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For more than three decades, the classical or mean-field picture describing the distant dipolar field
has been almost always simplified to an effective field proportional to the local longitudinal magne-
tization, differing only by a scale factor of 1.5 for homomolecular (identical resonance frequency)
and heteromolecular interactions. We re-examine the underlying assumptions, and show both the-
oretically and experimentally that the mathematical framework needs to be modified for modern
applications such as imaging. We demonstrate new pulse sequences which produce unexpected ef-
fects; for example, modulating an arbitrarily small fraction of the magnetization can substantially
alter the frequency evolution. Thus, matched gradient pulse pairs (a seemingly innocuous module
in thousands of existing pulse sequences) can alter the time evolution in highly unexpected ways,
particularly with small flip angle pulses such as those used in hyperpolarized experiments. We also
show that specific gradient pulse combinations can retain only dipolar interactions between unlike
spins, and the dipolar field can generate a secular Hamiltonian proportional to Ix. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4721637]

I. INTRODUCTION

Since the very beginnings of NMR, it has been known
that dipolar couplings dominate the solid state linewidth for
spin-1/2 nuclei1, 2 but the effects are still not fully understood:
the full free induction decay has never been calculated,
and recent experiments show an anomalously long lived
component.3, 4 Diffusion in liquids5 or quantum mechanical
exchange in solid 3He dramatically sharpens resonance lines
by effectively decoupling nearby spins, but dipolar couplings
can still produce effects in such systems.6 The simplest case
(uniform magnetization) was studied long before quantum
mechanics: it is the origin, for example, of the “dipolar
demagnetizing field” or “distant dipolar field” (DDF) which
prevented certain shapes for permanent magnets, until the
advent of modern materials with higher coercive force and
remanence than pure iron.

Effects from uniform large magnetization are observable
in NMR (Ref. 7) but are usually complicated by other nonlin-
ear interactions, such as radiation damping. In contrast, it is
very easy to spatially modulate magnetization with radiofre-
quency pulses and field gradients, and this leads to surprising
experimental observations, such as multiple echoes in both
solid 3He (Ref. 6) and water.8 Beginning in the mid-nineties,
two-dimensional experiments revealed that dipolar couplings
between distant spins produce strong signals from intermolec-
ular multiple quantum coherences,9, 10 with a wide range of
applications such as anisotropy measurement,11–13 inhomo-
geneity compensation,14, 15 and temperature imaging.16 The
mathematical framework which describes these effects can be
phrased in terms of nonlinear Bloch equations (the “mean-
field picture,” derived essentially unchanged from Ref. 6) or a
density matrix framework which explicitly retains the dipo-
lar couplings (the “coupled-spin picture”),17 with identical
results.17–19

Here we discuss simple pulse sequences (Figure 1)
which produce signals that conflict dramatically with the
accepted predictions. For example, the first two sequences in
Figure 1 use a matched gradient pulse pair (used in thousands
of existing, much more complex sequences) but as we show
later, experimentally the signal is not the same as that of a
simple free induction decay or spin echo; in fact, the evolu-
tion frequency during the time between the pulses depends
on the gradient direction. Figure 1(c) looks like a simple
modification to the double-quantum CRAZED sequence, but
when the two pairs of gradient pulses are arranged along x
and z, respectively (what we will call the XZ MAXCRAZED
sequence) the experimental effects of couplings between
like spins are eliminated, while the couplings between
different spins are retained. Figure 1(d) looks like a simple
modification to a COSY sequence, but if the second pair of
gradient pulses is along any direction other than the magic
angle, phase cycling of the first pulse reveals double-quantum
peaks.

We also show the origin of the problem: seemingly in-
tuitive simplifications which are virtually always used in the
mean-field framework (and were propagated into the coupled-
spin framework) need to be revisited. Specifically, the con-
ventional treatment implicitly assumes that all components of
the magnetization are strongly modulated in the same direc-
tion. This condition is violated in many sequences; for exam-
ple, the transverse magnetization is modulated by readout and
phase encode gradients in imaging sequences, but the z mag-
netization is not affected. We then generalize the traditional
treatment of dipolar field effects. Our primary focus in this
paper is developing a formalism that gives an intuitive expla-
nation of the strange results from these sequences. Where it
is possible, we will produce analytic solutions; we will also
discuss cases where the analytic solutions break down, but
a first-order result has predictive power. Finally, we discuss
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FIG. 1. Sequences which show limitations of the traditional mean-field pic-
ture of dipolar effects. In each case the vertical lines are rf pulses, and shaded
boxes are gradient pulses along a specific direction s or s′, with areas GsT
or Gs′ T. (a) and (b): Here the first pulse flip angle ε is small, so almost all
of the magnetization lies along the z axis. For a spherical sample, dipolar
effects would then be expected to be unobservable. Instead, these sequences
show a frequency shift determined by gradient direction, but independent of
ε. Both experiments have identical dipolar effects; the second one suppresses
inhomogeneous broadening and radiation damping. (c) MAXCRAZED se-
quence, which alters the CRAZED sequence by imposing strong gradients in
a different direction during the interval d2. Certain gradient pair directions
dramatically alter the observed peaks. (d) GRACE sequence, which modifies
a traditional COSY experiment by adding matched gradient pulse pairs in
different directions in the two time intervals. Certain gradient pair directions
produce double-quantum signals, as detected by phase cycling the first pulse.

the classes of experiments which are altered most by these
corrections.

