
1. Introduction
Depth to groundwater (DTG), the depth measured from the terrain surface to the groundwater table, is 
essential to identify groundwater availability and groundwater-surface water interactions (Fan et al., 2013). 
Groundwater can influence the landscape, acting as a discharge system feeding the tributaries that sup-
port streams (Margat & van der Gun, 2013), creating water-logged soil conditions that define wetland eco-
systems, and supplying water to the root zone to maintain plant photosynthetic activity (Lewandowski 
et al., 2019). The landscape also influences groundwater as groundwater flow is often related to topography. 

Abstract Continuous depth to groundwater (DTG) data collection is challenging in remote 
regions. Community participation offers a way to both increase data collection and involves the local 
community in scientific projects. Local knowledge, which is often descriptive, can be difficult to include 
in quantitative analysis; however, it can increase scientists' ability to formulate hypotheses or identify 
relevant environmental processes. We show how Community Science Research can add useful descriptive 
information for a study based in rural Colombia. To estimate the spatiotemporal distribution of DTG, 
the community collected water level measurements during a wet (La Niña) year and an average year. We 
built one spatial and two spatiotemporal models (with and without probabilistic data) using Bayesian 
Maximum Entropy. Due to the inclusion of local knowledge, the spatiotemporal model with probabilistic 
data reduced its mean square error by a factor of 15 compared to the spatial model. Using this model, we 
found that 13% of the study area has a high probability of very shallow DTG (<0.1 m) during an average 
year, whereas during La Niña, this area increases to 56%. The difference in shallow DTG between the 
average and wet year implies that after reaching a precipitation threshold, the study region may lose its 
flow regulation capacity, contributing to flooding during extreme precipitation events. Our approach 
presents a method to incorporate local knowledge in data-driven models by combining qualitative and 
quantitative information.

Plain Language Summary Groundwater is a key source of water supply in many regions, 
supporting crop yields and maintaining water levels in rivers and wetlands. In unconfined aquifers, 
groundwater may reach the surface during wet periods, contributing to overland flow and intensifying 
erosion. Identifying groundwater level changes helps to establish water and land management activities. 
However, continuous depth to groundwater (DTG) data collection, essential for identifying groundwater 
level changes, is challenging in remote rural areas. We show how Community Science Research, an 
approach involving active community participation, added crucial information to a statistical model to 
represent shallow aquifer's groundwater levels in Colombia. The community collected DTG during an 
extreme wet year and an average year in a middle-low-elevation watershed. We created DTG maps using 
three statistical models. DTG is better represented by the model that combines descriptive observations 
with DTG measurements. We also created a map with the probability that the groundwater is near the 
surface and showed that the area was much larger in the wet year than during the average year. This 
difference implies that after the watershed receives a lot of precipitation, its flow regulation capacity 
decreases, which is threatened by land-use activities.
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Surface waters and areas where deep infiltration occurs can recharge aquifers (Sophocleous, 2002; Winter 
et al., 1998). In addition to its ecosystem function, groundwater is the primary water supply in many re-
gions, sometimes acting as the only source (UNESCO & UN-Water, 2017). In the absence of regulation, land 
use activities may substantially change shallow groundwater systems' capacity to regulate flow or attenuate 
groundwater pollution (Gleeson et al., 2016). In precipitation-driven groundwater systems, extreme rainfall 
changes can cause groundwater table subsidence or flooding (Marchetti & Carrillo-Rivera, 2014), influenc-
ing erosion. These effects can subsequently impact ecosystem function and services. Although continuous 
data collection is challenging, these data are needed to understand the links of shallow groundwater to the 
landscape, estimate groundwater storage, and establish limits of extraction. Large, long-term DTG datasets 
are mostly limited to developed countries (Fan et al., 2013), constraining the understanding of groundwater 
function and services and limiting land and water management decision-making in these regions.

Community participation in scientific projects provides a way to address environmental questions with a 
meaningful social impact and to reduce information gaps (Arias et al., 2016; Sandoval, 2004; Wiggins & 
Crowston, 2011). Approaches to community participation in scientific projects can be defined as a function 
of the type of relations, the strategies implemented, and the level of engagement developed between the 
public and the researchers (e.g., citizen science, participatory action, community-based, social monitoring, 
etc.). In this study, we use the term Community Science Research (Cooper et  al.,  2007) to describe re-
search projects in which the public participates in significant ways. Significant participation can take place 
at different stages where the participants engage in activities that may last beyond the projects (Wijnen 
et al., 2012), influence local governance decision-making processes (Arias et al., 2016), and help solve scien-
tific questions that increase the system's knowledge (Baldwin et al., 2012; Le Coz et al., 2016).

Community science projects have a long history in data collection in several biogeoscience disciplines. In 
hydrology, the participation of the public and explicit design of community science projects has been in-
creasing (Buytaert et al., 2014). There are several existing examples of community participation in water 
level and precipitation data collection (Piragua project, Colombia, https://www.piraguacorantioquia.com.
co/piragua/; Pluviometros Cuidadanos, Chile, http://milluvia.dga.cl/index.php; CoCoRaHS, USA, https://
www.cocorahs.org/"; K. E. Little et al., 2016; Lowry et al., 2019; Weeser et al., 2018); its use in modeling river 
discharge (Starkey et al., 2017); and on identifying lake water storage changes (S. Little et al., 2021). Most 
projects concentrate on data collection, leaving data analysis and modeling to the scientist (Assumpção 
et al., 2018; Njue et al., 2019). Beyond data collected by the local population, their knowledge of the land-
scape also encompasses local environmental conditions that help to define the logistics to access or install 
measurement devices and provide a qualitative understanding of hydrologic systems. This type of infor-
mation is not always formally collected or included in the analysis and model implementation process. 
Therefore, high levels of active participant engagement and valuable qualitative descriptions are left out 
of the quantitative data analysis. The qualitative nature and the potential high levels of uncertainty of the 
descriptions made by local inhabitants make it challenging to incorporate into the model construction. 
Overcoming this challenge will be key in integrating community knowledge into models and data analysis.

