
Fisheries Research 237 (2021) 105873

Available online 20 January 2021
0165-7836/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Implementing two-dimensional autocorrelation in either survival or natural 
mortality improves a state-space assessment model for Southern New 
England-Mid Atlantic yellowtail flounder 

Brian C. Stock a,*, Haikun Xu b, Timothy J. Miller a, James T. Thorson c, Janet A. Nye d 

a NOAA Northeast Fisheries Science Center, Woods Hole, MA, USA 
b Inter-American Tropical Tuna Commission, La Jolla, CA, USA 
c NOAA Alaska Fisheries Science Center, Seattle, WA, USA 
d Institute of Marine Science, University of North Carolina Chapel Hill, Morehead City, NC, USA   

A R T I C L E  I N F O   

Keywords: 
State-space model 
Stock assessment 
Random effects 
Survival 
Natural mortality 
Autocorrelation 
Yellowtail flounder 

A B S T R A C T   

Survival is an important population process in fisheries stock assessment models and is typically treated as 
deterministic. Recently developed state-space assessment models can estimate stochastic deviations in survival, 
which represent variability in some ambiguous combination of natural mortality (M), fishing mortality (F), and 
migration. These survival deviations are generally treated as independent by age and year, despite our under
standing that many population processes can be autocorrelated and that not accounting for autocorrelation can 
result in notable bias. We address these concerns, as well as the strong retrospective pattern found in the last 
assessment of Southern New England yellowtail flounder (Limanda ferruginea), by incorporating two-dimensional 
(2D, age and year) first-order autocorrelation in survival and M. We found that deviations were autocorrelated 
among both years (0.53 ± 0.09, 0.63 ± 0.16) and ages (0.33 ± 0.12, 0.40 ± 0.16) when estimated for survival or 
M, respectively. Models with 2D autocorrelation on survival or M fit the data better and had reduced retro
spective pattern than models without autocorrelation. The best fit model included 2D autocorrelated deviations 
in survival as well as independent deviations in M and altered estimates of spawning stock biomass by 18 % and F 
by 21 % in model years. In short-term projections with F = 0, including 2D autocorrelation in survival or M 
reduced spawning stock biomass by 48 %. We conclude that incorporating 2D autocorrelated variation in sur
vival or M could improve the assessment of Southern New England yellowtail flounder in terms of model fit and 
consistency of biomass projections.   

1. Introduction 

Biological processes of a fish population usually, if not always, vary 
over time and age. For instance, a process such as recruitment can be 
autocorrelated in time if the environmental or ecological process by 
which it is driven is autocorrelated in time (Johnson et al., 2016; 
Thorson et al., 2014). Johnson et al. (2016) found that in cases where 
recruitment is highly autocorrelated, ignoring this autocorrelation in 
stock assessment models can lead to large biases in model predictions as 
well as the associated uncertainty intervals. Processes such as selectivity 
can also be autocorrelated among ages because adjacent age classes are 
often more similar in size, physiology, behavior, etc. than disparate age 
classes (Nielsen and Berg, 2014; Berg and Nielsen, 2016). Using a 
two-dimensional (2D) autocorrelation structure across both ages and 

years is relatively rare but has been used to model deviations in fishing 
mortality (Nielsen and Berg, 2014; Kumar et al., 2020; Perreault et al., 
2020), natural mortality (Cadigan, 2016), selectivity (Xu et al., 2019), 
and catch and survey index observations (Berg and Nielsen, 2016). 

Yellowtail flounder (Limanda ferruginea) is a commercially important 
demersal flatfish in the Northwest Atlantic ranging from the Labrador 
Sea in the north to the Chesapeake Bay in the south (NEFSC, 2012). In 
the U.S., the species is managed as three separate stocks: Cape Cod-Gulf 
of Maine, Georges Bank, and Southern New England-Mid Atlantic. All 
three stocks experienced overfishing from the 1970s to the mid-1990s. 
Since then, the two northern stocks have experienced some recovery 
while the southern-most stock, Southern New England-Mid Atlantic 
(SNEMA), has not (Stone et al., 2004; NEFSC, 2020a). The SNEMA stock 
is currently assessed using a statistical catch-at-age model, the 
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Age-Structured Assessment Program (ASAP; Legault and Restrepo, 
1999), and has declined in recent years to historic lows (NEFSC, 2020a). 
There are two major sources of uncertainty in recent SNEMA yellowtail 
flounder assessments (NEFSC, 2012, NEFSC, 2020a,b). First, the 
assessment model cannot explain the dramatic decrease in recruitment 
since the 1990s. Recent studies link poor recruitment to low spawning 
stock biomass (SSB) as well as unfavorable environmental conditions 
(more northward Gulf Stream and reduced cold pool; Miller et al., 2016; 
Xu et al., 2018). Second, there is a strong retrospective pattern (Mohn, 
1999) for SSB and fully-selected fishing mortality rate (F). The cause 
underlying the retrospective patterns is unclear, but no doubt, strong 
retrospective patterns in SSB and F can induce bias and uncertainty in 
the determination of stock and harvest status (Brooks and Legault, 2016; 
Miller and Legault, 2017). 

To address retrospective issues in the assessments of some New En
gland fish stocks, such as Georges Bank yellowtail flounder (Legault 
et al., 2012) and Gulf of Maine Atlantic cod (NEFSC, 2013), scientists 
sometimes impose a temporal trend on the natural mortality rate (M) in 
stock assessment models. This is because retrospective patterns typically 
arise due to misspecifying temporal changes in input data or biological 
parameters, e.g., assuming a parameter is constant in the model when it 
varies in reality (Hurtado-Ferro et al., 2014; Legault, 2009). 