II. REVIEW OF CONVENTIONAL DIPOLAR FIELD
TREATMENTS

We start by summarizing the conventional framework.
The Hamiltonian reflecting the dipole-dipole interaction be-
tween nuclear spins i and j has the form

HD = 1

2

∑
i,j

¯2γiγj

|�ri − �rj |3 [ �Ii • �Ij − 3( �Ii • (�ri − �rj ))

× ( �Ij • (�ri − �rj ))/|�ri − �rj |2]. (1)

In a large external field B0ẑ this should be truncated (the “sec-
ular approximation”) to retain only the components which
commute with the Zeeman Hamiltonian.1 The secular approx-
imation to Eq. (1), in either the laboratory or rotating frame,
is derived in standard textbooks:2

HD = 1

4

∑
i,j

¯2γiγj

|�ri − �rj |3 (1 − 3 cos2 θrr ′ )

× [3IziIzj − �Ii • �Ij ] (i,j homonuclear)

+ 1

4

∑
i,j

¯2γiγj

|�ri − �rj |3 (1 − 3 cos2 θrr ′ )

× [2IziIzj ] (i,j heteronuclear), (2)

where θ rr′ is the angle between �r − �r ′ and ẑ. The distinction
between homonuclear and heteronuclear couplings arises be-
cause the resonance frequency difference between different
nuclei is generally much larger than the dipolar couplings, and
the component IxiIxj + IyiIyj contained in the dot product only
commutes with the Zeeman Hamiltonian if the resonance fre-
quencies are equal.

In a groundbreaking paper, Ref. 6 extended this treatment
to a system undergoing spin exchange (and the same approach
was later extended to liquids8), where the couplings between
nearby spins can be assumed to be averaged away by diffu-
sion. The sum in Eq. (1) is replaced by an integral to account
for distant spins, and the interaction can be reduced to what
is today called the DDF at each position from all of the other
spins,

�Bd (�r) = μ0

4π

∫
d3r ′ 1

|�r − �r ′|3 [ �M(�r ′) − 3( �M(�r ′) • (�r − �r ′))

× (�r − �r ′)/|�ri − �rj |2]. (3)

Reference 6 then makes the same secular approximation as
was done to get to Eq. (2), saving only terms in �Bd (�r) along
the z axis or parallel to �M(�r ′):

�Bd (�r) = μ0

4π

∫
d3r ′ 1 − 3 cos2 θrr ′

2 |�r − �r ′|3 [3Mz(�r ′)ẑ − �M(�r ′)], (4)

where now the DDF affects the time evolution as an additional
field source in the Bloch equations, d �M/dt = γ ( �M × �B)
where �B = B0ẑ + �Bd (�r).

There are a few analytical solutions for Eq. (4) (for exam-
ple, the field from a spherical sample is zero inside the sphere,
and equivalent to the field from a point dipole outside the
sphere),20 but in general the dipolar field predicted by the in-
tegral in Eq. (4) is nonlocal with components in all directions.
Thus, for example, fluctuations in the magnetization density
can create a dipolar field from even a spherical sample,21, 22

particularly with large magnetization, and such effects lead to
highly nonreproducible signals in certain experiments. How-
ever, a very common special case is magnetization modulated
in a single direction, for example, by gradient pulses. Fortu-
nately, the dipolar field is simple and local6 in reciprocal space
after Fourier transformation of �Bd and �M(�r) :

�Bd (�k) = μ0[(3(k̂ • ẑ)2 − 1)/2][Mz(�k)ẑ − �M(�k)/3]. (5)

If the magnetization is completely modulated along a direc-
tion ŝ, the numerical factor in the first brackets of Eq. (5) is
identical for all of the spatial frequency components, and then
inverse Fourier transformation gives

�Bd (�r) = μ0�(Mz(�r)ẑ − �M(�r)/3)

= μ0�(2Mz(�r)ẑ − Mx(�r)x̂ − My(�r)ŷ)/3, (6)

where � = (3(ŝ • ẑ) − 1)/2.

Finally, since d �M/dt = γ ( �M × �B) the term proportional
to �M does not affect the evolution. Thus we can add a term
proportional to �M , which if chosen correctly can produce
a simpler “effective dipolar field” with the same evolution.
Specifically, we can null out the modulated transverse



components, giving an effective dipolar field of the form

�Bd,eff (�r) = μ0�Mz(�r)ẑ (homomolecular). (7)

Equation (7) leads to a very simple picture: the effective dipo-
lar field creates a frequency shift, proportional to the magneti-
zation along the z axis. Here we have added the notation “ho-
momolecular” to indicate the assumption that all of the spins
have the same resonance frequency, including chemical shift.
Because the retained solution dipolar couplings are small,
even two different protons (e.g., water and acetone at normal
magnetic field strengths) correspond to the “heteromolecular”
case, but the generalization of Eqs. (4) and (7) is directly anal-
ogous to the homonuclear/heteronuclear distinction in solids,

�Bd,eff (�r) = μ0

4π

∫
d3r ′ 1 − 3 cos2 θrr ′

2 |�r − �r ′|3
× [2Mz(�r ′)ẑ] (heteromolecular), (8)

�Bd,eff (�r) = 2μ0

3
�Mz(�r)ẑ (heteromolecular). (9)

This framework described above (and particularly the effec-
tive dipolar field picture in Eqs. (7) and (9)), has been used
to describe a wide variety of experiments with dipolar fields,
in part because it is often analytically solvable.10, 23 As a spe-
cific example, consider the n-quantum CRAZED sequence
(Figure 2(a)). The superscript “s” designates the spatial
direction of the gradient pulse (more precisely, the generated
field when the gradient is on satisfies the relationship ∂Bz/∂s

= Gs with the partial derivatives in all directions perpen-
dicular to ŝ vanishing). Relaxation, radiation damping and
diffusion processes will be ignored, and for compactness we
will assume that the gradient pulse durations are negligible,
and treat the pulses as part of t1 and t2, respectively. Since
there is no z-magnetization during the t1 period and the first
gradient, the effective dipolar demagnetizing field is zero
during t1. If both pulses have phase y, the magnetization after
the second π /2 pulse is given by

Mz = −M0 cos[ω t1 + γGsT s];

M+ = iM0 sin[ω t1 + γGsT s], (10)

where ω is the resonance offset and M+ = Mx + iMy is used
instead of the individual components because it significantly
simplifies the equations. During the second gradient and
the t2 period, the z-component of the magnetization stays
constant in time and the x- and y-components evolve

M+ = eiωt2einγGsT s exp {iγμ0Mz�t2}
× iM0 sin(ω t1 + γGsT s)

= eiωt2einγGsT s exp{−iγμ0M0�t2 cos(ω t1 + γGsT s)}
× iM0 sin(ω t1 + γGsT s). (11)

