave rp). High Ave rp means the indicator time 
series data are consistent across space (i.e., spatially coherent), and this 
metric makes no assumption about the presence or absence of a trend 
(Östman et al., 2017). Lastly, for a subset of indicators (foraging groups) 
we graphically depict the relationship between indicator absolute 
values, indicator time series trend, and spatial extent of the EA (Objective 
iii). 

3. Results 

3.1. The degree of inconsistencies between ecosystem assessments at 
different scales 

The number of significant indicator trends varied within each scale 
considered indicating that some parts of the ecosystem were changing 
more so than others (Fig. 2B). Treating the ecosystem as a single unit 
(extent = 250,000 km2) resulted in 12 out of 22 indicators with signif
icant trends (55%); splitting it in two showed that the north had 13 
(59%) significant trends whereas the south had only 10 (45%). Further 
disaggregation at progressively smaller spatial extents revealed any
where from 5 to 12 significant trends. This means that one way of 
defining a region for an assessment would show only 23% of indicators 
are trending, yet a different way of defining it would show 59% of in
dicators are trending. Comparisons across scales demonstrate a pattern 
where more significant trends are detected at larger spatial extents 
(Fig. 2B). Without the Bonferroni correction, this trend was weaker, but 
still visually present (Fig. 2C). 

Comparisons of indicator trends among spatial units showed in
consistencies of between 4% and 36% (Fig. 3; Table 2). These compar
isons relate the trend of an indicator (increasing, decreasing, stationary) 
calculated at a broad extent to the same indicator calculated at a smaller 
and nested scale and examined whether the results match. For example, 
if we treat the NES as a single region and calculate indicators and then 
compare these to the indicators for the northern unit, 5 out of the 22 
trend results were inconsistent (23%). The whole NES version at 
250,000 km2 was also 23% inconsistent with the southern unit. 
Comparing the 250,000 km2 unit to the ten nested 20,000 km2 units 
gave a mean inconsistency of 30% (range 23% to 36%), implying a 
single EA would misrepresent local trends by as much as 36%. Overall 
there appeared to be a trend where mean and maximum inconsistencies 
increased when the 250,000 km2 was compared to units of progressively 
smaller spatial extent (Fig. 3A, B), but this trend flattened once a scale of 
40,000 km2 was reached. 

The southern 120,000 km2 scale EA was more consistent with nested 
local trends than the northern 120,000 km2 EA, but there was great 
variation within these comparisons (Fig. 3). Mean inconsistencies in the 
north were 23% for most scales, while they were closer to 15% for most 
comparisons in the south. Yet, the observed variation within a given 
spatial scale means that the 120,000 km2 units reflected trends occur
ring in some nested spatial units quite well (Fig. 3C) while they poorly 
matched those occurring in other nested units (Fig. 3B). Like the com
parisons with the 250,000 km2 units, mean and maximum in
consistencies appeared to increase when comparisons were made with 
units of smaller spatial extent (Fig. 3A, B). 

3.2. Common causes for cross-scale inconsistencies 

Local trend propagation (Fig. 1C) was the dominant cause for cross- 
scale indicator inconsistencies, accounting for between 40% and 100% 
of them relative to the total for each comparison (Table 2). For example, 
trawl biomass increased when considered at the whole ecosystem scale 
but only increased in one of the two nested units at the 120,000 km2 

scale (the south) (Fig. 4C). The strong trend in the southern unit thus 

Fig. 3. Percent inconsistency of indicator trends when comparing those calculated for one spatial unit (250,000 km2, 120,000 km2 north, 120,000 km2 south; colored 
lines) to nested spatial units in terms of the mean inconsistency (A), maximum inconsistency (B), and minimum inconsistency (C). Percent inconsistency is defined as 
the number of time series trends that differed, divided by the total number compared (n = 22). 
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‘propagated’ to the next spatial extent, creating an inconsistent result 
between the 250,000 km2 unit (increasing) and the northern unit (no 
trend). Further disaggregation of the southern unit revealed this 
increasing trend was not widespread (increasing in only 2/10 units, 
Fig. 4C). In this case, 8 units exhibit no trend and are thus inconsistent 
with the increasing trend portrayed by the 250,000 km2 unit. Other 
examples of local trend propagation in Fig. 4 include Temora longicornis 
abundance (increased in northern unit but not in some nested subunits) 
and piscivore biomass (increased in southern unit but not in some nested 
subunits). 