In the search for possible misspecifications underlying a retrospec
tive pattern, M is an important parameter to consider because it directly 
influences stock productivity. Misspecifying M can lead to biased esti
mation of population attributes (Miller and Legault, 2017; Thorson 
et al., 2015) and key reference points such as virgin biomass and 
maximum sustainable yield (Johnson et al., 2015). M is usually specified 
as a time-invariant constant because it is often difficult to estimate 
(Deroba and Schueller, 2013; Johnson et al., 2015; Legault and Palmer, 
2015). Deroba and Schueller (2013) found that misspecifying temporal 
variation in M induced larger biases than misspecifying the 
age-variation in M. The impacts of misspecifying M are positively related 
to M/(F+ M), and in the latest SNEMA yellowtail flounder assessment 
M/(F + M) is currently near the historical maximum because F is near its 
historic low (Legault and Palmer, 2015; NEFSC, 2020a). The current 
assessment specifies M as a time-invariant, decreasing function of age, 
based on a time series average of weight-at-age data and the allometric 
relationship defining how M declines with size (Lorenzen, 1996; NEFSC, 
2012). Thus, there is reason to believe that misspecifying M as constant 
could be a reason for the concerning retrospective patterns in recent 
assessments of the stock. 

Instead of imposing a trend on M by age or year, we explored a more 
flexible and objective method to address the retrospective problem, 
estimating a first-order autoregressive, AR(1), smoother over two di
mensions, age and year. We implemented this 2D AR(1) structure in the 
Woods Hole Assessment Model (WHAM), a state-space age-structured 
assessment framework developed at the Northeast Fisheries Science 
Center (NEFSC, Miller and Stock, 2020; Stock and Miller, this issue). 
Using correlated process errors in state-space stock assessment models to 
reduce retrospective patterns is an emerging concept (ICES 2020). 
Whereas statistical catch-at-age models do not distinguish between 
observation and process errors, state-space models are able to simulta
neously estimate process error (variance of unobserved states, such as 
population numbers-at-age; NAA) and the observation errors in associ
ated data (Nielsen and Berg, 2014; Miller et al., 2016; Aeberhard et al., 
2018). Statistical catch-at-age models assume that survival is deter
ministic, i.e., the number of age a fish in year y, Na,y, is determined by F, 
M, and the number of age a-1 fish in the previous year: Na,y =

Na− 1,y− 1e− (Fa− 1,y− 1+Ma− 1,y− 1). Process errors, ε, can be included directly on 
Na,y as random effect deviations in survival (Gudmundsson and Gunn
laugsson, 2012; Nielsen and Berg, 2014; Miller et al., 2016) or on Ma,y 

(Cadigan, 2016), such that Na,y = Na− 1,y− 1e− (Fa− 1,y− 1+Ma− 1,y− 1)+εa,y . 
In this study, we extend the model presented in Miller et al. (2016) to 

include 2D AR(1) deviations in survival and M. We then apply it to the 

assessment of SNEMA yellowtail flounder. In particular, we assess 
whether it is better to place the 2D AR(1) smoother on survival versus M, 
attempt to estimate a model with 2D AR(1) smoothers on both survival 
and M, and measure the impact of including the 2D AR(1) smoother on 
estimates of SSB and F. 

2. Material and methods 

2.1. 2D AR(1) smoother 

We first compared various autocorrelation structures for survival 
deviations in WHAM. For simplicity, we only considered the first-order 
autocorrelation structure that has been used in previous studies (Cadi
gan, 2016; Nielsen and Berg, 2014). In WHAM, the stochastic survival 
deviations, εa,y, for age a and year y can be calculated by rewriting the 
stock equations: 

log(Na,y) =

⎧
⎨

⎩

log
(
g
(
θ, xy− 1, SSBy− 1

) )
+ ε1,y , if a = 1

log
(
Na− 1,y− 1

)
− Za− 1,y− 1 + εa,y , if 1 < a < A

log
(
NA− 1,y− 1e− ZA− 1,y− 1 + NA,y− 1e− ZA,y− 1

)
+ εA,y , if a = A

(1)  

where N represents numbers at age, Z is the total mortality rate (F + M), 
A represents the first age of the plus-group, and g is the stock-recruit 
function in which an environmental time series (x) can be incorpo
rated as a covariate. The εa,y terms can be equivalently called “random 
effects,” “deviations,” or “process errors” on NAA or survival. 

Strictly speaking, the survival deviation terms stands for population 
migration into or out of the stock because it does not alter either the M or 
F in the Baranov catch equation (Gudmundsson and Gunnlaugsson, 
2012), and in fact, realized survival can be greater than one (i.e., Na,y >

Na− 1,y− 1 whenever εa,y > Za− 1,y− 1). Gudmundsson and Gunnlaugsson 
(2012) claimed that the survival deviation term can also be interpreted 
as “irregular natural mortality” because M impacts population dynamics 
primarily through stock equations. Cadigan (2016) and Aldrin et al. 
(2020) follow this interpretation and directly modelled deviations in log 
(M). However, the survival deviations can also be caused by deviations 
in F or more generally deviations from the Baranov catch equation. 

Miller et al. (2016) and Nielsen and Berg (2014) assumed that sur
vival deviations are independent of age and time and normally distrib
uted with mean zero. In other words, for all a and y: 

εa,y ∼ N (0, σ2
a) (2)  

where σa for all ages a > 1 were assumed to be the same but different 
from age a = 1, i.e., recruitment, which we denote as σR. This assump
tion rests on the fact that survival variations for young-of-the-year 
(recruitment) are generally larger than for other ages. As opposed to 
statistical catch-at-age models, state-space models can estimate σa and 
σR internally as fixed effect parameters. Survival deviations, however, 
are not necessarily independent. If survival deviations are autocorre
lated among ages and years, they follow a multivariate normal (MVN) 
distribution: 

