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Abstract: The airborne AirSWOT instrument suite, consisting of an interferometric Ka-band synthetic
aperture radar and color-infrared (CIR) camera, was deployed to northern North America in July
and August 2017 as part of the NASA Arctic-Boreal Vulnerability Experiment (ABoVE). We present
validated, open (i.e., vegetation-free) surface water masks produced from high-resolution (1 m),
co-registered AirSWOT CIR imagery using a semi-automated, object-based water classification.
The imagery and resulting high-resolution water masks are available as open-access datasets and
support interpretation of AirSWOT radar and other coincident ABoVE image products, including
LVIS, UAVSAR, AIRMOSS, AVIRIS-NG, and CFIS. These synergies offer promising potential for
multi-sensor analysis of Arctic-Boreal surface water bodies. In total, 3167 km2 of open surface
water were mapped from 23,380 km2 of flight lines spanning 23 degrees of latitude and broad
environmental gradients. Detected water body sizes range from 0.00004 km2 (40 m2) to 15 km2.
Power-law extrapolations are commonly used to estimate the abundance of small lakes from coarser
resolution imagery, and our mapped water bodies followed power-law distributions, but only for
water bodies greater than 0.34 (±0.13) km2 in area. For water bodies exceeding this size threshold,
the coefficients of power-law fits vary for different Arctic-Boreal physiographic terrains (wetland,
prairie pothole, lowland river valley, thermokarst, and Canadian Shield). Thus, direct mapping using
high-resolution imagery remains the most accurate way to estimate the abundance of small surface
water bodies. We conclude that empirical scaling relationships, useful for estimating total trace gas
exchange and aquatic habitats on Arctic-Boreal landscapes, are uniquely enabled by high-resolution
AirSWOT-like mappings and automated detection methods such as those developed here.

Keywords: ABoVE; AirSWOT; surface water; OBIA; inland water; land cover; NDWI; scaling;
lake-size distribution

1. Introduction

Accurate mapping of terrestrial surface water bodies is necessary for understanding the hydrologic
cycle, energy and biogeochemical cycles, aquatic habitats, and improving earth system models [1].
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Spatially, the world’s greatest density of surface water bodies is in the Arctic-Boreal regions, and these
water bodies change in extent based on climate variability and permafrost presence [2–5]. Current
water maps are derived from lake censuses [6,7] and satellite remote sensing [8–10]. Large-scale
satellite-based studies typically produce datasets with 30 m resolution, which limit the observable lakes
to 0.002 km2 (2000 m2) or larger [6,8]. Increasingly, the surface water area distribution has been shown
to be a dynamic variable, and some satellite products contain multi-temporal information at both coarse
global [11] and detailed regional scales [12]. As it stands, there is no one surface water map suitable for
all spatial and temporal scales, and regional maps remain crucial for detailed hydrologic studies.

Regional studies have used high-resolution remote sensing data (<6 m resolution) and
ground-based methods to map lakes as small as 0.0001 km2 (100 m2) [13–15]. However, broad-scale
mappings of water bodies <0.001 km2 are limited and often focused on constructed farm ponds in
temperate climates [14,16,17]. This limitation impedes scientific understanding of freshwater resources
for at least three reasons: (1) the total count of small (<0.001 km2) water bodies is known to be large
but remains highly uncertain, especially in Arctic-Boreal regions [8], (2) lakes, ponds and wetlands are
often a net source of greenhouse gases, and their extent is used as inputs to climate models, although it
is uncertain [18–20], and (3) these water bodies are important for ecosystem services such as nutrient
processing and biodiversity [13,21,22].

In the absence of global, high-resolution maps, area scaling is often applied to estimate the
abundance of small water bodies and, subsequently, total surface water area [8,23,24]. Especially at
high resolution, it is hard to define a water body, as they are often ephemeral and can merge and
sub-divide as water tables rise and fall [15]. A power-law scaling relationship (Equation (1)) has
frequently been invoked to extrapolate lake areas for unmapped lakes [7,16,20,23,25,26], although the
scale over which power-laws can be used is unclear. The form of the power-law equation is:

P(A) = CA−α (1)

where A is water body area, P(A) is exceedance probability, the number of water bodies with area > A,
and C and α are empirically-derived fitting coefficients. For example, Downing et al. [23] used a Pareto
distribution, a form of a power-law with a horizontal shift, to model global lake areas larger than 0.1
km2. More recent studies, using higher-resolution data, found that other distributions may be better
suited to modeling small lakes [13,24] and that there is no regionally-consistent distribution [14,15].
Extrapolating with a lognormal distribution, for example, would imply 10–100 times fewer lakes,
decreasing the global surface area and the number of small water bodies [24]. New, Landsat-based
observations of global river area, which exhibits similar area-abundance relationships, are between 15%
and 59% greater than scaling-based estimates [25,27,28]. Thus, while models of lake area distributions
derived from coarse-resolution data may appear scale-invariant, including smaller water bodies
demonstrates the contrary. This difference underscores the need for high-resolution surface water and
wetland mapping.

To that end, we have produced a conservative, high-resolution map of open water bodies greater
than 40 m2 using airborne imagery. Data were collected from a color-infrared (CIR) camera included in
the AirSWOT Ka-band radar instrument suite, designed to measure water surface elevation (WSE).
These flights were part of the 2017 NASA Arctic-Boreal Vulnerability Experiment (ABoVE) campaign,
which aims to quantify the vulnerability and resilience of North American arctic ecosystems and
society, focusing on surface water, permafrost, carbon and disturbance [29]. There are existing surface
water maps covering the ABoVE spatial domain derived from satellite observations, but they are
much coarser (30–5000 m2 pixel size) than airborne data [30,31]. The only broad-scale study of lake
distribution at high resolution (<6 m pixel size) covers 923 km2 [14,32] with limited coverage of the
ABoVE domain. Our product was acquired over 23,380 km2 of Arctic-Boreal land and water, including
ground areas imaged within days or weeks of other ABoVE airborne sensors. Its broad extent and
high spatial resolution produce a unique water map for the ongoing ABoVE campaign and allow us to
test the effects of physiography on the water body distribution.
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Here, we present a semi-automated workflow to classify open water area from CIR digital
imagery and assess lake scaling statistics across the ABoVE domain in northern Canada and Alaska.
In the following sections, we outline the 2017 ABoVE flight campaign, discuss AirSWOT camera data
acquisition and processing, develop an open water classification workflow, show how high-resolution
CIR imagery can enhance data interpretation from other ABoVE flight campaigns, use the derived water
body product to test the hypothesis that lake-area scaling can be described by a power-law distribution,
and show how power-law fitting parameters (if applicable) vary across physiographic terrains.

2. Materials and Methods

2.1. 2017 ABoVE AirSWOT Study Areas and Flight Lines

ABoVE AirSWOT deployments occurred in two legs, with northbound sorties from North Dakota
to Alaska conducted between July 9–21, 2017 and southbound sorties over the same flight lines from
August 16–17, 2017 (Figure 1). Overlapping flight lines were designed to cover key field sites and to
provide repeat-pass data to support model-, field-, and satellite-based studies [33]. The areas imaged
by AirSWOT include the Yukon Flats Basin (YFB), a floodplain wetland environment along the Yukon
River, near Ft. Yukon, Alaska, the Mackenzie River Delta (MRD), Northwest Territories (NWT), Canada,
Precambrian Canadian Shield lakes (CSH) near Yellowknife, NWT, the Peace-Athabasca Delta (PAD),
Alberta, the largest inland delta in North America, and prairie pothole lakes in Saskatchewan and
North Dakota (Table 1). Mean precipitation (1979–2010) for these areas ranges from 155–471 mm and
mean annual air temperatures range from −13.6 to 4.4 ◦C [34]. Summer 2017 mean precipitation less
evaporation (P-E) along the AirSWOT flight lines is generally negative, averaging −1.2 mm in July and
−0.2 mm in August [34], with corresponding lake area decreases between the two acquisition dates.

