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ABSTRACT

Despite the importance of snow in global water and energy budgets, estimates of global mountain snow

water equivalent (SWE) are not well constrained. Two approaches for estimating total range-wide SWE over

Sierra Nevada, California, are assessed: 1) global/hemispherical models and remote sensing and models

available for continental United States (CONUS) plus southern Canada (CONUS1) available to the sci-

entific community and 2) regional climate model simulations via the Weather Research and Forecasting

(WRF) Model run at 3, 9, and 27 km. As no truth dataset provides total mountain range SWE, these two

approaches are compared to a ‘‘reference’’ SWE consisting of three published, independent datasets that

utilize/validate against in situ SWE measurements. Model outputs are compared with the reference datasets

for three water years: 2005 (high snow accumulation), 2009 (average), and 2014 (low). There is a distinctive

difference between the reference/WRF datasets and the global/CONUS1 daily estimates of SWE, with the

former suggesting up to an order of magnitudemore snow. Results are qualitatively similar for peak SWE and

1 April SWE for all three years. Analysis of SWE time series indicates that lower SWE for global and

CONUS1 datasets is likely due to precipitation, rain/snow partitioning, and ablation parameterization dif-

ferences. It is found that WRF produces reasonable (within 50%) estimates of total mountain range SWE in

the Sierra Nevada, while the global and CONUS1 datasets underestimate SWE.

1. Introduction

Withmore than 33million km2 of the planet’s land area

classified as mountains (;25% of total land area;

Meybeck et al. 2001) andmore than 50%ofmountainous

areas functioning as snow-bearing ‘‘water towers’’ for

regions downstream (Viviroli et al. 2007), montane snow

water equivalent (SWE) is a critical part of the global

water cycle. A significant fraction of Earth’s human

population depends on montane snowmelt for water re-

sources (Barnett et al. 2005). For instance, Southern

California receives nearly 60%of its water from the Sierra

Nevada snowpack (Waliser et al. 2011).

Despite its importance, our ability to characterize

mountain snowpack globally remains poor (Lettenmaier

et al. 2015; Dozier et al. 2016). Mountain environments

pose challenges for collecting field data; many mountain

ranges lack large-scale observational networks (Renwick

2014). Mudryk et al. (2015) recently compared available

SWE estimates over the NorthernHemisphere, including

global climatemodels, offlinemodels, and remote sensing

SWE estimates. They found that peak SWE values differ

by up to 50%, with mountain regions playing a large role

in these differences.Despite recent improvements, global

climate model spatial resolution is too coarse to properly
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represent processes in areas with complex topography

(IPCC 2013; Rasmussen et al. 2011). This is problematic,

as mountainous regions are warming faster than the rest

of the world (Pepin et al. 2015). Without baseline esti-

mates of global mountain snowpack estimates, it will be

difficult or impossible to quantify how those values may

change in a future, warmer climate (IPCC 2013). It is

thus urgent to improve methods for characterizing

montane snow at the scale of mountain ranges. In this

context, regional climate model (RCM) simulations

may provide a useful tool for estimating total mountain

range SWE. For example, Rasmussen et al. (2011) and

Wrzesien et al. (2015) present RCM simulations for the

Colorado Rocky Mountains and central Sierra Nevada,

respectively; in both cases, the model successfully sim-

ulated spatial and temporal patterns of SWE.

Our objective in this study is to evaluate whether

existing datasets available to the community orWeather

Research and Forecasting (WRF) Model RCM simula-

tions can produce ‘‘reasonable’’ (defined here as650%)

estimates of total mountain range SWE. We examine

this question in the California Sierra Nevada; although

in situ snow measurement density is just 1 per 700km2

(Guan et al. 2013), it is relatively dense compared to

other ranges. Several estimates of total Sierra Nevada

SWE volume are available from the literature (Howat

and Tulaczyk 2005; Dozier et al. 2016; Margulis et al.

2016), which is not true of many other ranges.

As there is no total mountain range SWE ‘‘truth’’

dataset, we compare to a set of ‘‘reference’’ SWE esti-

mates that consists of three separate datasets, each of

which is either based on, or validated against, in situ

SWE measurements: 1) an interpolation of in situ SWE

stations (Dozier et al. 2016); 2) the Sierra Nevada Snow

Reanalysis (SNSR), a 90-m data assimilation of Landsat

snow cover fraction data, which was extensively vali-

dated against in situ data (Margulis et al. 2016); and

3) the National Weather Service Snow Data Assimila-

tion System (SNODAS) SWE product (Carroll et al.

2001), which is constrained to match in situ SWE. These

datasets represent three very different approaches:

a relatively traditional method; a new, advanced

method; and an operational approach. We acknowledge

and discuss scaling issues related to assuming point ob-

servations are representative of grid-scale SWE, below.

However, we argue that the range of values provided by

the reference datasets represents the most likely esti-

mate of range-scale SWE for the Sierra Nevada.

We assess five globally available gridded SWE data-

sets derived from both models and remote sensing

measurements, with resolutions ranging from 24 to

80 km, and five gridded datasets that are produced for

the continental United States (CONUS) plus southern

Canada (CONUS1, hereafter), with resolutions ranging

from 14 to 32km. We also produce WRF RCM simu-

lations over the Sierra Nevada domain, at three spatial

resolutions: 27, 9, and 3km. We consider a high (2005),

an average (2009), and a low (2014) accumulation year,

and we compare the total range SWE (km3) among all

products. Dataset descriptions and detailed hypotheses

as to their expected performance are provided below.

2. Background

Given our objectives, it is unavoidable to compare

in situ observations to gridcell estimates from models

and remote sensing. Thus, it is helpful to briefly review

terminology and concepts related to spatial scaling in

snowpack modeling. Background on previous work in

snowmodeling, remote sensing, and interpolation is also

presented.

a. Scaling between grids and point observations of
snow

Bridging the scale mismatch between the relatively

coarse spatial grids used by models and point-scale

in situ observations is a long-standing problem in snow

hydrology (e.g., Blöschl 1999), and it is relevant here as

it relates to the fidelity of the reference datasets. All of

the reference datasets connect point observations and

gridded SWE products, either by validating against

them, assimilating them, or interpolating them; in each

case, it is implicitly assumed that the in situ observation

is representative of a gridded area. As there are few

other alternatives, this is done regularly for both offline

and online models (Leung and Qian 2003; Etchevers

et al. 2004; Essery et al. 2009; Rutter et al. 2009;

Rasmussen et al. 2011; Pavelsky et al. 2011; Wrzesien

et al. 2015; Snauffer et al. 2016), despite the fact that

such comparisons are inherently problematic (Blöschl
1999; Molotch and Bales 2005; Nolin 2012). For in-

stance, Rasmussen et al. (2011) assume that in situ ob-

servation locations are representative of 2-km grid cells,

but such a spatial scale can cross mountain crests and

watershed boundaries, encompassing a range of eleva-

tions, slopes, and aspects.