E ∼ MVN (0, Σtotal) (3)  

where E = (ε1,1,…,ε1,Y− 1,ε2,1,…,ε2,Y− 1,……,εA,1,…,εA,Y− 1)’, Σtotal is the 
A(Y − 1) × A(Y − 1) covariance matrix for the multivariate normal 
distribution and is calculated as the Kronecker product of the A × A 
covariance matrix for the AR(1) process among ages (Σ) and the (Y − 1)
×(Y − 1) correlation matrix for the AR(1) process among years (Σ̃): 

Σtotal = Σ ⊗ Σ̃ (4)  

Σa,̃a = ρ|a− ã|
age σaσ̃a  

Σ̃y,̃y = ρ|y− ỹ|
year 
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where ρage and ρyear are the two AR(1) coefficients in age and time, 
respectively. Either of them can be fixed at a constant between -1 and 1 
or estimated in the state-space model as fixed effect parameters. Note 
that when both ρage and ρyear are fixed at 0, there is no survival auto
correlation in either dimension and Eq. 3 collapses to Eq. 2. In fact, 
MVN (0, Σtotal) is the likelihood distribution function for this covariance 
structure: 

Cov
(
εa,y, ε̃a,̃y

)
= σaσ̃aρ|a− ã|

age ρ|y− ỹ|
year

(
1 − ρ2

age

)(
1 − ρ2

year

) (5)  

which means that the covariance between two survival deviations is 
positively related to how close the locations of the two survival de
viations are on the age-time surface. As above, σa for all ages a > 1 were 
assumed equal but different from age a = 1, i.e., recruitment, denoted as 
σR. 

Alternatively, we can apply this 2D AR(1) structure to the M de
viations, δa,y, as in Cadigan (2016): 

log
(
Ma,y

)
= μa + δa,y  

Cov
(
δa,y, δ̃a,̃y

)
= σ2

Mφ|a− ã|
age φ|y− ỹ|

year
(

1 − φ2
age

)(
1 − φ2

year

) (6)  

where μa is the mean log(M) at age a and can either be fixed or esti
mated. Applying deviations in log(Ma,y) versus log(Na,y) determines 
where in the Baranov catch equation they affect the predicted catch, 
Ĉa,y = Na,y

Fa,y
Za,y

(
1 − e− Za,y

)
, which also affects the calculation of reference 

points. 

2.2. Model descriptions 

We first considered six models treating only the numbers-at-age as 
random effects (Table 1). These models estimated deviations in survival 
by age and year, εa,y, assuming alternative autocorrelation structures 
formed by fixing or estimating the three parameters in Eq. 5. The “Base” 
model was similar to a statistical catch-at-age model, e.g., the Age- 
Structured Assessment Program (ASAP, Legault and Restrepo 1998; 
Miller and Legault 2015) or Stock Synthesis (SS, Methot and Wetzel, 
2013), where recruitment deviations are typically estimated in each 

year as independent fixed effects, ε1,y ∼ N
(

−
σ2

R
2 , σ2

R

)

, and survival is 

deterministic. However, while ASAP and SS do not estimate the 
recruitment variance, σ2

R, in WHAM the ε1,y can either be treated as 
random effects with σ2

R estimated internally or as fixed effect parameters 
(Miller and Stock, 2020; Stock and Miller, this issue). Here, we chose to 
model recruitment deviations as random effects in the Base model, i.e., 
we estimate σ2

R. The next model, NAA-1, added recruitment autocorre
lation, estimating one additional parameter from Eqn. 5, ρyear. NAA-2 
through NAA-5 estimated “full state-space” models, with numbers at 
all ages treated as random effects but with different autocorrelation 
structures. NAA-2 estimated independent εa,y as in Miller et al. (2016) 
and Nielsen and Berg (2014), NAA-3 and NAA-4 added autocorrelation 
across ages and years, and NAA-5 estimated all parameters in the 
described 2D AR(1) smoother (Eq. 5, Table 1). To isolate the effect of 
incorporating the 2D AR(1) smoother on survival, we compared the 
model fit, retrospective pattern, and relative difference in SSB and F 
estimates from NAA-5 versus NAA-2. 

Next, we fit a series of models treating the numbers-at-age as in Base, 
but including deviations in M as in Eq. 6 with the same set of autocor
relation structures: none, independent, AR(1) by age, AR(1) by year, and 
2D AR(1) (Table 2). As for the set of NAA models, we isolated the effect 
of the 2D AR(1) smoother on M by comparing M-1 to M-4. 

The last set of models tested the ability to simultaneously estimate 
NAA and M deviations as random effects, using only the independent 
and 2D AR(1) autocorrelation structures for each (Table 3). 

2.3. Application to SNEMA yellowtail flounder 

We evaluated the performance of our proposed 2D AR(1) survival 
smoother by using data from the 2019 SNEMA yellowtail flounder stock 
assessment as a case study (NEFSC, 2020a). We included likelihood 
components for the following observations through 2018: (1) three 
indices of abundance from the spring, fall, and winter NEFSC bottom 
trawl surveys; (2) aggregate catch from one commercial fleet; and (3) 
age compositions from the three bottom trawl surveys and the com
mercial catch. As in Miller et al. (2016), age-composition data were 
assumed to follow a logistic-normal distribution with pooling of zero 
observations (Atchison and Shen, 1980). Empirical weight-at-age, nat
ural mortality-at-age, and maturity-at-age were treated as known. 
Maturity was fixed at 0.0052, 0.6836, 0.9854, 0.9970, 0.9963, and 1 for 
ages 1–6, while natural mortality was specified as 0.405, 0.336, 0.296, 

Table 1 
Model descriptions and results where only numbers-at-age (NAA) were estimated as random effects. “Base” is most similar to a statistical catch-at-age model, with 
independent recruitment deviations and deterministic survival. NAA-2 is the state-space model with independent survival deviations as in Miller et al. (2016). NAA-5 
estimates all parameters in Eqn. 5, which constrains survival deviations according to a 2D autoregressive, AR(1), process across years and ages. NAA-5 had the lowest 
negative log likelihood (-logL ) and Akaike’s (1973) information criterion (AIC). Mohn’s ρ were averaged over seven retrospective peels for three quantities: 
recruitment (R), spawning stock biomass (SSB), and fishing mortality averaged over ages 4-5 (F). Maximum likelihood estimates of the parameters constraining 
random effects are listed with standard error in parentheses. Dashes indicate parameters which are not included in a given model.     