Table 1. Study regions, acquisition dates, and coverage areas of 2017 ABoVE AirSWOT color-infrared
camera image acquisitions. The designation “river valley” refers to sorties roughly following a lowland
river or river valley. The designation “wetland” refers to Arctic-Boreal wetlands (including river deltas),
and “pothole” refers to glacially formed, prairie pothole lakes.

Region Site Code Category Area (km2)
Northbound

Flight(s)
Southbound

Flight(s)

Sagavanirktok River SAG Lowland river valley 309 July 19 -
Yukon Flats Basin YFB Wetland 4601 July 17, 20, 21 August 6, 7

Old Crow Flats OCF Thermokarst 653 - August 7
Mackenzie River Delta MRD Wetland 409 July 16 August 7
Tuktoyaktuk Peninsula TKP Thermokarst 1095 July 16 August 9
Mackenzie River Valley MRV Lowland river valley 3748 - August 9
Canadian Shield Margin CSM Wetland 814 - August 9, 12

Canadian Shield CSH Shield 2183 July 15 August 12, 15
Slave River SLR Lowland river valley 878 - August 13

Peace-Athabasca Delta PAD Wetland 1509 - August 13
Athabasca River ATR Lowland river valley 1011 July 9 August 13

Prairie Potholes North PPN Pothole, Lowland
river valley 1 5289 July 9 August 16,17

Prairie Potholes South PPS Pothole 880 - August 17
All regions - - 23,380 - -

1 This region transitions from a sparsely-populated, forested region in the north to agricultural prairie pothole lakes
in the south.
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Canadian Shield, lowland river valleys, prairie pothole lakes, and thermokarst regions). AirSWOT 
sorties were flown along these flight lines from S-N in July and N-S in August 2019 along ABoVE 
foundational flight lines [33], covering broad physiographic gradients and some of the most water-
rich regions in the world. 

2.2. CIR Camera Image Acquisition and Processing 

2.2.1. Image Acquisition 

The 16-megapixel (MP) CIR camera was mounted in a NASA B200 King Air and enclosed in a 
box fitted with a 16-inch diameter glass window. Mapping flights occurred at roughly 8–11 km 
altitude with a target along-track overlap of 60% and variable across-track overlap. For flights prior 

Figure 1. Study area map of NASA ABoVE (Arctic-Boreal Vulnerability Experiment) AirSWOT
flight lines over 13 sub-regions organized into five physiographic categories (Arctic-Boreal wetlands,
Canadian Shield, lowland river valleys, prairie pothole lakes, and thermokarst regions). AirSWOT
sorties were flown along these flight lines from S-N in July and N-S in August 2019 along ABoVE
foundational flight lines [33], covering broad physiographic gradients and some of the most water-rich
regions in the world.
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2.2. CIR Camera Image Acquisition and Processing

2.2.1. Image Acquisition

The 16-megapixel (MP) CIR camera was mounted in a NASA B200 King Air and enclosed in
a box fitted with a 16-inch diameter glass window. Mapping flights occurred at roughly 8–11 km
altitude with a target along-track overlap of 60% and variable across-track overlap. For flights prior to
29 July 2017, data were collected with a fixed-length, 60 mm lens with a 34◦ field-of-view. Individual
raw image dimensions were 4072 × 4072 pixels before mosaicking. For flights after 29 July 2017,
data were collected with a fixed-length 80 mm lens with a 25◦ field-of-view. The auxiliary shutter on
these cameras sometimes malfunctioned, resulting in only partial shutter opening, which increased
vignetting at the top and bottom of raw images. To minimize vignetting effects for orthomosaic
generation, raw images were clipped, resulting in final dimensions of 4072 (width) × 3472 (along-track)
prior to image-stitching and orthorectification. Raw images having less than 50% cloud cover were
digitally stitched and orthorectified in Agisoft PhotoScan 1.3.4. Out of 22,631 raw images acquired,
7086 were used to create 38 orthomosaics, each pertaining to a specific ground area flown on a single
day. On average, each ground pixel in an orthomosaic was imaged 5.7 times from different angles.
The orthomosaics were resampled to 1 m pixels from a native resolution ranging from 0.92 to 1.32 m.

2.2.2. Image Quality

Atmospheric conditions and mechanical failures caused challenges during the 2017 AirSWOT
ABoVE sorties. Approximately one-third of the final images contain some clouds or cloud shadows.
There are missing data values due to insufficient photogrammetric pixel correlations between raw
image overlaps, typically over clouds, uniform lakes, and moving water. Most missions were flown
during morning hours, where shifting solar conditions resulted in illumination inconsistencies between
paths during individual missions, as well as fog. No atmospheric or illumination correction was
applied, leading to subtle striping effects, with each stripe occurring along the track of a flight path.
Per standard practice, the camera was integrated with the aircraft without consideration for circulation
of warm air across the camera window, which resulted in ice and condensation on the lens during
operation. These effects resulted in small, dark spots over some areas (appearing as roughly 10 m2

patches on the ground). Despite these limitations and lack of radiometric calibration, the imagery is
suitable for mapping fine-scale water bodies and other features on the land surface.

2.2.3. Geolocation Correction

The CIR orthomosaics were initially georeferenced using aircraft positional data (IMU and GPS).
Initial orthomosaics had geolocation offsets ranging from 0–120 m between identical ground points
imaged on different days. These offsets were resolved by manually georeferencing 29 orthomosaics
using 303 user-selected ground control points (GCPs). The remaining nine orthomosaics had negligible
registration errors, so no correction was needed. GCPs were manually digitized from the Digital Globe
EV-WHS image service, which provides orthorectified imagery with spatial resolutions of ≤1 m [35].
The four operational Digital Globe satellites [36] used as input to the service have a 90th percentile
geolocation error ranging from 3.0 m (GeoEye-1 satellite) to 6.5 m (Worldview-1 satellite) [36]. GCPs
were chosen as persistent landscape features identifiable in both the orthomosaics and the Digital
Globe image service, including road intersections, tree stand boundaries, and shorelines from water
bodies having stable sizes and shapes. Images were warped using a 1st-order polynomial (affine)
transformation in ArcMap 10.6, and the average and root-mean-squared average distances between
the source and map GCPs were computed. If they differed by more than 20%, the image was split into
two or more parts and the warp re-applied using the corresponding subsets of GCPs. These operations
were performed on the original orthomosaics using the same geographic coordinate system as the
DigitalGlobe service (WGS-84).
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After georeferencing, 90% of GCPs deviated from DigitalGlobe by ≤13.3 m (13.3 pixels) (Figure 2).
Including the accuracy of DigitalGlobe, the horizontal accuracy of the CIR imagery and masks is 19.8 m
or better for 90% of the images. The 38 orthomosaics were then projected to Canada Equal Albers
Conic and split to the ABoVE grid C [30], yielding 330 orthomosaic images in geotiff (.tif) format.
Individual image accuracies are included in the data sets [37].Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 28 
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Figure 2. Geolocation errors for CIR camera imagery after manual georeferencing with Digital Globe
EV-WHS image service. Geolocation errors range from undetectable to 49.8 m, with a mean value of
6.0 ± 5.7 m). Over 90% of CIR images have an RMSE ≤14.7 m relative to high-resolution Digital Globe
satellite imagery.

2.3. Open Water Classification

We designed a semi-automated image classifier to identify open water unobscured by aquatic or
riparian vegetation, algae, and built objects (hereafter referred to as open water). This conservative
classification yields a water body product uncontaminated by vegetation or other material that could
bias the water surface elevation retrievals obtained from coincident AirSWOT Ka-band interferometric
radar images. This conservatism, along with synchronous acquisition with Ka-band radar imagery,
makes the CIR dataset presented here optimal for AirSWOT studies of surface water extent and elevation.