Clark et al. (2011) describe fourmodeling scales: point

scale (,5m), hillslope scale (1–100m), watershed scale

(100–10 000m), and regional scale (10–1000km), and

describe processes important at each scale. Blöschl
(1999) defines the process scale of snow properties, the

measurement scale, and the model scale. Shifting from

the process scale to either the measurement scale (such

as a snow course) or the model scale (such as a grid cell)

affects statistical properties of each estimate, such as

variance and correlation length, and can introduce bias.
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Blöschl (1999) also describes the scale triplet—spacing,

extent, and support. Spacing is the distance between

samples or observations, which corresponds to the

spacing between point snow measurements, for in-

stance, or to model grid size. Extent is the whole area

that is modeled or sampled, such as the entire model

domain. Support is the area over which the estimate is

averaged, such as a single model grid cell.

It is impossible to completely overcome the scale

mismatch between point observations and gridded

model estimates. Given the inherent problems with

scaling between measurements and models, we will

discuss the issues and provide appropriate caveats to our

conclusions. However, we believe that gridded products

that are constrained by or validated against the in situ

data, as the three reference datasets are, are likely the

best option for a reasonable estimate of range-

wide SWE.

b. Available methods for estimating SWE in
mountain areas

As described by Dozier et al. (2016), there are

four main techniques for estimating mountain SWE:

1) interpolating in situ measurements; 2) satellite mea-

surements, whether from passive microwave or gravity

sensors; 3) reconstructing SWE from visible satellite

observations and energy balance estimates; and 4) mod-

eling SWE.

1) INTERPOLATION OF IN SITU OBSERVATIONS

Operational snow courses represent a permanent lo-

cation where SWE measurements are made at regular

intervals along a transect; typical spatial support is tens

of square meters. Snow pillows are automated weighing

devices installed permanently in the landscape, with

typical dimensions of 3m 3 3m. Interpolation schemes

regress snow point observations with meteorological

and physiographic data and then krige the residuals;

typical grid sizes are 1–3 km.Howat and Tulaczyk (2005)

produced an SWE interpolation for the Sierra Nevada

over a 53-yr record that captured 68% of the spatial

variance, on average, in themeasured SWE,with amean

error of 27%. Fassnacht et al. (2003) investigated several

interpolation techniques over three water years for the

Colorado River basin; the results for the best method

were unbiased, with root-mean-square errors less

than 155mm.

When using an interpolated product, the assumption

is that the point measurement represents the entire grid

cell; for typical 1–3-km grids, processes operating at

both the hillslope and watershed scales control subgrid

SWE variations via controls of slope and aspect on wind

redistribution and available melt energy, among other

factors (Clark et al. 2011). Both snow pillows and snow

courses are typically situated in relatively flat, open

areas or forest clearings that are sheltered from wind.

Detailed field studies have shown that snow pillows and

snow courses can be nonrepresentative of the sur-

rounding pixel sizes. Molotch and Bales (2005) show

that snow telemetry sites in the Rocky Mountains can

overestimate surrounding SWE by up to 200%. Nolin

(2012) illustrated the failure of the in situ network to

capture SWE spatial patterns, particularly in a changing

climate. Meromy et al. (2013) performed 53 assessments

at 15 snow pillow and snow course locations across the

western United States. In contrast with previous work,

across the 53 assessments, only 26 had biases greater

than 10%. In summary, when utilizing interpolation to

approximate range-wide SWE, bias cannot be ruled out,

in part because of the fact that measured SWE is gen-

erally nonrepresentative of the pixel.

2) SATELLITE MEASUREMENTS

Global- and continental-scale SWE estimates based

on microwave satellite observations exist. Global Snow

Monitoring for Climate Research (GlobSnow; Takala

et al. 2011) has produced a merger of microwave and

in situ measurements that quantifies SWE globally, but

neglects mountain snow altogether. The standard

NASA passive microwave product performs poorly for

deep snow and in forests, two conditions that often

prevail in the mountains (Vuyovich et al. 2014); this is

likely due to algorithm issues, rather than spatial scale

per se (Durand et al. 2009). GRACE satellites estimate

terrestrial water storage changes (Schmidt et al. 2006)

based on gravity measurements. However, GRACE

resolution is too coarse to deconvolve changes in

mountain snowpack from other signals at the appro-

priate spatial resolution (e.g., Syed et al. 2008) without

significant local in situ data (e.g., Famiglietti et al.

2011), which are unavailable in most global ranges.

3) RECONSTRUCTIONS AND THE SNSR

Traditional SWE reconstruction combines remote

sensing observations of snow cover with an energy bal-

ance model to estimate SWE throughout the accumu-

lation season (Cline et al. 1998; Guan et al. 2013). The

SNSR (Margulis et al. 2016) is a probabilistic extension

of SWE reconstruction (Girotto et al. 2014). Un-

certainties in meteorological and other inputs are pa-

rameterized and prior model estimates are conditioned

on independent remote sensing data to generate a pos-

terior estimate. The result is a spatially and temporally

consistent estimate at the chosen model resolution. One

disadvantage of both reconstructions in general and the

SNSR specifically is that they can only be performed
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post facto, that is, once satellite imagery of snow abla-

tion is available.

4) MODELING

(i) Modeling snowpack mass and energy balance

Accurate snowpack simulations must correctly model

both accumulation and ablation. Accurate accumula-

tion requires simulating the precipitation correctly,

which is difficult to validate since gauge undercatch of

50% is not uncommon (Pan et al. 2003). Partitioning

rain versus snow is important so the simulated pre-

cipitation falls as the correct phase (Kienzle 2008;

Marks et al. 2013). Accurate temperature forcing data

are crucial for determining precipitation phase and

snowpack ablation rates. Longwave radiation simula-

tion, which relies on simulation of the snow surface

temperature, is critical for accurate snow ablation esti-

mates. Snow albedo simulation is also crucial, as ab-

sorbed shortwave radiation is one of the main drivers of

melt. Accurate albedo simulation is challenging, as it

depends on snow grain size, impurities, and snow depth.

The effects of forest cover exacerbate many of these

challenges, intercepting and storing some snowfall

within the canopy, dramatically modulating energy

fluxes in complex ways (e.g., Lundquist et al. 2013). The

Snow Model Intercomparison Project (SnowMIP;

Etchevers et al. 2004) found that more complex, mul-

tilayered models generally produced more accurate

SWE simulations, for example, producing less bias in

outgoing longwave radiation, which is critical particu-

larly during the accumulation season. A follow-on

project, SnowMIP2, found that the effect of forest

cover generally degrades model performance, with

less intermodel consistency in forested areas (Rutter

et al. 2009).