Local trend masking (Fig. 1B) accounted for between 0% and 40% of 
inconsistencies (Table 2) and was the second most common cause of 
cross-scale inconsistencies. The indicator of Temora longicornis abun
dance (a copepod) presents two examples. First, there was no trend 
detected at whole ecosystem scale, but there was an increasing trend 
occurring in the spatially nested northern unit (Fig. 4B). This trend failed 
to propagate to the next spatial extent, and thus was masked by aggre
gation of data across a large region where no trend was occurring. 
Additionally, an increasing trend was detected at the southernmost unit 
in the 60,000 km2 scale, and since this trend also did not propagate to 
units of larger extents, this created inconsistencies. Other notable ex
amples of masking include Silver Hake (Fig. 4F), Pseudocalanus spp. 
abundance (Fig. S4), and benthivore biomass (Fig. S5). 

Local trend divergence (Fig. 1D) accounted for between 6% and 20% 
of inconsistencies when comparing the 250,000 km2 scale indicators to 
ones for nested units but did not occur at all when comparing northern 
and southern units to ones nested within them (Table 2). One example is 
piscivore biomass, which would be perceived as increasing from the 
whole ecosystem version (250,000 km2) but after disaggregation, we 
find the northern unit is actually decreasing (Fig. 4D). Similarly, the 
whole ecosystem indicator gives a perception of an increasing trend in 
American Lobster biomass, while the southern unit portrays a strongly 
decreasing trend (Fig. S6). 

3.3. Scale sensitivity of indicators and spatial coherence (Ave rp) 

We used two quantitative metrics to describe scale sensitivity of 
specific indicators and found that Ave rp provided a more intuitive and 
useful description than Theil-Sen slope variability (Table 3). The two 
metrics were not correlated (p = 0.46, r = -0.16) which means that in
dicators with high spatial coherence of the raw time series (represented 
by Ave rp) do not necessarily have more consistent monotonic trends. 
This is not intuitive, but we note that the Theil-Sen slope variability 
included 31 slope estimates (for each indicator), that were in many cases 
representing non-significant trends. Many slope estimates, for time se
ries without a trend, lead to erratic slope estimates and thus high Theil- 

Sen slope variation. This occurred even when the time series, as deter
mined by Ave rp and visual inspection of the data, were quite coherent 
across space. We therefore favored Ave rp to describe which indicators 
were most sensitive to scale but report both (Table 3). 

In general, scale sensitivity appeared to follow a pattern where 
physical indicators of temperature were not sensitive, lower trophic 
level indicators were intermediately sensitive, and mid trophic level 
indicators were most sensitive (Table 3). No matter how the ecosystem 
was subdivided, temperature indicators were increasing (i.e., the large 
block of red on the right, Fig. 5), among spatial unit variability of Theil- 
Sen slopes was low, and Ave rp was high (Table 3). All Indicators of 
chlorophyll-a had high spatial coherence (0.71–0.76), indicators for 
zooplankton had intermediate coherence (0.51–0.66), and those for 
trawl survey indicators (Mid-TL) had the lowest spatial coherence 
(0.18–0.54, Table 3). An outlier to the apparent pattern of physical in
dicators being more coherent was that water column stratification was 
not spatially coherent, having an Ave rp of 0.27. 

