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Scientific Significance Statement

Iron availability controls phytoplankton growth and community composition in large regions of the ocean, affecting ocean car-
bon uptake and biomass of higher trophic levels. It is important to constrain the amount of iron both required and actually
accumulated by phytoplankton in order to accurately model and predict global ocean productivity, but there are very few direct
measurements of phytoplankton iron contents in natural systems. We measured iron in phytoplankton cells collected across gra-
dients of iron and nitrogen in the Pacific Ocean, finding that co-occurring phytoplankton can accumulate significantly more
iron than predicted by laboratory experiments used to parameterize most ocean biogeochemical models. These differences are
likely caused by colimitation by other nutrients such as nitrogen, as well as differences in phytoplankton ability to store iron.

Abstract
Phytoplankton iron contents (i.e., quotas) directly link biogeochemical cycles of iron and carbon and drive pat-
terns of nutrient limitation, recycling, and export. Ocean biogeochemical models typically assume that iron
quotas are either static or controlled by dissolved iron availability. We measured iron quotas in phytoplankton
communities across nutrient gradients in the Pacific Ocean and found that quotas diverged significantly in
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taxon-specific ways from laboratory-derived predictions. Iron quotas varied 40-fold across nutrient gradients,
and nitrogen-limitation allowed diatoms to accumulate fivefold more iron than co-occurring flagellates even
under low iron availability. Modeling indicates such “luxury” uptake is common in large regions of the low-iron
Pacific Ocean. Among diatoms, both pennate and centric genera accumulated luxury iron, but the cosmopoli-
tan pennate genus Pseudo-nitzschia maintained iron quotas 10-fold higher than co-occurring centric diatoms,
likely due to enhanced iron storage. Biogeochemical models should account for taxonomic and macronutrient
controls on phytoplankton iron quotas.

Iron is an essential nutrient for marine phytoplankton,
and its scarcity regulates their activity over large areas of the
world ocean. Phytoplankton biomass directly connects the bio-
geochemical cycles of iron and carbon in the ocean, and its ele-
mental stoichiometry impacts nutrient limitation patterns and
the ocean carbon cycle (Boyd et al. 2007; Moore et al. 2013).
The biomass-normalized iron content of phytoplankton, typi-
cally expressed as Fe/C ratios (i.e., quotas), can vary more than
100-fold in cultured species (Sunda and Huntsman 1995;
Marchetti and Maldonado 2016)—far more than ratios of the
macronutrients nitrogen and phosphorus. Availability of dis-
solved Fe (dFe) has been shown to place a primary control on
iron quotas (Sunda and Huntsman 1995), but taxa are known
to differ in their iron requirements (Sunda et al. 1991; Quigg
et al. 2003; Marchetti et al. 2006). Indeed, iron quotas of differ-
ent diatoms grown under identical conditions in laboratory
experiments can vary 10-fold (Ho et al. 2003). Irradiance
(Sunda and Huntsman 1997), nitrogen availability (Maldonado
and Price 1996), and cellular growth rates (Cullen et al. 2003)
are also known to influence iron contents, and these factors
vary dynamically in the ocean.

The covariation of abiotic and biological factors across gradi-
ents in the ocean presents a challenge for understanding physi-
ological responses to environmental gradients. Iron and
nitrogen concentrations typically decrease at different rates
moving offshore in upwelling systems (Johnson et al. 1997),
resulting in a cascade of nutrient limitation regimes (Fig. 1a).
Phytoplankton community composition also shifts over these
gradients, with larger phytoplankton (e.g., diatoms) typically
being replaced by smaller flagellates and cyanobacteria in off-
shore waters (Longhurst 2007). Further, diatoms isolated from
low-nutrient environments display lower minimum iron quotas
than coastal diatoms (Sunda et al. 1991; Marchetti et al. 2006;
Strzepek et al. 2011), as do nanoflagellates (Sunda and Hunts-
man 1995; Botebol et al. 2017). It is thus likely that species com-
petition limits the full expression of physiological plasticity of
quotas in natural communities. The emergent community Fe/C
ratios that result from both cellular physiology and community
composition (Fig. 1a) will drive patterns of nutrient recycling
and export (Boyd et al. 2007), but the interplay between poten-
tial controls on iron quotas is poorly understood.

