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A B S T R A C T

The Surface Water and Ocean Topography Mission (SWOT) will generate global, spatially continuous maps of
water surface elevation and extent for large inland water bodies when it launches in 2021. We present an
analysis of water surface elevation, width, and bathymetry timeseries data from a medium-sized (average annual
discharge 14m3/s) river to explore Manning’s equation, an empirical open channel flow equation, in the context
of SWOT discharge algorithms. While this equation is in theory inapplicable to natural channels due to the non-
uniform and spatially heterogeneous nature of river systems, we explored approaches to adapt it to this context
using reach-averaged variables. At twenty sites along a 6.5 km stretch of the Olentangy River in Ohio, USA, we
collected automated and manual measurements of water surface elevation and river width, undertook a full
bathymetric survey of the study area, and built a hydraulic model. The stretch of river was divided into five
reaches, and hydraulic variables were reach-averaged. Using these variables, we used a modified form of
Manning’s equation to compute a reach-averaged roughness coefficient. Reach-averaged roughness coefficients
varied nonlinearly with discharge and were 2–10 times larger at low flow than at high flow in the in-situ data,
ranging from 0.06 to 0.61 in one of the study reaches. These results were compared with the output of an
unsteady flow simulation using a calibrated 1-D hydraulic model which was run with constant roughness
coefficients at each cross section. When reach-averaged data was used, model-derived roughness coefficient also
varied by more than an order of magnitude, with a range of 0.02–0.82 for one reach. For both in-situ and model-
derived datasets, using a two-parameter roughness coefficient which scaled with a power law on either discharge
or stage reduced discharge estimation error, with error for one reach dropping from 81% to 8% relative root-
mean square error (rRMSE) in the in-situ data and 58% to 8% nRMSE in the modeled data. These results imply
that spatial averaging of hydraulic variables leads to large variations in reach averaged Manning’s n, which we
term the reach’s “effective resistance”, and suggest that this variability can be accounted for with a simple
parameterization in estimates of discharge that use spatially averaged data.

1. Introduction

Manning’s equation and other empirical open-channel flow equa-
tions are convenient and commonly-used tools for hydrologists and
engineers who seek to solve practical problems of channel design, flood
wave modelling, and fluvial sediment transport (Dingman, 2009, p.
243). In research settings, applications of these equations include as-
sessing flow in drainage canals (Froehlich, 2012) and indirectly esti-
mating peak flood discharges (Asfaha et al., 2015; Lumbroso and
Gaume, 2012). Although these equations are in principle considered by

hydraulic textbooks to be inapplicable in non-uniform or unsteady flow
(Sturm, 2001), they are also nonetheless regularly used to estimate
discharge, energy dissipation, and other physical phenomena in natural
fluvial environments (Bjerklie et al., 2018; Bjerklie et al., 2005; David
et al., 2011; Ferguson et al., 2017; Powell, 2014; Yochum et al., 2012).
Gradually-varied flow regimes in natural river reaches pose a par-

ticular challenge to the application of these equations because the re-
presentative hydraulic parameters (e.g. cross-sectional area and top
width) vary significantly in space. Representing irregular cross-sections
with average channel variables in Manning’s equation is problematic
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from 0.9m3/s to 11,800m3/s. Another study found the confluence-bi-
furcation length of braided rivers was regularly 4–5 river widths
(Hundey and Ashmore, 2009), suggesting significant and consistent
spatial variation over relatively short reaches.
Variation at these length scales poses a challenge for accurate esti-

mates of discharge using canonical open-channel flow equations, which
are meant for uniform reaches where channel shape and the cross-
sectional area of flow do not change in the direction of flow. Using the
numbers from Moody and Troutman (2002), a 100m wide river would
have a correlation length of 100–200m, meaning measurements of
channel morphology would be non-representative if averaged across
any greater length scale. Wetted perimeter, cross-sectional area of flow,
and depth measurements can be taken at cross sections, but slope
measurements require measurements over some distance, dx, in the
direction of flow, and slope accuracy decreases as dx gets smaller. As an
example, if water surface or bathymetric elevations are calculated with
an accuracy of± 2 cm on a 100m river reach, slope errors would be on
the order of 28 cm/km. The issue of spatial averaging is pronounced in
remote sensing approaches to estimate river discharge, as image mea-
surements are, by nature, more spatially distributed than in-situ tech-
niques.

2.2. Spatial scales in remote sensing of rivers

Techniques to estimate river discharge, characterize flow, and
measure bathymetry using data from airborne and spaceborne instru-
ments function on broader spatial scales than their in-situ counterparts.
Reliable WSE estimates from nadir altimeters often require river widths
of 1 km, and altimeter footprint radii are on the order of kilometers
(Birkett et al., 2002; Papa et al., 2010). Similarly, remote sensing
measurements of width may rely on broad spatial scales to extract a
‘mean effective’ or ‘reach-averaged’ width from water masks (Smith
et al., 1996), though newer approaches and higher resolution water
masks allow for width calculations at spatial scales nearer to ‘cross
sections’ than reaches (Pavelsky and Smith, 2008). Interferometric
methods which leverage spatially continuous WSE measurements and
water extent masks have been used to generate reach-averaged widths
and slopes, but required a spatial domain of 734 km to resolve slopes as
low as 1–2 cm/km with height accuracies on the order of tens of cm to
m (Alsdorf et al., 2000; Alsdorf et al., 2007; LeFavour and Alsdorf,
2005).
SWOT will provide a substantial improvement over existing remote

sensing tools with its WSE, width, and slope measurement accuracy, but
SWOT reach averaged data products over rivers must be averaged
across 1 km2 water surface areas to sufficiently remove random noise
from the data and meet the mission’s measurement accuracy targets for
WSE, width, and slope (10 cm, 10% and 1.7 cm/km, respectively). For a
100m wide river, this equates to averaging along 10 km reaches (Desai,
2018; Frasson et al., 2017). An airborne variant of the Ka-band Radar
Interferometer (KaRIn) instrument onboard SWOT, AirSWOT, has been
used to generate SWOT-like measurements prior to mission launch, and
a study of AirSWOT on the Tanana River in Alaska showed average
slope errors of 1 cm/km when data were averaged over 10 km reaches
(Altenau et al., 2017). SWOT’s capabilities present a unique opportu-
nity to improve global estimates of river discharge, but retrieving ac-
curate discharge estimates from SWOT’s spatially-averaged water sur-
face measurements will require alternative approaches to applying
open-channel flow equations (Pavelsky et al., 2014).