The term in curly brackets reflects evolution under the
effective dipolar field. Using the Bessel function expansion

exp (iz cos θ ) =
∞∑

m=−∞
imJm(z)eimθgives

M+ = eiωt2einγGT ziM0 sin
(
ω t1 + γGsT s

) ∞∑
m=−∞

imJm (−t2�/τd ) eim ω t1+imγGsT s

= eiωt2
M0

2

⎛
⎜⎜⎜⎝

∞∑
m=−∞

imJm (−t2�/τd ) [ei(m+1) ω t1+i(n+m+1)γGsT s]

−
∞∑

m=−∞
imJm (−t2�/τd ) [ei(m−1) ω t1+i(n+m−1)γGsT s]

⎞
⎟⎟⎟⎠

= eiωt2
M0

2

⎛
⎜⎜⎜⎝

∞∑
m=−∞

im−1Jm−1 (−t2�/τd ) [eim ω t1+i(n+m)γGsT s]

−
∞∑

m=−∞
im+1Jm+1 (−t2�/τd ) [eim ω t1+i(n+m)γGsT s]

⎞
⎟⎟⎟⎠

= eiωt2M0

( ∞∑
m=−∞

im+1 (m (τd/t2�) Jm (−t2�/τd ))
[
eim ω t1+i(n+m)γGsT s

] )
(12)

Here we have introduced the demagnetizing time τ d

= (γμ0M0)−1 ; for water at 7T (300 MHz) and 298K, τ d

= 130 ms. Since the function n Jn(x)/x→0 as x→0 except
for n = ±1, the transverse magnetization initially has only
two Fourier components, modulated as ei(n±1)γGsT s . Dipolar
evolution creates signal, as the component with n = −m is
unmodulated,

〈M+(t1, t2)〉 = in−1eiωt2e−inωt1M0n

(
τd

t2�

)
Jn

(
t2�

τd

)
,

(13)

but it also creates modulated components with spatial fre-
quencies at arbitrary multiples of 1/(γ GsT), all along the
direction ŝ defined by the gradient pulses.

This immediately shows the value of the effective dipolar
field (Eq. (7)). The actual dipolar field (from Eq. (6)) is
strongly time dependent, becoming more modulated with
time. The effective dipolar field is time independent and
leads immediately to the full solution (which also must be
the solution one would get from the actual dipolar field). The
predicted magnetization can be nearly half the equilibrium



FIG. 2. The n-quantum CRAZED experiment produces signals in the in-
directly detected dimension from intermolecular n-quantum coherences.
(a) The traditional prototype sequence; (b) a sequence more reflective of com-
mon practice, since splitting the gradient reduces the bulk signal during d2
and helps suppress radiation damping.

magnetization (and can be made even larger by replacing the
second 90 pulse with a 120 pulse24).

In practice, the dipolar evolution competes with ef-
fects such as radiation damping and diffusion. As a result,
the variant in Figure 2(b) is more common. According to
Eqs. (7) and (9) splitting the gradient pulse makes no differ-
ence in the evolution by the end of the gradient pair, but it
does eliminate the macroscopic magnetization for the period
between the two gradient pulses, and thus reduces radiation
damping effects.

Equation (13) predicts that the direction of the gradient
pulse is quite important. For values of t2 � τ d (the most com-
mon case experimentally), an image created with x-gradient
pulses should be almost exactly −1/2 of the image created
with z-gradient pulses for a uniformly modulated sample, and

the sum of x-, y-, and z-gradient images should vanish, thus
reflecting only local anisotropy.

The effects of heteromolecular couplings can be dra-
matic. For example, the double-quantum CRAZED sequence
(top of Figure 2 with n = 2) on a spherical sample of two
components I and J (resonance frequencies ωI and ωJ, re-
spectively, here water and acetone) produces the spectrum in
Figure 3. Homomolecular peaks appear at (f1 = 2ωI, f2 = ωI)
and (f1 = 2ωJ, f2 = ωJ), and heteromolecular peaks appear at
(f1 = ωI + ωJ, f2 = ωI) and (f1 = ωI + ωJ, f2 = ωJ), reflecting
apparent evolution at multiples of the resonance frequency in
the indirectly detected dimension f1, even though the Bloch
equations predict no actual evolution at those frequencies dur-
ing the first time interval. This disconnect is a consequence of
nonlinear evolution in the modified Bloch equations. In con-
trast, the “coupled spin” picture uses the conventional density
matrix equation of motion (ρ̇ = i¯−1[ρ,H ]) and makes the
same set of assumptions about the retained part of the dipolar
interaction (meaning that the Hamiltonian H has retained
couplings proportional to IziIzj). It shows that commonly
neglected, higher order terms in the equilibrium density
matrix leads to observable intermolecular multiple quantum
coherences. In this case, the peak positions are readily un-
derstood. Intermolecular double quantum coherences evolve
during the t1 period; survive the double-quantum filter cre-
ated by the mismatched gradient pulses; are partly converted
into two-spin, one-quantum operators by the second pulse,
and are made observable by commutation with the dipolar
Hamiltonian.

Saving the signal from only the f1 = 2ωI, 2ωJ, and ωI

+ ωJ peaks, the magnetization at the end of the sequence
is

M+
I (t1, t2) = M0,I e

iωI t2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−i2ωI t1 2

(
τd,I

� t2

)
J2

(
� t2

τd,I

)
J0

(
2� t2

3τd,J

)

+ e−i(ωI +ωS )t1

(
τd,I

� t2

)
J1

(
� t2

τd,I

)
J1

(
2� t2

3τd,J

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

M+
J (t1, t2) = M0,J eiωJ t2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−i2ωJ t1 2

(
τd,J

� t2

)
J2

(
� t2

τd,S

)
J0

(
2� t2

3τd,I

)

+ e−i(ωI +ωJ )t1

(
τd,J

� t2

)
J1

(
� t2

τd,J

)
J1

(
2� t2

3τd,I

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(14)

For short values of t2 the signals for the homomolecular peaks
are proportional to M2

0,I � t2 andM2
0,J � t2, and the hetero-

molecular peaks are each proportional to 2M0, JM0, I� t2/3.
In very concentrated solutions, higher order double-quantum
peaks such as (f1 = 3ωI − ωJ, f2 = ωI) can also be observed.
Both the mean-field and the coupled-spin pictures make the
same predictions; the mean-field is easier to use for numerical
simulations, but the coupled-spin picture makes the physical

evolution much more transparent, and is more useful for pulse
sequence design.

