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ABSTRACT

Numerical simulations and physical frag-
mentation experiments confi rm the theo-
retical prediction that the fractal dimension 
of a two-dimensional (2-D) cut through a 
set of three-dimensional objects with frac-
tal dimension D is approximately equal to 
D – 1. This leads to a size distribution in two-
dimensional cuts that is skewed strongly 
toward larger objects compared to the 
three-dimensional distribution. Three-
dimensional shape (aspect ratio) does not 
significantly affect the resulting 2-D size 
distribution except for highly nonequant 
objects, such as prolate ellipsoids with aspect 
ratios of 10 or more. In contrast, fragmenta-
tion of an object by breakage along persis-
tent fractures results in a non-fractal distri-
bution of sizes and far fewer small objects 
than predicted by fractal statistics. Powder-
ing a rock by extensive crushing also results 
in non-fractal size distributions because 
particles are reduced to sizes on the order 
of 1 μm, a comminution limit below which 
further brittle fracture is diffi cult. Natural 
examples of fragmental objects observed 
in two-dimensional cuts, such as crushed 
rocks, breccias, and xenoliths, are generally 
consistent with a three-dimensional fractal 
dimension near 2.5 over one or two orders 
of magnitude in size. However, a limestone 
breccia from Death Valley exhibits a non-
fractal size distribution consistent with frag-
mentation of a strongly jointed rock. Mafi c 
enclaves in Yosemite National Park have a 
restricted size range of about one order of 
magnitude and a three-dimensional frac-
tal dimension of ~3.1, consistent with other 
enclave swarms. The restricted size range of 
enclaves may refl ect the apertures of mafi c 
dikes that fed them.

INTRODUCTION

Although geologic objects are three-dimen-
sional (3D), geologists are typically presented 
with two-dimensional (2D) cuts through them, 
such as outcrops, road cuts, and thin sections. 
It is known that such cuts can be misleading; 
for example, the clasts in a clast-supported con-
glomerate generally do not appear to touch each 
other in outcrop because the outcrop surface 
rarely intersects the points of contact (Boggs, 
1992, p. 212–213). Converting 2D analyses to 
3D (stereology) is a common practice in crystal 
size distribution analysis (Chayes, 1950; Hig-
gins, 1994, 2000; Peterson, 1996) and other 
geologic intersection work (Sahagian and 
Proussevitch, 1998). The 3D size distribution of 
clastic material is important because it provides 
information about the fragmentation processes 
of the original object.

Three-dimensional analysis of a large vari-
ety of materials produced by crushing, blasting, 
grinding, thermal shock, and other fragmenta-
tion processes shows that the resultant particles 
tend to follow a self-similar (fractal) size dis-
tribution (Turcotte, 1986). That is, if particles 
whose sizes follow a fractal distribution are 
passed through a sieve and photographed, and 
the photograph is then scaled so that the largest 
particles are of a given size, the size distribution 
in the photograph will look the same regardless 
of the sieve size. However, dicing a solid by ran-
dom orthogonal cuts generates a decidedly non-
fractal distribution of particle sizes (Glazner and 
Bartley, 2006). This suggests that size distribu-
tions can be useful in determining fragmentation 
mechanisms. For example, the size distribution 
of xenoliths in a pluton might be used to infer 
whether they were incorporated via thermal 
fragmentation, producing a fractal size distribu-
tion, or by a process involving magma injection 
along preexisting fractures, producing a non-
fractal distribution. Similarly, Shimamoto and 
Nagahama (1992) used fragment size statistics 

to argue against a fracture origin for the matrix 
of pseudotachylites. However, such analyses are 
hindered by the necessity to analyze materials in 
two dimensions in outcrop or thin section, and 
the necessity to understand how 2D cuts relate 
to 3D objects.

A fractal size distribution is defi ned by

N = Cr –D, (1)

where N is the number of fragments with linear 
dimension greater than r, C is a constant, and D 
is the fractal dimension. In such a distribution, 
a log-log plot of the cumulative number of par-
ticles greater than a given size r versus r gives a 
straight line whose slope is –D. The greater the 
value of D, the greater the number of smaller 
particles relative to larger ones; for example, if 
D = 3, then the number of particles larger than 
X in linear dimension is 1000 times greater than 
the number of particles larger than 10X.

Hartmann (1969) summarized data on frag-
mentation by various processes such as crush-
ing, blasting, grinding, and explosive volcanic 
eruption, and showed that the data generally fi t a 
power-law distribution. Turcotte (1986) showed 
that these data are consistent with a fractal dis-
tribution. Figure 1 and Table 1 summarize 319 
published D values determined for a variety of 
fragmented geologic materials in both 3D and 
2D. The 3D values have an overall mean of 
2.2 ± 0.35 (1 standard deviation), or 2.4 ± 0.3 
without the values of Perugini et al. (2011), a 
large data set that is a distinct outlier in Fig-
ure 1. Two-dimensional D values from previous 
studies of broken solids (Fig. 1) are noticeably 
lower (1. 5 ± 0.4). Allègre et al. (1982), Turcotte 
(1986), and Sammis et al. (1987) presented a 
variety of mechanical and mathematical frag-
mentation processes that produce particle arrays 
with D in the range of 2.5 to 2.9. In particular, 
Sammis et al. (1987) developed a model show-
ing that if nearest neighbors of the same size are 
preferentially broken, as is commonly found in 
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experiments, then any initial distribution of par-
ticles will tend toward a self-similar distribution 
having a fractal dimension of 2.58.

An alternative description of fragmentation 
statistics is the lognormal distribution (Hatch 
and Choate, 1929), which is commonly applied 
in studies of sedimentary particles (Krumbein 
and Tisdel, 1940; Folk and Ward, 1957; Rogers , 
1965). Hartmann (1969) suggested that the dis-
crepancy between lognormal and power-law 
fi ts is in part due to limitations of observational 
methods , which must always undercount the 
smallest particles. Some studies have shown 
that fragmentation processes can produce frag-
ments that are best described as either mixed 
 lognormal–power law or two–power-law popula-
tions (e.g., Meibom and Balslev, 1996; Tavassoli 
and Shirvani, 2000; Yazdi and Esmaeilnia, 2009).

If a fractal array of particles is viewed in a 
2D cut, the fractal dimension of the intersected 
particles, hereafter referred to as D2, is less than 
the fractal dimension of the 3D particles, here-
after D3. Mandelbrot (1983) proposed that when 
an n-dimensional set of particles with fractal 
dimension Dn is cut by an n-1-dimensional 
surface, the fractal dimension of the particles 
viewed in that surface should be Dn – 1 provided 
that the particles are isotropic in the missing 
dimension. Thus, an array of particles with D3 = 
2.5 cut by a planar surface should have D2 = 1.5. 
This conjecture has been discussed by Sammis 
et al. (1987), Russ (1994, p. 301ff), and Tang 
and Marangoni (2006), among others.

An intuitive explanation of Mandelbrot’s 
conjecture is shown in Figure 2. In a random 
cut through a series of spheres of differing 

diameters, larger spheres are more likely to be 
intersected than smaller ones. In particular, a 
sphere of radius R is 10 times more likely to be 
intersected than one of radius R/10. Thus, every 
decrease in size of a factor of 10 leads to a ten-
fold decrease in the probability that a particular 
particle will be counted, decreasing the slope of 
the fractal plot by one.