Global ocean biogeochemistry models account for phyto-
plankton Fe/C in different ways. Some impose fixed values and
derive iron uptake from carbon fixation rates, some explicitly
represent the parallel accumulation of iron and carbon, and

others are underpinned by empirical relationships based on
iron availability (Tagliabue et al. 2016). Most models
(e.g., Moore et al. 2004; Stock et al. 2014; Aumont et al. 2015)
use results from laboratory culturing studies that measured iron
accumulation while varying iron availability to ground truth
their parameterizations (Buitenhuis and Geider 2010). These
laboratory studies generally show minimum Fe/C of
≤ 2 μmol mol−1 C, increasing 10- to 100-fold in response to
additional dFe (Sunda et al. 1991; Sunda and Huntsman 1995;
Strzepek et al. 2011) (Fig. 2a). However, cells growing at sub-
optimal concentrations have lower growth rates (Fig. 2b) and
would likely be outcompeted and replaced by other, faster-
growing taxa in natural environments. Each phytoplankton
taxa thus has an optimal iron quota (Fe/Copt) that represents the
minimum iron content needed to maintain its maximum
growth rate (Fig. 2c). Quotas of mixed phytoplankton commu-
nities in the ocean should be expected to approach Fe/Copt

rather than the minimum Fe/C for a given dFe (Fig. 2d). Addi-
tionally, most laboratory culturing studies determine Fe/C in
phytoplankton grown with excess macronutrients (typically
NO3), which is rarely the situation in natural communities out-
side of high-nitrate, low chlorophyll (HNLC) regions
(Browning et al. 2017).

To examine the responses of iron quotas in unique taxo-
nomic groups to nutrient gradients in the ocean, we measured
the iron quotas of individual diatom and nanoflagellate cells
collected during four research cruises in the eastern Pacific
Ocean (Fig. 1b). The dissolved and particulate iron, nitrate,
and phytoplankton biomass at the 16 stations sampled span
order-of-magnitude concentration gradients, resulting in a
100-fold variation in dissolved NO3/Fe (Supporting Informa-
tion Table S1). Additionally, iron addition and removal incu-
bations were conducted at four stations within both coastal
and offshore waters to determine luxury iron uptake and iron
storage capacities in representative taxa of pennate and cen-
tric diatoms. Potential drivers of luxury uptake, as well as the
predicted occurrence of luxury uptake in open ocean phyto-
plankton more broadly, were explored with the PISCES global
ocean model, which explicitly represents iron uptake in a rela-
tively detailed manner.

Methods
Samples were collected during expeditions to the eastern

tropical South Pacific (US GEOTRACES EPZT cruise), the
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California Upwelling Zone (IRNBRU cruise between Monterey,
California and coast of southern Oregon), and two cruises
along Line P from Vancouver Island to the subarctic northeast
Pacific (GeoMICS cruise in 2012; Line P cruise in 2015). All
station locations are provided in Supporting Information
Table S1, along with the number and types of samples col-
lected at each station. Each cruise sampled across significant
gradients in macronutrient and micronutrient availability. In
addition, deckboard bottle incubations in which dFe availabil-
ity was manipulated were performed on IRNBRU and Line P
cruises. Methods specific to each cruise are described in the
Supporting Information, and data are available through the
Biological and Chemical Oceanography Data Management
Office (Twining 2016a,2016b, 2020a,2020b; Twining
et al. 2016a,2016b).