(ii) Offline versus coupled modeling

In an uncoupled land surface model (LSM), the land

surface physics, including snow cover, evolve based on

meteorological forcing data from either measurements

or an atmospheric model. Therefore, there are no

feedbacks between the land surface and the atmosphere.

Running an uncoupled model often requires a constant

lapse rate assumption (usually 6.58Ckm21). However,

recent studies suggest seasonality in lapse rates in

complex topography (Minder et al. 2010). Coupled

models, on the other hand, allow for interaction between

the land surface and the atmosphere. Coupling between

snow and the atmosphere is the strongest during snow-

melt because of the snow albedo effect on surface ra-

diative balance (Xu and Dirmeyer 2011). In addition, a

coupled RCM with high-resolution topography is more

likely to provide adequate spatial precipitation patterns

than is an interpolation of sparse precipitation obser-

vations required by offline modeling, because RCMs

simulate airmass uplift and orographic precipitation di-

rectly (Rasmussen et al. 2011).

Dynamical downscaling offers the potential to run

coupled regional models at much finer resolution than

global models, enabling simulations of coupled pro-

cesses at high resolution (Lo et al. 2008; Caldwell et al.

2009; Rasmussen et al. 2011). In this case, a global model

or reanalysis product provides the outermost boundary

conditions, but inner domains receive forcing data from

the domain enclosing it. By nesting fine-resolution in-

ner domains within coarser-resolution outer domains,

grid spacing as fine as 2–4 km has been reported for

seasonal-to-annual simulations over mountainous do-

mains (Leung and Qian 2003; Done et al. 2004; Ikeda

et al. 2010; Rasmussen et al. 2011; Pavelsky et al. 2011;

Wrzesien et al. 2015).

3. Datasets

a. Snow courses

We use snow course measurements from the De-

partment of Water Resources California Data Ex-

change Center (http://cdec.water.ca.gov) to produce

the gridded interpolation product, as described in

section 4. For each of the three study years, there are

over 250 snow courses with 1 April SWE observations.

All stations are located between 1326 and 3490m in

elevation, with an average elevation of 2371m; 75% of

the stations are located below 2717m and there are no

observations above 3490m, though 2% of the Sierra

Nevada is above 3490m (;1200 km2). Since the in situ

network is not widespread at the high elevations, few

or no observations are available for comparison or to

inform the interpolation. Locations of the stations

used for the water year 2009 interpolation are shown in

Fig. 1.

b. Gridded datasets

Here, we describe 12 observational datasets for which

we evaluate estimates of mountain range–scale SWE;

they originate from eight sources, with some sources

providing multiple datasets. Some datasets are available

globally, while others are only provided for CONUS1
or the Sierra Nevada.While other datasets are available,

they are either very coarse resolution (e.g., NCEP–

NCAR reanalyses; Kalnay et al. 1996) or deliberately

exclude most mountain regions (e.g., GlobSnow; Takala

et al. 2011), as microwave retrievals are challenging in

mountainous areas (e.g., Durand and Margulis 2007).
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1) AMSR-E

The Advanced Microwave Scanning Radiometer for

Earth Observing System (AMSR-E) passive microwave

instrument allows for a daily/near-daily, global SWE

product based on brightness temperature retrievals. We

use the level-3 SWE product produced for the Northern

Hemisphere at 25-km resolution Equal-Area Scalable

Earth Grids, which is available for download at the

National Snow and Ice Data Center (NSIDC; Tedesco

et al. 2004). Since there are orbit gaps in the daily product,

we use the 5-day pentad to ensure a geographically

complete SWE product over the study region. AMSR-E

is not available for the 2014 comparison since data pro-

duction stopped in 2011 because of instrument failure.

Multiple studies have evaluated the ability of the

passive microwave product to estimate SWE. Tedesco

and Narvekar (2010) compare AMSR-E to SNODAS

across the continental United States and show that

there is poor correlation between the two datasets,

with a correlation coefficient R of only 0.17. They hy-

pothesize that terrain heterogeneity within an AMSR-E

pixel further reduces the correlation between the two

products. Vuyovich et al. (2014) compare AMSR-E to

SNODAS across the same region and show high corre-

lations for the Great Plains (statistically significant co-

efficient of determination R2 5 0.47–0.66) and the lower

Colorado River basin (statistically significant R2 5 0.65),

but in densely vegetated areas and regions with deep

snowpack, passive microwave SWE estimates are signif-

icantly lower than SNODAS estimates. They find the

highest correlations occur where SWE accumulation is

less than 200mm and forest fraction is less than 20%.We

choose to includeAMSR-E in this analysis to quantify the

performance at the mountain range scale.

2) GLDAS

The Global Land Data Assimilation System (GLDAS;

Rodell et al. 2004) dataset produces global estimates of

assimilatedmeteorological variables, as well as SWE.We

utilize both the older GLDAS, version 1 (GLDAS-1),

and the more recent GLDAS, version 2 (GLDAS-2),

products (GLDASv1 and GLDASv2, respectively,

hereafter), both of which have a resolution of 0.258
(;28km) and are from the Goddard Earth Sciences

Data and Information Services Center (GES DISC;

http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings).

For our three study years,GLDASv1 forcing data are from

the National Oceanic and Atmospheric Administration

(NOAA) Global Data Assimilation System atmospheric

analysis fields, NOAA Climate Prediction Center (CPC)

Merged Analysis of Precipitation fields, and the Air Force

Weather Agency’s Agricultural Meteorological modeling

system’s downward shortwave and longwave radiation

fields.Over the entire period thatGLDASv2 is available, it

is forced with the Global Meteorological Forcing Dataset

from Princeton University. GLDASv2 is only produced

through 2010, sowewill only compare the earlier two years

with the newer product. For both versions of GLDAS, the

only LSM option is Noah, version 2.7, for GLDASv1 and

Noah, version 3.3, for GLDASv2.

The Noah LSM is responsible for snowpack simula-

tion in both versions of GLDAS and is available as an

option in the North American Land Data Assimilation

System (NLDAS). Multiple studies have considered the

ability of Noah to estimate snow conditions (Pan et al.

2003; Sheffield et al. 2003). Nearly all studies show a

tendency for Noah—whether in NLDAS,GLDAS, or as

an offline LSM—to underestimate SWE (note that this

is not the case for the most recent version of Noah, de-

scribed later). Livneh et al. (2010) detail a negative SWE

bias in Noah across the western United States, particu-

larly in mountainous regions when compared to the

Snowpack Telemetry (SNOTEL) network. Livneh et al.