In some cases, the restrictive classification causes patches of open water within a vegetated lake to
appear as individual water bodies. To mitigate these effects, polygon aggregation was used to ensure
each mapped open water body had a one-to-one relationship with the lake, pond, or wetland feature it
represented (Section 2.5). Other effects such as clouds, shadows, and lack of atmospheric correction that
complicated the optical classification are noted (along with quality metrics) for each classified image.
To assess the effects of this area-measurement method on open water area, the high-resolution CIR
mask was compared to typical lake area measurement from the global lake database HydroLAKES [38].
Open water areas were correlated (r2 = 0.62), as determined by comparing 729 lakes greater than
0.1 km2 with their full extents imaged by the CIR camera. In general, although the two water body
definitions differ, these results still provide insight into the distribution of lake areas.

2.3.1. Automated Classification Steps

The open water classifier (Figure 3) is based on the Normalized Difference Water Index (NDWI) [39],
a normalized ratio of the near-infrared and green bands. In some cases, classification was improved by
using only the near-infrared (NIR) band instead of the NDWI. Prior to classification, each orthomosaic
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image was split into processing tiles of ~ 40 km2 to conserve memory and over-segmented into
pixel-cluster objects, also called superpixels. Known as object-based image classification (OBIA),
this procedure is a common technique in image [40–42] and water [43,44] classification. For the
segmentation, the simple linear iterative clustering with zero parameters (SLIC0) algorithm was
used [45], implemented in Matlab 9.4, with a scale (controlling the average size of a cluster) of 100 pixels
(100 m2). The resulting clusters ranged in size from 20 (small, uniform regions, such as ponds) to
500 pixels (no-data boundaries, featureless water patches or fields) and served as the basis for the
classification. Our choice of algorithm and parameters was informed by a previous study [46] and
prevents clusters from being larger than the smallest observable water bodies.
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Figure 3. Example of open water classification workflow over seven open water bodies from the
Mackenzie River Delta (MRD). Panels (a,b) show the original AirSWOT color-infrared (CIR) image,
(c) Normalized Difference Water Index (NDWI), (d) effect of varying l, the threshold level used for
binarization, (e) erosion based on entropy value to provide seed pixels, and (f) discrete regions after
region growing from the seed pixels.
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Next, each processing tile was assigned an optimal global NDWI or NIR threshold as per the
connectivity-preserving algorithm of O’Gorman [47]. This step maximized the number of connected
regions without inducing noise by selecting too many total regions. To account for images with varying
backgrounds, the original algorithm outputs several intensities that can be used to binarize the tile.
Here, we modified it to produce only one output level (representing the optimal cutoff between open
water and land), given an a priori range of user-selected plausible thresholds. This algorithm has
previously been implemented for remote sensing of landslides [48], ocean vessels [49], and sea ice [50].
Here, we present its first application to remote sensing of inland surface waters.

A local water index threshold was computed for each potential water body in the resulting
binary image [51–53]. First, clusters with rough textures were removed, as indicated by their entropy
value [54], a statistical measure of randomness. High-entropy regions generally occur along shorelines
and are analogous to mixed-pixels, so this operation morphologically erodes the edges of water bodies.
Next, region-growing, based on the mean and standard deviation of the local water index, was applied
to each eroded region. Adjacent pixel clusters were included if their mean value fell within two
standard deviations of the mean value of the region. To produce the final open water mask, data gaps
surrounded by water were reclassified as water, and small regions (<40 pixels) were removed to reduce
commission errors caused by tree and terrain shadows.

2.3.2. Manual Classification Steps and Quality Assessment

After running the open water classifier, each classified image was visually inspected for
clouds, haze, or other image quality concerns that prevented accurate image classification.
Two post-classification adjustments were made to address image quality. First, the processing
tile aspect ratio was adjusted to values between 1:1 and 1:2 for tiles with narrow data coverage
due to linear flight lines. This approach was most effective on tiles covering ~5 km2 or less lacking
representative samples of both land and water classes. Second, the a priori upper and lower NDWI
bounds used for the connectivity-preserving binarization were varied between −0.72 to −0.39 (lower)
and 0.48 to 0.78 (upper). This change was necessary for images containing roads and buildings,
whose superpixels were morphologically connected and were, thus, preferentially selected in the
connectivity-preserving binarization. These procedures were then repeated until satisfactory results
were obtained. For 30 of the images, the NIR band was used for the classification instead of the NDWI in
order to avoid false positives. In total, approximately half of the 330 CIR images required re-processing.

2.4. Validation of Open Water Classification

Classification error was quantified by manually digitizing water bodies and computing a confusion
matrix [55]. Since the imagery contained mostly land, a random pixel-based validation scheme would
not have included enough water pixels. Instead, 197 open water bodies were selected from six
validation areas across the study area, including one of the areas visited in-situ. Boundaries were
digitized solely around open water to avoid mixed pixels, using a consistent image stretch between
regions. These digitized polygons were then rasterized and confusion matrix statistics calculated on a
per-pixel and per-water-body basis between the manual and classified water bodies.

The CIR open water classification was further validated against in situ shoreline surveys of
26 lakes and rivers islands. These shorelines were surveyed using a handheld Garmin eTrex GPS
with horizontal accuracy ~3 m. Surveys were conducted in YFB, CSH, and PPN within 30 h of CIR
image acquisition (with the exception of YFB, which was collected 73 h after the flight). In areas of
emergent aquatic vegetation, the outermost wet shoreline was mapped. Although this technique
did not necessarily capture open water boundaries, it provided an independent verification of the
maximum shoreline extent.
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2.5. Water Body Morphometric Analysis

From the classified images, open water area for each cloud-free water body was computed and
stored as a shapefile (.shp) attribute. Water masks from these image files were converted to polygons
with adjacent boundaries dissolved to account for water bodies split between different files. Rivers and
incomplete lakes were removed by deleting polygons that intersected the study region boundaries,
with the rest removed based on visual inspection. Finally, water bodies within 20 m of each other
were aggregated so that those erroneously appearing discontinuous due to vegetation were counted
as one, and the final polygons were stored as a single shapefile (Figure 4). The conservative 20 m
distance was chosen to avoid aggregating neighboring ponds when they should be treated separately.
The resulting shapefile used for analysis covers 21,644 km2 (37.7%) of the ABoVE foundational flight
areas and contains only open water bodies not connected to river networks.
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Figure 4. To avoid counting open water patches within the same lake as separate water bodies, a 10 m
buffer was used to aggregate open water patches within 20 m of each other. At Johnny’s Cabin Pond in
PAD (shown here), this step aggregated 24 open water patches (blue) to produce one water body of
0.16 km2. The area solely within the pale green buffer was not counted.

Since some imaged lakes were too wide to be fully observed in an AirSWOT flight line,
lake polygons falling across image boundaries were fused with the HydroLAKES database [6]
before analysis. This approach increased the range of documented lake sizes by an order of magnitude
and removed a sample bias towards small water bodies. As the study area includes lakes as large as
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Point Lake and Eskimo Southern Lake on the Canadian Shield (977 and 843 km2), this fused dataset
includes lakes from all size classes intersected by 2017 AirSWOT flight lines across Arctic-Boreal Alaska
and Canada.

2.6. Power-Law Scaling of Water Body Area Distributions within Physiographic Subregions

We categorized the study area into five dominant, physiographic classes (Arctic-Boreal wetlands,
Canadian shield, lowland river valleys, prairie pothole lakes, and thermokarst) and 13 smaller
sub-regions (SAG, YFB, OCF, MRD, TKP, MRV, CSM, CSH, SLR, PAD, ATR, PPN, PPS, Figure 1 and
Table 1). This categorization enables statistical comparisons of water body morphology and area
distribution across a variety of typical Arctic-Boreal landscapes and spatial scales. A summary of the
acquisition dates, physiographic categorization, and flight line areas is presented in Table 1.