We should also note that the derivation of Eq. (6) shows
immediately that the modulation can be more complex than a
single sine wave, as long as all the spatial components have
the same value of �; for example, the ZEBRA sequence25

alternates stripes of fully inverted and uninverted magnetiza-
tion, and is also analytically solvable.



FIG. 3. Double-quantum CRAZED pulse sequence, which produces signals
from intermolecular multiple-quantum coherences as described in text. The
two gradient pulses (shaded boxes) are configured in a 1:2 area ratio, which
suppresses all conventional signals. This experimental data comes from a
tube with equal volumes of acetone and water, with resonance offsets 630
Hz and 1500 Hz, respectively; all gradient pulses were 1.5 ms duration.

III. PROBLEMS WITH THE CONVENTIONAL
FRAMEWORK

A. Gradient pulse pairs

As it turns out, astonishingly simple experiments dis-
agree significantly with the mathematical framework in
Eqs. (7) and (9). Consider the simple pulse sequence in
Figure 1(a), applied for simplicity to a spherical sample. The
first pulse flip angle is chosen to be extremely small, so that
almost all of the magnetization remains along the z-axis, and
thus produces no dipolar field. Thus, the firm prediction is
that the magnetization evolution frequency reflects no dipolar
field effects, and certainly is independent of the direction of
the gradient. In fact, such matched gradient pairs are a very
common module in pulse sequence design, which have be-
come even more important with the advent of hyperpolariza-
tion technologies;26 in hyperpolarized imaging, generally the
sample magnetization is used to create multiple images by re-
stricting pulses to small flip angles.

Figure 1(b) presents a variant which is easier to test (since
there are no residual radiation damping or inhomogeneous
broadening effects, but dipolar effects are not affected by an
echo pulse). Figure 4 demonstrates this sequence experimen-
tally with ε = 5◦ = 0.087 rad on a spherical water sample at
7T(τ d = 130 ms). When the small magnetization is modulated
at the magic angle the decay is indeed completely controlled
by T2. For z-modulation there is an experimentally measured
shift. Replacing the initial 5◦ pulse with a 175◦ pulse exper-
imentally reverses the direction of the frequency shift. As
we discuss later, in our corrected framework, this happens
because the transverse magnetization produces a very small
dipolar field whose effects are greatly magnified by the (seem-
ingly innocuous) large bulk magnetization, even though that

FIG. 4. Experimental signals from the sequence in Figure 1(b), for magic
angle (left) or z gradient (right). The magic angle gradients generated an un-
shifted signal.

magnetization by itself produces no dipolar field. In fact, this
shift would persist in the limit of an arbitrarily small rf pulse
(at least down to the limit where statistical fluctuations in the
magnetization density dominate).

The two-dimensional experiments we will use to il-
lustrate the problems with the conventional framework are
the multi-axis CRAZED or MAX-CRAZED (Fig. 1(c)) and
GRACE (gradient-embedded COSY experiment, Fig. 1(d)).
MAX-CRAZED experiments simply add a strong balanced
gradient pair with separation d2 to a CRAZED sequence,
along a direction s′ different from the correlation gradient
direction. Only the transverse magnetization is affected by
these gradient pulses, not the z axis modulation. Thus, Eqs.
(7) and (9) predict that diffusional attenuation of the detected
single-quantum coherences should be the only difference be-
tween the MAX-CRAZED and CRAZED. Table I and Fig-
ures 5 and 6 focus on two specific cases: in both cases the
correlation gradients s are along x, and the additional gradi-
ents s′ are along y and z in the XY MAX-CRAZED and XZ
MAX-CRAZED, respectively. The two MAX-CRAZED ex-
periments are arranged to have precisely the same diffusional
weighting at all times, and Gs′ = 10 Gs.

In fact, Table I shows the XY MAX-CRAZED does
not alter the ratio of peak heights, but the XZ combination
dramatically suppresses homomolecular peaks. To explore
this further, we varied the delay d2 between the gradient
pulses in the interval after the second rf pulse, keeping
the total time before signal acquisition fixed at 60 ms.
As Figure 5 shows that the XZ-MAXCRAZED differs

TABLE I. Comparison of the four peak intensities in the CRAZED and
MAX-CRAZED experiments, here with d2 = 60 ms. The “absolute” num-
bers give intensities relative to the strongest X-CRAZED; the “normalized”
numbers in parentheses are intensities with the homomolecular water peak
given intensity 1 in each spectrum.

XY- XZ-
MAXCRAZED MAXCRAZED

Peak Expected X- absolute absolute
(f1, f2) intensity CRAZED (normalized) (normalized)

(2W, W) 1.00 1.00 0.23 (1.00) 0.07 (1.00)
(A+W, W) 0.46 0.44 0.11 (0.46) 0.12 (1.79)
(A+W, A) 0.46 0.51 0.15 (0.67) 0.18 (2.60)
(2A, A) 0.48 0.48 0.14 (0.66) 0.04 (0.64)
Hetero/homo 0.62 0.64 0.68 2.65



FIG. 5. Ratios of the heteromolecular (f1 at the sum of the acetone and wa-
ter frequencies) to the homomolecular peaks for various MAXCRAZED se-
quences, as a function of the delay between the gradient pulses. In the con-
ventional treatment, this should affect nothing except a possible diffusion
weighting. In fact, for the XZ-MAXCRAZED it drastically alters peak inten-
sity, and it modestly alters peak intensity for the 1+1 X-CRAZED.

dramatically from the other sequences for all delay values.
The only other, much smaller, difference is with the 1+1
CRAZED (δ = 1 in Figure 2(b)), which we will discuss later;
the 3-1 CRAZED (δ = −1 in Figure 2(b)) looks like the
conventional sequence.