Phytoplankton cells were collected from the upper mixed
layer (typically 20–25 m) and, in some cases also the subsur-
face chlorophyll maximum, using trace-metal clean bottles.
Samples were prepared for synchrotron X-ray fluorescence
(SXRF) analysis (Supporting Information Fig. S1) following
protocols described in Twining et al. (2015) and in the
Supporting Information. Cellular metals were analyzed with
the 2-ID-E microprobe beamline at the Advanced Photon
Source, Argonne National Laboratory. Incident beam energy
was set at 10 keV to enable the excitation of Kα fluorescence
for elements ranging in atomic mass from Si to Zn. Cells were
imaged using 2D raster scans with pixel step sizes of 0.3–-
0.5 μm. Element quantification was performed by averaging
the spectra from pixels representing the cells of interest. Con-
centrations were calculated based on conversion factors
obtained from traceable thin-film standards. Cellular C was
calculated from cell biovolume, estimated from microscopy.
Cells were identified based on cell appearance in light
micrographs.

Total and labile particulate metal concentrations were mea-
sured following GEOTRACES protocols as described in detail
elsewhere (Twining et al. 2015). Briefly, several liters of seawa-
ter from each depth were passed through 0.45-μm pore-size
Supor polyethersulfone filters to collect particles. Filters were
dried and stored frozen until being solubilized with either a
mixture of strong acids or a mixture of weak acid and
reductant to access total and chemically labile fractions,
respectively. Digests were analyzed using a Thermo Element2
HR-ICP-MS equipped with a quartz nebulizer, cyclonic spray
chamber, and nickel cones. Element quantification was per-
formed using external calibration curves, and certified
reference materials were used to assess recoveries.

Iron addition and removal incubation experiments used to
assess iron quota plasticity and luxury uptake are described
elsewhere (Cohen et al. 2017; Lampe et al. 2018). Dates, loca-
tions, and initial conditions are summarized in Supporting
Information Table S2. Briefly, surface seawater was collected
using a trace metal clean sampling system into 10-liter
cubitainers. Triplicate treatments consisted of 5 nmol L−1 of
FeCl3, 200 nmol L−1 desferroxamine B, and an unamended
control. Cubitainers were placed on deck in flow-through
incubators with neutral density screening to simulate near-
ambient temperature and irradiance. The experimental dura-
tion was 24–96 h, with time points varying depending on
location. Chaetoceros and Pseudo-nitzschia cells were collected
from each treatment (when present) and analyzed with SXRF.

The PISCES global ocean biogeochemistry model was used
to explore nutrient limitation patterns and phytoplankton iron
physiology along the EPZT transect. PISCES includes two phy-
toplankton functional types (diatoms and nanoflagellates), two
zooplankton (micro- and mesozooplankton), two particle size
classes, particulate biogenic silica, calcium carbonate, five nutri-
ents (nitrate, phosphate, silicic acid, iron, and ammonium), the

Land

NO3
-

Fe

Nanoflag Diatoms

Luxury

uptake

Minimum

quotas

Community

Fe/C
=

Taxon

Land

NO3
-

FeFe

Nanoflag Diatoms

Luxury

uptake

Minimum

quotas

Community

Fe/C
+

Taxon-specific

plasticity

Community

composition

GeoMICS/Line P

IrnBru

n
it

ra
te

 (
μ

m
o
l 

L
−

1
)

EPZT

(a) (b)

Fig. 1. (a) Schematic of factors influencing community Fe/C across ocean nutrient gradients. (b) Location of study stations, showing dissolved iron
(dFe; symbol color, nmol L−1) overlaid on surface nitrate climatology (μmol L−1, from World Ocean Atlas 2013).
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full carbon system, oxygen, nitrogen fixation, denitrification,
and anammox (Aumont et al. 2015). The PISCES iron cycle is
complex, representing a range of sources and explicitly

representing phytoplankton iron uptake in response to chang-
ing iron availability, iron limitation, and an assumed maxi-
mum quota (Tagliabue et al. 2020). The iron quotas are an