To analyze the scaling behavior of mapped water bodies within these various sub-regions, we tested
the hypothesis that surface water body area distributions follow a power-law [23]. Maximum-likelihood
estimation (MLE) was used to estimate the most probable value of α and the most probable onset
(if any), A0, of power-law behavior in the area distribution. The MLE estimation was performed
for each sub-region (n = 13), physiographic terrain class (n = 5), and over the entire dataset [56–58].
To understand how the choice of sub-region boundary might have influenced sampling, a bootstrap
method [59] was used to estimate p-values and one-standard-deviation confidence intervals for α and
A0 as follows: 1000 subsets for A > A0 were generated using the MLE estimates of α.

Finally, p-values for αwere estimated using the Kolmogorov-Smirnov (KS) statistic [56]. Each MLE
estimate of αwas used to construct 1000 random distributions of P(A) for A > A0, and p-values were
estimated as the fraction of those distributions with KS statistics that were further away from the
true power-law distribution. We defined statistical significance as p < 0.1, meaning mapped water
body size-distributions were further from a true power-law than 10% of the synthetic datasets and
the non-power-law null hypothesis was supported. This procedure was repeated with A0 set to the
minimum water body area to test for power-law behavior across the full range of A.

3. Results

3.1. Validation of the Open Water Classification

As expected, the open water classifier performed best on CIR images free from clouds, haze,
shadows, and mosaicking artifacts. From manual inspection (Section 2.3.1), features including roads,
buildings, shadows, and agricultural fields were sometimes incorrectly classified as water. PPN and
PPS had the highest commission error due to human-made features, whereas CSH and CSM had the
highest commission error due to tree-shadowing. Omission error can most often be attributed to the
spectral properties of turbid water (e.g., sediment-rich rivers resembling the spectrum of concrete),
especially if found within the same scene as clear water. The classification performed poorly over
industrial ponds in the oil sand extraction regions of northern Alberta due to their extremely high
turbidity. Misclassification of gravel bars was mitigated through the use of O’Gorman’s connectivity-
preserving algorithm [47], which performed better in an object-based framework than the popular Otsu
method of maximizing between-class variance [60] (Figure 5). The classifier also did not perform well
on narrow streams (<15 m wide), likely due to overhanging riparian vegetation and a high percentage
of mixed pixels. However, remaining streams were manually removed and not used for the area
scaling analysis (Section 2.4).

The 197 open water bodies used for manual digitization have a total area of 3.09 km2
. The equivalent

areas in the classified product contain 200 water bodies, with a total area of 3.34 km2. Thus, the classifier
demarcated more water body area (7.7% difference), and slightly more water bodies overall (1.5%
difference). The overall accuracy is 98.0%, with user’s and producer’s accuracies of 87.1% and 94.0%,
respectively, and a kappa coefficient of 89.3% (Tables 2 and 3). As noted in Section 2.4, validation regions
were digitized extremely conservatively, so the 7.7% extra classified areas represent an upper bound.
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of the image, at 0.05 from the turbid Yukon River, and at −0.01 and −0.1 from wet sandbars and 
shadows, respectively. The connectivity-preserving method selected fewer gravel bars (circled in 
yellow) than the variance-maximizing method in this image. (c) The variance-maximizing threshold, 
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water classification (units in m2, and percentage of pixels). Evaluation areas came from six 
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  Other Open Water Row Total User’s Accuracy 
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Other 27,245,985 184,418 27,430,403 99.3% 

Open Water 431,610 2,904,932 3,336,542 87.1% 
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Producer’s Accuracy 98.4% 94.0%  98.0% 

Figure 5. Misclassification sometimes occurred if NDWI histogram peaks for turbid water were closer
to the peaks for land than clear water. (a) Turbid water in large rivers was colored differently than lakes,
potentially confounding classification in Yukon flats, AK, (b) Image histogram shows Normalized
Difference Water Index (NDWI) peaks at 0.18 from the dark lake in the bottom left corner of the
image, at 0.05 from the turbid Yukon River, and at −0.01 and −0.1 from wet sandbars and shadows,
respectively. The connectivity-preserving method selected fewer gravel bars (circled in yellow) than the
variance-maximizing method in this image. (c) The variance-maximizing threshold, and (d) proposed
connectivity-preserving binarizations. Both classifiers selected both turbid and non-turbid water in
this image.

Table 2. Confusion matrix between 197 manually digitized water bodies and the automated open water
classification (units in m2, and percentage of pixels). Evaluation areas came from six geographically
distributed regions (YFB, OCF, MRD, CSH, PAD, PPN).

Reference

Other Open Water Row Total User’s Accuracy

Map
Other 27,245,985 184,418 27,430,403 99.3%

Open Water 431,610 2,904,932 3,336,542 87.1%
Column Total 27,677,595 3,089,350 30,766,945

Producer’s Accuracy 98.4% 94.0% 98.0%
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Table 3. Summary accuracy metrics for open water detection. Negative percent differences imply
larger values for the classified water (map) than the digitized water (reference).

Error Metric. Percentage

User’s Accuracy 87.1
Producer’s Accuracy 94.0

Overall Accuracy 98.0
Kappa Coefficient 89.3

Area percent difference −7.7%

Walked shorelines are inland of or equal to the classified shorelines for vegetated lakes, implying
that the classifier conservatively mapped open water (Figure 6a,b). The classified shorelines of
non-vegetated sandbars (Figure 6c–f) are also generally inland of walked shorelines, implying omission
errors from water resembling wet sediment or changing water levels (the Yukon River surveys were
conducted days after the flight). The maximum Euclidean distance between classified and walked
shorelines is 45 m in the Yukon River sandbars, 16 m in the North Saskatchewan River, and 15 m for
the ponds in PPN. Thus, the in-situ surveys provide a ground-verified reference to assess uncertainty
in shoreline locations.
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Figure 6. Ground validation sites used to validate the automated CIR image classifier. Walked
shorelines are plotted in gold and classified shorelines in red (only outlines are shown for visual clarity).
(a,d) Prairie pothole lakes near Redberry Lake in PPN (shoreline survey less than 4.5 h after AirSWOT
flight), (b,e) Sandbar islands in the North Saskatchewan River near Saskatoon, Saskatchewan in PPN
(survey less than 21 h before flight), (c,f) Sandbar islands in the Yukon River in YFB (survey less than
73 and 30 h after flight, respectively). The automated classification is more conservative than the
shoreline surveys for the purpose of mapping only open water body edges in areas of emergent aquatic
vegetation (note gray-colored dead trees around edges of lakes in (a,d) not classified as open water.
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3.2. CIR Camera Water Body Classification Summary Statistics

The CIR open water classification identified 43,562 water bodies with areas ranging from 40 m2 to
15 km2. The total open water extent mapped (Fwater) is 2885 km2, or 12.34% of the 23,380 km2 study
area, varying from 2.57% in SAG to 37.60% in MRD. The portion of the landscape occupied by lakes
and wetlands (i.e., with rivers removed, Flakes) is 7.71%, varying from 0.36% in SLR to 23.3% in CSH.
The median water body area (Amed) is 0.0007 km2 (700 m2), varying from 0.0003 km2 (300 m2) in SAG
to 0.008 km2 (8000 m2) in TKP. These results show considerable variation in morphometry between
sub-regions, largely driven by physiographic setting.

These data are presented as 330 raster files, 236 of which are free from significant classification
errors due to clouds or haze. Also included in the dataset are: (1) a shapefile with attributes denoting
geolocation accuracy, classification quality and the presence of clouds or haze; and (2) a shapefile
containing classified water bodies, with areas given as an attribute. Data are freely available for
download via the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC)
for Biogeochemical Dynamics at https://doi.org/10.3334/ORNLDAAC/1707.

3.3. Area Distributions of Mapped Water Bodies

Water body area distributions confirm the abundance of small water bodies (Figure 7), particularly
those with areas <0.001 km2, which is the lower limit of current global studies [8,15,26]. Of the
43,562 classified water bodies, 56.2% are <0.001 km2, comprising 3.46 km2 or 0.12% of total open water
area (Table 4). The fraction of water bodies under this threshold (F0.001) is 56% and ranges from 29% in
TKP to 77% in ATR.