2.3. Open channel flow

This paper focuses on using hydraulic variables measurable by re-
mote sensing instruments in open channel flow equations, which are
convenient simplifications of more complex hydraulic processes and are
attractive due to their data requirements and modest computational
costs. Manning’s equation is traditionally written as:

due to the equation’s non-linearity: evaluation of Manning’s equation 
using reach average variables does not yield reach average discharge. 
This issue was highlighted by Li et al. (1992), who showed that aver-
aging spatial variability within channel reaches results in a revised form 
of open-channel flow e quations w here t he f riction t erm (roughness 
coefficient or  Darcy-Weisbach’s f)  is  dependent upon the spatial var-
iances of the hydraulic parameters. This finding h ighlights b oth a 
problem and way forward for application of these equations in rivers –
while cross-sectional non-uniformities exert non-linear effects, they can 
be accounted for if the spatial variability of the channel morphology 
can be measured or estimated.
The emergence of high-precision remote sensing measurements of 

water surface elevations (WSE) and slope has revived interest in ap-
plications of these open channel flow e quations o n n atural rivers 
(Bjerklie et al., 2018; Tourian et al., 2017). The forthcoming Surface 
Water and Ocean Topography (SWOT) mission (http://swot.jpl.nasa. 
gov/) promises high-accuracy measurements of water surfaces for large 
rivers when its data are averaged across multi-kilometer spatial do-
mains, w ith target error standard deviations of 10 cm height and 
1.7 cm/km slope for a reach with an average width of 100 m wide and a 
flow distance of 10 km (Biancamaria et al., 2016; Desai, 2018; Frasson 
et al., 2017). A number of proposed SWOT discharge algorithms 
leverage these high-accuracy and spatially averaged water surface ob-
servations in channel geometry-based flow laws to solve for unknown 
bathymetric and resistance variables w ith encouraging preliminary 
results (Durand et al., 2014; Gleason and Smith, 2014; Gleason et al., 
2014; Hagemann et al., 2017). However, the inability of SWOT and 
other remote sensing tools to accurately resolve open-channel flow 
parameters at small spatial scales and the difficulty of parameterizing 
the spatial variability of these parameters highlights the challenge of 
applying these equations in natural settings.
We take an empirical approach to reconciling the spatial variability 

issue by testing a hypothesis – that the roughness variability described 
by Li et al. (1992) can be parameterized as a unique function of reach-
averaged channel variables, in particular the hydraulic depth of flow. 
Such an approach simplifies a more complex roughness parameteriza-
tion by trying to approximate within-reach variability as a function of 
SWOT-observable, reach-averaged variables. This assumes that within-
reach variability can be broadly parameterized as a function of stage or 
discharge, and theorizes that the spatial variance in channel hydraulic 
variables reduces as the river approaches bank-full flow; this hypothesis 
is generally accepted for spatial variations in w ater surface slope 
(Dingman, 2009, p. 228), and may be more controversially applied to 
sub-reach variability in width and flow velocity (MacWilliams e t al., 
2006). We also expand on a finding by Durand e t a l. (2016), which 
motivated this w ork by highlighting averaging-induced roughness 
variability in a test dataset for SWOT discharge algorithms, by showing 
parallel behavior in in-situ and modeled data and by proposing an 
empirical approach to account for the observed variability. In this 
paper, we first present an in-situ dataset of spatially distributed water 
surface elevation, slope, and width data from an urban reach of the 
Olentangy River in Central Ohio, USA and provide a hydraulic char-
acterization of the observed data. We then evaluate this data in the 
context of Manning’s equation using a series of empirical roughness 
parameterizations, and compare results with those from a calibrated 1-
d hydraulic model of the river reach.

2. Background

2.1. Spatial scales of river morphology

Natural rivers are characterized by a variable and dynamic channel 
morphology on relatively small spatial scales. Moody and Troutman 
(2002) showed that the integral length scale of channel morphology –
or correlation length – scales linearly with width and varies from one to 
two mean channel widths on rivers ranging in mean annual discharge

http://swot.jpl.nasa.gov/
http://swot.jpl.nasa.gov/


=Q
n
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(1)

where Q is volumetric discharge, n is a non-dimensional roughness
coefficient, R is the hydraulic radius, S is the energy or friction slope,
and A is the cross sectional area of flow.
In flows characterized by a low-Froude condition (Fr < 0.3, dis-

cussed further in Section 3.2), when the diffusive wave approximation
to the Saint-Venant shallow water equations is appropriate (Garambois
and Monnier, 2015), we can estimate the friction slope as equivalent to
the sum of the bed slope and the change in water depth, giving:

= +S Z
x

Y
x

, (2)

where Z
x
is the bed slope and Y

x
is the downstream change in depth;

this is functionally equivalent to the water surface slope. Using the
diffusive approximation and rewriting Eq. (1) to substitute width for
the wetted perimeter following Strelkoff and Clemmens (2000), we
arrive at a form of Manning’s equation that is convenient for SWOT
purposes:

= +Q
n

A A W S1 ( ) ,0
5/3 2/3 1/2

(3)

where A0 represents the unobservable cross-sectional area of flow, A
represents a trapezoidal approximation of the observable changes in
cross-sectional area of flow relative to A0, and W and S are water sur-
face width and slope, respectively. features SWOT-observable variables
in A, W, and S, leaving n and A0 unknown. This form of Manning’s
equation has been used extensively in pre-SWOT algorithm develop-
ment; to solve for unknowns in n and A0, these Manning’s-based algo-
rithms invoke continuity and use Bayesian (Durand et al., 2014;
Hagemann et al., 2017) or inverse (Garambois and Monnier, 2015)
methods. The algorithm developed by Hagemann et al. (2017) is the
most recent Manning’s equation-based SWOT discharge algorithm; it
uses an extensive dataset of channel data from the United States to
generate prior values for unknown variables in open-channel flow
equations and estimates model error in Manning’s equation at ∼25%.
However, it holds Manning’s n constant in both time and space. This
assumption may contribute to some of the assumed error in the Man-
ning’s equation model: a study using multiple SWOT algorithms on a
large dataset of hydraulic model outputs suggested that, for Manning’s
equation-based algorithms, the assumption in these algorithms of a
temporally constant roughness coefficient, n, may be a significant
contributor to algorithm error for certain test cases (Durand et al.,
2016).