3.4. Patterns between spatial extent, trend magnitude, and absolute 
indicator values 

We found a greater range of trend magnitudes and absolute values of 
indicators when smaller and smaller subunits were used (Fig. 6). In 
simple terms this means that localized ‘hotspots’ of trend or abundance 
were portrayed in full strength when indicators were calculated for a 
small area, but when indicators were generated for bigger regions these 
‘hotspots’ were subdued by inclusion of areas with no trend (or con
trasting trend) and lower abundance. The same could be said for ‘cold 
spots’ (e.g., areas of notably decreasing trend or low abundance). 

A notable example is the pattern depicted by Benthivore biomass, 
which is increasing significantly in only one of ten 20,000 km2 units (in 
the North East, in what is called the Scotian Shelf) and lead to wide
spread trend propagation (Fig. 4E). When trends are compared to spatial 
extent (Fig. 6) there is always a single unit that has a trend far higher than 
others. Any unit that by chance happened to include this local area of 
increasing abundance ended up being driven by this local trend. The 
mean of all trends (dashed line) is quite close to the trend that would be 
depicted by a single indicator for the whole region. Similarly, the mean 
values of indicators (kg tow− 1) show greater variation with decreasing 
spatial extent. For example, some units had a high density of benthivores 
(max 95 kg tow− 1) whereas other units have very few benthivores (min 
= 7 kg tow− 1). 

4. Discussion 

We provide the first evaluation to our knowledge of how boundaries 

Table 2 
Indicator consistency and the reason for inconsistencies. The comparison column shows which units are being compared. For example, 250:120 designates that in
dicator trends (n = 22) for the whole ecosystem version (250,000 km2) were compared to the same indicator trends calculated for the 120,000 km2 units (i.e., a 
northern and southern unit, Fig. 2). Percent inconsistency is defined as the number of time series trends that differed, divided by the total number compared. 
Inconsistency (%) is followed by the minimum and maximum observed in a comparison. Total inconsistent (n) is followed by the total number of comparisons made. 
The proportion of total inconsistencies due to three causes as depicted in Fig. 1 is also shown.  

Comparison Inconsistency (%) Total inconsistent (n) Propagation (%) Masking (%) Divergence (%) 
250:120 23 (23–23) 10/44 40 40 20 
250:60 27 (23–32) 24/88 63 29 8 
250:40 30 (18–36) 39/132 72 23 5 
260:30 30 (23–36) 52/176 71 21 8 
250:20 30 (23–36) 65/220 75 18 6 
120(N):60 14 (5–23) 6/44 100 0 0 
120(S):60 14 (5–23) 6/44 67 33 0 
120(N):40 24 (14–36) 16/66 94 6 0 
120(S):40 17 (9–27) 11/66 73 27 0 
120(N):30 24 (9–36) 21/88 95 5 0 
120(S):30 15 (5–32) 13/88 77 23 0 
120 (N):20 24 (9–36) 26/110 100 0 0 
120(S):20 17 (5–36) 19/110 79 21 0  
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and ecosystem subunit delineation can influence an entire EA and found 
the perception of the ecosystem, in terms of 22 indicators, changed by as 
much as 38% as a function of scale. Although this specific estimate of 
change is a function of our own chosen boundaries and study design (see 
below, section 4.1), this study serves as an important demonstration of 
just how much scale and boundaries can influence a multidisciplinary 
EA. This emphasizes the importance of a preliminary step in developing 
any ecological or ecosystem indicator, whether part of an EA or not: 
Defining spatial scale and boundaries. Since the simple question “is 
there a trend?’ is so strongly influenced by this step, which should be 

made early in the indicator development process, we expect many 
subsequent uses of indicators are also sensitive to scale. Thus, the scale 
that indicators are developed should be chosen carefully, and the con
sequences of different boundary systems explored to determine how 
they might influence indicator behavior and uses in management. 