Estimated parameters Model fit Mohn’s ρ  

Model Ages treated as random 
effects 

Correlation 
structure 

σR  σa  ρyear  ρage  -logL  AIC ΔAIC  ρR  ρSSB  ρF  

Base Age-1 Indep. 1.67 
(0.18) 

— — — − 919.603 − 1685.2 252.6 6.42 1.02 − 0.43 

NAA- 
1 

Age-1 AR(1)year 0.66 
(0.08) 

— 0.92 
(0.05) 

— − 957.164 − 1758.3 179.5 4.56 0.90 − 0.38 

NAA- 
2 

All ages Indep. 1.22 
(0.15) 

0.61 
(0.05) 

— — − 1024.455 − 1892.9 44.9 0.81 0.17 − 0.10 

NAA- 
3 

All ages AR(1)age 0.93 
(0.13) 

0.54 
(0.05) 

— 0.50 
(0.09) 

− 1036.632 − 1915.3 22.5 0.40 0.04 0.02 

NAA- 
4 

All ages AR(1)year 0.78 
(0.11) 

0.48 
(0.05) 

0.61 
(0.08) 

— − 1045.568 − 1933.1 4.7 0.67 0.10 − 0.04 

NAA- 
5 

All ages 2D AR(1) 0.73 
(0.11) 

0.47 
(0.05) 

0.53 
(0.09) 

0.33 
(0.12) 

− 1048.883 − 1937.8 0.0 0.51 0.06 0.00  
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0.275, 0.256, and 0.2311 yr− 1 for ages 1–6 (NEFSC, 2020a). Selectivity 
of the fleet was divided into six time blocks as in NEFSC (2020a). We 
estimated logistic selectivity for the fleet and indices, except in three 
time blocks where age-specific, flat-topped selectivity facilitated 
convergence, i.e., we fixed selectivity at 1 for older ages and estimated 
selectivity at younger ages as free parameters. One final difference be
tween this analysis and the current assessment was that we estimated σ2

R 
as a fixed effect parameter in all models. 

To conduct three-year projections of SSB, we fixed weight-at-age and 
maturity-at-age at the average values from the last five years of data, as 
is standard practice at the NEFSC (NEFSC, 2020a). To facilitate com
parisons of short-term SSB projections between models, we fixed F at 
0 in the projection years. We forecast variables treated as random ef
fects, such as numbers-at-age and M, in the projection years by simply 
continuing the autoregressive processes. We did not estimate a 
stock-recruitment relationship in any of the models. The data and 
assessment report can be accessed at https://apps-nefsc.fisheries.noaa. 
gov/saw/sasi/sasi_report_options.php. 

We fit the models using WHAM, an R package that utilizes Template 
Model Builder (TMB) to fit age-structured, state-space stock assessments 
(Miller and Stock, 2020). TMB calculates the marginal likelihood of 
fixed effect parameters using the Laplace approximation to integrate 
across random effect parameters (Kristensen et al., 2016), and fixed 
effect parameters are then estimated by maximizing the marginal like
lihood within R (R Core Team, 2020). After the fixed effect parameters 
are estimated, TMB predicts the random effect coefficients using 
empirical Bayes (Kristensen et al., 2016). We compared model fit and 
retrospective pattern using AIC and Mohn’s ρ (Mohn, 1999), using seven 
retrospective peels as in the latest assessment (NEFSC, 2020a). Finally, 
we conducted simulation self- and cross-tests to estimate bias in pa
rameters and derived quantities (Supplemental material). We tested sets 
of models without, with independent, and with 2D AR(1) random effect 
deviations in survival (Base, NAA-1, NAA-2, and NAA-5) and M (Base, 
M-1, and M-4). 

3. Results 

3.1. Numbers-at-age (survival) as random effects 

Treating numbers at all ages as random effects resulted in markedly 
better model fit (lower AIC) and reduced retrospective pattern (lower 
Mohn’s ρ; compare Base and NAA-2 in Table 1). Estimating survival 
deviations with autocorrelation by age, year, or both further reduced 
AIC and Mohn’s ρ. According to both AIC and the magnitude of esti
mated ρage and ρyear, the among-year autocorrelation in survival de
viations was higher and had larger impact on model fit than the among- 
age autocorrelation in survival deviations (Table 1). The survival de
viations estimated by models with autocorrelation were smoothed 
across ages and years relative to the models with independent deviations 
(Fig. 1). NAA-5, with the 2D AR(1) structure, had the best fit and 
reduced AIC by 44.9, |ρR| by 0.30, |ρSSB| by 0.11, and |ρF | by 0.10 
compared to NAA-2 with independent survival deviations (Table 1). 
Constraining the survival deviations with the 2D AR(1) structure 
reduced estimates of F by 9% and increased estimates of SSB by 6% in 
model years (mean relative difference between NAA-5 and NAA-2; 
Fig. 2a-b). NAA-2 and NAA-5 estimated similar SSB in the terminal 
year of the assessment, but then differed in their SSB estimates in the 
projection years by 53 % when F was fixed at 0 (Fig. 2a-b). 

In models that included autocorrelation by year, the survival de
viations estimated in years near the end of the assessment impacted the 
projections of SSB. All NAA models estimated very low recruitment in 
2015, i.e., strong negative survival of age-1 fish, and because ρyear was >
0 this propagated through the end of the assessment and into the pro
jection years for models with autocorrelation by year (NAA-1, NAA-4, 
and NAA-5 in Fig. 1). In the terminal year, NAA-4 and NAA-5 esti
mated negative survival deviations for ages 2–3 and near-zero de
viations for older ages. The effect of the negative projected survival 
deviations resulted in the model with 2D AR(1) autocorrelation pro
jecting lower SSB than the model with independent deviations, and this 
effect was more pronounced in 2020–2021 than in 2019 (Fig. 2b). 