Figure 6 compares the peak intensities for the XZ and
XY MAXCRAZED experiments to a simple prediction based
on diffusion weighting; since virtually all of the diffusional
effects take place in the final time interval, and the trans-
verse magnetization is much more highly modulated than is
the z magnetization, the peaks are expected to be attenu-
ated according to the conventional (single-quantum) diffusion
weighting of the detected spin. Figure 6 shows that this pre-
diction accurately gives the signal strengths for all peaks in
the XY MAXCRAZED, and for all of the heteromolecular
peaks in the XZ MAXCRAZED experiment, but not the ho-
momolecular peaks, which are strongly attenuated.

The situation is even more bizarre in the GRACE experi-
ment (Figure 1(d)), which is basically a COSY with matched
gradient pulse pairs in the two time domains. To highlight any
possible (unexpected) double-quantum signal, we perform
double-quantum phase cycling on the first pulse (coadding
spectra with first pulse phase 0 and 180, subtracting spectra

FIG. 6. Comparison of the observed signal in the MAXCRAZED experi-
ments from the predictions by simple diffusion weighting (dashed lines). The
XZ MAXCRAZED deviates dramatically from those predictions, but only
for the homomolecular peaks (left).

FIG. 7. Experimental data for the sequences in Figure 5, applied to a spher-
ical sample of acetone in water. The sample was an 8 mm sphere with equal
volumes of acetone and water, studied in a 360 MHz NMR spectrometer with
a 25 mm microimaging coil (giving a small filling factor and the modest radi-
ation damping effects). The phase cycled COSY only gives residual t1 noise,
as expected, as does the grad-COSY combination and the XM GRACE; the
XZ GRACE and COSY-grad experiments show double-quantum peaks.

with first pulse phase 90 and 270). Experimentally, we focus
on the XZ-GRACE and XM-GRACE, where the second set
of gradient pulses is along z or the magic angle, respectively.
We compare this to what we will call COSY-grad (the gra-
dient pair in t1 omitted) and grad-COSY (the gradient pair
in d2 omitted). The longitudinal magnetization is zero dur-
ing t1 and kept unmodulated during d2. Thus, there should
be no modulated-magnetization contribution to dipolar field
effects, and if we choose a spherical sample, there should
be no dipolar effects from any average magnetization. Hence
a double-quantum phase cycled GRACE spectrum should
show no peaks (except perhaps for residual single or zero
quantum coherence by imperfect phase cycling). However,
Figures 7–9 show that the conventional picture fails again
here. The GRACE spectrum, with gradient pulses along Z in
the second interval, shows strong water-water and acetone-
acetone peaks, but weak water-acetone peaks. Only residual t1
noise is visible in the COSY spectrum, the grad-COSY spec-
trum, or the XM-GRACE. The COSY-grad and XZ-GRACE
produce double-quantum peaks, which are noisy but readily
seen by varying the delay d2 (Figures 8 and 9).

The peaks in the GRACE experiment are much weaker
than the conventional peaks, which is the reason the t1 noise
is so prominent. We do not suspect the GRACE experiment
is particularly practical (as opposed to the different CRAZED
variants, which have numerous applications) but they do serve
to illustrate a problem with the conventional treatment, even
when the z magnetization is completely unmodulated during
the final time interval. In addition, the difference between the
XZ-GRACE and XM-GRACE is a strong clue that the ex-
planation somehow lies in dipolar effects, since nothing else
would be affected by the choice of gradient direction in a
spherical sample.

IV. REVISED FRAMEWORK FOR DIPOLAR EFFECTS

It has long been recognized27 that there is a limitation
in the framework that leads to Eqs. (7) and (9), which is that
is that it was derived for uniformly modulated magnetiza-
tion (although at least one recent paper seems to have in-
correctly ignored this limitation28). This means that the basic



FIG. 8. Comparison of observed spectra as a function of the delay between
the two strong gradients d2, which is the interval when the transverse magne-
tization is modulated. The XZ-GRACE, and to a lesser extent the COSY-grad
experiment, show growth of DQ peaks; the XM-GRACE does not.

underlying assumption in going from Eqs. (5) to (6) is vio-
lated whenever there is a signal (this would imply the com-
ponent at �k = 0 does not vanish, which causes a problem
with the singularity at �k = 0 in Eq. (5)). The sequences in
Figure 1(a), 1(b), and 1(d) violate this assumption by leaving
behind bulk magnetization, and even though that magnetiza-
tion is in a spherical sample (and hence produces no dipo-
lar field) it clearly has some measurable effect. Reference 27
argued that the expressions for the effective dipolar field in
Eqs. (7) and (9) can be corrected by subtracting the average of
each magnetization component for a spherical sample (since
the average magnetization would induce no dipolar field).

�Bd (�r) = μ0�[2(Mz(�r) − 〈Mz〉)ẑ − (Mx(�r)

−〈Mx〉)x̂ − (My(�r) − 〈My〉)ŷ]/3,

�Bd,eff (�r) = μ0� Mz(�r)ẑ + [−2〈Mz〉ẑ
+〈Mx〉x̂ + 〈My〉ŷ]/3 (homomolecular),

�Bd,eff (�r) = μ0�[2(Mz(�r) − 〈Mz〉)ẑ]/3 (heteromolecular).

(15)

FIG. 9. Comparison of the homomolecular and heteromolecular peak inten-
sities for the GRACE and COSY-grad experiments, as a function of the de-
lay between the gradient pulses. Homomolecular peak intensities grow with
increasing delay in the XZ-GRACE and COSY-GRAD experiments, hetero-
molecular intensities do not.

This is the effect which dominates the unexpected behavior
for the gradient sequence in Figure 4 and the GRACE ex-
periments. The appearance of average magnetization terms in
Eq. (15) spoils the exact solution of the CRAZED sequence
in Figure 2(a), Eq. (13). However, so does relaxation, dif-
fusion and radiation damping, so the disagreement between
the exact theory and experiment has not been considered seri-
ous; the insight for pulse sequence design is unaffected. Note,
however, that it does not spoil the solution for the sequence
with the split gradient pulses (Figure 2(b)); as long as δ is not
an integer, no transverse magnetization exists during the time
d2 so the signal after the final gradient pulse exactly matches
Eq. (13).