4.1. Important caveats to interpretation 

Although we sought to imitate realistic steps in developing an EA, the 
fact that we did this quickly for 31 separate units at six spatial extents 

Fig. 4. Perceived trends in five indicators (A–E) based on six different ways of dividing the NES into units for an ecosystem assessment. The leftmost panel is the 
trend that would be perceived if the ecosystem was treated as a single unit (245,000 km2), other panels in a row show progressive splitting, recalculation of the 
indicator, and re-analysis of the time series. Units are coded based on results of Mann-Kendall test for a monotonic trend on the indicator time series (red =
increasing, blue = decreasing, grey = no trend). The farthest right panel shows the linear fits to the time series (31 lines appear in each panel, one corresponding to 
each spatial unit). Significant trends are shown in black, non-significant trends are in grey, and the trend for the whole ecosystem version (245,000 km2) is green with 
a solid line if significant and a dashed line if not. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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precluded the careful nuance that would be applied to a full EA in 
practice. We highlight several points to be aware of when interpreting 
our results. First, the specific boundaries that we used (i.e., Fig. 2A) 
undoubtedly influenced our results. With a different boundary system 
(e.g., size of units, location of units, number of units) the exact values 
describing among unit disagreement would be different (e.g., Table 2). 
We are keenly aware that the main message of this article (i.e., choices 
regarding spatial scale and ecosystem boundaries influence indicator 

behavior) also applies to our own study. Second, we acknowledge the 
inadequacy of the null hypothesis-testing framework to examine statis
tical significance of an assumed monotonic trend (Wasserstein and 
Lazar, 2016; Hardison et al., 2019). For our study, we required a simple 
way to classify trends for comparison across units, and thus we used the 
now-routine ‘p < 0.05′′ approach (with a correction for multiple testing), 
which remains common in the treatment and analysis of indicators in 
practice. However, strict reliance on this approach to interpret 

Table 3 
Indicators and metrics of their behavior including Ave rp (a measure of spatial coherence), Slope variability (variability of Theil-Sen slopes fit to time series for the 31 
units), increasing (number of significant increasing monotonic trends), and decreasing (number of decreasing monotonic trends). Rows are sorted according to Ave rp 
within each category.  

Category Indicator Ave rp Slope variability Increasing Decreasing 
Physical Summer SST  0.81  2.57 31 0  

MHW days  0.8  3.47 30 0  
Surface temperature  0.67  5.09 21 0  
Bottom temperature  0.66  10.02 23 0  
Stratification  0.27  25.51 0 0 

Lower TL (chyl-a) Chlorophyll  0.76  59.08 0 2  
Chlorophyll (sat)  0.71  42.61 0 0 

Lower TL (zooplankton) Sm/lg copepod ratio  0.66  19.02 0 0  
Zooplankton volume  0.52  11.27 0 0  
Pseudocalanus spp.  0.71  10.38 0 24  
Centropages typicus  0.61  13.74 0 0  
Temora longicornis  0.55  92.59 12 1  
Calanus finmarchicus  0.51  12.76 0 0 

Mid TL (groups) Benthivore  0.54  13.52 5 0  
Trawl biomass  0.3  24.00 8 0  
Benthos  0.28  3.01 14 0  
Planktivore  0.24  9.14 7 0  
Piscivore  0.18  47.55 8 7 

Mid TL (species) Silver Hake  0.3  58.52 11 12  
American Lobster  0.26  69.20 16 7  
Sea Scallop  0.26  3.66 12 0  
Spiny Dogfish  0.2  23.65 11 0  

Fig. 5. Variation in Theil-Sen slopes of indicator time series (columns) for 31 different spatial units (rows, see Fig. 2). Slope values are depicted as shaded from dark 
red (strong increase) to dark blue (strong decrease). The TL used in headers refers to trophic level. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.) 
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indicators and make consequential management decisions is not rec
ommended in a real-world EA (Hardison et al., 2019). We do not expect, 
however, that these two methodological choices would have a sub
stantive impact on our main findings. 