One potential solution to add local knowledge to models is through the creation of a probabilistic rep-
resentation using Bayesian Maximum Entropy (BME). BME incorporates general information about the 
salient variable (spatial dependencies, conceptual assumptions, etc.) by maximizing an entropy function 
(Christakos, 1990; He & Kolovos, 2018; Serre & Christakos, 1999). BME is an extension of linear geosta-
tistical approaches (kriging-based methods). It can combine data that carry higher levels of uncertainty, 
known as soft data, with spatiotemporal measurements that have lower uncertainty, known as hard data. 
In groundwater hydrology, BME has been used to effectively map groundwater flow direction using water 
table data (Serre & Christakos, 1999). In this study, each measurement had a source of error reported dur-
ing the monitoring campaigns. Those water table measurements with an identified source of randomized 
errors or errors manually flagged by experts were defined as soft data. Hard data were defined as water 
table measurements with no recorded random errors and no errors manually flagged by experts after data 
collection. Another example of applied BME estimates aquifer hydraulic conductivity (Serre et al., 2003), 
soft data correspond to hydraulic conductivity derived from porous media analysis at different sites and 
hard data are hydraulic conductivity measurements performed at specific locations. These combinations of 
soft and hard data minimized estimation errors of the hydraulic subsurface properties in saturated media. 
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BME has also been applied to assess water quality by combining space-time variability of the water quality 
within the river network (Akita et al., 2007). In this study, soft data included detected nitrate concentrations 
in water, using concentrations under the detection limit, while hard data included nitrate concentrations 
over the detection limit (Messier et al., 2014). Also, BME served to combine different temporal scales of ar-
senic concentrations, with soft data defined as arsenic concentrations at coarser temporal scales and private 
wells, and hard data as the concentrations officially provided by the local authorities (Sanders et al., 2012). 
In all these cases, the use of BME approaches led to an improvement in the detection of water quality levels. 
BME has also been used to design monitoring networks (Hosseini & Kerachian, 2017) by incorporating the 
uncertainty of having areas with no monitoring stations and different start monitoring dates in the mode-
ling design. These examples show the potential of BME to include ancillary information with high levels of 
uncertainty in data-driven models.

To our knowledge, BME has not previously been used to model DTG. In the absence of continuous meas-
urements, the shallow groundwater table is often assumed to be a function of the topography and simulated 
using classic geostatistical interpolation methods, which require high resolution elevation maps. However, 
topographic information is often only available at coarse resolution in remote rural regions. Therefore, mod-
eling DTG as a function of the topography may hide shallow DTG in lowlands, close to depressions, that 
may impact identification and mapping of near-saturated areas that affect discharge (Snyder, 2008).

The central research questions of this study are: How can descriptive information be incorporated into DTG 
mapping? Does the inclusion of this information improve model performance? We show the potential for 
combining DTG quantitative and qualitative data collected in a community science project in the 481 km2 
Man River middle-low elevation watershed (Bajo Cauca region, Colombia). The data collected by the com-
munity previously helped to generate monthly groundwater table maps using classic kriging interpolation 
(Palacio, 2014). This interpolation used the elevation from the Shuttle Radar Topography Mission data set 
(http://srtm.csi.cgiar.org/), with a 30  m spatial resolution, SRTM-30. The resulting maps were useful to 
identify potential flow direction in the shallow aquifer. However, monthly average groundwater table esti-
mates may hide peaks, missing potential high and low values and making it difficult to identify rapid water 
table responses to precipitation. We present a different approach to obtain weekly DTG. The regular flood-
ing in the region during extreme wet seasons (Betancur-Vargas et al., 2017) motivated us to apply our results 
to address how extreme precipitation influences changes in DTG.

2. Materials and Methods
2.1. Study Area

The 481 km2 Man River middle-low watershed drains the foothills between the Western and the Central An-
des Cordillera in Colombia (Figure 1). The relief is low with a landscape characterized by extensive valleys 
and rolling hills. The middle-low watershed's elevation ranges between 12 and 148 m.a.s.l.. The Man River, 
originating at 1,050 m.a.s.l., is a tributary of the Cauca River, a main river in Colombia. Its most important 
tributaries are the Quebradona and the Ciénaga Colombia creeks (Figure 1a). The Ciénaga Colombia, a 
wetland to the north-east, regulates flow during the wet season and provides ecological and cultural servic-
es to the region's socio-economic development (Santa-Arango et al., 2010). The climate is humid (average 
relative humidity 78%) and warm (average temperatures between 25 and 30 °C). The average precipitation 
is 2,800 mm/year, with a dry period between December and March and a wet period between April and 
November. The region's geology is primarily composed of Tertiary clastic sedimentary rocks of continental 
origin, represented by the Cerrito Formation (Ngc), which occupy 404.3 km2 of the watershed; Sincelejo 
Group sedimentary rocks (NgQs), 17.5 km2; and recent Quaternary alluvial deposits (Qal), 57.4 km2 (Fig-
ure 1c). These features form three hydrogeological units: a shallow aquifer, an aquitard, and a confined 
aquifer (Betancur et  al.,  2012). Our work centers on the shallow aquifer, formed by Man River alluvial 
deposits and non-consolidated saprolite from the Cerrito Formation, with depths ranging between 13 and 
65 m (Palacio et al., 2013). Previous studies in this region identified groundwater and surface water connec-
tions (Santa-Arango et al., 2010), and groundwater recharge occurring directly from precipitation (Palacio 
& Betancur, 2007).
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A 2003 water well inventory indicated 147 dug and five drilled wells in this area; 86% are for domestic use 
(CORANTIOQUIA & Universidad de Antioquia, 2003). At the time of this project, no water supply treat-
ment system was operational in the area. In 2011, 66.8% of the population from the municipalities where 
the watershed is located lived in poverty (Departamento Administrativo Nacional de Estadística,  2012). 
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Figure 1. Study area and community science activities. (a) Wells used as monitoring stations. (b) Activities developed by the community (source: Grupo GIGA, 
Universidad de Antioquia). (c) Geology of the region describing the shallow aquifer: Qal, recent Quaternary alluvial deposits (12% of the watershed); Ngc, 
Cerrito Formation (84%); and NgQs, Sincelejo Group (3%).
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A few people engage in small-scale agriculture and fishing, but the main economic activity is cattle rais-
ing (Instituto Geográfico Agustín Codazzi, 2007a). Cattle ranching occupies around 80% of the watershed 
(Instituto Geográfico Agustín Codazzi, 2007b) and along with strip mining, land conflicts, and illicit crops, 
leads to population displacement (Cuartas et al., 2000).