Table 2 
Model descriptions and results where only recruitment and natural mortality (M) deviations were estimated as random effects. All models treated the numbers-at-age 
as in Base, with independent recruitment deviations and deterministic survival. M-4 estimated all parameters in Eqn. 6 as in Cadigan (2016), which constrains log M 
deviations according to a 2D autoregressive, AR(1), process across years and ages. M-4 had the lowest negative log likelihood (-logL ) and Akaike’s (1973) information 
criterion (AIC). Mohn’s ρ were averaged over seven retrospective peels for three quantities: recruitment (R), spawning stock biomass (SSB), and fishing mortality 
averaged over ages 4-5 (F). Maximum likelihood estimates of the parameters constraining M random effects are listed with standard error in parentheses. Dashes 
indicate parameters which are not included in a given model.    

Estimated parameters Model fit Mohn’s ρ  

Model Correlation structure σM  φyear  φage  -logL  AIC ΔAIC  ρR  ρSSB  ρF  

Base — — — — − 919.603 − 1685.2 233.3 6.42 1.02 − 0.43 
M-1 Indep. 1.21 (0.10) — — − 1031.676 − 1907.4 11.1 0.12 0.18 − 0.11 
M-2 AR(1) age 1.15 (0.43) — 0.26 (0.48) − 968.364 − 1778.7 139.8 2.88 0.12 − 0.10 
M-3 AR(1) year 0.17 (0.08) 0.98 (0.02) — − 981.554 − 1805.1 113.4 1.50 − 0.14 0.32 
M-4 2D AR(1) 0.79 (0.14) 0.63 (0.16) 0.40 (0.16) − 1039.268 − 1918.5 0.0 − 0.10 0.07 − 0.00  

Table 3 
Model results where deviations in both numbers-at-age (NAA) and natural mortality (M) were estimated as random effects. NAA-M-3 had the lowest negative log 
likelihood (-logL ) and Akaike’s (1973) information criterion (AIC). Mohn’s ρ were averaged over seven retrospective peels for three quantities: recruitment (R), 
spawning stock biomass (SSB), and fishing mortality averaged over ages 4-5 (F). Parameters are described in Eqns. 5 and 6. The model that included all parameters, 
NAA-M-4, did not converge.   

Estimated parameters Model fit Mohn’s ρ  

Model NAA M -logL  AIC ΔAIC  ρR  ρSSB  ρF  

NAA-M-1 σR, σa  σM  − 1047.749 − 1937.5 30.2 0.21 0.12 − 0.05 
NAA-M-2 σR, σa  σM, φyear, φage  − 1046.981 − 1932.0 35.7 − 0.14 0.03 0.04 
NAA-M-3 σR, σa, ρyear, ρage  σM  − 1064.853 − 1967.7 0.0 0.45 0.05 0.01 
NAA-M-4 σR, σa, ρyear, ρage  σM, φyear, φage         
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3.2. Deviations in M as random effects 

Including deviations in M, instead of survival, also substantially 
improved model fit and the retrospective pattern (Table 2). In contrast to 
treating NAA as random effects, including 1D autocorrelation by age or 
year led to worse fit and retrospective pattern than estimating 

independent M deviations. The 2D AR(1) structure again had the best fit 
(M-4; Table 2). Compared to the models with independent M deviations, 
including the 2D AR(1) structure reduced AIC by 11.1, |ρR| by 0.02, |ρSSB|

by 0.11, and |ρF | by 0.11 (Table 2). The estimated 2D AR(1) M deviations 
had higher variance and higher autocorrelation than the 2D AR(1) 
survival deviations, and therefore appeared stronger and more 

Fig. 1. Deviations in log numbers-at- 
age (NAA) by year and age estimated 
by models in which only NAA are 
random effects. Models in the left col
umn treat only age-1, i.e., recruitment, 
deviations as random effects, whereas 
models in the right column treat all 
NAA deviations as random effects. 
Models are grouped into rows by cor
relation structure: Indep. = independent 
(no correlation), AR(1)age = autore
gressive by age, AR(1)year = autore
gressive by year, and 2D AR(1) =

autoregressive by age and year. The 
vertical dashed line denotes the termi
nal year in the assessment, 2018. Model 
descriptions are listed in Table 1.   

Fig. 2. Relative difference in estimates of fish
ing mortality (F, top row) and spawning stock 
biomass (SSB, bottom row) from constraining 
deviations in numbers-at-age (NAA, left) and 
natural mortality (M, right column) to follow a 
2D autoregressive correlation structure over 
ages and years, 2D AR(1). Relative difference 
was calculated using the model with indepen
dent (Indep.) deviations in the process listed in 
column heading as the baseline, i.e., 
θ2D AR(1)/θIndep. − 1, where θ is either F or SSB. 
Results labeled as “2D AR1 + NAA/M” are from 
models with 2D AR(1) deviations in the process 
by column as well as independent deviations in 
the off-column heading. The vertical dashed 
line marks the terminal year in the assessment, 
2018. F was fixed at 0 in projection years.   
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smoothed (Figs. 1 and 3, σM > σR > σa, φyear > ρyear, and φage > ρage in 
Tables 1–2). The effect of adding the 2D AR(1) structure on estimates of 
F and SSB was similar as for the NAA models: 13 % lower F and 9% 
higher SSB during assessment years, similar terminal year status, and 
then 48 % lower SSB in short-term projections (Fig. 2c-d). M deviations 
for younger ages in the model with 2D AR(1) autocorrelation were 
positive in the terminal year (Fig. 3). This was consistent with the NAA 
2D AR(1) model estimating negative survival in this period (Fig. 1) and 
explained why adding 2D AR(1) autocorrelation on M deviations also 
led to lower SSB in short-term projections (Fig. 2). 