Finally, the degree to which our results are generalizable to other 
ecosystems is not clear; the NES is highly complex, heavily impacted by 
anthropogenic causes, and is experiencing systematic warming at a rate 
greater than 99% of the worlds oceans (Pershing et al., 2015). That there 
is great spatial heterogeneity in the NES perhaps amplified the impor
tance of scale, relative to a similar study done in a more homogenous 
LME. However, the main message we invoke (i.e., scale matters) is 
probably robust to all of these caveats, since the ‘problem of scale’ is a 
well-accepted issue across the biological sciences (Levin, 1992). The 
degree to which choices related to scale influence an indicator and an EA 
are no doubt context specific, and may be less important in certain 
contexts (e.g. a system with little or no warming) and perhaps even more 
than our study demonstrates in others (e.g., a system with heteroge
neous warming). We encourage those developing indicators to assess the 
importance of scale in their applications. 

4.2. Degree and common causes for inconsistencies 

When preparing an ecosystem assessment or assessing environ
mental status, there are endless options for defining spatial boundaries 
and subunits (Queirós et al., 2016; Otto et al., 2018), and our results 
demonstrate that the specifics of these boundaries can markedly change 
the overall perception of the ecosystem. We found that the detected 
signals of ecosystem change depend on the way the ecosystem is defined. 
At the broadest spatial extent, the NES was treated as a single spatial unit 
to develop indicators, which is common in some research articles (Large 
et al., 2013) and EAs in the region (Fogarty et al., 2012). When we 
compared this whole ecosystem version of the 22 indicators to those for 
northern and southern subunits, results were 23% inconsistent (in both 
comparisons). Assuming the north and south units (each 120,000 km2) 
represent regional dynamics well, we think of this as a 23% erosion of a 

potential signal due to averaging spatial variation. When the whole 
ecosystem version of indicators was compared to those for progressively 
smaller subunits, inconsistencies increased and reached a maximum of 
36%. The main message is that a single EA will provide a big picture 
view of an ecosystem but can mis-represent local dynamics. The details 
of these inconsistencies (i.e. Fig. 1B–D) could have different implications 
for management. 

The most common case for cross-scale inconsistencies was ‘local 
trend propagation’: Change is occurring, but not across the entire 
assessment region (sensu Fig. 1C). One management implication of local 
trend propagation is that a prescribed treatment for a problem is applied 
to an unnecessarily broad region. For example, if a broad scale indicator 
(e.g., the whole NES) portrays excessive fisheries bycatch, widespread 
fisheries closures could cause unnecessary economic losses if the 
bycatch was actually driven by a localized area or fishery gear type. This 
issue (and others) underly criticisms of static spatial management that 
promising tools, like dynamic ocean management, seek to resolve 
(Maxwell et al., 2015; Dunn et al., 2016; Hazen et al., 2018). In another 
scenario, localized trends in biodiversity, a notoriously scale-dependent 
and patchy ecosystem property (Peterson et al., 1998), could drive an 
undesirable trend. For example, such an instance could produce low 
scores for environmental status for the EU’s MSFD biodiversity 
descriptor if spatial variation was not adequately recognized (Uusitalo 
et al., 2016). 

The next most common cause for inconsistencies was local trend 
masking (sensu Fig. 1B). The critical point in these examples is that 
because of the chosen boundaries used, we fail to detect a trend. A well- 
understood example is given by Silver Hake, which is managed as two 
discrete stocks and is experiencing a poleward range shift (Nye et al., 
2009, 2011). Because of these regionally divergent trends, we would not 
perceive a trend when aggregating to the whole NES when in fact 
important changes are happening (Link et al., 2011). Other instances of 
local trend masking are likely common in practice across the breadth of 
indicator applications. Fishing pressure may appear stable even as local 
fishing pressure intensifies (Preciado et al., 2019), broad scale indicators 

Fig. 6. Trends (Theil-Sen slopes) and mean indicator values (1970–2018) of aggregate species groups examined at multiple spatial scales. Points correspond to each 
spatial unit in Fig. 2A. 
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of pollution or eutrophication could appear stable as point sources vary 
(Gergel, 2005), or cultural service indicators could be insensitive to 
temporal change if societal interest shifted spatially within the study 
extent (Richards and Friess, 2015). In the NES few of our specific ex
amples of masking are surprising because of an extensive body of 
research. Yet, this issue could be more problematic in poorly understood 
ecosystems where such a background knowledge is lacking. 