2.2. Community Science Data Collection

The DTG monitoring network started with the analysis of a conceptual hydrogeological model for the 
Bajo Cauca region (Betancur, 2008), that estimates groundwater flow directions at a regional scale and 
identifies aquifer units and their thickness. The potential wells and associated collaborators were ob-
tained from the 2003 well inventory (CORANTIOQUIA & Universidad de Antioquia,  2003) based on 
three criteria: (1) spatial distribution across the watershed, (2) accessibility, and (3) well depth. The wells' 
spatial distribution was selected based on areas where groundwater-surface water interactions were and 
were not expected. These decisions were based on expert knowledge of the region and the conceptual 
hydrogeological model. The accessibility conditions aimed to facilitate visits to the sites and access to a 
good cellphone signal to receive data from the collaborators. Finally, the wells' depth helped to identify 
the hydrogeological unit from which water is extracted. With this selection, six field campaigns were 
conducted. In the first reconnaissance campaign, each household's well location and contact information 
registered in the well inventory was confirmed with the collaborators at each house and farm where the 
wells are located. The rest of the sampling campaigns were designed to reinforce data collection proce-
dures, collect hydrogeochemical data, share guidance, and follow up on the maintenance of each well's 
sanitary condition.

The campaigns were designed to facilitate data collection with limited resources. Potential collaborators 
were introduced to the project, and characteristics of water wells, pumps, and pumping times were identi-
fied. Collaborators were trained in water depth measurements at each site and provided with a tape measure 
and forms to register measurements. Each collaborator was trained individually. The distance was meas-
ured from the top of the well to the water table weekly before pumping. The height from the top of the well 
to the ground was subtracted later to obtain the DTG (Figure 1b). Weekly phone calls gathered information 
and verified anomalous values, representing extremely low or high DTG. The verification followed a 2-step 
process. The first step was to verify by phone the time of the day and how the collaborator was measuring. 
The second step was during the sampling campaign. In most cases, phone call verification was enough to 
improve data collection. Some collaborators moved during the study, which is common in this area; data 
were either no longer collected or the collaborator trained a new person to monitor their well. This practice 
of knowledge transfer was identified in highly engaged participants. In addition to obtaining DTG, collabo-
rators located close to the wetland area or the Man river described weather conditions and observed surface 
water levels. These descriptions were not systematically collected among collaborators but were mostly pro-
vided during the phone calls to collect the data or during the sampling campaigns. After the third campaign, 
the monitoring network was updated to include additional wells, following the same procedure established 
with the first group of wells. Ultimately, we managed to collect a total of 2,397 high-quality noncontinuous 
data at 44 wells between 2008 and 2009. These data would have been challenging and expensive to acquire 
with a traditional approach.

Although the project did not provide monetary compensation to the collaborators, hydrogeochemical data 
collected to identify groundwater sources and surface-groundwater interactions (Santa-Arango et al., 2010) 
were reinterpreted in terms of their sanitary meaning, and the results were provided to the collaborators. 
Those data were for the benefit of the collaborators and are not part of this research study. In addition, 
after finding poor sanitary conditions at some of the wells, recommendations were provided, such as cov-
ering wells to prevent animal and debris access and simple disinfection techniques (Organization World 
Health, 1999). The data collection team followed up with each household regarding these recommenda-
tions. Some households shared advice with other relatives or friends not included in the monitoring net-
work. We did not measure or collect information on how much of this information transfer occurred among 
households.
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2.3. Model Framework and Implementation

In this study, we built three model combinations using the BME framework: spatial interpolation with only 
observed DTG at each monitoring wells, that is, hard data (S), space-time with only hard data (ST), and 
space-time with probabilistic or soft data, that is, data corresponding to expected low DTG at the wetland 
locations (STSD). In the spatial interpolation, S, we interpolated each week independently, assuming no 
correlation in time, a common approach in classic geostatistical analysis. For the space-time interpolations 
(ST and STSD) we hypothesized high correlations of DTG in time would improve DTG estimates (Figure 2).
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Figure 2. Schematic differences in the interpolation methods. (a) Shows a watershed conceptual block-diagram closed to the wetland location at three different 
times: t1 and t2 correspond to the wet season and tn to the dry season. Tables t1, t2, and tn show examples of the data collected. Collaborators qualitatively 
reported the wetland stage, mainly during the wet season. (b) Depth to groundwater (DTG) interpolation example at time t1(dashed line). Spatial interpolation 
(S) interpolates only data collected at t1; space-time interpolation (ST) incorporates correlations in time of DTG to improve interpolation results; in the space-
time with soft data (STSD) interpolation, descriptions from collaborators are incorporated to further improve results.
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The summary of the BME framework provided below is adapted from previous work; the reader is referred 
to these papers for more details on the mathematical underpinnings of the BME framework (Christakos 
et al., 2001; Serre & Christakos, 1999). The BME framework is a nonlinear extension of the classical kriging 
methods of linear geostatistics. BME has the capacity to use only the knowledge base kriging can process. 
In that case, the BME equation reduces to a linear kriging estimator with a Gaussian posterior probability 
distribution function, PDF. However, using information processing principles such as information entropy 
maximization and epistemic Bayesian principles, the knowledge base that BME considers can extend be-
yond those used in kriging.