Fig. 2. Responses of six phytoplankton species to iron availability (adapted from Sunda and Huntsman 1995). Symbol color indicates coastal (warm/red
shades) or oceanic (cool/blue shades) taxon, and symbol shape indicates diatom (circle), nanoflagellate (triangle), or dinoflagellate (square). (a) Iron
quota vs. Fe0 (sum of inorganic dissolved iron species). (b) Relative growth rate (normalized to μmax) vs. Fe0. (c) Relative growth rate vs. iron quota.
Dashed lines highlight approximate iron quotas when growth rates drop below max levels. (d) Optimum iron quota (FeCopt: minimum iron quota to
achieve max growth rate) vs. Fe0.
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emergent feature of the model resulting from iron and carbon
assimilation rates. We investigated iron quotas and their drivers
in the South Pacific using the standard configuration of the
model and an addition experiment where diatoms were not
allowed to access the ammonium pool (referred to as “NH4
expt” in Supporting Information Fig. S3).

Results and discussion
Phytoplankton community responses to gradients in iron
and nitrogen concentrations

In the eastern tropical South Pacific Ocean, nitrate and iron
concentrations decreased approximately 20-fold from produc-
tive coastal waters over the shelf to oligotrophic waters at the
edge of the subtropical gyre (Fig. 3). Along the onshore-to-

offshore transect, iron concentrations declined rapidly, with dFe
decreasing to below 0.2 nmol L−1 within 223 km from the coast.
In contrast, nitrate remained above 5 μmol L−1 for an additional
appromiately 2000 km, resulting in HNLC-like conditions in
the middle of the transect (NO3/Fe: 188 μmol nmol−1). Across
this gradient, phytoplankton biomass (based on chlorophyll a
[Chl a] as a proxy) declined 27-fold (Fig. 3b), in step with dFe
rather than nitrate (r2 for linear regressions of Chl vs. dFe or
nitrate were 0.91 and 0.39, respectively). Phytoplankton
community composition also shifted, with diatoms and other
larger phytoplankton replaced by nanoflagellates and pic-
ophytoplankton moving offshore (Fig. 3b). The decrease in dia-
toms corresponded more closely with the decrease in nitrate
rather than dFe (Fig. 3b), suggesting that iron availability con-
strains overall phytoplankton biomass while competition for

Fig. 3. Response of iron quotas to nutrient gradients in the South Pacific Ocean. (a) Location of stations on EPZT cruise, plotted over bathymetry. (b)
Phytoplankton abundance (total Chl a), nitrate, dFe, and relative diatom abundance (% fucoxanthin, a pigment proxy for diatoms) across the onshore-
offshore gradient. Data are means of upper 50 m at each station. Dashed blue lines delineate putative coastal, HNLC, and oligotrophic regions (Boiteau
et al. 2016). (c) Taxon-specific Fe quotas (geometric means ± SE) as a function of location. Dashed red line indicates the optimal Fe/C estimated for
open-ocean phytoplankton under low dFe (see text for details). Symbol colors are as indicated in panel (d) legend: red—autotrophic flagellates (aflag);
green—centric diatoms (centric); blue—pennate diatoms (pennate). (d) Taxon-specific Fe quotas as a function of dFe. Also plotted is predicted FeCopt

(see text for details). (e) Response of taxon-specific Fe quotas to gradients in ambient nitrate and dFe. Symbol color indicates Fe/C (μmol mol−1). Arrows
indicate direction of cruise track, moving from shelf westward into the gyre.
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nitrate, in addition to Fe, influences community composition.
Studies in the eastern equatorial Pacific support that diatoms are
primarily growing on nitrate and thus particularly sensitive to
its availability in the upper ocean (Price et al. 1994; Parker
et al. 2011). The PISCES model captures well the observed gradi-
ents in nutrients and phytoplankton community in this region
(Supporting Information Fig. S2).