2.4. Variability in Manning’s n

Manning’s equation uses a single parameter, n, to represent the
frictional nature of a given channel cross section, and hydraulic re-
ference manuals provide roughness guides for channels based on their
composition and morphology (Chow, 1959, p. 89-127) (Akan, 2011). A
channel’s reference roughness is meant to be constant for all within-
bank flows; however, studies of flow in natural rivers have frequently
found variability in Manning’s n, often in the form of a nonlinear, in-
verse relationship between n and stage or discharge (De Doncker et al.,
2009; Rouse, 1943; Wallis and Knight, 1984). Frictional effects in rivers
have been known to scale with the relative submergence of roughness
elements in the channel (Bathurst, 1985), and from a physical per-
spective this phenomenon can be explained by the “law-of-the-wall”,
which equates frictional retardation to boundary shear stresses induced
by roughness at the bed surface (Cardoso et al., 1989). Going beyond
the “law of the wall”, Ferguson (2007) proposed a variable power
equation on Darcy-Weisbach’s f to allow for roughness variation as a
function of the roughness length scale of the channel bottom, adding
into consideration the physical effects of ‘form drag’, a pressure force
generated by pressure gradients around large-scale roughness elements

in the channel bed (Powell, 2014).
These physical explanations for n variability may mask additional

non-physical errors associated with using open-channel flow equations
in natural channels. Li et al. (1992) used an analytical assessment of the
Darcy-Weisbach equation to show that the spatial variability of channel
form induced nonlinear effects on Darcy-Weisbach’s roughness para-
meter, f, and conceived an ‘effective resistance’, a terminology we
borrow in this paper. Li et al. (1992) showed that this ‘effective re-
sistance’ is larger than the cross-sectional roughness and is a function of
the variances of the channel geometry. The issue of within-reach
variability and its effects when averaging hydraulic variables has been
explored more deeply in reach-scale hydraulic geometry studies
(Harman et al., 2008; Navratil and Albert, 2010) but has not been
sufficiently explored in the context of Manning’s equation. Under-
standing and properly parameterizing these non-physical variations in n
is important for applications of Manning’s equation in natural river and
tidal channels (Ferguson, 2010) and is particularly important due to the
impending launch of SWOT and the rapid growth of other remote
sensing tools in the hydrological sciences.

3. Methods

3.1. Study area & study period

The study was conducted on a 6.5 km stretch of the Olentangy River
in Ohio, USA. The watershed, contributing to our study reach is ap-
proximately 1300 km2 and is characterized by a mix of agricultural and
suburban land uses. Discharge in the study area is regulated for flood
control and water use by a large storage dam 20 km upstream of the
upstream end of the study reach. The study reach runs adjacent to
suburban neighborhoods and a major highway and is semi-channelized.
There are two low-head dams located 5.5 km and 6.5 km downstream
from the start of the study area which are not used to regulate flow but
which create substantial backwater pools. The riverbed is largely
composed of cobbles and pebbles in the steep, free-flowing upstream
portion of our study reach and transitions to sand and silt in the
backwater-affected, slower-flowing downstream portions.
We used USGS gage #03226800 for discharge data, which is located

4.4 km upstream of the upstream end of the study reach and which
reports an annual average discharge of 15m3/s. The watershed area of
the USGS gage is 30 km2 smaller than the watershed defined by the
upstream end of our study reach, which is then 50 km2 smaller than the
watershed defined by the end of the study reach. The study period used
for this analysis lasted from 3 December 2014 to 17 December 2014,
when all loggers were functioning and properly submerged. During this
period, discharge at the USGS gage ranged from 0.6m3/s to 12.5m3/s,
with a mean of 3.0m3/s; while the ten water-year (2008–2018) mean
annual flow is 14.4 m3/s (SD=4.6m3/s), the median annual flow is
4.24m3/s and the range of observed discharges in this study spans the
5th to 70th percentiles of flow.

3.2. In-situ timeseries data

The in-situ portion of the study generated a timeseries of river
elevations and surface widths using a combination of regular, auto-
mated water level measurements and sporadic, manual water surface
width measurements. We chose twenty approximately evenly spaced
sites for in-situ measurements; their locations are shown in Fig. 1.
Limitations on river access and the need to measure just up- and
downstream of low-head dams precluded even spacing. At each study
site, we installed a Solinst level logger on the riverbed to record relative
water depths at 5 min intervals. Level loggers were attached to cinder
blocks, which were tipped sideways and placed on the riverbed to
minimize possible movement along the riverbed. A Leica Viva GS15
RTK GPS rover was used to tie in relative water depth to water surface
elevation (WSE). Across all logger records, we found 18 obvious and



abrupt shifts in depth> 5 cm, which we corrected. Otherwise, we as-
sumed that loggers did not move in the riverbed for the duration of the
study. We converted logger-measured depths and GPS measurements to
WSEs using a least-squares estimator which imposed a linear constraint
on successive logger WSEs to force a downhill water surface profile at
all sites and timesteps in the data, as described in Appendix A: Con-
strained logger elevation estimator. The accuracy and results of this
estimator are presented in Section 4.1. We used a TruPulse laser ran-
gefinder to measure the width of the river by measuring from shore to
shore perpendicular to flow. Width measurements were taken during
periods of both low and high flow to capture as much width variability
as possible; this range of measurements allows for a full width-WSE
relationship across the study period, which was then used to generate a
continuous timeseries record of river widths for each site. Then, using a
trapezoidal approximation of area, the change in cross sectional area δA
was calculated using the following equation:

= +A w w h h
2

( ),i
i

i
0

0 (4)

where wi and hi are the width and WSE at time i and h0 is the initial
WSE, when δA0=0.
After finding WSE, width, and δA timeseries for each of the twenty

sites, we averaged the data across reaches. The study area was split into
five reaches after considering observable changes in the morphology,
including the two low-head dams, and ensuring that each reach in-
cluded at least four measurement sites. The five reaches had lengths of
979m, 1449m, 1543m, 989m, and 978m. For each reach, a reach-
averaged water surface slope timeseries, S , was calculated by com-
pleting a first-order linear fit through the water surface elevation
timeseries of all sites in the reach. In addition, reach-averaged time-
series values of WSE, width, and δA were calculated by taking the
average of those values at all sites within a given reach at given time.
Data shown in the results were averaged to hourly timesteps from the
native five-minute measurement frequency to smooth out noise in the
logger data; the analysis was also done at five-minute and fifteen-
minute frequencies to match the native frequency of the logger and

discharge data and showed nearly identical behavior, with the relative
range of observed roughness changing by less than two percent between
time-averaged and non-time averaged cases.
To compare with measured discharge at the USGS gage, we esti-

mated the lag time between the gauge and the experimental reaches by
looking at the rising limb of the high flow event as it traveled from the
USGS gage to our study area and then past each pressure transducer.
We used a constant celerity for the adjustment and were able to match
discharge to the logger stage variations across the duration of the study
period. Each reach then was assigned a time-shifted discharge from the
USGS discharge data.

3.3. Bathymetric mapping of the study reach

After collecting WSE and width timeseries data, we conducted
bathymetric measurements using boat-based and wading techniques.
Measurements of water depth and water surface elevation from a kayak
constituted the primary method of bathymetric data collection. The
kayak was mounted with a Garmin GPSMAP 441s depth sounder to
measure water depth and a Leica Viva GS15 RTK GPS to collect a re-
ference water surface elevation. Geolocated depth measurements were
transformed into river coordinates, which define each point by flow
distance and distance perpendicular to river centerline (Legleiter and
Kyriakidis, 2008). River coordinates were binned by flow distance to
locations along the river centerline spaced 10–25m apart, and the
water surface elevation for each node was calculated as the median GPS
elevation of data binned to that node, if there were at least 10 high
quality GPS elevation measurements with a 3-d coordinate quality<
2 cm. A best-fit polynomial of those median centerline elevations was
then used to estimate elevations for locations with insufficient elevation
data. Due to the blanking distance of the depth sounder, the channel
bottom was measured directly by wading with the Leica GPS in sections
of the river less than 40 cm deep. In total, we collected over 33,000
bathymetric elevations from the kayak and manual GPS data. These
elevation points were converted to an interpolated DEM of the river
channel using a universal kriging method. We identified the channel
edges using orthoimagery from the Ohio Geographically Referenced
Information Project.
The bathymetric map of the study reach was used to calculate the

cross-sectional area of flow at the beginning of the in-situ time series,
A0. WSEs from each logger were interpolated across reaches to 467
locations along the river centerline, and the difference between each
bathymetry elevation pixel and the WSE for the closest interpolated
river centerline point was taken as a depth. Those depths were multi-
plied by the pixel size of the bathymetry DEM raster (2.5 m×2.5m),
and the total estimated volume of each reach was divided by the flow
distance of each reach.

3.4. Hydraulic model development

After building the bathymetric map of the study area, a hydraulic
model was developed by sampling the bathymetry at 115 cross sections;
a portion of the interpolated bathymetry and cross sections for Reach 3
are shown in Fig. 2. The two low-head dams in the study area were
included in the model by approximating the dam geometry using a
previous study of the Olentangy River (Ringley, 2006). An unsteady
simulation of the flow timeseries captured by the in-situ data from 3
December 2014 to 17 December 2014 was then run in the Hydrologic
Engineering Centers River Analysis System (HEC-RAS). Boundary con-
ditions were set by USGS discharge data from the in-situ study period
along with elevations from our level logger at the downstream end of
the field site. The unsteady flow simulation was run with a time step of
15 s to satisfy the Courant Condition. Manning’s n was set to a constant
value of 0.04 at every cross section following the previous study of the
river reach. Flow remained inside the channel and did not increase to
submerge bank-side vegetation or a substantially different substrate, so

Fig. 1. Title: Map of study reach. The top left inset shows that watershed and
state of Ohio in North America the top middle inset shows river centerlines and
water bodies from U.S. Geological Survey (2000) and Pekel et al. (2016) in the
state of Ohio, and the top right inset shows the study reach and tributaries, with
the USGS gage upstream and yellow lines marking the low-head dams. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)



we did not assign a variable roughness in the model.
After the simulation was run, data were averaged to hourly at each

of the 115 cross sections, and cross-sectional timeseries data were
grouped into the same reaches as the in-situ data for averaging using
the same techniques: we used a geometric average to calculate mean
cross-sectional area, water surface width, and discharge, and calculated
water surface slope using a first order linear approximation slope using
all water surface elevation measurements within the reach. This created
a reach-averaged dataset of hourly area, width, water surface slope, and
discharge for the five reaches. In addition to those data, the HEC-RAS
model provides the friction slope used in Manning’s equation, Sf, the
hydraulic radius, R, and average velocity, V.

3.5. Hydraulic characterization

To justify using the water surface slope in Manning’s equation,
which requires a low Froude approximation, we characterized the hy-
draulic characteristics of the observed flow. Following the approach of
Trigg et al. (2009), who used previous studies of appropriate approx-
imations to the Saint-Venant equations (Moussa and Bocquillon, 1996;
Vieira, 1983) to characterize the Amazon river floodwave across mul-
tiple broad river reaches, we calculated the Froude number, kinematic
wave number, and wave period from the collected data using Eqs.
(5)–(7), respectively.