Let  X p  be a space-time random field (S/TRF) representing the variation of DTG across space-time co-
ordinate p=(s,t), where s is a geographical location, and t is time. We denote as      , ,X XG m p c p p  the 
general knowledge characterizing  X p , where  Xm p  and  ,Xc p p  are the mean and covariance of  X p , 
respectively. We denote    ,h S sS x f x  the site-specific knowledge characterizing the data at hand, where 

hx  are the space-time hard data DTG values observed at each monitoring wells, sx  are space-time soft data 
DTG values corresponding to where we know the DTG is low, and  S sf x  are the density functions charac-
terizing the shallow DTG and its uncertainty.

BME can be summarized in three stages: Prior, Posterior, and Interpretive. At the prior stage, we use the 
Maximum Entropy principle of information theory to create a prior PDF  G mapf x  that integrates the gen-
eral knowledge G, where   , ,map k h sx x x x is the value of  X p  at points   , ,map k h sp p p p  and where kp  
is an estimation point of interest. The PDF statistical properties are consistent with G, and maximize the 
amount of choice in the value DTG can take. G consists of the knowledge of the mean and covariance of 

 X p , which are statistical moments up to order two only. As a result, Gf  is the multivariable Gaussian PDF 
with means and covariance specified in G.

At the posterior stage, we integrate the site-specific knowledge S using an epistemic Bayesian conditional-
ization Equation 1.

      1 , ,K k s S s G k h sf x A dx f x f x x x (1)

In Equation 1, A is a normalization constant. This equation creates the BME posterior PDF,  K kf x , pro-
viding a full stochastic representation of  kX p , the DTG at the estimation point kp .When we restrict the 
analysis by not using the soft data, Equation 1 reduces to Equation 2:

         , / , |K k G k h k G k h G k hf x f x x dx f x x f x x (2)

which is the conditional PDF kx  gives hx  under the general knowledge base G. Since  ,G k hf x x  is Gaussi-
an, the conditional PDF in Equation 2 is also Gaussian, which means the PDF is a linear combination of 
observed values that correspond to the kriging approach. Since the mean is assumed constant and calculat-
ed within a local estimation neighborhood, BME reduces to moving window ordinary kriging when only 
household well observation data are used. This is the case of the S and ST approaches. This kriging limiting 
case makes BME attractive since it means that BME reduces to a linear kriging estimator whenever the 
analysis is restricted to hard data, but it extends to a nonlinear and non-Gaussian estimator when soft data 
is used. Finally, at the interpretive stage, we calculate the BME mean kx  and corresponding posterior BME 
variance kv  of the BME posterior PDF at estimation points kp  on an estimation grid to obtain BME estima-
tion maps and the corresponding uncertainty of DTG.

Prior to model implementation, we examined the general spatial and temporal distribution of the raw data. 
Because of its high right skewness (most of DTG are close to 0), we normalized the data by transforming 
DTG using natural logarithm, and used it in all the interpolation methods expressed in ln(depth [m]) units, 
here denoted as ln-depth. This decision was made to have comparable results across the models since BME 
reduces to a linear Gaussian estimation when only wells measurements are included. We defined hx  as all 
the 2,395 space-time hard data DTG values observed at the 44 household monitoring wells, sx  as the 2,600 
space-time soft data DTG values corresponding to where we know the DTG is low (i.e., these points are ge-
ographically located at 50 nodes uniformly distributed across the wetland area and during the wet season, 
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April-November), and  S sf x  were the corresponding 2,600 triangular probability density functions charac-
terizing the shallow DTG and its uncertainty.

For STSD, the triangular PDF was based on precipitation records combined with community members' de-
scriptions of the water levels in the wetland and floodplains during wet months (end of April to November). 
The collaborators reported increasing wetland surface levels and shallow DTG in nearby wells. These obser-
vations, while not quantitative, gave us tools to hypothesize the aquifer connections to the wetland. Using 
collaborators' qualitative statements, we defined a probability function of shallow DTG in the wetland dur-
ing the wet season. First, we used the piezometers 201 and 206 installed in the Ciénaga Colombia sub-catch-
ment (Figure 1a) to identify the relation between the intra-annual precipitation pattern and groundwater 
level change. These piezometers have complete DTG records and are at 500 and 860  m distance to the 
nearer stream. We built a Cumulative Deviation of the Mean, CDM, to identify rainfall changes that reflect 
DTG changes. The shift from negative to positive slope in the CDM curve marked the beginning of the wet 
conditions (Custodio & Llamas, 1996). Second, we defined uniformly and randomly distributed points in 
the wetland as representative wetland data locations, i.e., soft data, using the wetland and inundated areas 
data set (Lasso et al., 2014). For each, we defined a triangular PDF with the lower, middle, and upper bound 
parameters obtained from well 121, the only one in the Man River floodplains. The lower bound was set 
to 0 m (minimum depth expected), the middle to the minimum of non-zero (0.01 m), and the upper to the 
maximum (0.8 m) DTG during the wet season. Based on the qualitative descriptions made by the commu-
nity about the low topographic locations close to the wetland, we expect DTG at those locations will follow 
a similar pattern to that observed in well 121 during the wet season. However, heterogeneity is expected to 
alter the parameters of the PDF function. To limit the assumption of equal behavior, we limited the PDF 
function to the wet months in the wetland area.

In this study, the BME framework was implemented using MATLAB functions from BMElib version 2.0c 
(available at https://mserre.sph.unc.edu/BMElib_web/). The BME implementation parameters chosen for 
this study varied according to the model approach. In the spatial approach, S, we used six hard data points 
in the estimation neighborhood, with a maximum 1,000 km spatial radius and a maximum temporal radius 
of zero weeks. In S and ST approaches, we considered 300 hard data points in the estimation neighborhood, 
with the same spatial radius as in the spatial approach and four weeks as the maximum temporal radius. 
For space-time with soft data approach (STSD), we used two soft data points as the maximum soft data es-
timation neighborhood. We used an estimation grid of 250 by 200 estimation points and included the hard 
data points and Voronoi points. The mean within the estimation neighborhood was assumed to be constant 
and equal to the mean of the observational data within that neighborhood (i.e., the average of the closest 
hard data points). The estimation grid was expanded outside the middle-low watershed domain to avoid 
edge effects.