(2010) discuss techniques to decrease the SWE bias,

including improvements to how Noah calculates albedo

and allowing for refreeze within the snowpack. Other

studies have identified similar biases in Noah snow

simulations in a range of mountain environments

(Barlage et al. 2010; Ek et al. 2003; Jin and Miller 2011;

Sultana et al. 2014).

3) MERRA

The Modern-Era Retrospective Analysis for Re-

search and Applications (MERRA) is an assimilation-

based reanalysis product that incorporates NASA’s

FIG. 1. Elevation, from 3-kmWRFdomain, over the study region

of the Sierra Nevada. Black dots indicate in situ observation lo-

cations associated with snow courses.
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Earth Observing System satellite observations into a

climate model framework (Rienecker et al. 2011). The

data are available from the GES DISC (http://disc.sci.

gsfc.nasa.gov/daac-bin/DataHoldings.pl) and are pro-

duced on a 1/28 3 2/38 grid (;55 3 ;75km), globally.

Though evaluation of modeled grid cells against point

measurements is inherently problematic because of is-

sues of scale, MERRA snow depth estimates have been

compared to in situ observations from the World Me-

teorological Organization (Reichle et al. 2011), with a

correlation of 0.56 and a bias of 21.0 cm.

4) ERA-INTERIM

The European Centre for Medium-Range Weather

Forecasts (ECMWF) interim reanalysis (ERA-Interim)

is a global product at 0.758 resolution (;80km;Dee et al.

2011) and is available for download (http://apps.ecmwf.

int/datasets/data/interim-full-daily/). We use daily SWE

estimates; note that the variable labeled ‘‘snow depth’’

in the ERAdataset is actually SWE, with units of meters

of water equivalent (H. Garcon, ECMWF research

team, 2015, personal communication). ERA-Interim has

been shown to underpredict snowfall (Dutra et al. 2011)

and predict melt too early in forested regions (Dutra

et al. 2010). Kapnick and Delworth (2013) compiled a

list of known biases in ERA-Interim snow estimates,

including a negative SWE bias in coastal regions and

missing snow in some midlatitude locations.

5) NLDAS

The NLDAS (Mitchell et al. 2004; Xia et al. 2012a,b)

is a model reanalysis data product that is available from

the GES DISC. We use the hourly data from the offline,

uncoupled NLDAS phase 2 (NLDAS-2) runs, which are

produced at 0.1258, or roughly ;14km resolution.

Forcing data for NLDAS come from the North Ameri-

can Regional Reanalysis (NARR;Mesinger et al. 2006),

with the exception of the precipitation forcing, which is

from the gauge network of the CPC and includes an

orographic adjustment from the Parameter-Elevation

Regressions on Independent Slopes Model (PRISM)

climatology (Daly et al. 1994). NLDAS is run with three

different LSMs: Mosaic (Koster and Suarez 1994, 1996);

Noah, version 2.8 (Ek et al. 2003; Livneh et al. 2010;Wei

et al. 2013); and VIC, version 4.0.3 (Liang et al. 1994;

Wood et al. 1997; Sheffield et al. 2003). Here we com-

pare results from NLDAS using each LSM, which we

designate as NLDASvM (for NLDAS with Mosaic),

NLDASvN (for NLDAS with Noah), and NLDASvV

(for NLDAS with VIC). Additional information on the

Noah and VIC LSMs can be found in Chen et al. (2014).

The NLDAS phase 1 had a negative bias in pre-

cipitation, which impacted estimation of both snow extent

(Sheffield et al. 2003) and SWE (Pan et al. 2003).

NLDAS-2 (Xia et al. 2012a,b) has updated forcing data,

including the precipitation, and includes improved pa-

rameterizations in Noah for cold season processes

(Livneh et al. 2010).Despite improvements, several of the

LSMswithinNLDAS still struggle to simulate reasonable

streamflow cycles over snowy areas, and the lowest in-

termodel correlations occur over mountainous regions

(Xia et al. 2012a,b).

6) CMC

The Canadian Meteorological Centre (CMC) pro-

duces daily snow depth estimates across the Northern

Hemisphere at 24-km resolution (Brasnett 1999).

Though snow depth values are available daily through

assimilation of model results and in situ snow depth

observations, SWE is only produced monthly, using

monthly average snow depths with snow density esti-

mates based on snow course measurements and snow

classes from Sturm et al. (1995). The data are available

from the NSIDC (Brown and Brasnett 2010) to compare

to other products. Brown et al. (2003) show that, com-

pared to snow course data, the CMCmodel tends tomelt

snow too quickly in the spring and leave too little snow

cover in the high northern latitudes during the summer.

7) NARR

The NARR is an assimilation-based dataset that is

available over North America, up to a latitude of;858N
(Mesinger et al. 2006). Produced by the National Cen-

ters for Environmental Prediction, NARR estimates are

available every 3h at a resolution of 32 km and with 29

pressure levels. NARR data are available for download

from the Research Data Archive from the National

Center forAtmospheric Research (http://rda.ucar.edu/).

Salzmann and Mearns (2012) evaluate NARR against

SNOTEL observations across the upper ColoradoRiver

basin. NARR reaches peak SWE too early, up to

3 months prior to the SNOTEL SWE peak, and does not

demonstrate a clear annual cycle of SWE, but rather

accumulates and melts snow multiple times throughout

the season. Salzmann and Mearns (2012) suggest that

NARR was designed to estimate snow cover, not SWE,

possibly explaining the poor correlation between

NARR and SNOTEL SWE (R2 5 0.16). Here we not

only compare NARR to the other data products, but we

also use NARR as forcing data for WRF.

8) SNODAS

SNODAS (Carroll et al. 2001; National Operational

Hydrologic Remote Sensing Center 2004), developed by

theNationalWeather Service, provides daily estimates of

SWEover the continentalUnited States at a resolution of
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1 km. As an assimilation-based dataset, SNODAS

updates model predictions with satellite observations

of snow cover fraction, gamma radiation airborne

measurements, radar precipitation observations, and

in situ measurements. The in situ measurements, such

as snow pillows and snow courses, are used in the

assimilation algorithm where applicable, causing

SNODAS to perfectly match the in situ observations

in some cases. As an operational data product, no

documentation describing the details of the

methodology is available, though several studies have

evaluated the product against limited field observations

and models. Clow et al. (2012) compare SNODAS SWE

estimates to both ground-based field surveys and stream

gauges in the Colorado Rockies. Though SNODAS

performed well in forested areas and was capable of

explaining 77% of the variance in SWE, the product did

not fare as well in alpine areas and only explained 30%

of the variance. Hedrick et al. (2015) found similar

biases for SNODAS in alpine regions when they com-

pared SNODAS snow depth estimates to lidar mea-

surements over the Cold Land Processes Field

Experiment sites in Colorado, with a root-mean-square

difference of 13 cm for snow depth over 12 study areas.