In this paper, we examine the size distribu-
tions of 3D particles in 2D cuts using numeri-
cal simulations and experimental studies, and 
compare them to outcrop data from breccias 
and xenoliths.

NUMERICAL SIMULATIONS

Data to be fi t by Equation 1 are generally 
grouped into size classes and then displayed on 
a plot of log(N) versus log(r) (e.g., Turcotte, 
1986). We use a slightly different but equivalent 
technique in which the length observations are 
ranked from largest to smallest and then plotted 
against s – 1, where s is the rank. This method 
has the advantages of eliminating the arbitrari-
ness of histogram binning and more clearly 
showing the effects of left-hand and right-hand 
truncation (see below).

We generated fractally distributed (in edge 
length or diameter) populations of 3D objects 
(cubes, tetragonal prisms, spheres, and tetra-
hedra) with D = 2.5 using inverse transform 
sampling (Devroye, 1986, Chap. 2). If F is 
the cumulative distribution function of a given 
probability distribution, then inserting uniform 
random numbers drawn from the interval [0,1] 
(U[0,1]) into the inverse function F–1 yields ran-
dom numbers drawn from the probability distri-
bution described by F. The fractal distribution 
of Equation 1 is itself a cumulative probability 
distribution.

The general algorithm for the simulations is 
as follows:

(1) Generate a vector r of fractally distributed
lengths by inserting a vector of n random num-
bers drawn from U[0,1] into the function x –1/2.5.

(2) Generate a vector z of n random num-
bers drawn from U[0,100], and distribute the n 
objects along the z-axis using these numbers.

(3) Calculate the cross-sectional area of the
objects cut by the plane z = 50.

Following Turcotte (1986), we use the square 
root of the area (referred to below as eigen-
length) as a linear measure of the object’s size, 
both in simulations and with natural data. Cal-
culations were done in Matlab. With this algo-
rithm, the minimum value of r approaches 1. 
Thus, in Equation 1, C = n – 1. The simulations 
are insensitive to the size of the interval drawn 
from (e.g., [0,100]) provided that it is large com-
pared to the objects being studied.
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Figure 1. Box and whisker plots of 307 fractal coeffi cients determined for a variety of frag-
mented geologic materials in 3D and 2D, including pyroclasts, cataclasites, soils, breccias, 
and mine blast products. The 3D values have an overall mean of 2.2 ± 0.7 (2 standard devia-
tions), or 2.4 ± 0.6, if the values of Perugini et al. (2011) are eliminated. For each data set, 
the open circle with a dot is the median, the heavy bar gives the 25th and 75th percentiles, 
the light line gives the range, and open circles are statistical outliers. Gray arrows for 2D 
data sets give the median value +1. The Perugini data set is characterized by much lower D 
values than those from other studies, perhaps owing to fragility of the pyroclasts. Data from 
cataclasite and fault gouge (Sammis et al., 1987; Marone and Scholz, 1989; Billi and Storti, 
2004; Billi, 2005); impact breccia (Rousell et al., 2003); pyroclasts (Kueppers et al., 2006; 
Perugini et al., 2007; Pepe et al., 2008; Suzuki-Kamata et al., 2009; Perugini et al., 2011); 
soil (Perfect, 1997; Gimenéz et al., 1998); xenoliths (Farris and Paterson, 2007); and mine 
blasting (Crum, 1990; Ghosh et al., 1990; Bagde et al., 2002).



Figure 3 shows the results of one simulation. 
One million cubes with fractally distributed 
edge lengths were placed with a face parallel 
to the x-y plane. Thus, if a given cube is inter-
sected by the plane z = 50, the cross-sectional 
area of the intersection is equal to the full area 
of a face. The blue curve gives the distribu-
tion of edge lengths for the 3D objects, and 
the red curve for the intersection simulation. 
The intercept at r = 1 for the 3D objects is 106, 
since all 106 objects were counted, whereas the 
corresponding intercept for the 2D intersec-
tions is ~16,500, indicating that <2% were cut 
by the plane. Linear fi ts to these arrays have 
calculated slopes of –2.5 and –1.5, verifying 
that the generating algorithm is correct and 
that the Mandelbrot (1983) conjecture works 
for this system. If the cubes are randomly ori-
ented (green curve), then the calculated frac-
tal dimension is somewhat higher (1.62 in the 
simulation in Fig. 3) owing to a higher number 
of small objects that correspond to triangular 
and rectangular cuts far from the cube center. 
This value is ~8% higher than that predicted 
from the D – 1 rule.

Spheres and tetrahedra present slightly differ-
ent cases (Fig. 4). The linear portion of the 2D 
sphere curve in Figure 4 has a slope of –1.52, but 
there is a fl at tail at low radii caused by spheres 
that were intersected far from their equators by 
the intersection plane. The tetrahedron simula-
tion in Figure 4 consisted of 106 regular tetra-
hedra oriented with a face parallel to the x-y 
plane. The 2D intersection curve for the tetra-
hedra also has a linear section with a fl at left-
hand tail; the linear portion has a slope of –1.55 
owing to the bias toward small intersection areas 
toward the apex. For both of these objects, the 
D3 – 1 method is approximately correct.

Figure 5 shows the size distributions of 2D 
cuts through randomly oriented ellipsoids of 
varying aspect ratio, both prolate and oblate. For 
each curve, 105 ellipsoids were generated with 
fractally distributed equatorial axis a and rota-
tional axis c = ka, where k is the aspect ratio. For 
k = 1, the ellipsoids are spheres, and this simula-
tion gives D2 = 1.50 as expected. For k = 5, the 
calculated slope is only slightly different from 
–1.5, but for k = 10 (cigar-like), it is substan-
tially different (–1.69), and for k = 20 (pencil-

like), it is even higher (–1.9). For highly oblate 
ellipsoids with k = 0.1, the calculated D2 (–1.58) 
is again slightly greater than 1.5.

SAMPLING OF FRACTAL 
DISTRIBUTIONS AND THE 
TRUNCATION PROBLEM

Measurement of objects drawn from a popu-
lation with a fractal distribution is confounded 
by problems of truncation (Pickering et al., 
1995). Left-hand (small-scale) truncation is 
related to the sensitivity of the measurement 
process; small objects are increasingly diffi cult 
to detect as their size decreases. Right-hand 
(large-scale) truncation occurs under several 
circumstances. For example, the maximum 
xenolith area that can be measured in a given 
exposure cannot exceed the area of the out-
crop, and large objects that intersect the edge 
of the measurement area (such as the edge of 
a frame undergoing image analysis) are either 
omitted from analysis (as in this study), or their 
size is underestimated. If the larger values of a 
distribution are not sampled, then an array of 
particles that should plot as a straight line on 
a fractal plot will instead be convex up, falling 
below the nominal slope on the right and lead-
ing to an overestimate of the fractal dimension 
(Fig. 6; Pickering et al., 1995).