The XZ combination of MAX-CRAZED (Figure 1(c))
violates this assumption in a different way, by modulating
longitudinal and transverse magnetization along axes with
different values of �. These sequences were chosen to
produce particularly clear disagreement between theory and
experiment, but the problem is more general. Gradient pulse
pairs are a seemingly innocuous module in thousands of pulse
sequences. Small flip angle pulse images (with large amounts
of residual magnetization) are ubiquitous in hyperpolarized
imaging, one of the most rapidly growing fields of magnetic
resonance. More generally, imaging components in a pulse



sequence, such as read and phase encode gradients, only
modulate the transverse components of the magnetization,
so in virtually every imaging experiment the assumption of a
unique direction to the modulation is unwarranted.

Understanding these effects requires a more careful re-
consideration of the assumptions leading to Eqs. (7) and (9),
and a reformulation of the problem. To be clear, rolling back
the clock almost four decades, and working only from Eq. (4)
(the nonlocal form of the dipolar field) would correctly de-
scribe the results of all of these experiments-but that is not a
practical solution. We do not believe anyone would have ex-
pected these results from that approach, let alone predict how
these differences would affect other modern sequences (par-
ticularly because some of the sequences in Figure 1 are not
related to traditional dipolar field experiments). To the extent
that there is a general intuition about dipolar field effects, it
is that modulated magnetization produces a dipolar field of
order γμ0 times that magnetization-yet the frequency shift in
Figure 4 is an order of magnitude larger than that prediction.
This paper will focus on simple corrections to the existing
framework which do predict the observed effects.

To make this concrete, let us assume a spherical sample
of radius R, with each of the x, y, and z components of the
magnetization decomposed into two parts:

– a sphere with uniform magnetization 〈 �M〉 = 〈Mx〉x̂
+ 〈My〉ŷ + 〈Mz〉ẑ. This uniform magnetization pro-
duces no dipolar field (inside the sphere), no matter the
direction of 〈 �M〉.

– residual x, y, and z components (e.g., (Mx(�r) − 〈Mx〉)x̂)
inside the sample which might have multiple spatial fre-
quencies and modulation directions, e.g.,

Mx

(
kx
x , ky

x , kz
x

) =
∫

sphere

(Mx(x, y, z) − 〈Mx〉)

× ei(kx
x x+k

y
x y+kz

xz)dx dy dz (16)

with analogous equations for My(kx
y , k

y
y , kz

y) and
Mz(kx

z , k
y
z , kz

z). Thus in our notation, the wavevectors k
are labeled with a subscript that is a spin direction, and
a superscript that is a spatial variable.

The x, y, and z magnetizations can be modulated in differ-
ent directions. However, in what follows, we assume that all
of the nonvanishing components of Mx(kx

x , k
y
x , kz

x) have the
same value of �x = (3((kz

x)2/((kx
x )2 + (ky

x )2 + (kz
x)2)) − 1)/2

(with analogous equations for the y and z components,
possibly with different values of �y and �z). We will also
assume that the wavevectors of the nonvanishing components
are always 
1/R (this is equivalent to assuming that the
“modulated component” is in fact highly modulated across
the sample).

Note that this is not the same as saying that the magne-
tization only has a k = 0 component and highly modulated
components, as the sphere itself creates a range of spatial
Fourier components. The Fourier transform of a sphere of ra-

dius R (p(R)) is also spherical, with amplitude given by

W (�k, R) =
∫

p(�r) exp(2πi(�k • �r))d�r

= R3 2π3/2

�(3/2)(2π |�k|R)2

[
sin(2π |�k|R)

(2π |�k|R)

− cos(2π |�k|R)

]
(17)

This approach correctly resolves the singularity present in
Eq. (5) at the origin k = 0, by subtracting a set of spatial com-
ponents proportional to Eq. (17) in a way that nulls out the
k = 0 component without distorting the dipolar field. Thus
by construction the magnetization components with kx

x = k
y
x

= kz
x = 0, kx

y = k
y
y = kz

y = 0, or kx
z = k

y
z = kz

z = 0 all van-
ish.

Now the three vector components of Eq. (5) should be
treated separately. The effects of the modulated and unmodu-
lated components can also be separated because Eq. (5) is lin-
ear in the magnetization. The uniform spherical components
produce no dipolar field. The modulated components produce
different dipolar fields because of the different directions,
but under the assumption above it is straightforward to show
that

�Bd (�r) = μ0

3
[2�z(Mz(�r) − 〈Mz〉)ẑ − �x(Mx(�r) − 〈Mx〉)x̂

−�y(My(�r) − 〈My〉)ŷ] (homomolecular). (18)

It is trivial to generalize this result to other shapes with known
analytic solutions (ellipsoidal samples). We note, however,
that even for these simple shapes modulated by a perfect gra-
dient pulse, the dipolar field does not exactly track the mag-
netization; it is different at the edges than at the center. Even
a spherical sample with highly modulated magnetization will
have high Fourier components, representing the edges of the
sphere. As a result, within about 1/k of the edges, the numeri-
cal factor (3(k̂ • ẑ)2 − 1)/2in the first brackets of Eq. (5) is not
identical for all of the spatial frequency components. For ex-
ample, a z-modulated sphere will tend to lose high frequency
components in the x and y directions, making the dipolar field
more fall off more in those directions. These complications
are important for a quantitative analysis, for example in imag-
ing experiments which measure anisotropy by comparing im-
ages with X-, Y-, and Z- gradients, and will be treated in a later
paper. However, they are not important for explaining the ex-
periments described here. What this implies is that when bulk
magnetization forms, even in a spherical sample, it forms in a
pattern that is not perfectly spherical.

Equation (18) reduces to Eq. (6) when the magnetization
is fully modulated in a single direction, but leaving it in
this form reveals some remarkable physics. It is possible to
create sequences with the x and y components modulated
in different directions (for example, 90x-{z gradient}-45x-
{x+y gradient}-90y, with spins on resonance, would create
�z = �y = 0 and �x = 1). This converts Eq. (18) into
�Bd (�r) = −(μ0/3) (Mx(�r)x̂). But recall that the secular



approximation was already made, in going from Eqs. (3) to
(4). We thus produce a secular Hamiltonian proportional
to Ix!