Hedrick et al. (2015) note that SNODAS underpredicts

snow depth in regions with deep snowpack and dense

forests, both of which are common characteristics of

mountain environments.

9) SWE REANALYSIS

The SNSR provides daily estimates of SWE at a

spatial resolution of 90m. The reanalysis uses a data

assimilation framework to constrain and update

model-based SWE estimates using Landsat fractional

snow-covered area images. Model inputs include me-

teorological forcing from the NLDAS-2 dataset

(described above); the SNSR explicitly treats the

uncertainty in the forcing dataset and model param-

eterizations, producing an optimal SWE estimate

constrained by the Landsat imagery. Note that SNSR is

computed independently from in situ SWE measure-

ments and is only compared against them for validation

purposes. The method models the effect of forests on

snow accumulation and ablation, although validation is

only possible against the snow pillows and snow courses

observations that are made in unforested areas. At the

watershed scale, the reanalysis accuracy shows a weak,

statistically insignificant dependence on forest cover

fraction, suggesting that forest cover does not greatly

impact the reanalysis algorithm. The SNSR product

was verified against over 9000 station years of snow

pillow and course data over the period 1985–2015; bias

was less than 3 cm, root-mean-square error was less

than 13 cm, and R was greater than 0.95 (Margulis

et al. 2016).

4. Methods

a. WRF Model simulations

We ran WRF, version 3.6 (Skamarock et al. 2008),

with the Noah LSM with multiparameterization (Noah-

MP; Niu et al. 2011); the Noah-MP snow model im-

provements over the Noah snow model are described

below. All simulations are run with three one-way nes-

ted domains at increasingly fine resolution: 27, 9, and

3km. The outermost domain receives forcing data from

NARR. Prior work suggests that a resolution of ;3 km

is necessary to capture orographic processes to first or-

der (Pavelsky et al. 2011; Wrzesien et al. 2015). How-

ever, we will consider how the SWE simulations differ

among the threeWRF resolutions. The 27-, 9-, and 3-km

domains are described as WRF27km, WRF9km, and

WRF3km, respectively.

We select the following physics options when running

WRF: the Thompson et al. (2004) cloud microphysics

scheme, the Rapid Radiative Transfer Model longwave

scheme (Mlawer et al. 1997), the Dudhia shortwave

scheme (Dudhia 1989), the Yonsei University planetary

boundary layer scheme (Hong et al. 2006), and the

modified Kain–Fritsch convective parameterization for

the two outer domains (Kain 2004; Kain and Fritsch

1990, 1993). All options are consistent with previous

studies on the Sierra Nevada (Pavelsky et al. 2011, 2012;

Wrzesien et al. 2015).

Here we use all default options for Noah-MP, in-

cluding turning off dynamic vegetation, using the

Canadian Land Surface Scheme (CLASS; Verseghy 1991)

to calculate snow albedo, and partitioning rain and snow

using the Jordan (1991) algorithm. The CLASS algorithm

calculates snow surface albedo through a combination of

fresh snow albedo and snow age. The Jordan (1991)

partitioning scheme uses a function based on air tem-

perature, with a large decrease in the percent of frozen

precipitation between 18 and 28C. This is in line with

Lundquist et al. (2008), who use a threshold of 1.58C to

partition between rain and snow in the Sierra Nevada.

Perhaps the most important improvement from Noah

to Noah-MP is that Noah-MP has a multilayer snow-

pack. Models with multiple snow layers allow for more

accurate snow surface temperature simulation, which

allows for more accurate outgoing longwave simulation

(Etchevers et al. 2004).

There are numerous studies using WRF to estimate

mountain snow (e.g., Leung and Qian 2003; Caldwell

et al. 2009; Keighton et al. 2009; Ikeda et al. 2010;

Rasmussen et al. 2011; Maussion et al. 2011). Pavelsky
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et al. (2011) evaluate the abilities of WRF, run with the

older Noah LSM, to simulate snow dynamics over the

central Sierra Nevada. Comparing to both snow and

meteorological observations, they find that the WRF

run at 3 km simulates snow melt 22–25 days too early

and that simulated temperatures tend to be too cold,

with an overall mean bias of22.68C. Pavelsky et al. (2011)
also show that WRF with Noah is capable of reproducing

precipitation timing, but the total precipitation is biased

high by nearly 12%, though only 10 sites are compared.

Correlation betweenmodeled temperatures at 3-kmWRF

grid cells andmeasured temperatures at 31meteorological

stations is 0.88. To address the early melt bias, Wrzesien

et al. (2015) ran WRF with the improved Noah-MP LSM

for the same time and domain. With the newer LSM, the

melt bias is reduced to 2 days and at the mountain range

scale, WRF is capable of identifying the presence/absence

of snow when compared to a satellite-derived snow

product. Additionally, Wrzesien et al. (2015) show

that WRF with Noah-MP has a peak SWE bias of

8.37 cm compared to snow pillow measurements.

Other studies (Niu et al. 2011; Cai et al. 2014) have

also shown improvements in snow modeling and ter-

restrial water storage estimates in Noah-MP, as com-

pared to Noah.

b. Interpolation

To produce an interpolation based on in situ observa-

tions, we regress SWE from snow courses against latitude,

longitude, elevation, slope, aspect, average winter temper-

ature, and total winter precipitation (Carroll and Cressie

1997; Fassnacht et al. 2003). Temperature and precipitation

are fromPRISM(http://www.prism.oregonstate.edu), while

elevation data and their derivatives are from the U.S.

Geological Survey’s global 30 arc s elevation dataset

(GTOPO30; https://lta.cr.usgs.gov/GTOPO30). The

interpolation was performed at 4-km resolution,

matching the PRISM resolution. Following Howat and

Tulaczyk (2005), we krige the residuals over the entire

domain and add the interpolated residuals to the trend

surface to produce a final SWE interpolation over

the Sierra Nevada. To prevent snow cover from un-

realistically extending too far downslope, we mask out

areas below 1500m elevation, the approximate aver-

age snow line in the Sierra Nevada (Shamir and

Georgakakos 2006; Lundquist et al. 2008).

5. Experiment design

We compare the global/CONUS1 and WRF range-

wide SWEagainst reference SWEdatasets. These include

the SNSR (which is independent from, but validated

against, snow pillows and snow courses), the interpolation

(based on snow courses), and SNODAS (which assimilates

snow pillows). These three datasets represent completely

different approaches, in terms of their methodology, rang-

ing from operational (SNODAS) to the relatively simple

interpolation to the relatively complex SNSR.We consider

an average of the reference datasets and evaluate the con-

sistency between the three products.