=F V
gy( )

,0 0.5 (5)

=k S L
yF

,0

0
2 (6)

+ =T
TV S

y
,f0 0

0 (7)

In Eq. (5), F0 is the Froude number V is the flow velocity; y is the
depth of flow, and g is gravitational acceleration. In Eq. (6), k is the
kinematic flow number, S0 is the bed slope, and L is the reach length. In
Eq. (7), T+ is the non-dimensionalized floodwave period, T is the
floodwave period (approximated as the duration of the floodwave from
baseflow to baseflow), and V0 and Sf0 are the water velocity and mean
friction slope (approximated as the water surface slope) of the

unperturbed, or non-flood, condition.

3.6. Effective resistance and fit to Manning’s equation

Effective resistance, n , was directly calculated from 3 using reach-
averaged values, as all values other than n are included in our time-
series dataset. This allows us to solve for n at each reach and time step
in the dataset. After computing n directly, we used a nonlinear least
square tool to fit parameters to n and assess different formulations of
Manning’s equation. We used four formulations of n to evaluate their
accuracy at parameterizing the effective resistance and minimizing
difference between estimated n values and those predicted by each
formulation.

1. Assume resistance is a constant value, per Manning’s equation, and
estimate n:

=n n̄, (8)

2. Assume a power law relationship between resistance and the river
stage, relative to the lowest observed flow variation. This requires
estimating a and b:

= +n a H H H( ) ,t
b

0 (9)

In this equation, Ht is the river stage at time t, H0 is the lowest
observed river stage and H is some small number (here equal to 0.1) to
ensure the power law returns a nonzero number.

3. Assume a power law relationship between resistance and discharge;
this again requires estimating parameters a and b:

=n aQ ,b (10)

This relationship between ñ and Q can be further rearranged to
show that if is correct then exponents for A, W, and S in Manning’s
equation must be modified; this algebraic rearrangement is shown in
Appendix B.

4. Assume a logarithmic relationship between resistance and the depth
of flow relative to bankfull flow; this assumption requires estimating
nb:

= +n n H B
h B

1 log ,b
(11)

with nb equal to the bank-full (reference) Manning n, H equal to
bank-full (reference) stage, h equal to the stage at time of observation,
and B equal to the stage at which Q= 0 (Bjerklie et al., 2018). This
approach allows n to approach nb as the discharge approaches bankfull
flow, but also requires knowledge of the stage at zero flow, or the
average bathymetric elevation.

4. Results

4.1. In-situ measurements

After adjusting water surface elevations using the constrained least-
squares estimator, we calculated error using a jackknife validation
strategy and found a water surface elevation RMSE of 3.73 cm and a
positive bias of 0.30 cm relative to 67 GPS measurements; the height
validation points are shown in Fig. 3. Width-WSE relationships were
established for each site using a linear regression and are displayed in
Fig. 4 for all 20 sites; these relationships were used to calculate width
timeseries for each site, and we set a requirement for a positive width-
WSE relationship at p < 0.05. For the 6/20 sites which did not meet
this requirement, we used the average width as a constant time-varying
width. Fit statistics for all width regressions are given in Appendix C.
We observe a high degree of within-reach variability in the width-

Fig. 2. Title: Example plan view of interpolated bathymetry with HEC-RAS
cross sections.



height relationships, and see that width variation for the observed
discharge range is highest in the steep, upstream reaches and lowest in
the low-gradient, downstream reaches.
Reach-averaged cross-sectional area of flow, the sum of A0 and δA as

written in Eq. (3) and Eq. (4), ranged from 7 to 31m2 at Reach 2 to
70–89m2 at Reach 5, where widths were mostly invariant and areal
variation was largely driven by stage variability. Fig. 5 shows the reach-
averaged timeseries values of relative stage, slope, width, and cross-
sectional area of flow. The relative stages of the five reaches alongside
USGS gage data shows that the rising limbs of the hydrograph differ,
with a dual peak of stage in the study area’s discharge that is not ap-
parent in the USGS gage station. This difference suggests that localized
rainfall led to lateral inflows along the river between the USGS gage and
our study area, a problem which likely added to our error when ana-
lyzing the data in the context of Manning’s equation. We assume that Q
is both constant within a given reach and constant between reaches
after adjusting for flood wave celerity.

4.2. Observed hydraulics: in-situ and modeled data

For the steeper, upstream portion of the study area, in-situ water
surface slopes (Fig. 5b) had maxima during the lowest recorded dis-
charge and minima during the highest recorded discharge, varying from
143 cm/km to 132 cm/km and 76 cm/km to 63 cm/km in Reaches 1 &
2, respectively. For Reaches 3, 4, and 5, which are affected by the
backwaters created by the two low-head dams at low-flow, the water
surface slope increased dramatically with increased discharge, from
6 cm/km to 29 cm/km, 1 cm/km to 12 cm/km, and 2 cm/km to 7 cm/
km for reaches 3, 4, and 5, respectively. The backwater ‘pool’ from the
dam below Reach 4 moved upstream, creating a broader concave slope
as shown in Fig. 6 for high and low flows.
As is seen in Fig. 6, the results of the unsteady flow simulation

showed similar dynamics and variability in water surface slopes;
overall, the WSE root mean square error was 13 cm across all reaches
and time steps when compared with the in-situ data. The model and
bathymetry data show that the water surface slope mostly follows the
bed slope in the upstream reaches, but the effect of the first low-head
dam leads to a deviation from the bed slope for 2 km upstream of the
dam. Similar to the in-situ data, the upstream reaches were character-
ized by decreased slopes at high flow, while lower-gradient reaches
featured increased slopes at high flow as the backwater ‘pool’ created
by the low-head dams propagated upstream.
In Table 1, values for Eqs. (5), (6), and (7) are given at the lowest

average, and highest recorded flow for all reaches. In Table 2, values for
F0, k, and T+ are given for all reaches for those same flows. The in-situ
data is characterized by low Froude (F0) numbers at all stages of ob-
served flow, suggesting that the inertial term in the Saint-Venant
equations is likely unimportant to the flow regime.