DATA FROM PHYSICAL 
EXPERIMENTS

Crushed Rocks and Minerals

As noted earlier, fragmented materials com-
monly have D ~2.4 ± 0.3 in three dimensions 
(Fig. 1). Figure 7 shows data from an aphyric, 
indurated Miocene rhyolite from the west-
ern Mojave Desert that was crushed in a jaw 
crusher such that the largest particles were 
on the order of 1 cm. The resulting particles 
(72 g) were put through a stack of sieves, and 
the numbers in each size range were estimated 
using the method described by Glazner and 
Bartley (2006) with an assumed particle den-
sity of 2600 kg/m3. The data array is linear 
with a slope of –2.51 (the largest and small-
est size classes were discounted to minimize 
truncation issues). A medium-grained quartz 
monzonite from the Eocene Mount Princeton 
batholith of central Colorado was similarly 
processed, yielding D3 = 2.37. Thermal frag-
mentation of granite by Glazner and Bartley 
(2006) yielded D3 ~2.2.

To examine a 2D cut through the crushed 
rhyolite, an aliquot was passed through a sieve 
with an opening of 1 mm, and then a small ran-
dom aliquot was scooped up with a spatula and 

TABLE 1. COMPILATION OF 3D AND 2D FRACTAL DIMENSIONS

DlairetaMecruoS 3 D2 s.d.*
Literature values
Bagde et al. (2002) Mine blasting 2.53 0.08
Billi and Storti (2004) Carbonate cataclasite 2.49 0.21

03.005.2aiccerbenotsemiL)5002(illiB
61.000.2gnitsalbeniM)0991(murC

Ghosh et al. (1990) Mine blasting 2.61 0.24
82.096.2lioS)8991(.latezénemiG

Kueppers et al. (2006) Pyroclasts (experimental) 2.34 0.15
52.022.2stsalcoryP)9002(.lateatamaK-ikuzuS
60.093.2lioS)7991(tcefreP
61.092.2stsalcoryP)8002(.lateepeP
81.038.1stsalcoryP)1102(.lateinigureP

Glazner and Bartley (2006) Granite (thermal disaggregate) 2.20 n.d.†

21.006.1etisalcatacssienG)7891(.latesimmaS
62.026.1aiccerbtcapmI)3002(.latellesuoR
91.028.1sevalcnE)7891(.lateztloH
.r.n05.2sevalcnE)7002(.lateinigureP §

57.000.2shtiloneX)7002(nosretaPdnasirraF
Marone and Scholz (1989) Fault gouge (experimental) 1.39 0.29

This study (all D3 = 2.5)
05.1sebucdetneirOlaciremuN
26.1sebucmodnaR
25.1serehpS
55.1ardehartetdetneirO

Random ellipsoids, k = 0.1 1.58
Random ellipsoids, k = 5 1.51
Random ellipsoids, k = 10 1.69
Random ellipsoids, k = 20 1.91

94.115.2etiloyhRlacisyhP
.d.n73.2etinarG

raenilnoNeticlaC #

raenilnoNetiroulF #

*00.2elobihpmA
44.1etiroidonargnishtiloneX

Granodiorite fault breccia 1.87
raenilnoNaiccerbenotsemiL #

Mafic enclaves in granodiorite 2.20
*One standard deviation of measurements.
†Not determined.
§Not reported.
#Curved size distribution, not self-similar.



stirred into UV-curing epoxy (Norland 63) on a 
glass slide. The epoxy is viscous (~2.5 Pa·s) and
hardened rapidly, ensuring negligible particle 
settling and size fractionation. After hardening, 
this mount was polished and imaged on a scan-
ning electron microscope using backscattered 
electrons, a high probe current, and high con-

trast. This allowed for unambiguous discrimina-
tion of the sectioned particles, which were then 
counted and measured using ImageJ software 
(http://imagej.nih.gov/ij).

Figure 8 shows that the largest particles 
have an eigenlength of ~0.5 mm, and the total 
number counted was ~1200. In the size range 

between ~0.03 and 0.3 mm, a line with slope 
–1.49 fi ts the data well, but the number of
smaller particles is far smaller than described by 
D2 = 1.5. Thus, in this example, although the 3D
particle array has eigenlengths described by D3

~2.5 over a size range of ~2.5 orders of magni-
tude, a 2D cut only follows the D – 1 rule over
approximately one order of magnitude.

A crushed calcite crystal displays a some-
what different size distribution. A calcite crys-
tal 2 cm in longest dimension was struck lightly 
with a hammer three times, passed through a 
1-mm sieve, and then mounted, imaged, and
counted as described above. The resulting data
array (Fig. 8B) is noticeably more convex-up
than the crushed rhyolite and lacks the central
linear segment displayed by the rhyolite par-
ticles. It is also noticeably more convex than
a lognormal array. Crushed fl uorite, another
mineral with excellent cleavages, also shows
a rounded size distribution (Fig. 8C), whereas
crushed amphibole has a short linear seg-
ment with a slope of –2.00. The rounded array
shapes for calcite and fl uorite resemble those
produced by dicing a cube by cuts parallel to
the three principal face directions. Figure 9
shows 3D and 2D simulations of this process.
The 3D simulation follows the method of
Glazner and Bartley (2006); for the 2D simula-
tion, rectangular prisms produced by this algo-
rithm were distributed randomly between z = 0
and z = 50, and areas intersected by a plane at
z = 25 were determined. Both arrays are con-
tinuously curved.

In contrast to the fractal particle array pro-
duced when a rock is crushed in a jaw crusher 
(Fig. 7), rock powder produced by extensive 
pulverization shows a curved size distribution 
(Fig. 10). Basalt sample P-36 (Glazner et al., 
1991) was crushed in a jaw crusher and then 
powdered for 10 min in a tungsten carbide ball 
mill. A small aliquot of powder was shaken 
vigorously in water, and a small drop of this 
dilute suspension was placed on a glass slide for 
analy sis under backscattered electrons, yielding 
full particle diameters. The resulting size distri-
bution is curved and non-fractal (Fig. 10).

Xenoliths and Breccias

In order to look for self-similarity in xeno-
lith size distributions, we collected measure-
ments of 950 xenoliths from the outer margin 
of the Tuolumne Intrusive Suite in Yosemite 
National Park, California. Abundant xenoliths 
occur in the granodiorite of Glen Aulin adjacent 
to metamorphic wall rocks near the southeast-
ern corner of May Lake. These metamorphic 
and surrounding igneous rocks were mapped 
by Rose (1957), Bateman et al. (1983), and 
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size will systematically undersample the smaller objects, leading to a small fractal dimen-
sion. This is the basis for Mandelbrot’s conjecture that if the 3D fractal dimension is D, the 
fractal dimension in a 2D cut will be D – 1.



Taylor  (2004), and studied geochemically by 
Gray et al. (2008) and Mills et al. (2009). As 
noted by Mills et al. (2009), xenoliths almost 
exclusively occur where granodiorite is in con-
tact with schistose pelitic quartzite, which is 
the only foliated rock type in the metamorphic 
screen, and nearly all measured xenoliths were 
pelitic quartzite (a few percent were quartzite). 
Xenoliths with a minor axis length greater than 
1 cm were measured in fi ve areas (average area 
of 50 m2) with abundant xenoliths and near-
100% exposure. Eigenlength was calculated for 
each xenolith as the geometric mean of the long 
and short axes.