Table 4. Regional distribution statistics for 43,562 mapped water bodies. N is the number of water
bodies in the region, Amed is the median area, Fwater and Flakes are the fractions of area covered by
open water and lakes/ponds, F0.001 is the fraction of water bodies of areas <0.001 km2 in area, A0.001 is
the fractional contribution to total area from water bodies <0.001 km2, A0 is the water body area
that produces the best goodness-of-fit for a power-law distribution based on water bodies of greater
or equal-area (standard deviation σA0), α is the power-law exponent taken for areas A0 and greater
(standard deviation σα), and p is the p-value from the power-law fitting test, considered for water bodies
larger than A0. Regions having p values less than 0.1 (in bold) are rejected as power-law distributions.

Region Area
(km2) N Amed

(m2)
Fwater
(%)

Flakes
(%)

F0.001
(%)

A0.001
(%)

A0
(m2)

σA0
(m2) α σα p

SAG 309 532 300 2.57 0.68 74.62 3.03 502 193 1.61 0.05 0.72
YFB 4601 8508 892 7.13 3.45 51.97 0.77 273,396 96,159 2.51 0.28 0.88
OCF 653 1208 4522 20.94 18.41 36.01 0.07 216,520 102,553 1.94 0.12 0.85
MRD 409 2305 1746 37.60 22.47 43.47 0.21 250,581 145,859 2.18 0.32 0.69
MRV 3748 4670 615 17.34 4.06 56.27 0.16 83,734 68,758 1.89 0.15 0.23
CSM 814 1271 644 11.81 10.87 57.28 0.03 6502 6093 1.59 0.07 0.99
CSH 2183 4136 3012 23.95 23.30 39.58 0.02 117,629 62,699 1.77 0.04 1.00
SLR 878 720 374 12.74 0.36 68.47 3.08 1942 1456 1.83 0.12 0.86
PAD 1509 2293 284 10.93 6.77 71.52 0.22 1115 1582 1.62 0.05 0.42
ATR 1011 1193 226 5.30 1.80 77.20 0.61 351 1214 1.60 0.08 0.14
PPN 5289 13,013 415 5.21 4.33 67.69 0.35 - - - - 0.00
PPS 880 1770 1427 10.29 8.99 45.03 0.33 544,824 78,690 2.41 0.18 0.97
TKP 1095 1943 7976 26.79 22.78 29.28 0.01 254,009 181,073 1.95 0.14 0.93

Pothole 5822 13,758 520 6.09 5.26 63.00 0.33 - - - - 0.00
Shield 2183 4136 3012 23.95 23.30 39.58 0.02 117,629 61,817 1.77 0.04 1.00

Wetland 7333 14,377 770 10.13 6.01 54.20 0.19 458,480 141,329 2.04 0.20 0.80
Thermokarst 1748 3151 6820 24.61 21.15 31.86 0.02 235,093 167,851 1.94 0.09 0.95

River
valley 6293 8140 356 13.27 2.82 66.06 0.28 94,158 47,170 1.91 0.20 0.68

All 23,380 43,562 665 12.34 7.71 56.19 0.12 343,074 130,800 1.89 0.04 0.90

https://doi.org/10.3334/ORNLDAAC/1707
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Figure 7. The percentage of (a) water bodies, F0.001, and (b) areas, A0.001, from water bodies under
0.001 km2 along with (c) median areas Amed, and (d) open water fraction Fwater across the five
physiographic terrain categories. Prairie pothole and river valley lakes had the largest percent of lakes
under 0.001 km2 by area and number. Shield and thermokarst lakes overall held the largest median
water body areas and open water fractions.

Most sub-regions have scale-invariant tails to their area distributions (Table 4), as shown by
the linear portions of their cumulative distribution functions (CDFs, Figures 8 and 9). A power-law
distribution is plausible for water bodies >0.34 ± 0.13 km2 across the entire study region, representing
1.5% to 3.2% of water bodies by count and 89.6% to 93.4% by area. Scaling estimates pertaining to the
remaining water bodies would thus, remain highly uncertain. Regionally, all categories except for the
prairie pothole region PPN (p = 0.00) could fit a power-law for A0 ranging from 0.00050 (SAG) to 0.54
km2 (PPS). Although PPN appears linear on a log-log plot, its much larger sample size (1–2 orders
of magnitude larger than the other sites) provides more data points for the maximum-likelihood
estimation (MLE) to rule out the power-law hypothesis, so this finding should be interpreted with
caution. The hypothesis is plausible for other sub-regions, with the onset of power-law scaling A0

ranging from 350.5 m2 (ATR, 99.18 to 100.00% of water bodies) to 0.54 km2 (PPS, 59.16 to 64.5%). Finally,
CSH is indistinguishable from a power-law in the tail end of the distribution (p = 1.00). The power-law
scaling exponent α varies from 1.59 (CSM) to 2.51 (YFB), with a value of 1.89 for the entire study area.
The variability in A0, α, and p suggest that a single power-law distribution does not apply to the areas
classified here, as supported by the non-linear curves in Figure 8.
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indicated in the legend. The number, n, of data points in the tail and power-law exponent, α, are 
shown in the title. The power-law hypothesis is ruled out for p-values < 0.10 and is only considered 
valid across the study area for water bodies >0.34 km2. 

Based on the power-law exponent α, the regions analyzed generally fall into two end-members, 
with wetlands and thermokarst having the greatest α values (1.94 to 2.04) and pothole lakes having 
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OCF, contain seasonal tundra wetlands. The remaining regions, Canadian Shield and lowland river 
valleys, had intermediate α values (1.77 to 1.91). Coarse-scale water body maps in regions with large 
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wetland regions have both high α values and a high A0. The two prairie pothole sub-regions in 
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0.00), and they had among the highest percentage of small water bodies, making their abundance 
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distribution (p = 1.00) and had low A0 values, implying that coarse-scale information in these regions 
could be sufficient to estimate water body abundance. 

Figure 8. Reverse cumulative distribution functions (CDFs) for water body areas (black line),
plotted with three logarithmically-spaced bins per decade. The start of the most likely power-law tail
(A0), if applicable, is shown as a vertical dark gray line with standard deviation σA0 indicated by the
width of the shaded light grey region around it. The solid red line is the maximum likelihood estimate
(MLE) power-law distribution with exponent α computed from lakes larger than size A0, and the solid
blue line is the MLE power-law distribution for all measured water bodies in the sub-region. Dashed
red lines are the standard deviation in power-law exponent α (σα). Note that the logarithmic axes
obscure the magnitude of the difference between data and power-law fits. p-values for each MLE fit are
indicated in the legend. The number, n, of data points in the tail and power-law exponent, α, are shown
in the title. The power-law hypothesis is ruled out for p-values < 0.10 and is only considered valid
across the study area for water bodies >0.34 km2.

Based on the power-law exponent α, the regions analyzed generally fall into two end-members,
with wetlands and thermokarst having the greatest α values (1.94 to 2.04) and pothole lakes having
lower α values (1.51) and thus a flatter distribution. However, values between sub-regions PPN and
PPS differed by 43%, implying contamination from other types of driving physiographic factors. This
contamination was most prevalent in the larger and more heterogeneous PPN region, which transitions
from sparsely populated boreal forest in the north to agricultural regions with constructed lakes in
the south. The high-α end members make sense since the two thermokarst regions, TKP and OCF,
contain seasonal tundra wetlands. The remaining regions, Canadian Shield and lowland river valleys,
had intermediate α values (1.77 to 1.91). Coarse-scale water body maps in regions with large α values
would be most affected, as they have a greater proportion of small water bodies, and, indeed, wetland
regions have both high α values and a high A0. The two prairie pothole sub-regions in aggregate (PPN
and PPS, Figure 9) and PPN individually did not fit a power-law distribution (p = 0.00), and they had
among the highest percentage of small water bodies, making their abundance difficult to estimate from
coarse-scale maps. In contrast, shield lakes very likely fit a power-law distribution (p = 1.00) and had
low A0 values, implying that coarse-scale information in these regions could be sufficient to estimate
water body abundance.