The least common, but perhaps most consequential issue was when a 
broad scale indicator displayed a significant trend, but a nested spatial 
region showed a significant trend in the opposite direction (sensu 
Fig. 1D). This is exemplified by the American Lobster example. Again, 
we know that this species is experiencing a dramatic increase in the 
north and a decrease in the south of the NES (Steneck and Wahle, 2013). 
Our results demonstrate how this northern trend overwhelms the de
clines in the south, leading to a perception of increasing trends when 
aggregated to the whole NES. In terms of decision-making, this issue 
could be especially problematic. Imagine a very simple proposed man
agement action based on a trigger (if indicator X is increasing, do A: if 
decreasing, do B); we might be doing A for a large region where locally 
the right approach is actually B. Although this was not a common finding 
in our case study, it could be a common pattern in other systems or with 
other indicators. 

4.3. What indicator trends are most sensitive to scale? 

Our results suggest a pattern where temperature indicators trends 
were the least sensitive to scale, and then indicators of the marine 
community varied predictably along trophic levels (i.e., phytoplankton, 
zooplankton, fish and invertebrates). These results are largely consistent 
with theory and field-specific research. For example, climatic variation 
and global warming operate across relatively broad spatial scales (Bel
kin, 2009). Although there is variability in rates of warming in the NES, 
as well as marine heatwave frequency and duration (Pershing et al., 
2015; Oliver et al., 2018), nearly any way of dividing the NES will still 
reveal an increasing trend. In our study, temperature and heatwave in
dicators displayed the highest spatial coherence in the time series (Ave 
rp 0.66–0.81). Patterns in chlorophyll were similarly insensitive to scale. 
Although we detected no long-term trends in chlorophyll, both the 
satellite derived and in-situ based indicator time series were highly 
coherent across spatial units (Ave rp = 0.76, 0.71). Most zooplankton 
indicators were quite coherent across spatial subunits, but we did detect 
some divergent trends and lower coherence in some indicators (Ave rp as 
low as 0.51 for Calanus finmarchicus). This is consistent with recent 
studies demonstrating regional variation in zooplankton dynamics in the 
NES within the four Ecological Production Units defined by NMFS 
(Morse et al., 2017). Lastly, mid-trophic level indicators (fish and in
vertebrates) displayed the lowest spatial coherence and highest varia
tion in trends, consistent with Östman et al. (2017) that found strong 
spatial coherence in physical pressures, but far less for indicators of the 
coastal fish community in the Baltic Sea. Whether this apparent pattern 
in indicator scale sensitivity is supported by other indicators, in other 
ecosystems, is a topic worth further investigation. In any case, this 
highlights again a fundamental challenge when assessing ecosystems; a 
spatial scale that is effective for capturing spatial variation in one in
dicator might be inappropriate for another. 

4.4. Consistency with scaling theory 

The pattern of heteroscedasticity observed when comparing indica
tor trends and mean values to spatial extent (e.g., triangular pattern in 
Fig. 6) is noteworthy and consistent with expectations from scaling 
theory. The six spatial breaks used in our study are akin to changing 
grain with extent held constant and Weins’ (1989) predictions are 
applicable. When data are compiled for the entire NES to produce a 
single annual mean, all spatial variation is lost to averaging (e.g., 
maximal within subunit variance, Fig. 7) and this produced intermediate 

trends and absolute values of indicators. At the smallest grain, ‘hotspots’ 
of local abundance and variability in temporal trends emerge (e.g., 
maximal between subunit variance, Fig. 7). These patterns arose by 
chance in our analysis, since subunit delineation was naïve to any spatial 
structure in the data. Had we based subunits on the spatial structure of 
indicator datasets, this variation may have been even more evident. For 
example, had we developed boundaries that matched distinct ecoregions 
(Lucey and Fogarty, 2013) or followed bathymetric features (e.g., on the 
continental shelf vs. shelf break), we would be maximizing within sub
unit similarity and exemplifying between subunit variation (Fig. 7). Our 
results suggest that when there is high spatial variation in an underlying 
process, broad scale indicators will produce subdued trends and values 
relative to indicators developed at smaller spatial scales. Whether 
capturing this variation is necessary will depend on the intended pur
pose and objectives for developing indicators in the first place. 