We only considered the mean and covariance of DTG observations at the prior stage for all the modeling 
approaches. As a result, the prior stage is multivariate Gaussian. Although, higher statistical moments up to 
an even order can also be considered, though we did not attempt that. In the STSD approach, we considered 
both hard and soft data at the posterior stage, which leads to a non-Gaussian posterior pdf and a nonlinear 
combination of the observations. This BME posterior PDF is particularly adept at integrating the knowledge 
of the triangular PDFs at the wetland soft data points. The integration allows us to incorporate soft data 
derived from knowing the location of wetlands and from household knowledge of wetland flooding during 
the wet season. This unique feature of BME makes it an ideal framework to process data from a community 
science project.

2.4. Model Evaluation

To quantify each model performance, we used leave-one-out cross-validation over the entire space-time do-
main, using 4,397 validation values in total, consisting of 2,397 well observations and 2,600 wetland values 
obtained by taking the expected value of the probability density function at each soft data point. We quan-
tified the total error (estimate minus validation value) in terms of systematic error (i.e., error that is con-
sistent and can be removed through bias correction), and random error (i.e., residual error after systematic 
errors are removed), which indicate the degree of precision (Reyes et al., 2017). For the statistical metrics, 
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we used the following notation. The first letter designates the statistical operator: M = mean, V = variance, 
S = Standard Deviation, MS = Mean Square, Cov = Covariance. The last letter represents the values to 
which each statistic is applied. Z = ln-depth estimations, O = ln-depth validation value observed at the well 
or wetland points, and E = Z-O = ln-depth errors. Let ei = zi–oi be the error at the space-time i, and n be 
the number of space-time validation values. Positive errors mean overestimation and negative errors mean 
underestimation.

The Mean Error, ME; (Equation 3) and the Variance of Error, VE, (Equation 4) quantify the systematic and 
random errors, respectively. The systematic errors explain the bias of the method, while the random error 
describes the precision. These two errors are quantified in the total error or Mean Square Error (Equation 5) 
(Reyes et al., 2017).
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Finally, we used the Pearson coefficient of determination R2 (Equation 6) to quantify the fraction of the 
variance explained by the estimates.

    , /R cov O Z SO SZ (6)

where cov(O, Z) is the covariance between O and Z. Knowing that VE = V(O,Z), VE can be written as in 
Equation 7.

   2 2VE SO SZ – 2 cov O,Z (7)

Combining Equations 6 and 7, R2 can also be expressed as:

       
22R VZ VO VE / 4 VZ VO (8)

which allows interpreting the influence of the random errors over the variance of the estimates.

2.5. Areas Impacted by Shallow Groundwater

Mapping DTG helps to reveal groundwater-surface water connectivity and quantify seasonal fluctuation 
in groundwater level and flooding (Fan et al., 2013). With the STSD model, we established the areas more 
susceptible to shallow groundwater in response to precipitation, given that 2008 was a wet year in which 
the middle-low watershed experienced flooding. To accomplish this goal, we used BME mean and variance 
and calculated the probability that DTG is less than a cutoff value of interest at each estimation point, that 
is, Prob[DTG < 0.1 m]. Values smaller than the cutoff value of 0.1 m are interpreted as shallow DTG which 
are more likely to maintain flow in surface streams, connect to the wetland, and increase the probability 
of flooding during extreme precipitation periods. We used the BME posterior Probabilistic Distribution 
Function (PDF) to calculate for each space-time estimation point the probability that DTG is less than 
0.1 m, Prob[depth < 0.1]. The probabilities were classified as high = [0.8–1.0], moderate = [0.6–0.8), low = 
[0.4–0.6), and very low = [0.0–0.4).

With the probability maps, we accounted for areas of a high probability of shallow groundwater. We built a 
time series of the area and compared it with the cumulative average weekly precipitation. The precipitation 
records were obtained from the three closest weather stations managed by the National Institute of Hydrol-
ogy, Meteorology and Environmental Studies of Colombia, IDEAM, (http://dhime.ideam.gov.co/atencion-
ciudadano/). Two stations (i.e., Guarumo-La Lucha, National ID: 25025160 and La Coquera, National ID: 
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26240160) are located outside the middle-low watershed, around 3 km from the catchment to the Northeast. 
The third station is situated at the upper side of the Quebradona sub-catchment (i.e., Manizales, National 
ID: 26240060) (Figure 1). We used this information to analyze the influence of intensity, amount of precipi-
tation per week, and frequency, days of continuous precipitation, in the shallow DTG area.

3. Results and Discussion
3.1. Monitoring Network Results

The monitoring period overlapped with the 2008 La Niña year, with 3,375 mm of precipitation (700 mm 
above average); 2009 was relatively dry and received 1,119 mm less rainfall than 2008 (2,255 mm) (data 
obtained from the IDEAM). The decrease in precipitation in 2009 compared to 2008 was reflected in the 
DTG. During the wet season, average DTG ranged between 0.9 and 1.3 m in 2009, whereas in 2008, it ranged 
between 0.5 and 1.1 m (Figure 3). During the 2009 dry season, average DTG was 2.4 m, while in 2008, DTG 
reached 3.3 m in March (Figure 3b). DTG ranged from 0 to 20 m; for 75% of the data points DTG was less 
than 6 m (Figure 3b). Wells with DTG greater than 6 m were located to the North (wells 120 and 123), and 
to the South, outside the middle-low watershed (well 140).

The closest monitoring stations to Ciénaga Colombia wetland were piezometer 202 and well 105 (Figures 1 
and 3). During the 2008 wet season, DTG in piezometer 202 reached the surface in June, while for well 105 
the minimum DTG was 1 m. These differences are explained by the fact that well 105 is topographically 
higher (55 m.a.s.l) than piezometer 202 (47 m.a.s.l). Well 121 was the only one located in the Man River 
floodplain (Figure 3). In this well, groundwater reached the surface during the two wet seasons, fluctuating 
from 0 to 0.8 m, and had a maximum DTG (3.29 m) during the dry period of 2008 (Figure 3).