4.3. Effective resistance

Using known cross-sectional area of flow, water surface width,
water surface slope, and discharge for each reach, the effective re-
sistance, n , was calculated from both the in-situ and modeled data
using Eq. (3). For in-situ data, which can be seen in the left panel of
Fig. 7, n varied with discharge in a non-linear way; high-flow effective
n was 0.09 at Reach 1 and 0.06 at Reach 5, while low-flow effective n
was 0.71 and 0.61 for the same reaches. The range in n was largest at
Reaches 1 and 5, where low-flow n was 8 and 10 times larger than high-
flow n , respectively. Variation was smallest at Reach 2, where low-flow
n was only 2.7 times larger than high-flow n . For modeled data, n was
calculated using Abar, Wbar, Sbar, and a reach-centered Q. Reach-aver-
aged values of A, W, and S created a similar variability to that observed
in the in-situ data, with high-flow n ranging from 0.08 at Reach 1 to
0.02 at Reach 5 and low-flow n of 0.46 and 0.82 for the same reaches,
despite the fact that the model was run with n=0.04 and allowed for
no expansion or contraction losses. In addition to the analysis using the
water surface slope from the model, we observed similar n variability
and error patterns in the modeled data using the reach-averaged HEC-
RAS ‘friction slope’, but only show the water surface slope results from
the model to allow for a simple and direct comparison with the in-situ
data.

4.4. Calibration of Manning’s equation

The results of the least squares optimizations of Manning’s equation
(Eq. (4), with Eqs. (8–11) substituted for n) are given in Fig. 8 and
Fig. 9. Fig. 8 shows the estimated n for the optimized Manning’s results
for the in-situ and model output data. Eqs. (9) and (10) allow for a
highly variable effective resistance which decreases with increasing
stage and discharge, while Eq. (11) generates a similar but less pro-
nounced variation in n . Fig. 9 shows the errors in estimating discharge
after using the optimized parameters in Manning’s equation, and Fig. 10
shows discharge estimates using the best-performing parameterization,

Fig. 3. Title: Elevations from constrained least squares estimator compared
with independent GPS measurements. Caption: Estimator RMSE was 3.73 cm
and bias was 0.30 cm.

Fig. 4. Title: Width – Height measurements and a linear regression for all logger
twenty sites. Caption: Width-height variation was larger in the upstream, high-
gradient reaches (Reaches 1, 2, and 3), and small in the reaches adjacent to low-
head dams (Reaches 4 and 5). The p and R2 values of the linear fit, along with
the slope of the height-width fit for sites with p < 0.05, is given in Appendix C:
Fit statistics for all height-width rating curves.



Eq. (10). For the entire in-situ dataset timeseries, relative root mean
square error (rRMSE) fell from an average of 61% for constant n to
14%, 29%, and 50% for discharge-n power law, stage-n power law, and

stage-n logarithmic formulations. In the modeled data, similar patterns
in error were observed, with errors reducing from 54% to 18%, 23%,
and 40% for the same parameterizations when HEC-RAS generated
water surface slope was used in Manning’s equation. In both the mod-
eled and in-situ data, these reductions in error were unevenly dis-
tributed across reaches. For example, for Reach 1, rRMSE of the in-situ
data fit dropped from 81% using a constant n to 8% using Eq. (9) and
15% using Eq. (10), while in the modeled data the rRMSE dropped from

Fig. 5. Title: Reach-averaged values of stage (A), slope (B), width (C), and cross-sectional area of flow (D) for the study period. Caption: Note that the independent
and dependent axes are switched, and that cross-sectional area of flow change is stage-driven in reaches where weak width-height correlations were found (e.g. Reach
5), but both width- and stage-driven in reaches where the width-height relationship was more apparent (e.g. Reach 1).

Fig. 6. Title: Water surface profile at low and high flow, and thalweg elevations
from the HEC-RAS model.

Table 1
Flow depth, velocity, water surface slope for reaches 1–5. Data are provided for
mean study period discharge, Q=3m3/s (min discharge Q=0.8m3/s, max
discharge Q=13m3/s).

Reach Average depth, m Average velocity,
m/s

Surface Slope,
cm/km

Reach length,
m

1 0.67 (0.55, 0.92) 0.13 (0.04, 0.37) 12 (141, 137) 979
2 0.41 (0.21, 0.76) 0.20 (0.08, 0.44) 73 (77, 66) 1449
3 0.60 (0.44, 0.95) 0.11 (0.03, 0.30) 18 (6, 29) 1543
4 1.33 (1.24, 1.56) 0.04 (0.01, 0.22) 32 (1, 12) 989
5 1.38 (1.31, 1.60) 0.04 (0.01, 0.15) 2 (2, 6) 978



58% to 8% and 7% using those same equations. On a reach-by-reach
basis, the fit of in-situ data to Manning’s equation with both constant
and variable n showed more consistent variation on the three upstream
reaches than on the two reaches immediately above low-head dams for
the in-situ data. For example, Reach 4 was characterized by relatively
high error across all parameterizations of n for the in-situ data, with an
rRMSE for in-situ data that never fell below 23%, but uniformly low
rRMSE for the modeled data, with rRMSE<10% for all para-
meterizations. Conversely, Reach 5 had uniformly high error in the
modeled data, where rRMSE never dropped below 59%, but rRMSE in
the in-situ data dropped from 98% rRMSE to 19% rRMSE when para-
meterized with Eq. (9).