How can a secular Hamiltonian have that form (which
we would normally associate with the rotations made by a rf
pulse, which is obviously nonsecular)? It is straightforward to
show from Eq. (4) that29

d〈Mz〉/dt =
∫

d3�r (d �M(�r)/dt)z

=
∫

d3�r (γ �M(�r) × Bd (�r))z = 0. (19)

In other words, the bulk z magnetization (hence the energy)
is not changed by the interaction of the spins with the dipolar
field. Thus, even though the dipolar Hamiltonian rotates spins
along the x axis and thus changes the local z magnetization,
every position where the z magnetization is made more posi-
tive is counterbalanced by one which makes it more negative.
Energy is transported within the sample (over macroscopic
distances corresponding to 1/|�k|) but not outside of it.

For the MAXCRAZED experiments (and, indeed, for the
vast majority of magnetic resonance applications, including
imaging applications) the two transverse magnetization com-
ponents have the same modulation direction, �x = �y = �⊥.
We can then rewrite Eq. (16) and simplify to an effective field
by adding μ0�⊥ �M/3:

�Bd (�r) = μ0

3
[2�z(Mz(�r)−〈Mz〉)ẑ−�⊥((Mx(�r) − 〈Mx〉)x̂

+ (My(�r) − 〈My〉))ŷ] (homomolecular),

�Bd,eff (�r) = μ0

3
[(2�z + �⊥)Mz(�r)ẑ + (�⊥〈Mx〉x̂

+�⊥〈My〉ŷ − 2�z〈Mz〉ẑ)] (homomolecular).

(20)

The heteromolecular case proceeds similarly to the homo-
molecular case, except that only the z component is retained
in Eq. (18):

�Bd,eff (�r) = μ0

3
(2�z(Mz(�r) − 〈Mz〉)ẑ (heteromolecular).

(21)

Equations (20) and (21) are the correct replacements for
Eqs. (7) and (9). Equation (21) is equivalent to the result pro-
duced in Ref. 27 (and Eq. (15)), but Eq. (20) is very different
from the results there, and it is the homomolecular case where
the changes are most profound.

For the matched-gradient pair sequences in Figures 1(a),
1(b), and 4, the first pulse flip angle is chosen to be extremely
small, so that almost all of the magnetization remains along
the z-axis and produces no dipolar field. Equation (20)
simplifies to

�Bd (�r) = μ0

3
[−�⊥((Mx(�r)x̂ + My(�r)ŷ))];

γ | �Bd (�r)| = ε γ μ0M0�⊥/3 = ε �⊥/3τd

�Bd,eff (�r) = μ0

3
[�⊥Mz(�r)ẑ];

γ | �Bd,eff (�r)| = γ μ0M0�⊥/3 = �⊥/3τd . (22)

The actual dipolar field is very small, and proportional to
the small pulse flip angle ε. However, the effective dipolar
field is much larger and independent of ε-it gives a dipolar
frequency shift from the full magnetization. The origin of
this nonintuitive result is simple: the dipolar field from the
slightly modulated magnetization is an xy-field, and hence
affects the large z magnetization. Only converting it to an
effective field along the z axis reveals the true significance.

For z-modulation (�⊥ = 1), the actual dipolar field in
Figure 4 (in frequency units) from Eq. (22) would be 0.22 rad
s−1, but the effective dipolar field would be 2.5 rad s−1, close
to the experimentally measured shift. Replacing the initial 5◦

pulse with a 175◦ pulse experimentally reverses the direction
of the frequency shift, as expected.

Thus, modulating a trivially small amount ε of the mag-
netization alters the apparent resonance frequency by an
amount independent of ε, although eventually very small flip
angles would cause magnetization fluctuations to be impor-
tant, and those are ignored here. These effects would of course
be larger at higher fields or with a hyperpolarized sample, and
unlike radiation damping effects are not reduced by “water
flipback” pulses that keep the magnetization near equilibrium.
This result has potential substantial consequences for hyper-
polarized experiments, where images are commonly acquired
by modulating a tiny fraction of the magnetization at a time.
In addition, even couplings between unlike spins revert to the
homomolecular case under a multiple echo sequence or spin
locking, so (for example) water can certainly affect the mag-
netization of another molecule under those circumstances.

For the GRACE experiment, during d2 the z-
magnetization is unmodulated, but its value depends
explicitly on the evolution time t1:

Mz = −M0,I cos(ωI t1) − M0,J cos(ωJ t1) (23)

The x- and y-components are fully modulated, giving

�Bd,eff (�r) = −μ0

3
(�⊥ 〈Mz〉)ẑ (homomolecular);

�Bd,eff (�r) = 0 (heteromolecular). (24)

Even though the unmodulated magnetization, by itself,
generates no dipolar field, the combination of modulated
and unmodulated magnetization creates an effective dipolar
field proportional to the unmodulated magnetization. Thus
the XZ-GRACE experiment (with (�⊥ = 1)) creates homo-
molecular peaks which grow during d2; the XM-GRACE
experiment, with �⊥ = 0, does not. In both cases normal
evolution resumes during t2.

We now turn to the MAXCRAZED sequences. If
Eqs. (20) and (21) are valid and the average magnetization is
small, the dipolar field is

�Bd,eff (�r) = μ0

3
(2�z + �⊥)Mz(�r)ẑ (homomolecular),

�Bd,eff (�r) = μ0

3
(2�z)Mz(�r)ẑ (heteromolecular). (25)

The question is the validity of Eqs. (20) and (21). At
the beginning of the interval d2, the transverse mag-
netization is modulated with two spatial frequencies,
γ ((n + 1)GsT ŝ + Gs ′

T ŝ ′) and γ ((n − 1)GsT ŝ + γGs ′
T ŝ ′)



which in the general case will be along two different 
directions with different values of �, and thus will 
make Eqs. (20) and (21) invalid. Fortunately, in the XY 
MAXCRAZED experiment (ŝ = x̂, ŝ ′ = ŷ) the value of  
� for both of these components is the same (−1/2) so 
Eqs. (20) and (21) hold. We then have �z = �⊥ = −1/2, 
and the homomolecular coupling is 1.5 times greater than the 
homomolecular, just as in CRAZED. The full solution for 
double-quantum XY MAXCRAZED during d2 is a simple 
generalization of Eqs. (11) and (12):