DTG varied with the season and well's location (Figures 1 and 3). For wells located at a high topographic 
location, at the catchment boundary or between two tributaries (e.g., wells 120, 127, 128, and 140), the water 
table was deeper during the entire period compared to wells located in topographic depressions. Consist-
ently shallower depths were found close to the springs of the Ciénaga Colombia creek sub-catchment, espe-
cially during the wet season, at Quebradona Creek (well 126), and at La Manada Creek (well 129). Difficulty 
accessing wells located close to the wetland impeded measurement of DTG in these areas.

3.2. Cross-Validation and Method Selection

The cross-validation MSE metric, calculated by combining well and wetland validation data, showed a re-
duction in the overall error (MSE) when using space-time models compared to spatial interpolation (Ta-
ble 1). The MSE dropped from 9.41 (ln-depth)2 in the S model to 7.21 (ln-depth)2 in the ST model. This 
reduction is explained by an improvement in precision (VE), but not in bias (ME), as depths to groundwater 
are consistently overestimated due to lack of hard data collected near the wetland. Adding soft data gener-
ated by knowledge of low DTG at the wetland locations and wet weeks (i.e., weeks in which the water table 
rose to the ground in the vicinity of wetland areas) resulted in further reduction of the MSE from 7.21 (ln-
depth)2 in ST to 0.61 (ln-depth)2 in STSD. This change resulted from the addition of soft data, which caused 
a decrease in VE, from 3.81 to 0.41 (ln-depth)2, and ME, from 1.84 to 0.44 (ln-depth). Therefore, the STSD 
model reduced the overestimation of DTG, and the total error by a factor of 15 (MSES/MSESTSD) when S is 
compared to STSD. Consistent DTG overestimation could be due to the lack of well observations in the wet-
land. Although further reductions could be reached with more well observations in the wetland area, our 
wetland space-time data contribute to a better representation of the DTG in the floodplain. Cross-validation 
results using only the well and wetland validation data, data agree with these results and are included in the 
supporting information (Table S1).

The Pearson regression coefficient, R2, increased from 0.004 for the S model to 0.268 for the ST model. Since 
VO is the same for S and ST, an increase in R2 may be due to a decrease in VE or an increase in VZ. Here, the 
increase in R2 is due to an effect on both VE and VZ. VE decreased from 5.97 (ln-depth)2 for the S model to 
3.81 (ln-depth)2 in the ST model (i.e., the ST model produces smaller error estimates), while VZ simultane-
ously increased from 1.23 (ln-depth)2 in S to 2.23 (ln-depth)2 (i.e., the ST model provides a stronger contrast 
between small vs. large DTG values). These results reveal the benefits of building a space-time interpolation 
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over a pure spatial analysis. For the ST model, high temporal correlation 
of DTG informed the model in areas where DTG were missing for a par-
ticular date. R2 increased further, to 0.930, in the STSD model due to an 
increase in VZ from 2.23 (ln-depth)2 in ST to 3.71 (ln-depth)2 in STSD, 
and a decrease in VE from 3.81 (ln-depth)2 to 0.41 (ln-depth)2. The du-
al-action on VE and VZ reflects the positive impact of adding soft data 
describing the expected low DTG in the wetland and floodplains during 
wet periods.

Inclusion of wetland space-time data improved DTG estimates (Fig-
ures S3–S4 in the supporting information). The models showed shallow 
DTG in the northwest of the middle-low watershed, close to springs and 
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Figure 3. Summary of data collected in the watershed. (a) annual average distribution of depth to groundwater (DTG) during 2008 and 2009. (b) weekly DTG 
percentiles in all wells. (c) examples of DTG time series chosen based on depth range.

Model
MSE 

(ln-depth)2
VE 

(ln-depth)2
ME 

(ln-depth) R2 unitless
VZ 

(ln-depth)

S 9.41 5.97 1.86 0.004 1.23

ST 7.21 3.81 1.84 0.268 2.23

STSD 0.61 0.41 0.44 0.930 3.71

Note. For each cross-validation evaluation, MO is −1.93 (ln-depth), and 
VO is 5.06 (ln-depth)2.

Table 1 
Cross-Validation Model Results for the Hard and Soft Data Points
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depressions, especially in the wet season. However, models without soft data (S and ST) failed to represent 
the expected small depths near wetland and floodplains (DTG estimation resulted in larger values) due to 
the lack of observations in the topographic low-elevation sectors of the catchment.

The collaborators reported increases in flooded areas and wetland open water during the wet season. Our 
results can spatially represent these findings and observations at a weekly temporal scale. Moreover, our 
findings are consistent with previous studies in the region that used hydrogeochemistry and isotopic tech-
niques to identify groundwater recharge sources (Palacio & Betancur, 2007), and surface-groundwater in-
teractions in the Man River middle-low watershed (Palacio et al., 2013) and the Ciénaga Colombia wet-
land (Santa-Arango et  al.,  2010). According to these studies, in the Quebradona and Ciénaga Colombia 
sub-catchment, evaporation from the aquifer occurs in the upper left side of each of the sub-catchments 
(Palacio et al., 2013). Moreover, direct recharge takes place across the watershed. This pattern was identified 
by detecting similar isotopic composition in the rainwater and the shallow groundwater, which suggested 
recent groundwater in the aquifer with potential short resident time (Palacio & Betancur, 2007). These water 
composition similarities were consistent during the wet and dry seasons, implying a high dependency of the 
aquifer on precipitation, which also may explain some of the shallow depths obtained during the wet year.

BME total error reduction is consistent with BME applications in water quality (Akita et al., 2007; Messier 
et al., 2014), highlighting that accounting for temporal correlation results in significant decrease in the total 
error. Our approach allowed us to partition the total error into systematic and random error to analyze them 
separately. We found that the main contribution in the STSD model is that it increases the precision (i.e., 
reduce the random errors) more than it reduces the bias, although the bias is also reduced (i.e., systematic 
error decrease). All methods overestimated DTG. This may be explained by the lack of hard DTG data in the 
low-elevation locations. Nevertheless, STSD overestimated DTG the least compared with the S and ST mod-
el. This consistent overestimation implies more contrast between deep and shallow DTG is expected in the 
area and predictions can be improved by adding new hard data measurements at the depression locations.