5. Discussion

The results of the hydraulic characterization support our use of the
water surface slope in a modified Manning’s equation. Observed kine-
matic wave numbers generally fell outside the range of values explored
by both Vieira (1983) and Moussa and Bocquillon (1996), but these
studies suggest a diffusive approximation is valid due to the low F0
(< 0.10) and very large k (> 15) values. The large T+ in Reaches 1
and 2 (T+>75) may indicate a kinematic regime is appropriate
(Moussa and Bocquillon, 1996), but both the kinematic and diffusive
approximations should be similar with low Froude and high kinematic
wave numbers (Vieira, 1983), and the diffusive approximation is gen-
erally appropriate under low F0 conditions (F0 < 0.3) (Garambois and
Monnier, 2015).
The observed increase in n during low-flow conditions matched the

increase reported by Durand et al. (2016) in both in-situ and modeled
data, suggesting that the ‘roughness’ parameter may be better described

as an effective resistance and that the primary source of this variation is
a non-physical artifact of spatial averaging techniques. The in-situ data
shows a non-linear decline of n with both stage and discharge in both
high-gradient and low-gradient reaches within the study area. This
relationship also emerges from the modeled data when it is represented
by reach-averaged values in the context of an open channel flow
equation, despite the use of a constant roughness coefficient in the
model run. The emergence of this relationship in reach-averaged cal-
culations of both the in-situ and modelled data suggests that the ob-
served variability in n is largely an artifact of spatial averaging. In the
case of the in-situ data, we cannot prove that Manning’s equation held
at cross sections with a constant roughness, but the presence of the
same phenomenon in the modeled data provides a strong basis for our
contention that the roughness variability observed in both datasets is an
artifact of spatial averaging. Additional factors may be at play: since
Manning’s n is the only non-physical parameter in the equation, it may
aggregate and compensate for other, unexplored sources of model error
when fitting water surface data.
The observations in this paper do not provide a physical explanation

for roughness variability in open channel flow, which is a well-docu-
mented phenomenon in the suite of Chezy-derived open channel flow
equations (Yen, 2002). However, despite mention in the literature of
the need to consider spatial variability (Li et al., 1992; Yen, 2002),
many studies use reach-averaged hydraulic variables and report dy-
namic roughness coefficients without mention of the effects of spatial
averaging. In real-world observations of fluvial hydraulics on relatively
low-gradient rivers, this approach can be difficult to avoid; while
channel shape can be measured at a discrete spatial location along a
river, the energy grade or slope is a value measured over some con-
tinuous distance.
This variability in effective resistance has clear ramifications for

discharge estimates derived from remote sensing data. For the forth-
coming SWOT mission, obtaining accurate discharge estimates will rely
on obtaining accurate measurements of water surface height, width,
and slope. The mission’s ability to meet its science requirements is
conditional on the use of spatial averaging to reduce random noise in
the data, requiring spatial averaging over reaches up to 10 km long
(Desai, 2018). Such considerations of spatial averaging are not unique
to SWOT; most remote measurements of water surface elevation, ex-
tent, and slope estimation intrinsically rely on some form of spatial
averaging to reduce measurement error (Birkinshaw et al., 2014; Hall
et al., 2012; O'Loughlin et al., 2013).
Also notable from the open-channel flow optimization results is the

variation in error characteristics across river reaches. In both in-situ

Reach Froude number,
F0

Kinematic wave
number, k

Non-dimensionalized period,
T+

1 0.05 (0.02, 0.12) 8814 (10825, 623) 86.24 (29.59, 179.42)
2 0.01 (0.06, 0.16) 806 (1573, 392) 116.25 (94.13, 123.86)
3 0.05 (0.02, 0.10) 1870 (833, 1881) 11.07 (1.45, 30.17)
4 0.02 (0.004,

0.06)
349 (585, 3778) 0.09 (0.03, 4.56)

5 0.01 (0.003,
0.04)

2772 (2452, 5149) 0.23 (0.05, 0.28)

Fig. 7. Title: Back-calculated n from in-situ
and model output data. Caption:
Comparison of reach-averages and results
from using the water surface slope supplied
by HEC-RAS.

Table 2
Froude number, kinematic wave number, and non-dimensionalized period for 
Reaches 1–5. Data are provided for mean study period discharge, Q = 3 m3/s 
(min discharge Q = 0.8 m3/s, max discharge Q = 13 m3/s).



Fig. 8. Title: Effective resistance (ñ) estimated from in-situ and model output data. Caption: The formulations used to back-calculate ñ are as follows: (A) constant
roughness (Eq. (8)), (B) power law relationship between resistance and stage (Eq. (9)), (C) power law relationship between resistance and discharge (Eq. (10)), and
(D) logarithmic relationship between resistance and the depth of flow relative to bank full flow (Eq. (11)).

Fig. 9. Title: Relative root mean square errors for discharge estimated with Manning’s equation using different ñ formulations. Caption: The formulations used in
Manning’s equation are as follows: (A) constant roughness (Eq. (8)), (B) power law relationship between resistance and stage (Eq. (9)), (C) power law relationship
between resistance and discharge (Eq. (10)), and (D) logarithmic relationship between resistance and the depth of flow relative to bank full flow (Eq. (11)).



and modelled data, discharge errors were highest in one of the two
furthest downstream reaches (Reaches 4 or 5), which were character-
ized by the largest cross sectional areas of flow, lowest average flow
velocities, and smallest Froude number at mean flow. However, the
‘worst’ reach was not constant in the two cases: Reaches 4 and 5 had
similarly large errors in the in-situ data, while errors were largest in
Reach 5 in the model data. This may be due to instrument and model
limitations; for Reaches 4 and 5, the low-head dams created very mild
water surface slopes at low flow (< 5 cm/km), which are difficult to
accurately resolve on a<1 km reach using elevation constraints with
σ≈ 2 cm in optimal circumstances; the model similarly showed a near-
zero water surface slope at times. The contrast in errors between Reach
1 and Reaches 2 and 3 is also notable: the Manning’s approximation
with constant n has much higher error on Reach 1 than Reaches 2 and
3, but the errors drop to very similar levels for all three reaches when a
power law n formulation is used. This disparity is possibly explained by
a geomorphological issue: the first third (∼500m) of Reach 1 runs
adjacent to a highway, where the channel is lined with rip-rap and
characterized by series of artificial riffle-pool sequences with deep
(> 1 m) pools. This flow regime contrasts sharply with the remaining
500m of Reach 1 and with the entirety of Reaches 2 and 3, where the