Iron quotas of diatoms and nanoflagellates responded differ-
ently to these nutrient gradients, suggesting they are controlled
by different factors. Nanoflagellate Fe/C dropped in lock-step
with dFe, with iron quotas decreasing from 92 μmol mol−1 over
the shelf to approximately 13 μmol mol−1 in low-Fe waters
(Fig. 3c). Nanoflagellate Fe/C remained around 10 μmol mol−1

further offshore, and average flagellate iron quotas closely
followed predicted Fe/Copt across the section (Fig. 3d). In con-
trast, iron quotas of diatoms decreased offshore but remained
twofold to fivefold above those measured in flagellates and
fourfold to sixfold above predicted Fe/Copt (Fig. 3d). While dia-
tom Fe/C appears to saturate around 0.4 nmol L−1 as
nanoflagellate Fe/C continues to increase, we hypothesize that
this behavior is caused by differential nitrogen limitation (see
discussion below) rather than unique iron uptake functions for
diatoms and flagellates. Despite these elevated iron quotas, dia-
tom abundance decreased to less than 5% of the overall phyto-
plankton community offshore (Fig. 3b), while nanoflagellate
taxa comprised 30–50% of the community, based on diagnostic
accessory pigments (Supporting Information Table S1). Higher
Fe/C in diatoms is unlikely to be driven by Fe associated with
the frustule, which has been shown to comprise < 5% of cellu-
lar Fe (Ellwood and Hunter 2000). The PISCES model also pre-
dicts higher iron quotas both nearshore and far offshore, with
the lowest quotas also found in the iron-limited HNLC region
(Fig. 4c). The model indicates this pattern results from a succes-
sion of different nutrient regimes moving offshore, with sys-
tematic changes in iron and carbon assimilation moving from
nutrient-replete to iron-limited to nitrogen-limited systems
(Fig. 4a,b). However, PISCES does not reproduce the observed
bifurcation between diatom and nanoflagellate quotas offshore,
with both groups responding similarly in the model (Fig. 4c).

The low abundance but elevated iron contents of diatoms
offshore suggests that nitrogen limitation of growth allows
diatoms to accumulate iron above the predicted Fe/Copt. The
lowest iron quotas for both diatoms and flagellates were mea-
sured in waters still replete with nitrate but deficient in iron
(Fig. 3e). Diatom iron quotas then increase further offshore as
nitrate concentrations continue to decline, even as dFe
remains very low (< 0.2 nmol L−1). Lower rates of diatom cell
division (suggested by lower abundances) due to nitrogen lim-
itation would enable iron to accumulate to higher levels in
cells even under very low dFe. Such a “growth rate dilution”
effect has been invoked previously to explain changes in
metal quotas under changing growth regimes (Kudo
et al. 1996; Cullen et al. 2003). This mechanism is present in
the PISCES model, which shows a sharper decline in carbon

fixation than iron uptake for both phytoplankton groups
moving into the nitrogen limited offshore region (Fig. 4a,b).
Interestingly, additional experiments with our model, in
which diatoms were made completely reliant on nitrate as a
nitrogen source (consistent with local observations; Price
et al. 1994; Parker et al. 2011), caused diatom and
nanoflagellate iron quotas to increase and decrease, respec-
tively, more closely matching our measurements in the
nitrogen-limited offshore region (Fig. 4c). This highlights the
role of nitrogen, and particularly the balance between nitrate
and ammonium, in shaping iron quotas in nitrogen deplete
systems. As diatom iron quotas exceeded nanoflagellate
quotas at both Fe- and N-limited stations, these differences
may be driven by a combination of slower growth and luxury
iron uptake.

More broadly, our model experiments indicate that the
overconsumption of iron, relative to carbon assimilation, by
diatoms in nitrate-poor waters is widespread in low-
macronutrient Pacific surface waters (Fig. 4d). This suggests
that diatom Fe/C in the nitrogen-deplete global ocean are
poorly represented by laboratory culture work conducted
under nitrogen-replete conditions. Indeed, measurements of
bulk particulate Fe/C in the Pacific Ocean show levels
(ca. 50 μmol mol−1) well above those predicted for phyto-
plankton from laboratory-derived Fe/Copt (Supporting Infor-
mation Tables S1, S3). As diatoms are more likely to sink and
drive biogeochemical fluxes (Buesseler 1998), increased dia-
tom Fe/C in the nitrate-deplete, low-iron oligotrophic Pacific
Ocean will strongly affect upper ocean recycling and export of
iron and carbon.