3.3. Areas Impacted by Shallow Groundwater

The probability of shallow groundwater (DTG < 0.1 m) increased as precipitation increased. The area of 
high probability of shallow DTG expanded during April–November, and decreased between December and 
March (Figure 4a). After the middle-low watershed received six or more continuous days of precipitation 
in a week, the area with shallow DTG increased, reaching its maximum (56%) the second week of May 
2008 (Figure 4a). We saw a bigger increase in the area in 2008, the wetter year, suggesting a relationship 
between days with continuous precipitation, rainfall intensity, and shallow DTG (Figure 5). Conversely, 
shallow DTG area decreased two weeks after reaching its peak when precipitation also decreased, sug-
gesting that soil moisture's antecedent and posterior conditions influence shallow DTG area changes. Our 
results suggest a nonlinear relationship may be occurring between precipitation intensity and frequency, 
and the fluctuation of shallow DTG areas (Figure 5). We found a relationship between the aquifer response 
to precipitation and the intensity and duration of the rain. Longer DTG records are necessary to define the 
threshold in precipitation after which groundwater contributes to overland flow and subsequent flooding, 
and the nature of the nonlinear relationship defining this threshold.

The distribution of the high probability of shallow DTG areas indicates the aquifer's potential exchange of 
groundwater and surface water. Zones with consistently shallow DTG included the Ciénaga Colombia wet-
land and the Man River floodplains in the low watershed, i.e., topographic depressions, and the up-stream 
La Manada and Quebradona sub-catchments, where the headwaters are located (Figures 6 and 7). Shallow 
DTG areas up-stream of the main sub-catchments may explain the permanent streamflow of the Man tribu-
taries throughout the year. Low probabilities of shallow DTG, situated to the North in the watershed's upper 
margin (Figure 4b), are consistent throughout the two-year period (Figures 6 and 7).

Previous studies suggested a dominant contribution of the aquifer to the surface water, and evaporation 
from the upper La Manada and Quebradona sub-catchments (Betancur, 2008; Palacio et al., 2013). Evapo-
ration may explain the rapid decrease in the shallow DTG area after it reaches its peak (Figure 4a). Another 
explanation of this rapid decline of shallow DTG area could be associated with the soil characteristics and 
the sparse vegetation. Eighty percent of the watershed is associated with sandy clay and loam soils derived 
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from poorly consolidate sandstones with a hydraulic conductivity of about 0.2 cm/h (Instituto Geográfico 
Agustín Codazzi, 2007a). These soil characteristics allow the soils to reach saturation quickly. Therefore, 
DTG increases during continuous and intense rainy days.

Land use activities may play an essential role in shaping the aquifer response to precipitation in the water-
shed. The region has alluvial mining exploitation and grazing since the 16th century (Cuartas et al., 2000). 
Mining activities in the Man River floodplains and other tributaries have affected the watershed's capacity 
to control erosion in the riverbanks. Additionally, around 80% of the middle-low watershed is used for 
grazing, in which a common practice is to create artificial open water ponds to provide water for the ani-
mals (Instituto Geográfico Agustín Codazzi, 2007a). These activities have reshaped creeks and channels, 
disrupting the surface flow (Betancur, 2008, 2014) and threatening wetland ecosystem services such as flow 
control, groundwater replenishment, erosion control, and food provision (Betancur-Vargas et al., 2017). 
This practice and the favorable atmospheric moisture conditions for evaporation may be drivers for rapid 
water loss after precipitation days cease. Evidence of an increase in intensity and frequency of La Niña 
events (Wang et  al.,  2019) is cause for concern, as an intensification of wet events would increase the 
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Figure 4. Temporal and spatial distribution of Prob[DTG < 0.1 m]. (a) Weekly precipitation compared to weekly area of high Prob[DTG < 0.1 m] expected at 
0.8, 0.85, and 0.9 cutoffs. Values at each probability cutoff are expressed as a percentage of the total watershed area (481.3 km2), including wetlands (11.1 km2). 
Precipitation is the average of the three closest national weather stations. (b) Example weekly maps of the spatial distribution of Prob [DTG < 0.1 m] for time 
points 1, 2, 3, and 4 (see a), illustrating dry and wet months.



Water Resources Research

probability of flooding in agricultural areas, promoting sediment depo-
sition and erosion that may cause soil compaction and reduce the infil-
tration capacity.

3.4. Impact of Community Knowledge on Model Implementation

Our approach allowed us to identify the combined action of intensity and 
frequency of precipitation over DTG response. This identification was 
possible due to the community knowledge that allowed to add detailed 
temporal data to the model. Previous studies used the classic kriging spa-
tial interpolation to model monthly groundwater table in the River Man 
middle-low watershed using SRTM-30 (Palacio,  2014). While SRTM-30 
was the best-known elevation model for the area, heterogeneity is miss-
ing in a relatively flat landscape (i.e., the elevation of a well located in 
high topography can appear lower than expected). Although we cannot 
compare both studies' results numerically, both studies revealed the 
groundwater table fluctuation in response to precipitation changes. In 
addition, our results provide insights about how DTG may respond to 
precipitation.

The fact that STSD is the best representation of DTG suggests that com-
munity knowledge added vital information to improve DTG mapping, 
even though incorporating this knowledge into the model implementa-

tion was not planned from the beginning of the community science project. A more systematic qualita-
tive knowledge collection with the community (e.g., interviews or surveys, storytelling, knowledge dialog) 
would enhance community perceptions into the model. These systematic qualitative methods require de-
sign strategies for sustaining community engagement (Haklay, 2013). For future projects we suggest, regard-
less of the knowledge collection strategy, to include the community as part of the model validation. Further 
feedback from the community will help confirm and validate model results collectively. A technique that 
can be adapted for this model validation purpose is social cartography (Liebman & Paulston, 1994). This 
technique has proven effective in identifying relevant monitoring sites while also helps to identify environ-
mental risk (Arias et al., 2016).