river flows in a shallow, meandering alluvial channel. These results
suggest that the issue of spatial averaging in Manning’s equation is
affected by spatial variability at multiple scales, and that a couple of
sharp hydraulic discontinuities can have outsized effects on variation in
effective resistance.
While these results are merely observational, they do point to po-

tential benefits of defining reaches with consistent hydraulic char-
acteristics, and splitting reaches apart where the fundamental nature of
the channel geomorphology changes (artificial to ‘free-flowing’, steep to
mild, etc.). Frasson et al. (2017) presented automated reach definition
methods that aim to create reaches with consistent hydraulic char-
acteristics; however, the impact of reach definition on the variability of
ñ has yet to be evaluated. In the broader SWOT context, our study reach
represents a challenging, but relevant scenario: it is borderline SWOT
observable (error statistics are given for a river of 100m average width
over a 10 km reach), but the issues associated with hydraulic dis-
continuities, river engineering, and lateral inflows are relevant to dis-
charge estimates on many world rivers.

6. Conclusions

This study provides a novel perspective on the issue of roughness
variability in Manning’s equation by showing parallel roughness
variability in both in-situ and modeled data. Creating a variable
roughness parameterization in Manning’s equation or other open
channel flow formulations is not a novel concept, and both logarithmic
and power-law formulations of roughness have been proposed with a
more thorough physical or analytical basis than is provided here.
However, this paper draws attention to the need to explicitly address
spatial variability in roughness parameterizations, which is a proble-
matic and under-discussed issue in applications of Manning’s equation
on natural rivers.
Given the results observed here, a two-parameter formulation of

Manning’s n to address contributors to flow resistance is appealing in
the context of discharge estimates which use reach-averaged data
products such as the suite of mass-conserved flow-law inversions pro-
posed for SWOT discharge retrieval algorithms (Gleason et al., 2017).
This approach adds complexity to both Manning’s equation and those
inversions, which would otherwise prescribe or solve for a singular flow
resistance parameter for a given channel, and may contribute to further
equifinality in algorithm solutions when three values – including two
non-physical parameters – need to be found. Data assimilation ap-
proaches to remote sensing estimates of discharge may be able to use
the full Saint Venant equations and bypass the issues discussed here,
and have shown promising preliminary results (Oubanas et al.,
2018a,b). However, we believe that there is potential and utility for
these mass-conserved open-channel flow law inversions in the context
of remote sensing due to their relatively low computational intensities
and promising preliminary results (Durand et al., 2016; Hagemann
et al., 2017; Yoon et al., 2016). Fully developing and promoting the
idea of an ‘effective resistance’ parameterization (Li et al., 1992) in the
context of discharge estimates from SWOT or other remote sensing
missions will require further examination of these averaging effects and
an analytical parameterization of induced roughness variability.
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Fig. 10. Title: True and estimated discharge using constant (A) and variable (B)
Manning’s roughness. Caption: The top panel shows back-calculated discharge
using a constant Manning’s (Eq. (8)), while the bottom panel shows the same
discharges calculated using a power law relationship between resistance and
stage (Eq. (9)). The power-law roughness derived discharge captures the range
of flows for all reaches and more closely approximates the true discharge than
the constant roughness approach.



The elevation of each logger on the river bed was calculated using water surface elevation measurements from GPS and depth data from the
loggers. In order to minimize the errors in our estimated logger elevations while preserving the basic physics of the river system, we used a
constrained estimator to calculate the logger elevation, Z, at all sites, ensuring that for all times and all sites, Zi+Di,t > Zi+1+Di+1,t, where D is
the logger depth at site i and time t. The constrained estimator used a weighted objective function:

CZ b (A.1)

where C is a diagonal matrix of the inverse 3D coordinate quality (weight) and b is a vector of the weighted differences between measured logger
depths and GPS measurements. Equation (A.1) was subject to a linear constraint at all time steps t at the native resolution of the logger data (5min)
and all loggers i:

AZ b (A.2)

where b is the difference in WSEs between successive loggers (Zi+Di−Zi+1+Di+1) and A is formulated such that Ai < Ai+1, where i is a logger
and i + 1 is the next logger downstream.

Appendix B:. Algebraic reordering of Eq. (10)

Relating n back to Q as part of a power function leads to an interesting rewriting of Manning’s equation. Starting with the equation for effective
resistance, n :

=n aQb (B.1)

and substituting into (1)

= +Q
n

A A W S1 ( )0
5/3 2/3 1/2

(B.2)

= +Q
aQ
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1 5
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1
2(1 )

(B.5)

This rearrangement suggests that the exponents on A, W, and S (or R and S in the traditional Manning’s equation formulation) are affected by the
reach averaging effect. In the in-situ results, the optimized b value varies from −1.11 to −0.03.

Appendix C:. Fit statistics for all height-width rating curves

Fit statistics for a linear regression of height-width relations for each of the twenty logger sites. Bolded rows show where p < 0.05 and we use
the linear regression to calculate widths. Italicized rows show where p < 0.05 and a constant mean width was used. For Site 9, there were an
insufficient number of measurements to complete a fit.

Site Width/Stage slope p-value R2

1 13.95 0.01 0.86
2 5.45 0.01 0.81
3 11.33 0.01 0.73
4 31.66 0.02 0.65
5 2.38 0.03 0.49
6 8.60 0.00 0.92
7 14.76 0.00 0.91
8 21.07 0.00 0.87
9 N/A N/A N/A
10 5.42 0.01 0.74
11 16.64 0.00 0.89
12 5.74 0.00 0.92
13 3.23 0.01 0.63
14 −2.44 0.44 0.089
15 4.51 0.01 0.88
16 3.47 0.09 0.55
17 5.13 0.07 0.45
18 2.42 0.02 0.99
19 −0.34 0.92 0.0018
20 5.02 0.23 0.2305

Appendix A:. Constrained logger elevation estimator
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