Figure 11 shows the size distribution of these 
eigenlengths. A line with a slope of –1.44 fi ts 
the data well over a size range from 30 cm to 
~4 cm. This indicates that over the relatively 
restricted size range measured, these xenoliths 
likely have D3 ~2.4, consistent with the frag-
mentation studies summarized in Figure 1. The 
largest xenolith measured in this study was 1 m2 
in area, although xenoliths over 100 m long 
occur in the contact zone (Taylor, 2004; Glazner 
et al., 2004).

We determined D2 from a photograph of 
a brecciated fault surface (Fig. 12) and found a 
somewhat higher fractal dimension. The brec-
ciated surface is from the Castle Mine fault in 
the Marble Mountains, Mojave Desert, Cali-
fornia, a steeply dipping, curved normal fault 
that places early Miocene rhyolite on Jurassic 
granodiorite (Glazner and Bartley, 1990). It 
exhibits abundant polished fault surfaces with 
steep slickenlines, and brecciated particles are 
clearly evident on the fault surfaces (Fig. 12). 
Outlines of particles down to ~0.5 mm across 
were traced and the resulting array analyzed as 
above with ImageJ. The size-distribution array 
(Fig. 13) has a pronounced linear section from 
~7 mm to 1 mm, with a slope of –1.87. The 
magnitude of the slope indicates that there are 
a greater number of small particles in each suc-
cessively smaller size class than predicted if the 
D3 were 2.5.

Fragments from a limestone breccia in Death 
Valley National Park, California, exhibit a par-
ticle size distribution in 2D that differs from 
both May Lake xenoliths and the Castle Mine 
fault breccia. This breccia (Fig. 14) occurs in 
lower Titus Canyon in limestone of the Cam-
brian Bonanza King Formation (Norris, 1985). 
The breccia likely formed by cave collapse 
based on upward termination of the deposit 
with no apparent relationship to faults in the 
range, and concentrically zoned calcite layers 
that fi ll voids and are probably speleothems 
(B.P. Wernicke, 2011, personal commun.). The 
data array from this breccia (Fig. 15) is con-
spicuously curved.
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Mafi c Magmatic Enclaves

We measured long and short axes of 460 
enclaves in a 500 m2 area of 100% glacially 
polished exposure in the Half Dome Granodio-
rite near Tenaya Lake, Yosemite National Park. 
All enclaves with a minor axis length of at least 
1 cm were measured. The largest enclave mea-
sured was 70 × 38 cm in dimension, and the 
geometric mean of their aspect ratios is 2.4. The 
data array (Fig. 16) displays a linear section that 
covers approximately one order of magnitude 
with a slope yielding D2 ~2.1.

DISCUSSION

Validity of the Mandelbrot Conjecture

The numerical simulations with simple geo-
metric objects described above support the Man-
delbrot conjecture that if a 3D set of objects with 
fractal length dimension D3 is cut by a 2D plane, 
D2 of the intersected objects will be approxi-
mately D3 – 1 for most geologic objects other 

0.01 0.1 1 10
Eigenlength (mm)

100

101

102

103

104

105

106

107

N

Rhyolite
Quartz monzonite

m = –2.37m = –2.51

Figure 7. Size-distribution plot for an aphyric rhyolite and a quartz monzonite crushed in 
a jaw crusher; particle numbers estimated using the method of Glazner and Bartley (2006). 
The lines have slopes of –2.4 and –2.5, indicating that these particles fi t a fractal distribution 
with D3 ~2.5 well. m—slope of line segment.

100 101 102
100

101

102

103

104

105

0 5 10 15 20 25 30 35 40
0

40

80

120

160

800

Length

Length

Full dataset
Sample of 1000

RHT
 5RHT

3

N

n

Figure 6. Size-distribution plot showing effects of right-hand truncation (RHT) on curve shape. Blue curve represents 100,000 numbers gen-
erated with D = 2.5, and has a slope of –2.5. Inset shows a linear histogram of these values; although most of the data are in the smallest bar 
(note scale change), a few points are >5, with single values near 28 and 39 (arrows). Green curve is a random sample of 1000 of these points; 
it too has a slope of –2.5 but is shifted down two orders of magnitude. Red curve represents a subset of these points, with values >5 excluded, 
and magenta is a subset with values >3 excluded. Note characteristic RHT fall-off below nominal slope of –2.5. Signifi cant RHT causes the 
slope of the linear portion of the curve to be overestimated (Pickering et al., 1995).



10–2 10–1 100

101

102

103

100

101

102

103

104

N

N

Calcite

Rhyolite

Amphibole

Fluorite

Eigenlength (mm)

m = -1.49

m = –2.00

m = –1.5

m = –1.5

1 mm

A

B

C

Figure 8. Size-distribution plots for the 
crushed rhyolite of Figure 7 and for a 
crushed calcite crystal. (A) Mosaic of back-
scattered electron images of rhyolite par-
ticles mounted in epoxy. This mosaic, and 
a similar one prepared from the crushed 
calcite, were analyzed for particle areas. 
(B) The crushed rhyolite follows the D – 1
rule over an order of magnitude, whereas
the crushed calcite has no linear section.
(C) Crushed amphibole and fl uorite. Fluo-
rite shows a curved array similar to calcite;
amphibole has a short linear section. m—
slope of line segment.



than those that are highly prolate or oblate. Tang 
and Marangoni (2006) came to a similar conclu-
sion in a numerical and experimental study of 
2D sections through networks of crystalline fat.

Geologic Objects

Geologic objects studied in 2D present a 
more complicated picture. A crushed rhyolite 
with a 3D size distribution (Fig. 7) that is best fi t 
by a fractal dimension of ~2.5, when viewed in 
a 2D section, shows the predicted fractal distri-
bution with D ~1.5 over a limited size range of 
approximately one order of magnitude (Fig. 8). 
The distribution tails off with a substantially 
smaller number of small particles than predicted 
by D2 = 1.5, and the largest particles are signifi -
cantly smaller than predicted.

Xenoliths from the outer margin of the 
Tuolumne Intrusive Suite in Yosemite National 
Park yield a D2 of ~1.44 (Fig. 11). As with the 
crushed rhyolite, the size-distribution plot is 
convex upward, tailing off for small particles 
and exhibiting a maximum particle size smaller 
than predicted by the linear portion of the curve. 
This paucity of large xenoliths may be an arti-
fact of the areas chosen for study, which spe-
cifi cally avoided the enormous xenoliths that 
occur in the area (Taylor, 2004)—another case 
of right-hand truncation.

The Comminution Limit

Measuring the abundance of small particles 
is problematic owing to limitations of observa-
tion (e.g., the resolution of optical techniques), 
the possibility that small particles are lost during 
sample preparation, and the effects of trunca-
tion. However, the smaller-than-expected num-
ber of small particles may instead be a result 
of a fundamental change in the mode of failure 
as the material deforms by ductile rather than 
brittle deformation mechanisms.