3.3. Estimating deviations in both survival and M 

The model that attempted to estimate deviations in both survival and 
M with 2D AR(1) autocorrelation failed to converge (Table 3). However, 
adding independent M deviations to 2D AR(1) on survival, NAA-M-3, 
and adding independent survival deviations to 2D AR(1) on M, NAA- 
M-2, substantially improved model fit (lower AIC by 29.9 and 13.5, 
respectively; Table 4). Both of these models had negligible Mohn’s ρSSB 
and ρF (less than 0.05, Table 3 and Fig. 5). The two models estimated 

coherent survival and M deviations—years and ages with negative M 
deviations in NAA-M-2 had positive survival deviations in NAA-M-3 and 
vice-versa (e.g., ages 1–3 during the late 1970 s–1980 s in Fig. 4). All 
models with random effects on survival or M estimated substantially 
lower F and higher SSB than the Base model over the last 20 years of the 
assessment and including the 2D AR(1) structure further increased this 
difference (Figs. 2 and 6). While the state-space model with independent 
deviations projected SSB to increase at a similar rate to the Base model 
(NAA-2 in Table 4 and Fig. 6), models with the 2D AR(1) structure on 
survival or M predicted that SSB would increase at a reduced rate 
(Table 4, Figs. 2 and 6). 

3.4. Simulation tests 

All models had little-no bias in SSB, F, reference points, predicted 
catch, or recruitment in self-tests or in cross-tests when the operating 
model did not include survival or M deviations (Figs. S1-S9). Models 
without survival or M random effect deviations exhibited bias in all 
quantities when fit to data simulated with these random effects. The 
biases in SSB and F were always in opposite directions, as expected, and 
around 10–20 %. All models estimated σ2

R, ρyear, and φyear without bias 
(Fig. S3). The parameters σ2

a , σ2
M, ρage, and φage were estimated with slight 

negative bias, which is the expected direction using maximum likeli
hood estimation instead of restricted maximum likelihood (Miller et al., 
2018). Last, the model with 2D AR(1) deviations on survival, NAA-5, 
had slightly lower bias in simulation self- and cross-tests than the 
model with 2D AR(1) deviations on M, M-4 (Figs. S1-S2). 

4. Discussion 

Using a state-space, age-structured assessment model developed for 
SNEMA yellowtail flounder, we showed that implementing a 2D AR(1) 
smoother on survival or M considerably improved model fit and reduced 
the retrospective patterns for SSB, F, and recruitment. These results 
imply that including survival and M deviations in the SNEMA yellowtail 
flounder assessment would provide more consistent estimates of stock 
and harvest status. Different from previous assessments in the region 
which have addressed a retrospective problem by a priori specifying a 
temporal trend in M (e.g., Georges Bank yellowtail flounder and Gulf of 
Maine Atlantic Cod; Legault et al., 2012; NEFSC, 2013, 2020a,b), this 
paper provides a more objective, flexible, and generic approach to 
reduce retrospective pattern in stock assessments. In WHAM, the two 
autocorrelation coefficients in the 2D AR(1) smoother can either be 
specified at fixed values or estimated as parameters in the assessment 
model. This makes it easy to specify or estimate a temporal trend in M or 
survival and then evaluate performance against models with indepen
dent or 2D AR(1) deviations. Specific to SNEMA yellowtail flounder, we 
found that the 2D AR(1) smoother impacted SSB and F estimates by 6–13 
% in model years, and this increased to 14–21 % when random effect 
deviations on both survival and M were included. Relative to models 
with independent or no deviations in survival or M, all models with the 
2D AR(1) smoother estimated higher SSB in the last two decades but 
roughly 50 % lower SSB in near-term projections (Figs. 2,6). Thus, the 
decision whether to implement the 2D AR(1) smoother in the assessment 
of SNEMA yellowtail flounder may be consequential. 

Although placing the 2D AR(1) structure on either survival or M 
deviations is clearly supported by the data, we suggest placing it on 
survival for three reasons. First, the model with 2D AR(1) survival de
viations and independent M deviations had lower AIC by a wide margin 
(35.7, Table 4). Second, models with the 2D AR(1) smoother on survival 
had greatly reduced uncertainty in SSB projections compared to all other 
models, especially in the second and third projection years (Table 4). 
Last, the model with 2D AR(1) deviations on survival performed slightly 
better in simulation self- and cross-tests than the model with the 2D AR 
(1) structure on M deviations (Figs. S1-S2). Nevertheless, all models with 

Fig. 3. Deviations in log natural mortality (M) by year and age estimated by 
models without numbers-at-age (NAA) random effects. Models are grouped into 
rows by the correlation structure of the M deviations: none = no deviations 
from the M values specified in the assessment (Base model), indep. = inde
pendent (no correlation, M-1), AR(1)age = autoregressive by age (M-2), AR 
(1)year = autoregressive by year (M-3), and 2D AR(1) = autoregressive by age 
and year (M-4). The vertical dashed line marks the terminal year in the 
assessment, 2018. Model descriptions are listed in Table 2. 
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the 2D AR(1) structure on survival or M estimated consistent effects 
compared to the models without: lower F and higher SSB in assessment 
years and lower SSB in projection years (Fig. 6). 

Near-term SSB forecasts changed substantially, by around 50 %, 
when the 2D AR(1) smoother was included to constrain deviations in 
survival or M. In models where the survival or M deviations are inde
pendent (e.g., Base, NAA-2, and M-1), they do not affect projections of 
SSB unless they are linked to an environmental covariate that is also 
projected. In contrast, including autocorrelation by year (ρyear or φyear) 
propagates non-zero survival or M deviations into short-term pro
jections, with the trend near the assessment terminal year becoming 
important. In the case of SNEMA yellowtail flounder, in recent years 
models with φyear estimated positive M deviations and models with ρyear 

estimated negative survival deviations. This clearly resulted in lower 
projected SSB. Note that although the projected deviations asymptoti
cally approach zero over time (Figs. 1, 3, and 4), SSB in a given pro
jection year is the result of cumulative survival deviations, which means 

that the influence of the survival smoother on SSB is not necessarily 
weaker over time (Fig. 2b,d). 