Remote Sens. 2019, 11, 2163 16 of 28
Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 28 

 

 
Figure 9. Testing for scale-invariant power-law behavior in water body area distribution for the 13 
sub-regions. All lines are as in Figure 8. Among the sub-regions, Prairie Potholes North (PPN) fails 
the power-law hypothesis test (p = 0.00), and all others have A0 ranging from 350.5 m2 to 0.54 km2. 

This analysis has a strong dependence on how sub-regions are constructed; thus, distributions 
at three spatial scales were analyzed (Section 2.5). In general, as the number of water bodies grows, p 
decreases, although sample size only explains a small percentage of the variation (r2 = 0.11, Figure 
A2). This effect results from smaller regions being more likely to have an unvarying distribution 
across their spatial domain. Spatial variability within regions could cause the slope breaks seen in the 
category-scale plots (Figure 8) and might also explain why the power-law hypothesis was rejected 
for PPN. This sub-region is 1–2 orders of magnitude larger than the others and includes numerous 
agricultural ponds and impoundments, as well as glacially-formed prairie pothole lakes. The 
variance among the fitted α and A0 parameters indicates that sub-region divisions captured 
boundaries between hydrologic landscapes. Thus, there is a preferential scale for power-law fitting 
analyses, determined by landscape physiography, and biases can be reduced by analyzing multiple 
scales to prevent arbitrary sub-region divisions from impacting results. 

4. Discussion 

This study builds on prior studies of open water classification [11,61,62] and area distribution 
scaling [6,23,63] using spaceborne and airborne color-infrared digital imagery by: (1) advancing a 
new, high-resolution AirSWOT color-infrared (CIR) camera dataset and open water classification for 
the NASA Arctic-Boreal Vulnerability Experiment (ABoVE); (2) applying the connectivity-preserving 
binarization technique [47] and an object-based framework to classify open water in the CIR dataset; 
(3) using the classification to map small (<0.001 km2) water bodies over physiographic gradients; and 
(4) testing whether the mapped water body area distributions display scale-invariant power-law 
behavior, with a focus on selecting the appropriate area domain. Each of these four contributions is 
discussed next. 
  

Figure 9. Testing for scale-invariant power-law behavior in water body area distribution for the
13 sub-regions. All lines are as in Figure 8. Among the sub-regions, Prairie Potholes North (PPN) fails
the power-law hypothesis test (p = 0.00), and all others have A0 ranging from 350.5 m2 to 0.54 km2.

This analysis has a strong dependence on how sub-regions are constructed; thus, distributions
at three spatial scales were analyzed (Section 2.5). In general, as the number of water bodies grows,
p decreases, although sample size only explains a small percentage of the variation (r2 = 0.11, Figure A2).
This effect results from smaller regions being more likely to have an unvarying distribution across
their spatial domain. Spatial variability within regions could cause the slope breaks seen in the
category-scale plots (Figure 8) and might also explain why the power-law hypothesis was rejected
for PPN. This sub-region is 1–2 orders of magnitude larger than the others and includes numerous
agricultural ponds and impoundments, as well as glacially-formed prairie pothole lakes. The variance
among the fitted α and A0 parameters indicates that sub-region divisions captured boundaries between
hydrologic landscapes. Thus, there is a preferential scale for power-law fitting analyses, determined by
landscape physiography, and biases can be reduced by analyzing multiple scales to prevent arbitrary
sub-region divisions from impacting results.

4. Discussion

This study builds on prior studies of open water classification [11,61,62] and area distribution
scaling [6,23,63] using spaceborne and airborne color-infrared digital imagery by: (1) advancing a
new, high-resolution AirSWOT color-infrared (CIR) camera dataset and open water classification for
the NASA Arctic-Boreal Vulnerability Experiment (ABoVE); (2) applying the connectivity-preserving
binarization technique [47] and an object-based framework to classify open water in the CIR dataset;
(3) using the classification to map small (<0.001 km2) water bodies over physiographic gradients;
and (4) testing whether the mapped water body area distributions display scale-invariant power-law
behavior, with a focus on selecting the appropriate area domain. Each of these four contributions is
discussed next.
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4.1. Utility of CIR Open Water Classifications for the SWOT Satellite Mission

AirSWOT was developed as a calibration-validation platform for the forthcoming NASA Surface
Water and Ocean Topography (SWOT) satellite mission (https://swot.jpl.nasa.gov/), anticipated to
launch in 2021 [64,65]. A key SWOT mission objective is to obtain water surface elevation (WSE) to
±10 cm vertical accuracy for 1 km2 open water regions [66]. Previous work used CIR-derived water
masks and spatially-averaged AirSWOT Ka-band interferometric radar data to estimate AirSWOT
WSE accuracies of ~9–10 cm in rivers and ~21 cm in lakes [53,67–69]. The conservative AirSWOT
color-infrared (CIR) water mask provided here should enable unambiguous extraction of open water
pixels used for spatial averaging of AirSWOT interferometric radar data, and, therefore, improve
estimates of WSE accuracy (Figure 10). CIR imagery would also help identify phenomenology issues
that should be excluded from spatial averaging of AirSWOT radar data, for example, exclusion of wet
sediment bars as noted in Section 3.1, which could introduce height errors if erroneously classified as
open water. Similarly, the presence of emergent aquatic vegetation may be identified by overlaying
AirSWOT backscatter on CIR imagery. In general, the synchronicity and co-registration between the
AirSWOT CIR camera and Ka-band interferometric radar is a powerful combination for accurate
mapping of surface water extent and WSE. Paired AirSWOT CIR and InSAR imagery thus provide an
effective way to validate both surface water extent and WSE during the forthcoming SWOT mission.

Several improvements to the AirSWOT camera system are recommended to further improve the
value provided by this system. The CIR camera image registration could be improved by upgrading
the positional and image timestamping systems, increasing the overlap between flight paths (to assist
photogrammetric correlation), or both. Adding an additional spectral band in the mid-range infrared
(1500–2000) nm would improve identification of water, which cannot be detected by the current
760–900 nm sensitivity. Including these wavelengths would permit the use of spectral indices such
as the Automated Water Extraction Index (AWEI) [70] and Modified Normalized Difference Water
Index (MNDWI) [71] which provide better contrast between land and water pixels, especially over
human-influenced landscapes. Absolute radiometric calibration and solar illumination correction
would also improve automated open water classification by enhancing consistency between images.
Finally, the classifier presented here should be modified to improve automation and deliver a quicker
product. These modifications would permit timely validation of SWOT-observed water extent over
large areas where AirSWOT is flown during the proposed satellite mission.

https://swot.jpl.nasa.gov/
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Figure 10. Use of CIR imagery to improve AirSWOT Ka-band radar retrievals [72] of water surface
elevation (WSE) in the Mackenzie River Delta (MRD). (a) AirSWOT Ka-band radar backscatter,
(b) AirSWOT CIR image, (c) Interferometrically derived WSEs, (d) CIR open-water classification used
as a mask (black) to define correct areas for spatial averaging of (c). In (c,d), white regions correspond
to no data, which is more prevalent in the far range of the radar image (bottom portion).

4.2. Utility of CIR Imagery and Open Water Classifications for the NASA Arctic-Boreal Vulnerability
Experiment (ABoVE)

AirSWOT CIR imagery and open water classifications also hold value for other flight campaigns
conducted for the NASA Arctic-Boreal Vulnerability Experiment (ABoVE). The 2017 AirSWOT flight
lines described here were designed to maximize overlap with other ABoVE airborne campaigns,
including LVIS, UAVSAR, AIRMOSS, AVIRIS-NG, and CFIS. The user-friendly CIR image catalog and
manually derived cloud flags enable end-users to locate high quality, high-resolution images over
areas targeted by other field and remote sensing investigations [37]. The high-resolution open water
classification presented here [73] may provide a useful dataset for studies exploring links between
surface hydrology and permafrost [53,74], ecosystem services [75], and carbon cycles [18,76] that
currently rely on satellite products, lake censuses, or other coarse-resolution open water maps.