Kendall (1978) and Hagan (1981) showed 
that the mechanics of crack nucleation and 
propagation impose a limit to the size of par-
ticles that can be produced by breakage. Using 
fracture toughness and hardness data from Broz 
et al. (2006) and the relation of Hagan (1981), 
we calculate this comminution limit for quartz 
and orthoclase as ~0.5 μm. Full physical data 
are not available for all materials of interest, 
but similar fracture toughness values for olivine 
(deMartin et al., 2004) and basalt (Balme et al., 
2004) predict comparable comminution limits. 
For the extensively powdered basalt in Figure 
10, the number of particles tails off dramati-
cally below 1 μm even though the resolution 
of the images used to measure the particles was 
on the order of 0.1 μm. This result is consistent 
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with a comminution limit comparable to the cal-
culated value for silicates and with the observa-
tion that fi ne rock powders produced by natural 
processes, such as glacial fl our, commonly have 
size distributions that dramatically tail off below 
~1 μm (Rosenbaum and Reynolds, 2004; how-
ever, see Chanudet and Filella, 2008), and with 
the common observation that powdering of a 
sample in a ball mill or similar device typically 
reduces rock fragment size to ~1 μm regardless 
of how long the process is continued.

We simulated fractal fragmentation of cubes 
numerically, with and without a lower com-
minution limit, as follows. One hundred cubes 
with edge lengths drawn from U[1,100] were 
generated. At each step, a given cube was frag-
mented into eight sub-cubes with probability p, 
and this process was repeated for several steps. 
When no lower size limit is imposed, a fractal 
size distribution results (Fig. 17); this is the 
schematic fragmentation process outlined by 
Turcotte (1989), and it is insensitive to the start-
ing distribution of edge lengths or number of 
starting cubes. However, if a lower (comminu-
tion) limit is imposed below which a cube will 
no longer fragment, the size distribution steep-
ens dramatically as larger cubes are fragmented 
down to this limit.

Dicing versus Fractal Fragmentation

We suggest that the three excellent cleavages 
of calcite and four of fl uorite make their frag-
mentation process resemble dicing more than 
the nearest-neighbor crushing process proposed 
by Sammis et al. (1987). In a true fractal dis-
tribution, ever-smaller particles are increasingly 
abundant, whereas in dicing, ever-smaller parti-
cles are less and less likely to be formed because 
they only form where three pairs of closely 
placed dicing planes intersect. Thus, through-
going cleavages may account for the curved data 
array determined for the crushed calcite and 
 fl uorite crystals (Fig. 8). The cleavages allow the 
crystal to fragment along intersecting fractures 
and likely signify a fragmentation mechanism 
that is fundamentally different from fractal frag-
mentation. Amphibole fragment data in Figure 
8 are more diffi cult to interpret, but the plot 
does have a short linear section with D2 = 2.0. 
With only two good cleavages, amphibole likely 
exhibits a mix of fragmentation mechanisms.

The Titus Canyon breccia (Figs. 14 and 15) 
may exhibit a similar distribution due to perva-
sive fractures that dissect the western margin 
of the Grapevine Mountains (e.g., Snow et al., 
1989). Rather than having been crushed by 
faulting, this breccia likely formed by collapse, 
a process that would exploit pervasive fractures. 
Alternatively, the Titus Canyon breccia may 
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Figure 12. Outcrop photograph 
of fault breccia (A) and cor-
responding trace prepared by 
hand (B) from a fault surface in 
the Marble Mountains, Mojave 
Desert, California. Pencil for 
scale.



have originally had a fractal size distribution 
with D ~2.5, but after formation small particles 
were washed out of the system. Water fl ow 
through a rubble pile preferentially moves the 
smaller particles, and such a process could lead 
to convex-up curvature on an otherwise linear 
size-distribution plot.

Fragmentation in Igneous Systems

The decrease in fractal dimension caused by 
viewing particles on cut surfaces has impor-
tant implications for statistical analysis of such 
size distributions. Glazner and Bartley (2006) 
stated that “in a particle group described by a 
fractal distribution with D = 2.5, for every 10 m 
block there should be >300 1 m blocks, 100,000 
10 cm blocks, and >30,000,000 1 cm blocks. We 
are unaware that any pluton has been observed 
to contain millions of small xenoliths for every 
large one.” This reasoning is correct but mis-
leading, because outcrop observations are 2D 
cuts through these distributions. If D2 = 1.5, then 
a relevant restatement would be “for every 10-m 
block there should be ~32 1-m blocks, >1000 
10-cm blocks, and >30,000 1-cm blocks.” Data
in Figure 11 indicate that the xenolith size distri-
bution near May Lake does refl ect a fractal size
distribution with D3 ~2.5 over at least a limited
size range.

It is unlikely that we undersampled xenoliths 
1–4 cm in eigenlength because measurement 
was done directly on glacially polished slabs, 
and xenoliths a centimeter across are easily rec-
ognizable by texture and color. Extrapolation of 
the linear part of the curve in Figure 11 to 1 cm 
shows that there should be several thousand 
xenoliths in the data set between 4 cm and 1 cm 
in eigenlength, if the xenolith population follows 
the fractal distribution down to that size. Thus, 
xenoliths of this size range are underrepresented, 
possibly due to dissolution or disaggregation 
(e.g., Farris and Paterson, 2007).  Figure 18 
shows a sphere simulation; spheres were gener-
ated with D3 = 2.5 and were then decreased in 
radius by a constant value in order to simulate 
a constant linear rate of melting. Such a process 
preferentially affects the smaller particles, lead-
ing to a left-hand tailing off of the distribution.

Farris and Paterson (2007) studied xeno-
lith size distributions in two Alaskan plutons 
using outcrop measurements and image analy-
sis, and derived large D2 values with a mean of 
2.3 (Fig. 1). They reasoned that the 2D nature 
of their measurements does not affect the frac-
tal dimension because random cuts through 
spheres generally result in an intersection diam-
eter that is a large fraction of the true diameter 
(McCammon , 1975). This reasoning is faulty 
for reasons outlined above (e.g., Fig. 2). It is 
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Figure 14. Outcrop photograph of breccia near the mouth 
of Titus Canyon in Death Valley, California (A) and cor-
responding trace prepared by hand (B).



not clear why their estimated D2 values, which 
imply D3 > 3 for four out of six measurements, 
are so high. For one pluton (Shaft Peak), the 
high number may be a result of the image analy-
sis method used. Thresholding grayscale images 
is highly subjective unless the contrast between 
particles and background is high, as in Figure 8, 
and their example thresholded image (their fi g. 
10) appears to have broken many gray xenoliths
into myriad tiny fragments. This would lead to
an overestimate of D.