Taxon-specific responses of diatoms to an iron gradient
Given the surprising behavior of diatom iron quotas in the

South Pacific Ocean and growing knowledge about diverse
iron physiologies of diatom classes (Groussman et al. 2015;
Marchetti and Maldonado 2016), we further investigated the
iron quotas of individual centric and pennate diatom taxa
across a similar nutrient gradient in the sub-Arctic North
Pacific Ocean (GeoMICS/Line P transect; Fig. 5a). As in the
South Pacific, concentrations of dFe and nitrate decreased
significantly (4- and 26-fold, respectively) from onshore to off-
shore, along with diatom and overall phytoplankton biomass
(Fig. 5b). Coastal species of both centric (e.g., Guinardia sp.,
Thalassiosira pacifica) and pennate (e.g., Pseudo-nitzschia
pungens) diatoms were replaced by oceanic species
(e.g., Thalassiosira oceanica and Pseudo-nitzschia granii, respec-
tively) offshore (Chappell et al. 2019) (Fig. 5d). However, iron
quotas in centrics and pennates responded differently to these
nutrient gradients. Average centric Fe/C decreased threefold,
from 36 μmol mol−1 nearshore to 12 μmol mol−1 offshore,
close to predicted Fe/Copt (Fig. 5c). In contrast, average pen-
nate diatom Fe/C were at least twice those of centric diatoms
at all stations and nearly sevenfold higher at the furthest off-
shore station.
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Examining the behavior of individual diatom taxa across the
nutrient gradient reveals the interplay of physiological acclima-
tion and community adaptation (i.e., species succession). Iron

quotas of the coastal diatoms Chaetoceros sp., Guinardia sp., and
Cylindrotheca sp. were plastic and sensitive to dFe, decreasing
approximately fourfold within each taxon as dFe decreased off-
shore (Fig. 5d, Supporting Information Fig. S4). Average Fe/C of
these taxa co-occurring at the nearshore station spanned
10-fold (24–236 μmol mol−1), demonstrating the strong influ-
ence of taxonomy on biogeochemistry. Smaller centric diatom
quotas displayed less plasticity, with average quotas spanning
only fourfold over the entire transect. In contrast, Pseudo-
nitzschia species exhibited unique behavior, maintaining iron
quotas of 50–84 μmol mol−1 across the entire transect, even as
the dominant species shifted from P. pungens to P. granii.
Indeed, Pseudo-nitzschia iron quotas appeared to be nearly
insensitive to Fe availability. Given the relative dominance of
Pseudo-nitzschia in the diatom community offshore (Fig. 5d)
(Chappell et al. 2019), the ability to acquire and/or store iron
appears to provide members of this genus with a competitive
advantage. These data demonstrate the biogeochemical impact
of niche partitioning, with diverse phytoplankton groups hav-
ing distinct iron strategies and using external iron sources differ-
ently, even as they occupy the same system.

Enhanced storage capability supports elevated diatom iron
quotas

A series of incubation experiments conducted with the dia-
tom communities in the North Pacific suggest that enhanced
iron storage capabilities underpin Pseudo-nitzschia’s unique abil-
ity to maintain elevated quotas. A greater ability to store excess
iron, obtained either from lowered growth rate dilution or a
pulsed iron input, should increase competitiveness, and the
unique iron storage capabilities of Pseudo-nitzschia have been
measured in culture (Marchetti et al. 2009). We compared iron
quotas of co-occurring Pseudo-nitzschia sp. and Chaetoceros
sp. in natural communities across a 10-fold range of iron avail-
abilities. Chaetoceros were > 10-fold more abundant than
Pseudo-nitzschia at the highest iron conditions (3.5 nmol L-1),
and ambient Chaetoceros accumulated Fe/C to maximum levels
(150 μmol mol−1), fivefold above quotas in cells collected from
the same station and subsequently starved of iron (Fig. 6). At
lower ambient dFe (1.0 nmol L-1), Pseudo-nitzschia became more
abundant than Chaetoceros and maintained iron quotas at max-
imum levels (ca. 50 μmol Fe/mol C, also fivefold above iron-