A variety of spatially explicit methods would be useful to apply in an 
ecosystem indicator context to identify spatial variation. It should be 
noted that our work is not directly a spatial analysis; we repeatedly 
developed a simple EA using different boundary systems and conducted 
trend analysis in each case independently. This process matched how 
EAs are often conducted in practice (i.e., develop boundaries, calculate 
indicators, analyze indicators) to explore realistic issues that could arise; 
yet further application of spatial tools could be quite useful. For 
instance, semivariograms, a tool to explore the distance and strength of 
autocorrelation (Sokal and Oden, 1978) could be applied to either (1) 
raw survey data values or (2) mean values of indicators developed at 
different spatial extents to inform appropriate indicator scales. Or 
instead of defining distinct regions a priori (i.e., ecosystem boundaries), 
indicators could be assessed using spatially explicit analysis of raw 
survey datasets. The vector autoregressive spatio-temporal modeling 
tools (VAST, Thorson, 2019) for example, is being explored for this 
purpose in the Mid-Atlantic Bight (Scott Large, personal 
communication). 

While we have focused on issues of spatial scale and invoked con
cepts from spatial scaling theory, many of these concepts could also be 
considered from a temporal perspective. For example, how does the 
length of an indicator time series influence the direction, strength, or 
statistical properties of a trend? Or, how would time series trends differ 
if indicators were calculated at the sub-annual scale (i.e., seasonal, 

Fig. 7. Weins (1989) depiction of how variance changes with scale applied to 
indicators. Consider an indicator calculated for a single large spatial unit (large 
extent) versus the same indicator calculated for each of multiple smaller sub
units (small extent). At a large extent, subunit values (or trends of indicator 
time series) are more similar to one another (low variance), but within subunit 
spatial variance is high and lost to averaging across a large region. As subunit 
extent is decreased, variance between subunits increases and within subunit 
spatial variance decreases. 
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monthly, or daily)? Holding space constant and assessing indicators at 
different temporal scales would be a promising extension of this work. 

4.5. Implications for marine ecosystem assessments and management 

We have stepped back to a preliminary step (i.e., one conducted 
before any subsequent analysis or decisions can be made using in
dicators) and found that different choices related to spatial scale and 
ecosystem boundaries can dramatically alter the perception of trends. 
Had we carried this analysis through subsequent steps in a management 
framework, we would undoubtedly have found that they too were sen
sitive to scale. Aside from broader awareness of this potential issue when 
using and interpreting indicators, we provide several recommendations 
to better incorporate spatial variation into indicator-based assessments. 

First, spatial analysis should be done to inform the boundary systems 
used for indicator development and to compliment the simple, but 
integrative perspective provided by whole ecosystem assessments. By 
using an arbitrary boundary system, we showed that boundaries are 
quite important, and thus it is wise to delineate ecosystems and subunits 
based on the spatial structure of the ecosystem. For example, in the NES 
a spatial clustering analysis of physiographic, oceanographic, and pri
mary production datasets was conducted by NMFS to define the afore
mentioned ecological production units (Lucey and Fogarty, 2013). 
Although NMFS recognizes limitations of these static boundaries (e.g., 
dependence on variables used, jurisdictional issues, and openness of the 
system, Gamble et al., 2016) they are ecologically meaningful and have 
proven useful for structured EAs. Also, while these integrated assess
ments may not portray spatial variation in all indicators, they are 
informed by and complimented with rigorous spatial analysis of survey 
datasets. Supporting mechanistic analyses help identify spatial variation 
that could lead to otherwise undetected instances of propagation, 
masking, and divergence (sensu Fig. 1, Nye et al., 2011; Link et al., 2011; 
Kleisner et al., 2017). Moreover, datasets are publicly available and so 
can be evaluated (as we have done) by other scientists in the context of 
more topic-specific research. 