M+ = eiωd2ei2γGsT seiγGs′ T s ′
exp{i(−1/2)γ μ0Mzd2}

× iM0 sin(ωt1 + γGsT s)

= eiω d2ei2γGsT seiγGs′ T s ′
exp{(i/2)γ μ0M0d2

× cos(ω t1 + γGsT s)}iM0 sin(ω t1 + γGsT s)

= eiω d2ei2γGsT seiγGs′ T s ′
iM0 sin(ω t1 + γGsT s)

×
∞∑

m=−∞
imJm(d2/2τd )eimω t1+imγGsT s

= eiω d2M0

( ∞∑
m=−∞

im+1(m(−2τd/d2)Jm(−d2/2τd ))

× [eimω t1+i(2+m)γGsT s+iγGs′ T s ′
]

)
. (26)

The final gradient pulse unwinds the s′ modulation and gives
a signal identical to Eq. (13) with � = −1/2, in agree-
ment with experiment. Note that the transverse magnetiza-
tion becomes very complex with time (the directions of the
frequency components actually change, as new spatial fre-
quencies are created in the xy plane, as opposed to the case
in Eq. (12)) but since all of these components would give
� = −1/2, they do not alter the conclusion that Eq. (25) is
valid. In fact, any combination where ŝ and ŝ ′ are both in the
xy plane (even if they are not orthogonal) is solvable, as long
as aGsŝ + bGs ′

ŝ ′ �= 0 for integer a and b (otherwise, some
terms in the final bracket of Eq. (26) will be unmodulated);
and in the practical limit, only very small integer values of a
and b are important.

Another case that is generally solvable is the limit
Gs′T 
 GsT, since then the two modulation components have
(nearly) the same value of �. Thus, the magnetization at the
beginning of d2 does satisfy the assumptions behind Eq. (25),
and the short time behavior would be described by those re-
lations. In fact, in the X-Z MAXCRAZED experiment in that
limit, both of the spatial frequencies for the transverse mag-
netization have �⊥ = 1, and the homomolecular dipolar cou-
pling vanishes during the delay d2 since �z = −1/2 and �⊥
= 1. The mixed gradient pulse direction effectively performs
homomolecular decoupling-leaving only the heteromolecular
peaks in the two-dimensional spectrum.

For other pairs of gradient directions, the evolution cre-
ates new Fourier components in directions which add mul-
tiples of GsT ŝ . In that case the dipolar field eventually be-
comes nonlocal even if �s = �s′ , since even in that limit �

for the sum of the two vectors can be different from � for the

vectors themselves (for example, the sum of two magic angle
gradients need not be at the magic angle). However, in most
practical applications only the short time behavior (d2/τ d<1)
matters, and Eq. (25) retain predictive power.

The only other case that is analytically solvable in general
is the case ŝ = ŝ ′. In Figure 5 the 3-1 CRAZED experiment
(ŝ = ŝ ′ = ẑ, Gs = Gs′) looks like the normal CRAZED, be-
cause while we have changed the k vectors of the modulated
transverse magnetization during the delay between the pulses,
the direction is unchanged and the dipolar field still looks pro-
portional to the local magnetization. During the interval d2

the sequence looks like a triple-quantum CRAZED, and the
signal is small enough to be ignored. The 1+1 CRAZED ex-
periment (ŝ = ŝ ′ = ẑ, Gs = −Gs′) on the other hand, creates
a partial echo which reintroduces some radiation damping ef-
fects and alters the homomolecular dipolar field.

V. DISCUSSION AND CONCLUSIONS

We have shown that the mathematical picture which un-
derpins the mean-field picture of dipolar field effects relies on
some significant oversimplifications. When this picture was
originally proposed, to deal with multiple echoes in 3He, the
approximation that everything was modulated in the same di-
rection was appropriate, although even then it could be argued
that ignoring the effects of the echoes themselves (which cre-
ate bulk magnetization) was incorrect. The real issue, how-
ever, is that experimental applications have evolved, in direc-
tions which could scarcely have been imagined when multiple
echoes were first observed; and the mean-field framework has
never been seriously re-examined to reflect the new experi-
mental conditions.

The results presented here do not invalidate the decades
of published work on intermolecular multiple-quantum coher-
ence effects-just as recognition of those effects did not inval-
idate decades of work on two-dimensional NMR, where they
had been ignored-but they do have some significant conse-
quences. Recognizing the limitations in the original deriva-
tions (which, to be fair, were stated clearly in the original
papers) predicts pulse sequences with highly unexpected ef-
fects, such as the MAXCRAZED and GRACE experiments
here. The GRACE experiments are mostly interesting from
a pedagogical perspective, because the signals are small; the
MAXCRAZED sequences, on the other hand, provide a new
method for suppressing homomolecular coherences which
might be quite useful. For example, in temperature imaging16

or brown adipose tissue detection30 the interesting informa-
tion is contained entirely in the water-fat heteromolecular co-
herences and the water-water or fat-fat peak provide a back-
ground to be suppressed.

This work also challenges some longstanding beliefs in
magnetic resonance. We have shown it is possible to have a
secular Hamiltonian proportional to Ix. We have shown that it
is possible to see dipolar effects from the interior of uniformly
modulated, spherical magnetization. We have shown that a
seemingly innocuous module in thousands of existing pulse
sequences (matched gradient pulse pairs) can actually alter
the time evolution other than by simple diffusion, and may
be broadly important. In the end, almost all of the analytical



DDF expressions are wrong, even ignoring radiation damp-
ing, diffusion and relaxation, and they do not appear to be 
amenable to simple analytical solutions (although numerical 
integration remains straightforward). Finally, our results 
show that iMQC methods to image anisotropy need to be 
re-evaluated to produce quantitative results; in general, the 
phase-encode and readout gradients needed to produce an 
image alter the DDF, by an amount which depends on the 
correlation gradient direction.
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