Fig. 4. Calculated iron and carbon uptake rates (mol m−3 s−1) for (a)
diatoms and (b) nanoflagellates, as calculated by the PISCES model and
normalized to maximum uptake rates on the eastern side of the EPZT
transect. Dashed vertical blue lines indicate regions predicted by PISCES
model to be limited by N, Fe, or neither (replete). (c) Cellular Fe/C in the
eastern tropical South Pacific calculated by PISCES model for standard run
(solid lines) and NH4 run (dashed lines, see text for details). Iron quotas
measured with SXRF are shown as circles (geometric mean ± SE). The
underlying components of the predicted Fe/C for each group are shown
in Supporting Information Fig. S3. (d) Distribution of luxury iron accumu-
lated by N-limited diatoms in the Pacific Ocean predicted by PISCES
model (control run). The EPZT section is marked with a red line.
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starved cells). With dFe further reduced (0.64 nmol-1), Pseudo-
nitzschia was able to store iron at maximum levels while
Chaetoceros cells could accumulate iron to only 70% of maxi-
mum levels. Furthermore, Pseudo-nitzschia were able to reduce
minimum quotas to half of Chaeotoceros levels (10 μmol mol−1

compared to 18 μmol mol−1, respectively), providing an addi-
tional competitive advantage (Marchetti et al. 2006). At the
lowest dFe incubation (Station Papa; 0.05 nmol L-1), Pseudo-
nitzschia luxury storage capacity doubled following iron addi-
tion, in-line with ferritin expression (Lampe et al. 2018), and
cells were able to maintain quotas threefold above minimum
levels even in the absence of added iron (Fig. 6). In contrast,
Chaetoceros were unable to achieve adequate cell concentra-
tions to be analyzed.

Implications for ocean ecology and biogeochemistry
Our results show that phytoplankton respond to nutrient

gradients by altering their iron quotas in taxon-specific ways,
and importantly, that certain taxa are able to accumulate lux-
ury iron more than others. We have identified that nitrogen
availability also influences iron quotas. Differences in the
accumulation of iron among phytoplankton taxa will impact
ecological competition, as those taxa able to store iron follow-
ing sporadic inputs will be able to outcompete other groups
when iron is subsequently depleted (Marchetti et al. 2009).
This likely explains the dominant response of Pseudo-nitzschia
to experimental iron inputs (De Baar et al. 2005). Excess cellu-
lar iron within diatoms in the Pacific gyre would also allow
them to respond favorably to pulsed inputs of nitrogen. Iron
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uptake and storage by phytoplankton are predicted to impact
productivity of higher trophic levels in the ocean, with
models suggesting that changes to iron accumulation by phy-
toplankton in the equatorial Pacific will impact upper trophic
levels in the coming century (Tagliabue et al. 2020). Our abil-
ity to predict responses of marine ecosystems to nutrient
inputs thus depends on our understanding of taxon-specific
nutrient acquisition and storage capabilities, which will be
advanced by combining taxon-specific measurements of phys-
iology through “omic approaches with taxon-specific nutrient
measurements (e.g., Lampe et al. 2018).

Luxury iron uptake will also impact biogeochemical iron
cycling throughout low-nutrient areas. Large regions of the
ocean experience macronutrient limitation (Moore et al. 2013),
and the resulting accumulation of iron above minimum levels
in these areas may increase iron recycling (Richon et al. 2020),
retention of iron by phytoplankton communities (Rafter
et al. 2017), and potentially intensify nitrogen limitation. Fur-
thermore, future increases in stratification and ensuing macro-
nutrient limitation suggest that departures in iron quotas from
laboratory-predicted Fe/Copt will become even more pervasive.
These underlying drivers need to be incorporated into both con-
ceptual and numerical models of ocean biogeochemical cycling.
To fully understand the importance of biological diversity and
physiological dynamics now recognized in ocean phytoplank-
ton, we must directly assess the biogeochemical signals that key
members of these communities impart.
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