We estimated 2D autocorrelated deviations in M as Cadigan (2016), 
although there were noteworthy differences between the studies. Cadi
gan (2016) developed a state-space, age-structured assessment model 
for Northern Cod (Gadus morhua) and estimated 2D AR(1) deviations in 
M. Cadigan (2016) did not, however, compare the model estimates, 
predictions, goodness-of-fit, or retrospective patterns under alternative 
2D autocorrelation structures for M. Cadigan (2016) included extensive 
tagging data to inform M in his model estimation and when he fit the 
model without tagging data, he found that the process and measurement 
error variance parameters were highly confounded. Cadigan (2016) also 
dealt with other issues such as uncertain catches and time-varying sur
vey catchability (q), and these may be reasons why his model with 2D 
AR(1) M deviations did not converge without tagging observations. 
Finally, Cadigan (2016) treated F, q, and selectivity as in Nielsen and 
Berg (2014), which is more flexible and less constrained than in our 

Table 4 
Performance metrics and short-term projections of spawning stock biomass (SSB) for models with independent (indep.) or 2D autoregressive, AR(1), random effect 
deviations in numbers-at-age (NAA) and natural mortality (M). NAA-M-3 had the lowest Akaike’s (1973) information criterion (AIC). Mohn’s ρ were averaged over 
seven retrospective peels for three quantities: recruitment (R), spawning stock biomass (SSB), and fishing mortality averaged over ages 4-5 (F). F was set to 0 in 
projection years. Model size is the number of random effects (dimension of the Hessian matrix with respect to random effects). Model run times were a function of 
model size and whether TMB detected sparseness of the Hessian matrix.   

Description Performance metrics SSB projections (mt) Characteristics 

Model NAA random effects M random effects ΔAIC  ρR  ρSSB  ρF  2019 2020 2021 Size Sparse 
Hessian 

Run time 
(min) 

Base Age-1 Indep. — 282.5 6.42 1.02 − 0.43 288 
(182, 456) 

1029 
(113, 9386) 

2141 
(271, 16939) 

45 No 1.22 

NAA-2 All ages Indep. — 74.8 0.81 0.17 − 0.10 439 
(186 1037) 

1389 
(219 8817) 

2561 
(426 15386) 

270 Yes 0.24 

NAA-5 All ages 2D AR(1) — 29.9 0.51 0.06 0.00 273 
(111 674) 

545 
(111 2671) 

1031 
(142 7504) 

270 Yes 0.72 

M-1 Age-1 Indep. Indep. 60.3 0.12 0.18 − 0.11 233 
(67 804) 

1733 
(209 14377) 

4136 
(692 24720) 

321 No 7.65 

M-4 Age-1 Indep. 2D AR(1) 49.2 − 0.10 0.07 − 0.00 191 
(77 476) 

628 
(43 9255) 

1611 
(115 22625) 

321 No 8.10 

NAA-M-2 All ages Indep. 2D AR(1) 35.7 − 0.14 0.03 0.04 174 
(65 470) 

346 
(28 4305) 

715 
(36 14166) 

546 Yes 1.06 

NAA-M-3 All ages 2D AR(1) Indep. 0.0 0.45 0.05 0.01 294 
(113 766) 

615 
(130 2917) 

1168 
(152 8958) 

546 Yes 1.28  

Fig. 4. Deviations in natural mortality (log M, top row) and numbers-at-age (log NAA, bottom row) from models NAA-M-2 (left column) and NAA-M-3 (right 
column). The vertical dashed line marks the terminal year in the assessment, 2018. Deviations are zero in the projection years when they are treated as independent 
(B, C), and non-zero when they are autoregressive by year and age, i.e., 2D AR(1) (A, D). 
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analysis using WHAM and may be another factor in the ability to esti
mate 2D AR(1) deviations in M. Other than these differences between 
our study and Cadigan (2016), we do not know when modeling M 

deviations as random effects will be more or less likely to succeed in 
general. A study that fit models to simulated data arising from alterna
tive life history, selectivity, catchability, and data availability could shed 

Fig. 5. Retrospective patterns in fishing mortality (F, top row), recruitment (middle row), and spawning stock biomass (SSB, bottom row). Lines and points depict 
Mohn’s ρ from seven peels, and the average Mohn’s ρ is given in each panel. Columns show results by model, and model descriptions are listed in Table 4. 

Fig. 6. Trends in fishing mortality (F) and spawning stock biomass (SSB) from models with independent or 2D autoregressive deviations in numbers-at-age (NAA), 
natural mortality (M), or both. Model descriptions are given in Table 4. The dashed line denotes the terminal year in the assessment, 2018. F is fixed at 0 for all 
models in projection years, 2019-2021. The first year in the assessments is 1973, beyond the left x-axis limit. 
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light on this question. 
The 2D AR(1) structure could be extended to three dimensions if, for 

example, survival is modelled to also be sex- or cohort-specific. A 3D AR 
(1) process across year, age, and cohort could be appropriate since re
sidual cohort effects are visible in the estimated 2D AR(1) survival and M 
deviations (Figs. 1, 3, and 4). The generic 2D AR(1) random effects 
structure described here could also be applied to other potentially 
autocorrelated biological processes, and we imagine this will be an 
important research topic in the development of next-generation stock 
assessment models with mixed effects (Punt et al., 2020). WHAM makes 
heavy use of 2D AR(1) random effects, currently allowing users to 
specify them on numbers-at-age, M, and selectivity (Stock and Miller, 
this issue). 