We consider three water years—2005, 2009, and 2014—

to represent high, average, and low snow accumulation,

respectively [readers should considerMargulis et al. (2016)

for a 31-yr record of Sierra Nevada SWE to understand

how the selected years relate to each other and to other

years in the record]. Figure 2 shows SWEaccumulation at a

representative station, the Gold Lake snow pillow (eleva-

tion of 2057m), for these three years (Kapnick and Hall

2010). Though we do not consider individual storm tracks

for each year, future work should analyze storm tracks and

their effects on SWE accumulation, which could reveal

biases in the gridded SWE estimates (Lundquist et al.

2015). We consider SWE time series from each data

product, along with 1 April SWE, peak SWE, and peak

SWE timing. The date 1 April is analyzed because it is a

common metric in the literature and close to snow course

measurement dates. For pentad (AMSR-E) or monthly

(CMC) datasets, we select the date range that includes

1April. PeakSWEprovides the total snow storage for each

dataset, while peak SWE timing shows how accumulation

over the winter differs between the data products.

6. Research questions and hypotheses

Our overarching research question is, can existing

datasets available to the community or WRF simulations

FIG. 2. Accumulation over the water year for GOL station,

a snow pillow at Gold Lake, a location in the Feather River basin in

the northern Sierra Nevada. Daily SWE is shown for water years

2005 (blue), 2009 (black), and 2014 (red).
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produce estimates of total mountain range SWE within

an uncertainty of 650%, relative to the reference SWE

datasets? We choose 650% as representative of the

precision required to quantify SWE to the first significant

figure in the construction of continental and global water

and energy budgets. More specifically, our study is mo-

tivated by three questions: Are the reference SWE da-

tasets consistent with each other? If so, are the global

or CONUS1 estimates consistent with the reference?

Finally, is WRF, a high-resolution RCM, consistent with

the reference?

Based on their past performance, we expect global

datasets to have an overall lower amount of SWE as

compared to the reference datasets. We expect both

versions of GLDAS to underestimate SWE because

of the biases in the Noah LSM described above.

We also expect ERA-Interim and MERRA to under-

estimate SWE because of poor resolution of topography.

We hypothesize that AMSR-E cannot estimate SWE

within 650%, consistent with the numerous studies

that discuss the deficiencies of its algorithm in mountain

environments.

We similarly expect these models and observations

to underestimate SWE for the CONUS1 products.

Despite the improvements fromNLDAS-1 toNLDAS-2,

prior work suggests that the LSMs in NLDAS-2 still

struggle in complex environments, so we believe that

the NLDAS-2 estimates presented here will un-

derestimate SWE, and we do not necessarily expect a

consensus between the three LSMs. Since NARR is not

optimized for SWE, we expect it to behave as one of the

poorer datasets. Finally, CMC is likely the most rea-

sonable where the in situ network is densest; with ob-

servations in mountainous regions being comparatively

sparse, we hypothesize that the CMC estimate will be

too low.

Based on previous studies with WRF (Pavelsky et al.

2011; Wrzesien et al. 2015; Leung and Qian 2003; Ikeda

et al. 2010; Rasmussen et al. 2011), we hypothesize that

high-resolution WRF simulations will produce reason-

able peak SWE, 1 April SWE, and peak SWE timing,

when compared to the reference datasets.

7. Results

a. Temporal analysis

Figure 3 shows SWE time series throughout eachwater

year for all datasets. Range-wide, distinct accumulation

and ablation seasons are less evident than they are for the

single-station, high-elevation SWE time series (e.g., that

shown in Fig. 2, with an elevation of 2057m). Instead,

ablation occurs intermittently throughout the winter,

following each accumulation event; this is especially ev-

ident for 2009 and 2014. While the timing of major ac-

cumulation and ablation events is similar across all

datasets, there are dramatic differences in the magnitude

of accumulation and melt events. For example, in 2005,

most datasets have a large accumulation event in Janu-

ary; however, the reference datasets and the WRF esti-

mates show;25–30km3 of new accumulated SWE, while

all other datasets have only;5–15km3.After the January

2005 accumulation event, melt occurs as demonstrated in

nearly all datasets (except AMSR-E). SWE in the refer-

ence datasets decreases by 15%–20% with similar values

for the WRF estimates. MERRA, on the other hand,

simulates a large melt event, with SWE decreasing

by .40% in less than a month. Alternatively, NLDAS

products show SWE persisting too late in the year, with

slow ablation rates compared to the reference datasets.

For all three years, WRF SWE time series are similar to

the reference estimates, while the global/CONUS1 da-

tasets greatly underestimate SWE.

While 1 April is often used as a peak SWE proxy, that

date is not always indicative of peak accumulation, as

FIG. 3. Time series of SWE for each dataset for water year (top)

2005, (middle) 2009, and (bottom) 2014.
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seen here for 2009. The dates of peak SWE for each year

and each dataset are shown in Table 1, with 2014 dates

ranging from as early as 7 December for NARR and

MERRA to as late as 3 April for SNODAS and

WRF3km. The two reference datasets with daily data

(SNSR and SNODAS) are in near-perfect agreement for

the date of peak SWE across all three years. For two of

the three years (2005 and 2014), 1April is an approximate

estimate of the actual date of peak SWE. Related to the

goals of this study of evaluating global/CONUS1 data

products and WRF simulations against reference data-

sets, the SWE time series indicate that the relative dif-

ference between datasets for range-wide SWE is similar

for 1 April and for peak SWE. In the rest of the analysis,

we focus on 1 April SWE, particularly since peak SWE is

not available for all datasets (i.e., CMC and the

interpolation).

b. 1 April spatial analysis

Figures 4–6 show the spatial distribution and extent

of the 1 April SWE for each dataset for water years

2005, 2009, and 2014, respectively. The reference da-

tasets show similar spatial distributions of SWE. Vi-

sually, the SNSR, with gridcell resolution over an order

of magnitude finer than the next closest product,

demonstrates features not shown by other datasets. For

example, there is a slight maximum in SWE in all three

years on the northeastern shore of Lake Tahoe. When

comparing Figs. 4–6 (bottom), SNSR has fewer large

areas with high SWE values. The interpolation, in

contrast, shows large areas with .1000mm of SWE.

The snow extent of the interpolation is larger than ei-

ther the SNSR or SNODAS for all three years. None-

theless, these three products show similar spatial

patterns of SWE each year.

The global products (Figs. 4–6, top) show lower SWE

values and decreased snow extent than the reference

datasets on 1 April for all years. AMSR-E un-

derestimates snow extent over the entire domain, but

particularly in the northern portion of the domain,

perhaps due to more expansive forest cover. Both

versions of GLDAS fail to estimate any snow in the

northern Sierra Nevada for all three years, as is par-

ticularly evident in the high snow year of 2005 (Fig. 4).