The size distribution of mafi c enclaves we 
analyzed is consistent with the hypothesis that 
dispersal of mafi c magma into felsic magma is 
a fractal process, but only over a restricted size 
range (Holtz et al., 2004; Perugini et al., 2007). 
Holtz et al. (2004) found D2 = 1.8, whereas Peru-
gini et al. (2007) derived D2 ~2.5. This value 
implies a D3 of 3.5, signifi cantly higher than the 
fragmentation processes discussed above. The 
high D2 values derived from our study (2.1) and 
by Perugini et al. (2007) indicate that there is 
a distinct difference between this proc ess and 
the breakup of solid objects. The sharp decrease 
in enclave abundance at eigenlengths less than 
6 cm is real; as with the xenolith study, enclaves 
were measured by close inspection of polished 
surfaces. In our study, nearly all measured 
enclaves have eigenlengths <50 cm, and the 
maximum measured eigenlength was ~2 m, con-
sistent with the Sierra Nevada Range as a whole 
(Pabst, 1928; Tobisch et al., 1997; Barbarin , 
2005). This size distribution is comparable to 
the distribution of the injections that comprise 
individual dikes in the Jurassic Independence 
dike swarm of eastern California (Glazner et al., 
2008). In mafi c dike swarms worldwide, dikes 
thinner than ~10 cm are rarely found (e.g., Jolly 
and Sanderson, 1995; Glazner et al., 2008), and 
well-exposed dikes are typically found to be 
highly composite. We speculate that if mafi c 
enclaves form by disaggregation of mafi c dikes 
into drops (e.g., Vernon, 1984; Barbarin, 2005), 
then their size distribution has upper and lower 
limits that are controlled by the aperture of the 
dikes that form them. Alternatively, the lower 
size limit may result from recrystallization and 
reaction with the surrounding granodiorite, 
making smaller enclaves hard to recognize.

CONCLUSIONS

Numerical simulations and physical fragmen-
tation experiments demonstrate that the fractal 
di men sion of an array of particles with fractal 
dimen sion D is generally D – 1 in a two-dimen-
sional cut. This results in a size distribution in 
outcrop or thin section that is highly skewed 
compared to the true 3D array. However, in sys-
tems where there is a persistent set of fractures, 
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Figure 16. Size-distribution plot of 463 mafi c enclaves in the Half Dome Granodiorite. These 
data suggest D2 = 2.1, a high value consistent with other studies on enclaves (e.g., Perugini 
et al., 2007). m—slope of line segment.



such as a crystal with good cleavage or a well-
fractured rock, the resulting particle arrays are 
continuously curved on a size-distribution plot, 
and lack the small particles predicted by a fractal 
distribution. Natural examples of fragmentation 
always lack the infi nite number of particles pre-
dicted by a true fractal array but are commonly 
linear, with D2 ~1.5 (corresponding to D3 ~2.5) 
over an order of magnitude or more. Extensively 
fragmented rocks and minerals typi cally reach a 
comminution limit on the order of 1 μm, below 
which further brittle fracture is mechanically 
unfavorable. The range of lengths covered by 
observations of natural phenomena is typically 
limited to a few orders of magnitude. Observa-
tions are constrained on the small end of the 
scale by limitations of optical techniques of 
observation and sample handling problems, and 
on the large end of the scale by sampling issues 
and truncation of large objects by the boundary 
of the observation area.

ACKNOWLEDGMENTS

This work was supported by grants from the 
National Science Foundation to AFG (EAR-8816941, 
8917291, 0336070, and 0538129). Chris Glazner 
helped with mathematical development. Data pre-
sented in this paper were collected over the course 
of several years, with the assistance of John Bartley, 
Drew Coleman, Kjell Lindgren, Bryan Law, Sam 
Coleman, Scott Hetzler, and Cecil Patrick, among 
many others. We thank Associate Editor Michael 
Cheadle for both an excellent review and effi cient 
editorial handling, and two anonymous reviewers for 
helpful comments.

REFERENCES CITED

Allègre, C.J., Le Mouel, J.L., and Provost, A., 1982, Scal-
ing rules in rock fracture and possible implications 
for earthquake prediction: Nature, v. 297, p. 47–49, 
doi:10.1038/297047a0.

Bagde, M.N., Raina, A.K., Chakraborty, A.K., and Jethwa, 
J.L., 2002, Rock mass characterization by fractal
dimension: Engineering Geology, v. 63, p. 141–155,
doi:10.1016/S0013-7952(01)00078-3.

Balme, M.R., Rocchi, V., Jones, C., Sammonds, P.R., Mere-
dith, P.G., and Boon, S., 2004, Fracture toughness 
measurements on igneous rocks using a high-pressure, 
high-temperature rock fracture mechanics cell: Jour-
nal of Volcanology and Geothermal Research, v. 132, 
p. 159–172, doi:10.1016/S0377-0273(03)00343-3.

Barbarin, B., 2005, Mafi c magmatic enclaves and mafi c 
rocks associated with some granitoids of the central 
Sierra Nevada batholith, California: Nature, origin, and 
relations with the hosts: Lithos, v. 80, p. 155–177, doi:
10.1016/j.lithos.2004.05.010.

Bateman, P.C., Kistler, R.W., Peck, D.L., and Busacca, A.J., 
1983, Geologic map of the Tuolumne Meadows Quad-
rangle, Yosemite National Park, California: U.S. Geo-
logical Survey Map GQ-1570, scale 1:62,500.

Billi, A., 2005, Grain size distribution and thickness of brec-
cia and gouge zones from thin (<1 m) strike-slip fault 
cores in limestone: Journal of Structural Geology, v. 27, 
no. 10, p. 1823–1837, doi:10.1016/j.jsg.2005.05.013.

Billi, A., and Storti, F., 2004, Fractal distribution of particle 
size in carbonate cataclastic rocks from the core of a 
regional strike-slip fault zone: Tectonophysics, v. 384, 
no. 1–4, p. 115–128, doi:10.1016/j.tecto.2004.03.015.

Boggs, S., 1992, Petrology of Sedimentary Rocks: New 
York, Macmillan, 707 p.

100 101 102100

101

102

103

104

105

106

107

N

Edge length

Full crushing: m = –2.3

M
inim

um
 = 20; m

 = –5.6

10–2 100 102 104
100

101

102

103

104

105

Eigenlength

N

Original
spheres

Melted
spheres

Figure 17. Particle arrays produced by randomly splitting cubes into eight sub-cubes, a self-
similar process (see text for algorithm); seeded by 100 cubes drawn from U[1,100] (arbitrary 
units). Blue curve was produced by continuing this process for eight iterations. Red curve was 
produced by another simulation in which the minimum cube that can be split has edge length 
20, to simulate a comminution limit. This curve is rotated clockwise from the fi rst and has a 
much steeper slope, similar to the relationships in Figure 10. m—slope of line segment.

Figure 18. Simulation of a cut through an array of 106 spheres, as in Figure 4, with and with-
out simulated loss of smaller particles by melting or disaggregation. Each sphere generated 
with D = 2.5 was decreased in radius by 2 units. Approximately 82% of all original spheres 
had a radius of 2 or fewer units and disappeared. The remaining spheres were cut by a plane 
as before. The resulting array on the size distribution plot is signifi cantly rounded at the 
small end, falling below the D = 1.5 line; such a process could account for the relative lack 
of small xenoliths at May Lake.



Broz, M.E., Cook, R.F., and Whitney, D.L., 2006, Micro-
hardness, toughness, and modulus of Mohs scale min-
erals: The American Mineralogist, v. 91, p. 135–142, 
doi:10.2138/am.2006.1844.

Chanudet, V., and Filella, M., 2008, Size and composition 
of inorganic colloids in a peri-alpine, glacial flour-
rich lake: Geochimica et Cosmochimica Acta, v. 72, 
p. 1466–1479, doi:10.1016/j.gca.2008.01.002.