To illustrate this cross-discipline utility, we overlay the CIR open water mask with UAVSAR
polarimetric L-band SAR data (Figure 11). Given its relatively long wavelength of 23.8 cm, L-band
radiation can penetrate moderately dense vegetation and give strong double-bounce returns off

vertical wetland vegetation emerging from the water surface. The CIR imagery helps identify this
vegetation, and the open water mask can be used to identify the extent of emergent vegetation where
double-bounce returns begin. This dual-sensor information can be used to map the entire surface
area of lakes with higher confidence than either sensor alone. Although not available at this time,
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a combined product would minimize counting errors associated with disconnected open water patches
and allow water to be partitioned between open and vegetated regions.

The CIR imagery may also add value to studies using the hyper-spectral sensor AVIRIS-NG and
the waveform LiDAR sensor LVIS. For example, patterned ground features such as fine-scale polygonal
networks and ponds caused by permafrost thaw are barely detectable in 5 m-resolution AVIRIS-NG
imagery and are easier to resolve in the high-resolution CIR imagery (Figure 12). Although too small
to be detected by the classifier, the raw CIR imagery resolves small ephemeral ponds formed above
thawing permafrost that are important to the permafrost-carbon feedback [77]. The hyperspectral
capabilities of AVIRIS-NG offer the potential to study vegetation, water quality, trace gases, snow,
soil, and other systems [33]. The CIR open-water mask could also aid interpretation of 1064 nm
laser backscatter from open water as from LVIS and together could offer an independent method for
partitioning open and vegetated water surfaces. High-resolution digital elevation models (DEMs)
provided by this sensor can enhance fine-scale runoff modeling and studies involving ephemeral water
bodies. These synergies present opportunities for more precise water and vegetation mapping using
concurrent ABoVE datasets.

Remote Sens. 2019, 11, x FOR PEER REVIEW 19 of 28 

 

of lakes with higher confidence than either sensor alone. Although not available at this time, a 
combined product would minimize counting errors associated with disconnected open water patches 
and allow water to be partitioned between open and vegetated regions. 

The CIR imagery may also add value to studies using the hyper-spectral sensor AVIRIS-NG and 
the waveform LiDAR sensor LVIS. For example, patterned ground features such as fine-scale 
polygonal networks and ponds caused by permafrost thaw are barely detectable in 5 m-resolution 
AVIRIS-NG imagery and are easier to resolve in the high-resolution CIR imagery (Figure 12). 
Although too small to be detected by the classifier, the raw CIR imagery resolves small ephemeral 
ponds formed above thawing permafrost that are important to the permafrost-carbon feedback [78]. 
The hyperspectral capabilities of AVIRIS-NG offer the potential to study vegetation, water quality, 
trace gases, snow, soil, and other systems [33]. The CIR open-water mask could also aid interpretation 
of 1064 nm laser backscatter from open water as from LVIS and together could offer an independent 
method for partitioning open and vegetated water surfaces. High-resolution digital elevation models 
(DEMs) provided by this sensor can enhance fine-scale runoff modeling and studies involving 
ephemeral water bodies. These synergies present opportunities for more precise water and 
vegetation mapping using concurrent ABoVE datasets. 

 
Figure 11. Wetlands and a river-connected lake in the Peace-Athabasca Delta (PAD). (a) UAVSAR L-
band backscatter in HH polarization, (b) AirSWOT color-infrared (CIR) imagery, (c) L-band 
polarimetric returns are shown in a Freeman-Durden decomposition [79], and (d) same, with CIR 
open water classification superimposed. Color scale for (c) and (d): red = double-bounce scattering, 
green = volume scattering, blue = single-bounce scattering. The CIR water classification excludes the 
littoral zone vegetation surrounding the lake, which can be seen as high double-bounce regions in the 
UAVSAR image. UAVSAR data courtesy NASA/JPL-Caltech. 

Figure 11. Wetlands and a river-connected lake in the Peace-Athabasca Delta (PAD). (a) UAVSAR L-band
backscatter in HH polarization, (b) AirSWOT color-infrared (CIR) imagery, (c) L-band polarimetric
returns are shown in a Freeman-Durden decomposition [78], and (d) same, with CIR open water
classification superimposed. Color scale for (c,d): red = double-bounce scattering, green = volume
scattering, blue = single-bounce scattering. The CIR water classification excludes the littoral zone
vegetation surrounding the lake, which can be seen as high double-bounce regions in the UAVSAR
image. UAVSAR data courtesy NASA/JPL-Caltech.
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saved memory and resulted in a reasonably fast processing time of about four minutes for a 50-
million-pixel processing tile (using a 3.7 GHz Intel Xeon processor with 16 GB of RAM). As in other 
high-resolution studies [32,51], classifications were manually edited to remove false-positives caused 
by shadows and other factors. 

We took a conservative approach to validation, using manually-delineated water body 
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Figure 12. Patterned ground typical of permafrost regions. (a) LVIS bare-earth digital elevation model
(DEM) [79], (b) AVIRIS-NG hyperspectral imagery shown in natural color [80], (c) CIR image from
AirSWOT suite, and (d) Same as (c), overlain by the CIR open water classification. The high-resolution
CIR camera offers the potential for mapping individual ponds within the patterned ground. In (a),
the LVIS waveform LIDAR ground returns have been rasterized to a 5.2 m grid cell to match AVIRIS-NG.

4.3. Validated Open Water Classification Performance

The accurate water classifications obtained here suggest the object-based, connectivity-preserving
classifier is well-suited for open water mapping. As noted by O’Gorman [47], pixel connectivity is a
local measurement used for a global threshold, with the advantage that all regions of the image are
used when choosing a threshold. Although this technique was originally developed for document
image scanning, it works well for mapping open water bodies, which exhibit pixel connectivity just like
letters in text. Moreover, we applied this technique to an object-based framework and demonstrated
that small shadows and speckle noise in the uncalibrated imagery are evened-out. Working with pixel
regions rather than pixels reduced the size of the data set, which saved memory and resulted in a
reasonably fast processing time of about four minutes for a 50-million-pixel processing tile (using
a 3.7 GHz Intel Xeon processor with 16 GB of RAM). As in other high-resolution studies [32,51],
classifications were manually edited to remove false-positives caused by shadows and other factors.

We took a conservative approach to validation, using manually-delineated water body shorelines
and in-situ mapping. Consequently, the classifier is more likely to miss than falsely identify water.
This is supported by most classified open water boundaries falling inside walked shorelines (Figure 6)
in areas with littoral zone vegetation. The lower user’s accuracy (87.1%) than producer’s accuracy
(94.0%, Table 2) is indicative of the conservative boundaries used for digitization. In addition, the 40 m2
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size limit and the spectral limitations of the camera exclude narrow streams. Optical classification
of the stream and river channels is difficult due to the necessity of producing continuous networks
from narrow regions [81]. In addition, the process of creating a binary water mask is subjective.
Even ground-based shoreline surveys may incorrectly identify shorelines obscured by vegetation
or saturated sediments. In general, we found that small water bodies (<0.001 km2) are particularly
challenging for high-resolution water classification, as vegetation often obscures shorelines, making
individual water bodies hard to count. Furthermore, these small water bodies are the most ephemeral.
More work is needed to create multi-temporal products and understand seasonal variation.