Finally, the two coarsest global products, MERRA and

ERA-Interim, show little to no snow in the Sierra

Nevada on 1 April. Similarly, all CONUS1 datasets

(Figs. 4–6, middle) estimate relatively little snow on

1 April, in comparison with the reference datasets. In

particular, all three of the NLDAS products show little-

to-no snow in the northern portion of the mountain

range. Both CMC and NARR suggest very little snow

throughout the Sierra Nevada on 1 April.

When only considering 1 April SWE distribution, the

WRF3km and WRF9km are the most similar to the ref-

erence among all of the datasets, though differences do

exist. There aremore high snow regions (SWE. 1000mm)

inWRF3km than in the SNSR, andWRF9km predicts too

much snow cover in the far northern part of the domain.

c. 1 April range-wide SWE

SWE volume in the Sierra Nevada across all years and

datasets is shown in Fig. 7. In all three study years, the

1 April SWE estimates from the reference datasets are

consistent and within 650% of the reference mean. In

fact, no single-year estimate for any of the datasets dif-

fers from the mean by more than 21%. Similarly, for

the peak SWE estimate, where only the SNSR and

SNODAS are available, reference dataset SWE values

are within650%of the referencemean. For each year, the

SNSR has the smallest SWE estimate of the reference da-

tasets, SNODAS produces the largest estimate, and the

interpolation falls between the other two referencedatasets.

With the exception of AMSR-E, all global products

produce 1 April SWE estimates ,1 km3. Surprisingly,

AMSR-E has the largest SWE estimate of all the global

products, despite the disadvantages of passive micro-

wave in mountainous regions. However, the AMSR-E

SWEestimates—and the rest of the global datasets—are

far lower than the reference dataset estimates. For ex-

ample, the 2005 SWE from AMSR-E is only 9% the

reference mean. The CONUS1 estimates, despite res-

olutions finer than the global products, still produce

much less SWE than the reference estimates.

NLDASvV, for example, is the closest of the CONUS1
products to the reference datasets (e.g., NLDASvV for

2005 is 54% of the reference mean), but all three ver-

sions of NLDAS produce substantially less SWE than

TABLE 1. Date on which each dataset reaches peak SWE for each

water year.

Data product 2005 2009 2014

SNSR 30 Mar 6 Mar 2 Apr

SNODAS 30 Mar 7 Mar 3 Apr

WRF3km 30 Mar 6 Mar 3 Apr

WRF9km 12 Jan 6 Mar 11 Feb

WRF27km 12 Jan 6 Mar 10 Feb

NLDASvM 12 Jan 5 Mar 1 Apr

NLDASvN 12 Jan 5 Mar 1 Mar

NLDASvV 30 Mar 5 Mar 2 Apr

NARR 8 Jan 26 Dec 7 Dec

AMSR-E 5 Feb 1 Apr —

GLDASv1 11 Jan 18 Feb 1 Mar

GLDASv2 31 Jan 31 Dec —

MERRA 11 Jan 26 Dec 7 Dec

ERA-Interim 12 Jan 26 Dec 10 Dec
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the reference datasets. CMC and NARR 1 April SWE

estimates are even lower than the NLDAS estimates.

Finally, we compare the WRF SWE estimates to the

references. WRF3km is the most similar in total overall

SWE with the reference datasets, with values that are

97%, 104%, and 84% of the reference mean for 2005,

2009, and 2014, respectively. Similarly, the WRF9km

estimate is 91%, 100%, and 72% of the reference mean

for 2005, 2009, and 2014, respectively. For 2005, 2009,

and 2014, the WRF27km 1 April SWE estimate is 70%,

74%, and 30% of the reference mean, respectively.

Overall, the global/CONUS1 products tend to show

very little SWE, with values approximately an order of

magnitude smaller than the reference products. Of the

products with resolution of .20km (CMC, AMSR-E,

WRF27km, GLDASv1, GLDASv2, NARR, MERRA,

and ERA-Interim), only WRF27km is somewhat com-

parable to the reference estimates.

8. Discussion

a. Evaluating the research questions

We first explore the consistency of the three reference

datasets (SNODAS, the snow course interpolation, and

the SNSR). All three are relatively consistent with each

other, producing an ‘‘average’’ year 1 April SWE for 2009

ranging from 12.8 to 17.9km3, with the SNODAS and in-

terpolation estimates being ;39% larger than the SNSR

FIG. 4. Simulated SWE for (top) global products (AMSR-E, GLDASv1, GLDASv2,MERRA, and ERA-Interim), (middle) CONUS1
products (NLDASvM, NLDASvN, NLDASvV, CMC, and NARR), and (bottom) reference datasets and WRF (SNSR, SNODAS, In-

terpolation, WRF3km, WRF9km, and WRF27km) for 1 Apr 2005. SWE values sometimes exceed the color map max of 1000mm. The

plus sign on the SNSR plot indicates Lake Tahoe.
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estimate of 12.8km3. Fractional differences among the

three reference datasets are similar for eachwater year.We

see little evidence of SWE underestimation in SNODAS

estimates, unlike previous studies (Hedrick et al. 2015).

Despite differences in each reference dataset, all estimate

SWE to within621% of the reference mean, well below

the 650% ‘‘reasonable’’ threshold we suggest here.

Therefore, we suggest that our three reference data-

sets—SNSR, the interpolation, and SNODAS—are

approximately consistent with one another. The reference

estimates presented here are also in agreement with pre-

viously published SWE values (Table 2).

In contrast, we determine that the global/CONUS1
products are not in agreement with the reference products.

Only one year ofNLDASvV iswithin650%of the 1April

reference mean (at 54% for 2005); for 2009 and 2014, no

global/CONUS1 dataset is within 650%. The same re-

sults hold true for peak SWE, though here the reference

average includes only the SNSR and SNODAS. From

these results, it seems that coarser-resolution datasets are

inadequate to characterize Sierra Nevada snow accumu-

lation, perhaps since the Sierra Nevada is a narrow

mountain range. Some of the products, such as GLDAS,

MERRA, and ERA-Interim, are commonly used in

larger-scale studies (e.g., Syed et al. 2008;Meng et al. 2012;

Mankin et al. 2015), yet they considerably underpredict

the amount of snow in the Sierra Nevada (Fig. 3). Addi-

tionally, as would be expected from past studies, the

AMSR-E passive microwave product derived from spec-

tral gradients does not perform well over the Sierra Ne-

vada since complex topography, deep snowpack, and high

forest fraction combine to produce poor microwave

FIG. 5. As in Fig. 4, but for 2009.
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retrievals (Vuyovich et al. 2014). Even when considering

the potential biases of in situ observations, which could

result in overprediction of range-scale SWE, it is highly

unlikely that any of the global/CONUS1 datasets produce

realistic amounts of snow in the Sierra Nevada.