Participatory approaches are effective mechanisms to increase the knowledge about the groundwater sys-
tem while involving the community in the process at different levels (Grieef & Hayashi, 2007; K. E. Little 
et al., 2016; Re, 2015). Our approach can be used in systems with no data for exploratory purposes (e.g., 
monitoring network design or seasonal groundwater-surface water connectivity detection, and aquifer 
characterization). Additionally, our approach is helpful for incorporating continuous groundwater monitor-
ing because locals can be involved in different project stages, from data collection to data analysis to model 
validation. Building collaborative links between scientists and the community also help address research 
questions with a meaningful social impact (Arias et al., 2016; Haklay, 2013).

Constant communication and knowledge sharing are effective engagement mechanisms in community sci-
ence projects (Assumpção et al., 2018; Cooper et al., 2007). One of the tasks that made the communication 
effective was to have short informal conversations with each household before discussing the data collec-
tion. Communication and trust-building are key in community science projects (Baldwin et al., 2012; K. E. 
Little et al., 2016). Fieldwork campaigns were also designed to build trust and establish collaborations with 
the households. Providing recommendations for the wells' maintenance, sharing water quality analysis 
results, and having a conversation with the households about activities not necessarily related to data col-
lection were effective mechanisms to build trust, and at the same time, help to solve issues affecting water 
quality at the household level. These ways of communication helped to maintain the monitoring network 
remotely and to learn from the locals. We believe that our approach allows us to include the community 
knowledge in the data analysis.
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Figure 5. Relation between precipitation of the previous week and 
the high probability of shallow depth to groundwater (DTG) area. The 
combined precipitation intensity (i.e., mm per week of rainfall) and 
duration (i.e., number of rainy days) have an effect on the area of shallow 
DTG.
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Figure 6. Spatial distribution of the probability that the weekly average of depth to groundwater (DTG) is smaller than 
0.1 m (Prob. [DTG < 0.1 m]) for each week in 2008. The first week of the year is considered to start on 12/31/2007.
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Figure 7. Spatial distribution of the probability that the weekly average of depth to groundwater (DTG) is smaller than 
0.1 m (Prob. [DTG < 0.1 m]) for each week in 2009. The first week of the year is considered to start on 01/05/2009.
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4. Conclusions
Community participation in scientific hydrologic studies provides benefits through both community en-
gagement (e.g., knowledge transfer, community self-training, education outreach, and informed decision 
making) and the understanding of hydrologic systems. In groundwater-dependent regions with limited 
or no DTG information, our results suggest that the combination of Community Science Research and 
BME modeling can contribute to a better understanding of groundwater dynamics. We used community 
descriptions, locations of wetlands, and precipitation records to define a probabilistic function that informs 
us about shallow DTG in the floodplains and wetland areas and complements the data collected by the 
community. The community helped create a data set that would have been challenging to acquire with 
conventional data collection methods and provided local descriptive knowledge essential to improving DTG 
representation. BME's capabilities make it suitable to incorporate both qualitative and quantitative data into 
a model. Our results show how this combination contributed to the modeling effort, specifically:

1.  The reduction of the total error occurred progressively from space (S), to the space-time (ST), to the 
space-time with soft data model (STSD). The high temporal correlation characteristic of DTG allowed 
improved space-time (ST) interpolations compared to spatial interpolation (S). MSE further reduced 
from ST to STSD by adding soft probabilistic DTG in the wetland and floodplain areas, resulting in the 
combined improvement in precision and a reduction in DTG overestimation and bias. Also, STSD incor-
porated information where DTG values were missing, increasing the variability in DTG values.

2.  The spatial and weekly temporal distribution of the groundwater and surface water connections showed 
consistency with previous studies using hydrogeochemistry and isotopic approaches. In those studies, 
evaporation from the aquifer was identified to occur in areas of the main sub-catchments (Palacio & 
Betancur, 2007), which may explain why the area of shallow DTG decreased around two weeks after 
reaching its peak. Similar isotopic composition between groundwater and surface water during the wet 
and dry periods in topographic depressions (Palacio et al., 2013; Santa-Arango et al., 2010) explains the 
consistent shallow DTG in our maps. By incorporating the wetland locations and their most likely DTG 
during the wet season, we delineated shallow DTG in these topographic depressions.

3.  Our results suggest a nonlinear relationship between precipitation intensity and frequency and the shal-
low groundwater area. The rapid increase in shallow DTG area in the extreme wet year compared to 
the average year may be related to high antecedent soil moisture conditions due to continuous rainfall, 
raising the groundwater table. In contrast, middle-low watershed topographic features, atmospheric 
conditions, and land-use practices create favorable conditions for high evaporation, contributing to de-
creasing the shallow DTG area over the year when precipitation ceases. Additional data will be required 
to investigate further specific threshold values after which shallow DTG area increases.

From a modeling perspective, one limitation of our approach is that the lack of observations in the wetland 
areas constrains the reduction of DTG overestimation. That said, recognizing the value of using BME in 
Community Science projects may contribute to the design of monitoring networks or to model use for ex-
ploration purposes. The combined use of BME and Community Science may allow for closer interactions 
with the collaborators, contributing to the formulation of new hypotheses and further identification of 
critical environmental concerns. Our results suggest that both quantitative and, crucially, qualitative infor-
mation from community members can result in substantially better spatial and temporal understanding of 
DTG, which may be of use in many similar environments around the world. Including the community in 
the model validation would be a further step towards fully integrating community science projects in the 
broader scientific enterprise.

Data Availability Statement
All the Depth to Groundwater data used in this study are available in the repository http://doi.org/10.5281/
zenodo.3923896 (License Creative Commons Attribution 4.0 International).Wetlands and inundated areas 
data set are available in Lasso et al. (2014). All maps of the STSD model results used in this study are avail-
able in the repository http://doi.org/10.5281/zenodo.3928587 (License Creative Commons Attribution 4.0 
International).
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