Chayes, F., 1950, On the bias of grain-size measurements 
made in thin section: The Journal of Geology, v. 58, 
p. 156–160, doi:10.1086/625716.

Crum, S.V., 1990, Fractal concepts applied to bench-blast 
fragmentation, in Hustrulid, W.A., and Johnson, G.A., 
eds., Rock Mechanics: Contributions and Challenges: 
Proceedings of the 31st U.S. Symposium, Colorado 
School of Mines, Golden, 18–20 June, 1990: Rotter-
dam, A.A. Balkema, p. 913–919.

deMartin, B., Hirth, G., and Evans, B., 2004, Experimental 
constraints on thermal cracking of peridotite at oceanic 
spreading centers, in German, C.R., Lin, J., and Parson, 
L.M., eds., Mid-Ocean Ridges: Hydrothermal Inter-
actions between the Lithosphere and Oceans: Washing-
ton, D.C., Geophysical Monograph Series Volume 148, 
American Geophysical Union, p. 167–185.

Devroye, L., 1986, Non-uniform random variate generation: 
New York, Springer-Verlag, 843 p.

Farris, D.W., and Paterson, S.R., 2007, Contamination of 
silicic magmas and fractal fragmentation of xenoliths 
in Paleocene plutons on Kodiak Island, Alaska: Cana-
dian Mineralogist, v. 45, no. 1, p. 107–129, doi:10.2113
/gscanmin.45.1.107.

Folk, R.L., and Ward, W.C., 1957, Brazos River bar [Texas]: 
A study in the signifi cance of grain size parameters: 
Journal of Sedimentary Research, v. 27, no. 1, p. 3–26.

Ghosh, A., Daemen, J.J.K., and van Zyl, D., 1990, Fractal-
based approach to determine the effect of disconti-
nuities on blast fragmentation, in Hustrulid, W.A., and 
Johnson, G.A., eds., Rock Mechanics: Contributions 
and Challenges: Proceedings of the 31st U.S. Sympo-
sium, Colorado School of Mines, Golden, 18–20 June, 
1990: Rotterdam, A.A. Balkema, p. 905–912.

Gimenéz, D., Allmaras, R.R., Huggins, D.R., and Nater, 
E.A., 1998, Mass, surface and fragmentation frac-
tal dimensions of soil fragments produced by tillage:
Geoderma, v. 86, p. 261–278, doi:10.1016/S0016-7061
(98)00043-3.

Glazner, A.F., and Bartley, J.M., 1990, Early Miocene dome 
emplacement, diking, and limited tectonism in the 
northern Marble Mountains, eastern Mojave Desert, 
California, in Foster, J.F., and Lewis, L.L., eds., Lower 
Colorado River Extensional Terrane and Whipple 
Mountains Guidebook, Volume 18: Santa Ana, South 
Coast Geological Society, p. 89–97.

Glazner, A.F., and Bartley, J.M., 2006, Is stoping a volumetri-
cally signifi cant pluton emplacement process?: Geo-
logi cal Society of America Bulletin, v. 118, p. 1185–
1195, doi:10.1130/B25738.1.

Glazner, A.F., Farmer, G.L., Hughes, W.T., Wooden, J.L., and 
Pickthorn, W., 1991, Contamination of basaltic magma 
by mafi c crust at Amboy and Pisgah craters, Mojave 
Desert, California: Journal of Geophysical Research, 
v. 96, p. 13,673–13,691, doi:10.1029/91JB00175.

Glazner, A.F., Bartley, J.M., Coleman, D.S., Gray, W., and 
Taylor, R.Z., 2004, Are plutons assembled over millions 
of years by amalgamation from small magma cham-
bers?: GSA Today, v. 14, p. 4–11, doi:10.1130/1052
-5173(2004)014<0004:APAOMO>2.0.CO;2.

Glazner, A.F., Carl, B.S., Coleman, D.S., Miller, J.S., and 
Bartley, J.M., 2008, Chemical variability and the com-
posite nature of dikes from the Jurassic independence 
dike swarm, eastern California, in Wright, J.E., and 
Shervais, J.W., eds., Ophiolites, Arcs, and Batholiths: 
A Tribute to Cliff Hopson: Geological Society of 
America Special Paper 438, p. 455–480.

Gray, W., Glazner, A.F., Coleman, D.S., and Bartley, J.M., 
2008, Long-term geochemical variability of the Late 
Cretaceous Tuolumne Intrusive Suite, central Sierra 
Nevada, California: The Geological Society of London, 
Special Publications, v. 304, p. 183–201, doi:10.1144
/SP304.10.

Hagan, J.T., 1981, Impossibility of fragmenting small parti-
cles: Brittle-ductile transition: Journal of Materials Sci-
ence, v. 16, p. 2909–2911, doi:10.1007/BF02402857.

Hartmann, W.K., 1969, Terrestrial, lunar, and interplanetary 
rock fragmentation: Icarus, v. 10, no. 2, p. 201–213, 
doi:10.1016/0019-1035(69)90022-0.

Hatch, T., and Choate, S.P., 1929, Statistical description 
of the size properties of nonuniform particulate sub-
stances: Journal of the Franklin Institute, v. 207, p. 369–
387, doi:10.1016/S0016-0032(29)91451-4.

Higgins, M.D., 1994, Numerical modeling of crystal shapes 
in thin section: Estimation of crystal habit and true 
size: The American Mineralogist, v. 79, p. 113–119.

Higgins, M.D., 2000, Measurement of crystal size distribu-
tions: The American Mineralogist, v. 85, p. 1105.

Holtz, F., Lenné, S., Ventura, G., Vetere, F., and Wolf, P., 
2004, Non-linear deformation and breakup of enclaves 
in a rhyolitic magma: A case study from Lipari Island 
(southern Italy): Geophysical Research Letters, v. 31, 
p. L24611, doi:10.1029/2004GL021590.

Jolly, R.J.H., and Sanderson, D.J., 1995, Variation in the form 
and distribution of dykes in the Mull swarm, Scotland: 
Journal of Structural Geology, v. 17, p. 1543, doi:10.1016
/0191-8141(95)00046-G.

Kendall, K., 1978, The impossibility of comminuting small 
particles by compression: Nature, v. 272, p. 710–711, 
doi:10.1038/272710a0.

Krumbein, W.C., and Tisdel, F.W., 1940, Size distribution 
of source rocks of sediments: American Journal of 
Science, v. 238, no. 4, p. 296–305, doi:10.2475/ajs
.238.4.296.

Kueppers, U., Perugini, D., and Dingwell, D.B., 2006, “Explo-
sive energy” during volcanic eruptions from fractal 
analysis of pyroclasts: Earth and Planetary Science 
Letters, v. 248, no. 3–4, p. 800–807, doi:10.1016/j.epsl
.2006.06.033.

Mandelbrot, B.B., 1983, The fractal geometry of nature: San 
Francisco, W.H. Freeman, 468 p.

Marone, C., and Scholz, C.H., 1989, Particle-size distribution 
and microstructures within simulated fault gouge: Jour-
nal of Structural Geology, v. 11, p. 799–814, doi:10.1016
/0191-8141(89)90099-0.