Our results also suggest scale considerations should be included in 
indicator selection routines, which often consider responsiveness to a 
known pressure as a desirable feature (Otto et al., 2018; Shin et al., 
2018). We expect relationships between indicators and pressures are 
also scale dependent. For example, the strength of predator–prey re
lationships or the negative impacts of bottom trawling on food webs, can 
weaken or strengthen depending on the spatial scale considered (Frank 
and Leggett, 1981; Levin, 1992; Preciado et al., 2019). Thus, if a pres
sure operates and influences a process of interest at fine spatial scales, 
then indicators would be most responsive to this pressure if assessed at 
finer resolution (Preciado et al., 2019). An indicator may be judged as 
poor for myriad reasons, but one reason is simply that it was not 
developed at a characteristic spatial scale. While not considered 
explicitly here, we recommend that the influence of spatial scale in 
‘indicator vetting’ routines be examined in more detail. The approach 
outlined in Bundy et al. (2019) is a promising advance in this regard, 
which suggests using a suite of indicators calculated at multiple spatial 
scales to a identify a consistently useful indicator suite. In doing this, the 
authors also recognized important spatial variation in the values and 
trends portrayed by the indicators reflective of environmental variation 
and differing anthropogenic pressures across the system. 

For ecosystem indicators to be useful, they should be developed at 
scales matching those needed to make management decisions as well as 
those matching ecological processes. In most cases, goals and objectives 
should be defined for an EBM or EBFM framework and these should 
guide the scales at which indicators are developed. This could involve 
the same organization developing indicators at variety of scales, 
dependent on a weighted consideration of (1) the scales of specific 
ecosystem objectives and management needs and (2) the scales that the 
underlying processes operate at. For example, to provide ecosystem 
context for fisheries managers in a single-stock framework, NMFS 

annually re-calculates a suite of indicators (taken from the EAs) for re
gions matching the stock boundaries. Thus, indicators already devel
oped in the EA process are spatially customized to match stock structure 
of managed species in the NES, that do not always not match Ecological 
Production Units used for EAs. 

Yet, since the governance structure in many ecosystems is multiscale 
(i.e., federal, state, local user groups), there is also value in developing 
nested assessments of a large marine ecosystems to facilitate decision 
making by different groups (Steneck and Wilson, 2010). A state or local 
government may have a hard time making meaningful decisions when 
using indicators generated by federal decision makers that cover much 
broader regions (and are developed to address broader scale objectives). 
Likewise, federal agencies will find excessive subunits at small spatial 
extents to be unwieldly or uninformative relative to their own objec
tives. Thus, the idea that indicators are sensitive to scale (i.e., tell a 
different story, depending on the boundaries used) is not necessarily a 
problem, but an incentive to learn about ecosystems more deeply. Such a 
framework of ‘nested’ EA reports is also demonstrated in the NES by two 
regional reports by NMFS (Mid-Atlantic and New England), and several 
local assessments of connected systems (e.g., Long Island Sound Study, 
LISCCMP, 2015; and the Chesapeake Bay Program Hershner et al., 
2007). Collectively, these can support integrated multiscale governance 
of ecosystems, but will require coordination across different levels of 
government (Steneck and Wilson, 2010) to avoid already complicated 
issues related to sector-based management (Crowder et al., 2006). 

4.6. Conclusions 

Indicators are sensitive to spatial scale, but some indicators are more 
sensitive than others. The implications of this fact will vary depending 
on the intended use of the indicator and the indicator suite. Deeper 
exploration of indicator trends, at multiple scales, allows for the 
recognition of masking, propagation, and asynchrony that may be 
occurring within a spatial domain of interest. That these cross-scale 
inconsistencies occur is not a problem in itself, but they are important 
to recognize when making decisions regarding the management of 
ecosystems. 
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