One potential drawback to allowing survival or M to vary in time is 
that calculating biological reference points (BRPs) becomes more com
plex. We envision two different ways to calculate BRPs for models with 
deviations in survival or M:  

1 Deterministic BRPs: The simplest calculation for BRPs is to ignore the 
stochastic variation in survival and calculate the yield curve given 
average survival. This procedure ignores variation in biological 
processes and is typically used to calculate BRPs.  

2 Dynamic BRPs: BRPs can vary across time and be calculated annually 
based upon the survival deviation estimated for each year. 

For SNEMA yellowtail flounder, estimated survival deviations were 
predominantly negative and M deviations were mostly positive since 
2000. Ignoring these trends in productivity may result in biased esti
mates of BRPs in recent decades. Furthermore, treating survival or M 
deviations as uncorrelated in time neglects to propagate productivity 
changes in short-term projections. Whereas calculating dynamic BRPs 
seems to be more appropriate, it poses a challenge to management 
because an assumption regarding how survival or M deviations are 
attributed to fishing mortality, natural mortality, and migration is 
required. These three processes are generally confounded in stock 
assessment models, which means that it is difficult, if possible, to 
partition their influences on the estimates of population attributes 
including survival. We recommend future research to compare the 
performance of deterministic versus time-varying reference points when 
coupled with management procedures and assessment models with 
time-variation in survival and M. 

The models that estimate autocorrelation among ages, ρage or φage, 
assume that this arises from process error, e.g. correlated survival or M, 
although apparent autocorrelation in ages could also be due to ageing 
error, a type of observation error. However, we did not consider ageing 
error for three reasons. First, ageing error is not large for yellowtail 
flounder. Coefficients of variation in age assignment are typically 1–2 %, 
reader agreement is usually above 90 %, and tests for bias when 
agreement is below 90 % are rarely significant (NEFSC, 2020b). Second, 
it is not clear what effect non-negligible ageing error would have, since it 
would be absorbed into some combination of the process error (esti
mated survival or M deviations) and observation error (logit normal 
variance parameters for the catch and index proportions-at-age, σ2

paa). 
This likely depends on several factors, including the age composition 
likelihood, magnitude of ageing and process errors, process error model, 
number of ages, true proportions-at-age, and any trend by age in ageing 
error. Third, a potential diagnostic is to see if the estimated logit normal 
variance parameters change with the inclusion of autocorrelation by 
age. Here, adding ρage to the survival deviations had no effect on σ2

paa, 
and adding φage to the M deviations did not have a consistent effect 
(increased σ2

paa in models without φyear, decreased σ2
paa in models with 

φyear). It would be worthwhile to investigate how to distinguish between 
ageing error, observation error in the proportions-at-age, and auto
correlated process error in survival or M. 

Care should be taken when interpreting the main findings found in 

this study. First, population dynamics in the 3-year projection time 
period were predicted by fixing F = 0, and non-zero catches will almost 
certainly occur. Second, all the conclusions made in this study are stock- 
specific. For example, the relative importance of the deviations in sur
vival versus M and the 2D AR(1) smoother to SSB prediction is highly 
dependent upon the parameters (e.g., age-at-maturity, longevity, 
selectivity, and weight-at-age) that influence the age structure and life 
history of the stock. Including an environment-linked stock-recruitment 
relationship is another way to account for time-varying productivity and 
directly impacts near-term predictions of recruitment (e.g., Miller et al., 
2016; Xu et al., 2018). However, for fish stocks with low selectivity at 
ages 1–3, changes in predicted recruitment will not propagate to the 
fished age classes in 3-year projections and therefore will not appre
ciably impact SSB predictions. A key difference is that the 2D AR(1) 
smoother impacts the predicted numbers at all ages, not just recruit
ment, and we expect it to be relatively more important to near-term SSB 
predictions for late-maturing and long-lived fish stocks. As demon
strated here, deviations in survival or M of older ages near the end of an 
assessment can propagate through the entire age structure in near-term 
projections and substantially modify SSB predictions (Figs. 4a and 6). 
Finally, movement is another process that may affect the relative 
importance of deviations in survival versus M and clearly depends on the 
stock in question. For yellowtail flounder, population mixing between 
adjacent stocks has been observed in tagging studies but not to a large 
enough extent to significantly affect the population dynamics of indi
vidual stocks (Cadrin, 2003; Goethel et al., 2015). 

One final note is that the run time required to fit the models varied 
substantially and in unintuitive patterns. Much of TMB’s advantage over 
ADMB in computational speed depends on its algorithm for automati
cally detecting sparseness of the Hessian matrix (Kristensen et al., 2016), 
and we found that this sparseness detection was the most important 
determinant of model run time. Directly specifying the survival de
viations, εa,y, as random effect parameters did not result in a sparse 
Hessian, but parameterizing the log numbers at age, log(Na,y), and then 
calculating the εa,y as derived quantities, did. When only numbers at age 
1 (i.e., recruits) were random effects, the Hessian was not detected as 
sparse. Thus, some of the least complex models we considered (e.g., 
Base, NAA-1, and M-1) took longer to run than the more complex models 
with deviations in survival and M (Table 4). Using the model with in
dependent survival deviations as a baseline, adding the 2D AR(1) 
structure increased run time by 3x and additionally including indepen
dent M deviations increased run time by 5x (Table 4). While the run 
times are short, on the order of one minute, these results are limited to 
the dimension of the SNEMA yellowtail flounder assessment (e.g., the 
number of age classes and time steps) and it is possible that run time 
could be an issue for assessments with many more years and ages, 
especially if run time increases worse than linearly. In addition, standard 
practice when introducing new assessment models is to evaluate them 
using simulation testing, which involves thousands of model fits. Still, 
the most complex model took only 1.28 min to run on a laptop com
puter, which suggests that computation speed is unlikely to be a hurdle 
to incorporating additional complexity into stock assessments via 
random effects in TMB. 
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