McCammon, R.B., 1975, Statistics and probability, in 
McCammon, R.B., ed., Concepts in Geostatistics: New 
York, Springer-Verlag, p. 1–20.

Meibom, A., and Balslev, I., 1996, Composite power laws in 
shock fragmentation: Physical Review Letters, v. 76, 
no. 14, p. 2492, doi:10.1103/PhysRevLett.76.2492.

Mills, R.D., Glazner, A.F., and Coleman, D.S., 2009, 
Scale of pluton/wall-rock interaction near May Lake, 
Yosemite National Park, California, USA: Contribu-
tions to Mineralogy and Petrology, v. 158, p. 263–281, 
doi:10.1007/s00410-009-0381-x.

Norris, R.M., 1985, A geologic guide to Titus Canyon, 
Death Valley National Monument, Inyo County: Cali-
fornia Geology, v. 39, p. 195–202.

Pabst, A., 1928, Observations on inclusions in the granitic rocks 
of the Sierra Nevada: Bulletin Department of Geological 
Science, University of California, v. 17, p. 325–386.

Pepe, S., Solaro, G., Ricciardi, G.P., and Tizzani, P., 2008, 
On the fractal dimension of the fallout deposits: A case 
study of the 79 A.D. Plinian eruption at Mount Vesu-
vius: Journal of Volcanology and Geothermal Research, 
v. 177, no. 1, p. 288–299, doi:10.1016/j.jvolgeores.2008
.01.023.

Perfect, E., 1997, Fractal models for the fragmentation of 
rocks and soils: A review: Engineering Geology, v. 48, 
p. 185–198, doi:10.1016/S0013-7952(97)00040-9.

Perugini, D., Valentini, L., and Poli, G., 2007, Insights into 
magma chamber processes from the analysis of size 
distribution of enclaves in lava fl ows: A case study 
from Vulcano Island (southern Italy): Journal of Vol-
canology and Geothermal Research, v. 166, p. 193–
203, doi:10.1016/j.jvolgeores.2007.07.017.

Perugini, D., Speziali, A., Caricchi, L., and Kueppers, U., 
2011, Application of fractal fragmentation theory to 
natural pyroclastic deposits; Insights into volcanic 
explosivity of the Valentano scoria cone (Italy): Jour-
nal of Volcanology and Geothermal Research, v. 202, 

p. 200–210, doi:10.1016/j.jvolgeores.2011.02.008.

Peterson, T.D., 1996, A refi ned technique for measuring 
crystal size distributions in thin section: Contribu-
tions to Mineralogy and Petrology, v. 124, p. 395–405, 
doi:10.1007/s004100050199.

Pickering, G., Bull, J.M., and Sanderson, D.J., 1995, Sam-
pling power-law distributions: Tectonophysics, v. 248, 
p. 1–20, doi:10.1016/0040-1951(95)00030-Q.

Rogers, J.J.W., 1965, Reproducibility and signifi cance of 
measurements of sedimentary size distributions: Jour-
nal of Sedimentary Petrology, v. 35, no. 3, p. 722–732.

Rose, R.L., 1957, Geology of the May Lake area, Yosemite 
National Park: Berkeley, California, University of Cali-
fornia, Berkeley, 224 p.

Rosenbaum, J.G., and Reynolds, R.L., 2004, Record of Late 
Pleistocene glaciation and deglaciation in the southern 
Cascade Range: II. Flux of glacial fl our in a sediment 
core from Upper Klamath Lake, Oregon: Journal of 
Paleolimnology, v. 31, p. 235–252, doi:10.1023/B:JOPL
.0000019229.75336.7a.

Rousell, D.H., Fedorowich, J.S., and Dressler, B.O., 2003, 
Sudbury Breccia (Canada): A product of the 1850 Ma 
Sudbury event and host to footwall Cu-Ni-PGE 
deposits: Earth-Science Reviews, v. 60, p. 147–174, 
doi:10.1016/S0012-8252(02)00091-0.

Russ, J.C., 1994, Fractal Surfaces: New York, Plenum Press, 
309 p.

Sahagian, D.L., and Proussevitch, A.A., 1998, 3D particle 
size distributions from 2D observations: Stereology 
for natural applications: Journal of Volcanology and 
Geothermal Research, v. 84, no. 3–4, p. 173–196, doi:
10.1016/S0377-0273(98)00043-2.

Sammis, C., King, G., and Biegel, R., 1987, The kinematics 
of gouge deformation: Pure and Applied Geophysics, 
v. 125, no. 5, p. 777–812, doi:10.1007/BF00878033.

Shimamoto, T., and Nagahama, H., 1992, An argument 
against the crush origin of pseudotachylytes based on the 
analysis of clast-size distribution: Journal of Structural 
Geology, v. 14, p. 999–1006, doi:10.1016/0191-8141
(92)90031-Q.

Snow, J.K., Wernicke, B.P., Burchfi el, B.C., Hodges, K.V., 
Axen, G.J., Walker, J.D., and Guth, P.L., 1989, Exten-
sional tectonics in the Basin and Range Province 
between the southern Sierra Nevada and the Colorado 
Plateau: Washington, D.C., International Geological 
Congress Field Trip Guidebook T138, American Geo-
physical Union, 80 p.

Suzuki-Kamata, K., Kusano, T., and Yamasaki, K., 2009, 
Fractal analysis of the fracture strength of lava dome 
material based on the grain size distribution of block-
and-ash fl ow deposits at Unzen Volcano, Japan: Sedi-
mentary Geology, v. 220, p. 162–168, doi:10.1016
/j.sedgeo.2009.04.026.

Tang, D., and Marangoni, A.G., 2006, 3D fractal dimension of 
fat crystal networks: Chemical Physics Letters, v. 433, 
p. 248–252, doi:10.1016/j.cplett.2006.11.057.

Tavassoli, Z., and Shirvani, A. E., 2000, Models of frag-
mentation with power law log-normal distributions: 
Physica A: Statistical Mechanics and Its Applications, 
v. 286, no. 1–2, p. 29–44.

Taylor, R.Z., 2004, Structure and stratigraphy of the May 
Lake interpluton screen, Yosemite National Park, 
California [M.S. thesis]: University of North Carolina, 
61 p.

Tobisch, O.T., McNulty, B.A., and Vernon, R.H., 1997, 
Microgranitoid enclave swarms in granitic plutons, 
central Sierra Nevada, California: Lithos, v. 40, p. 321–
339, doi:10.1016/S0024-4937(97)00004-2.

Turcotte, D.L., 1986, Fractals and fragmentation: Journal 
of Geophysical Research, v. 91, p. 1921–1926, doi:
10.1029/JB091iB02p01921.

Turcotte, D.L., 1989, Fractals in geology and geophysics: 
Pure and Applied Geophysics, v. 131, p. 171–196, doi:
10.1007/BF00874486.

Vernon, R.H., 1984, Microgranitoid enclaves in granites: 
Globules of hybrid magma quenched in a plutonic 
environment: Nature, v. 309, p. 438–439, doi:10.1038
/309438a0.

Yazdi, M., and Esmaeilnia, A., 2009, Natural fragmentation 
model of Zirab coals, Iran: The Open: Geological Jour-
nal, v. 3, p. 1–7.