Finally, we compare WRF to the reference datasets.

For all three years, both WRF3km and WRF9km esti-

mates for 1April SWE arewithin650%of the estimates

from the reference datasets. WRF27km is also within

650% for 2005 and 2009. The same is true for peak

SWE. In fact, WRF27km is the dataset that is the closest

to the SNSR 1 April estimate for both 2005 and 2009

(WRF3km is closest in 2014).

b. Roles of mass and energy balance

Visualizing how SWE evolves throughout the year

(Fig. 3) demonstrates the differences among the datasets.

When only considering the three WRF estimates (gray

lines), the effect of resolution is apparent. Other than

parameterizations for convection (which the 3-km do-

main explicitly resolves), the only difference between the

three WRF estimates is gridcell size. As grid size in-

creases from 3 to 9 to 27km, the amount of SWE de-

creases. The three datasets are most similar during the

early part of the accumulation season, but once melt

begins, even in midwinter, the estimates diverge. While

WRF3km does estimate more total accumulation than

WRF27km (,20% more in 2005 and 2009, 40% for

2014), the differences in accumulation cannot fully ex-

plain the overall SWE differences between the three

model resolutions. Variation between high- and low-

resolution WRF estimates are at least as much driven

by ablation processes as they are by accumulation. For

example, in 2005, WRF3km and WRF9km have

FIG. 6. As in Fig. 4, but for 2014. For 2014, data are unavailable for AMSR-E and GLDASv2.
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relatively constant SWE, despite minor accumulation

and ablation events, yet WRF27km has a general de-

cline beginning in January (Fig. 3). Similarly, in 2014,

WRF3km fluctuates around 5 km3 between February

andApril, WRF9km has a slow decline, andWRF27km

has a rapid decline. This perhaps indicates not only a

bias in precipitation at the coarser resolution but also in

the energy balance, possibly due to radiation differ-

ences associated with smoothed elevation in the larger

grid cells.

In some of the other products, a bias in the energy

balance is more evident. For example, for water year

2005 (Fig. 3, top), MERRA (dashed light green line)

accumulates snow up until 11 January and then

experiences a large melt event that far surpasses the

melt in any other product. Rain–snow partitioning

could also be a problem in some of the datasets. For

example, for 2009, in WRF, 44% of the precipitation

falls as snow, but in MERRA, only 32% is snowfall.

Regardless of whether MERRA produces enough

FIG. 7. SWE volume (km3) for each gridded dataset for (left) 1 Apr SWE and (right) peak SWE for (top) 2005,

(middle) 2009, and (bottom) 2014. Solid black line indicates the reference dataset average and the dashed lines

show 650% of the reference mean.
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precipitation, uncertainties in the energy balance cal-

culation result in snow melting out too quickly and too

early. Alternatively, the NLDAS products, particu-

larly NLDASvM and NLDASvV, delay snowmelt for

too long compared to the rest of the estimates. This,

again, is likely due to biases in the energy balance.

Table 1 shows the date of peak SWE for each dataset in

all three water years. WRF3km agrees with the refer-

ence in all three years. Surprisingly, NLDASvV

matches the peak SWE timing, but it does not accu-

mulate enough snow. All other datasets differ sub-

stantially, at least for one year, including both WRF9k

and WRF27km. Only WRF3km is similar to the ref-

erence datasets in both SWE magnitude and peak

SWE timing (Figs. 3, 7).

An interesting finding is that the WRF27km SWE

estimate compares relatively well to the finer-spatial-

resolution SWE estimates, particularly the SNSR for

2005 and 2009. Though spatial resolution is important

for realistic simulation of temperature lapse rates and

orographic precipitation, it is clearly not the only im-

portant factor in obtaining realistic SWE estimates. In-

deed, WRF27km produces more reasonable estimates

than the finer-resolution NLDAS estimates. Other fac-

torsmay include differences in rain–snow partitioning or

the fact that WRF is a coupled atmosphere–land model

and is thus able to account for feedbacks from the land

surface to the atmosphere through the LSM, Noah-MP

(Niu et al. 2011). Additionally, Noah-MP is an im-

provement over the Noah LSM (used in both versions of

GLDAS and in NLDASvN) since Noah-MP simulates

the snowpack using up to three layers (as opposed to one

layer in Noah) and has separate energy fluxes for veg-

etated and nonvegetated surfaces. Recent analysis sug-

gests that Noah-MP simulates snowmelt processes more

realistically than does Noah (Niu et al. 2011; Wrzesien

et al. 2015; Pavelsky et al. 2011). We hypothesize that

better simulations of the mass and energy balances

through these factors lead to more realistic WRF27km

SWE estimates than would be expected from its spatial

resolution alone.

9. Conclusions

Using the California Sierra Nevada, we show that

three reference datasets—the SNSR, SNODAS, and a

snow course interpolation—produce consistent esti-

mates of total range-wide SWE (within 621% of their

mean), and that currently available global/CONUS1
products inadequately estimate mountain range SWE.

Global products such as GLDAS, MERRA, and ERA-

Interim produce unreasonable estimates that are up to

an order of magnitude less than some of the more rea-

sonable data products, such as the SNSR and SNO-

DAS. We further show that the WRF RCM produces

estimates of mountain peak SWE and timing for the

Sierra Nevada that are within 627% of the reference

datasets, well within the 650% threshold.

The ability of the WRF RCM to approximate mon-

tane SWE is encouraging. The perhaps surprising ad-

equacy of WRF at both 3- and 9-km resolutions in

simulating pan–Sierra Nevada SWE accumulation

opens new possibilities for estimating mountain snow-

pack outside of well-monitored areas. SNODAS is

available only for the continental United States. While

the Sierra Nevada has a relatively dense in situ gauge

network, spanning many of the major climatic and

physiographic gradients in the mountain range, the

majority of global complex topography does not. Sim-

ply put, interpolations are not possible in most moun-

tain ranges. Compared to ultrafine-resolution SWE

estimates, such as the SNSR, WRF estimates can be

processed over areas with few observational datasets.

At fine resolution (,9 km), orographic processes are

captured and SWE estimates compare favorably to

reference datasets, which are based on/validated

against in situ observations. Therefore, we recommend

large-scale future studies focused on mountain hy-

drology should use RCMs as opposed to currently

available datasets, such as ERA-Interim, GLDAS, or

even NLDAS.
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TABLE 2. Estimates of Sierra Nevada SWE (km3) from the literature.

Reference Study period SWE (km3)

Howat and Tulaczyk (2005) 1 Apr for 1950 to 2002 25 (estimated from their Fig. 5)

Hayhoe et al. (2004) Avg 1 Apr SWE from 1961 to 1990 12.4

Margulis et al. (2016) Avg 1 Apr SWE from 1985 to 2015 14.2
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