4.4. Improving Mapping of Very Small Water Bodies

Small water bodies are important for methane release [82,83], biodiversity [22], and organic matter
burial [22], but are under-represented in studies limited by the spatial resolution of Landsat or coarser
sensors [8,21,22]. One approach to solving this problem is the use of scale-based estimates, but such
estimates may not apply at small scales [24]. Remote sensing offers the only consistent method to
identify these water bodies globally, but most space-borne sensors lack sufficient spatial resolution to
test for scale-invariant behavior over all size scales. This dataset provides much-needed information
on the distribution of these small water bodies in Arctic-Boreal North America.

Waterbody size metrics, such as area and shoreline length, could be valuable for earth system
models that use coarse water cover fraction as an input. Inaccuracies in wetland maps used for methane
models have been attributed to both undercounting [84] and double-counting by inclusion with lake
classes [85]. For models too coarse to resolve small water bodies, the fractions A0.001 or similar perimeter
metrics could be used to upscale the processes that occur in small ponds or wetlands. Accurate water
body maps are crucial to improving methane emission estimates from models, so upscaling approaches
may represent one way to transfer fine-scale information to coarse-scale maps used for models [8,38,82].
In Alaska, high-resolution imagery has been used to upscale methane fluxes based on vegetation
mapping [86], and these techniques can also be applied to water and wetland maps. The CIR imagery
and open water masks cover large areas at high resolution and offer a valuable airborne-scale census of
surface water over a variety of landscapes.

Boundaries used to define representative areas can influence conclusions drawn about enclosed
small water bodies. Regionally, the Canadian Shield and thermokarst landscapes had the highest
overall water fraction (14.4%), which is consistent with other work [6,23,38]. For the YFB, we find
F0.001 is 52%, whereas McDonald et al. [15] found 28%, using a region five times smaller and different
procedures for defining small water bodies. This discrepancy highlights the sensitivity of morphometric
analyses to study area boundaries.

The contribution of small water bodies <0.001 km2 to total water area has been considered
negligible [82], on the order of fractions of a percent, and our findings of 0.12% for the entire study
domain support this conclusion. However, river valley sub-regions such as SAG and SLR have A0.001

> 3%. Ponds below 0.001 km2 are estimated to make up 6–11% of the global surface area of lakes
and ponds, yet comprise up to 23% of CO2 emissions and 70% of diffusive CH4 emissions from lentic
freshwaters [83]. They tend to have higher rates of carbon burial, fish productivity, and waterfowl,
amphibian, plant and fish species richness than larger lakes [22]. They can also provide ecosystem
services such as small-scale water supply and nutrient processing [21]. Thus, the fraction of small
water bodies observed is not negligible for a variety of carbon cycle and ecosystem processes.

4.5. Testing Power-Law Regimes

The power-law hypothesis for lake size distribution is often invoked [7,16,20,23,25,26] but lacks
rigorous tests on its adequacy for modeling small lakes. Log-log slope breaks (analogous to A0) are
known to occur at small areas [14,15] but these area thresholds have not been systematically calculated
over a variety of regions. The domain-wide A0 threshold we find (0.34 ± 0.13 km2) is nearly identical
to the 0.35 km2 truncation threshold for lake area data fitted with a Pareto distribution [38], and the
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0.46 km2 threshold used for a power-law fit [26], both from global datasets. The similarity between
our results in the 23,380 km2 study area and these global studies suggest similar controls on water
body distributions and the departure from power-law behavior at small areas. For illustration, if the
CIR-mapped A0 value presented here held globally, the smallest ~6% of freshwater bodies would not
fit a power-law distribution. Given the large range in A0 (0.00035–0.54 km2) across the ABoVE domain,
it would be imprudent to extrapolate from the area distribution of large water bodies based on this
equation without accounting for regional differences in A0. Most sub-regions demonstrate a slope
break, often near A0, for which the power-law α coefficient would be smaller for the small area end of
the domain. Consequently, a Pareto or power-law extrapolation would imply a far greater abundance
of small lakes than are present [8,22,24].

The properties that govern A0, are not understood, but the ephemeral nature of small lakes
and ponds is hypothesized to contribute to the location of the slope break [22]. At small scales,
micro-topography governs the area distribution [14] and it is therefore not scale-invariant [26]. This
hypothesis is supported by the strong power-law fit (p = 1.00) we find for the Canadian Shield, which
is characterized by constant bedrock-controlled topography, which is more likely to be scale-invariant
than more heterogeneous regions. We suggest that climatic and topographic variability within
sub-regions could produce mixed distributions with one or more breakpoints. Attributing these factors
is beyond the scope of this study, but our high-resolution water map provides an example of the type
of direct observations of lakes and ponds needed to accurately assess water body scaling and improve
accounting of global surface water.

Our findings support prior evidence against a power-law fit to the lake area distributions in
high-latitude regions is scale-invariant. We used three spatial scales (study area, physiographic
category, and local region) to show that scale-invariant area distributions are common, but only hold
over the tail end of distributions, which generally begins at 0.34 km2. Individual regions showed
considerable variability in morphology and power-law slopes, highlighting the complexity of choosing
the correct scale for sub-region divisions. Furthermore, the proportion of small water bodies below
the typical limit of 0.001 km2 can vary regionally by several orders of magnitude, and may not be
negligible, depending on the case study. In all cases, distribution plots had flatter slopes for smaller
water bodies, implying fewer than would be estimated by extrapolation. Finally, physiography drives
water body distribution, and the regional setting should be considered when making global estimates.

5. Conclusions

We present a collection of color-infrared (CIR) airborne camera imagery from the AirSWOT
sensor suite and open water masks derived from an object-based classification. These products
are provided at one-meter spatial resolution and are designed to aid spatial averaging of AirSWOT
interferometric radar retrievals of water surface elevation (WSE). These data provide a rare, synchronous
and co-registered reference for Ka-band water classification algorithms such as will be used for the
upcoming NASA Surface Water and Ocean Topography (SWOT) satellite mission [64,87]. These CIR
products should also aid the interpretation and validation of other NASA ABoVE airborne sensors
and high-resolution Arctic-Boreal surface water studies more generally. CIR mapping of very small
water bodies (<0.001 km2) across the ABoVE domain shows limitations in area-scaling extrapolations
over a variety of physiographic terrains. We find that most collections of water bodies within the
study area follow power-law distributions only if the smallest water bodies (<0.34 km2) are removed
from the distribution. Our regional analysis identifies clear differences in lake abundance and size
distribution for different physiographic terrains found within the ABoVE spatial domain. Some regions,
such as the Canadian Shield, appear well-suited for empirical scaling-law based extrapolations, but
any extrapolation should be based on data from the same physiographic setting. We conclude that
high-resolution mapping, such as demonstrated here using airborne CIR imagery, remains the most
accurate approach for quantifying the full extent and abundance of Arctic-Boreal surface water.
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Appendix A

Statistical analyses investigating the relationship between open water area and average water
surface area as well as the effects of sample size on the power-law p-value were performed in R version
3.5.3. Tests showed that there is a weak relationship between sample size and power-law p-value,
but we still concur that physiography is the dominant driver of power law behavior (Figure A2).
Comparison with mean lake areas from a validated Alaskan database [88] showed that 65 of 155 lakes
had positive residuals from the best-fit line (Figure A1a). In contrast, for ABoVE domain lakes from
the global HydroLAKES database [38], only 204 of the 699 lakes had positive residuals, implying that
open water areas from a few lakes tended to underestimate mean lake area (Figure A1b). Both of
these datasets were compiled prior to the ABoVE flights, almost certainly during different seasons and
hydrologic regimes. These results show that the open water area as measured by the CIR camera is
correlated with lake area measurements from other, validated sources.
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Figure A1. Relationship between open water area from AirSWOT and mean lake area from (a) the
Alaskan Lake Database [88], and (b) HydroLAKES [38]. R2 ranges from 60–70%. Outliers corresponding
to lakes that had joined or split due to different water levels at the times of dataset acquisitions were
removed. Thus, while the two variables are not identical, they can be used as correlates for each to
compare between studies.
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