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Abstract 

The Santa Elena Ophiolite in Costa Rica is comprised of a well-preserved fragment of the 

lithospheric mantle that formed along a paleo-spreading center. Within its exposed architecture, this 

ophiolite records a deep section of the melt transport system of a slow/ultra-slow spreading 

environment, featuring a well-developed melt-focusing system of coalescent diabase dikes that intrude 

the peridotite in a sub-vertical and sub-parallel arrangement. Here we present an integrated analysis of 

new structural data, 40Ar/39Ar geochronology, major and trace element geochemistry and radiogenic 

isotopes data from the diabase dikes in order to elucidate the tectonic setting of the Santa Elena 

ophiolite. The dikes are basaltic and tholeiitic in composition. Petrological models of fractional 

crystallization suggest deep pressures of crystallization of >0.4 GPa for most of the samples, which is in 

good agreement with similar calculations from slow/ultra-slow spreading ridges and require a relatively 

hydrated (~0.5 wt% H2O) MORB-like source composition. The diabase dikes share geochemical and 

isotope signatures with both slow/ultra-slow spreading ridges and back-arc basins and indicate mixing of 

a DMM source and an enriched mantle end-member like EMII. The 40Ar/39Ar geochronology yields an 

age of ~131 Ma for a previous pegmatitic gabbroic magmatic event that intruded the peridotite when it 

was hot and plastic and an age of ~121 Ma for the diabase intrusions, constraining the cooling from near 

asthenospheric conditions to lithospheric mantle conditions to ~10 Ma. Our findings suggest a complex 

interplay between oceanic basin and back-arc extension environments during the Santa Elena Ophiolite 

formation. We propose an alternative hypothesis for the origin of Santa Elena as an obducted fragment 

of an oceanic core complex (OCC).  
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1. Introduction  

 

To understand the evolution of our planet, it is fundamental to constrain melt generation and 

transport processes that occur in the mantle. In an extensional environment, when the upper mantle 

crosses its solidus through decompression, melting initiates as an inter-granular network of melt (Karato 

and Jung, 1998; Kelemen et al., 2000; Faul, 2001; Dasgupta and Hirschmann, 2006). Then, physical and 

chemical changes during reactive melt transport allow segregation of the partial melts increasing the 

porosity of the upper mantle host (Kelemen et al., 1997; Kelemen et al., 2000; Spiegelman et al., 2001). 

At extensional environments like mid-ocean ridges (Fig. 1), basaltic melts separate from the peridotite 

residue and react with the lithospheric mantle as they rise buoyantly through this network of melt 

(Kelemen et al., 2000; Bouilhol et al., 2011). After these ascending melts coalesce and evolve beneath 

the ridge axis they erupt to produce new oceanic crust (O'Hara, 1985). 

Because it is difficult to reach deep segments of extensional regimes (i.e. mid-ocean ridges, fore-

arc basins, back-arc basins) we rely on more accessible geologic features as analogous to these 

environments, such as ophiolites. Ophiolites consist of ultramafic and mafic mantle lithologies that 

formed along spreading centers and get subsequently obducted or exposed onto continents by tectonic 

processes. Conceptually, ophiolite assemblages are composed from bottom to top, of peridotite 

(including lherzolite, harzburgite and dunite) variably altered to serpentinite; gabbro and diabase 

intrusions; and extrusive sequences of pillow lavas and massive flows that are typically overlain by deep-

sea sediments (Coleman, 1971; Dewey and Bird, 1971; Dewey, 1976; Steinmann et al., 2003; Dilek and 

Furnes, 2011; Dilek and Furnes, 2014). Although such lithological associations have commonly been 

attributed to mid-ocean ridge or back-arc origin, other interpretations for ophiolite origins also exist, 
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such as supra-subduction zone (SSZ) ophiolites, plume-related ophiolites and continental margin 

ophiolites (see Dewey and Casey, 2011; Dilek and Furnes, 2014 and references therein). 

 Based on geochemical affinities and order of mineral crystallization, Dilek and Furnes (2011) 

developed a first order classification, separating ophiolites as subduction-related and subduction-

unrelated types. Within their classification, mid-ocean ridge (MOR) type ophiolites show geochemical 

consistency with normal mid-ocean ridge basalt (MORB). Depending on the proximity to features like 

mantle plumes, the geochemical affinity may fluctuate from MORB all the way to enriched MORB 

(EMORB). In contrast, subduction-related ophiolites show a progressive geochemical affinity from 

MORB-like to Island Arc Tholeiite (IAT) and Boninite in the later stages of SSZ ophiolites (Dilek and 

Furnes, 2011). 

 Even though the geochemical affinities expected in ophiolites are well-established, secondary 

processes occur after the formation of new oceanic crust must also be considered. Hydrothermal 

systems that transport heat from the magma lenses to the surface interact with the crust resulting in 

hydrothermal alterations and ocean floor metamorphism (Pearce, 2008; Pearce, 2014 and references 

therein). Enrichments in large ion lithophile elements (LILE) that are usually attributed to an arc-related 

fluid interaction between the subducting slab and the mantle wedge, could easily be mistaken with 

seawater interaction and contamination during the emplacement of hot oceanic crust, and vice versa 

(Boudier et al., 1988; Nicolas and Boudier, 2003). Therefore, the discrimination between MOR-type 

ophiolites and SSZ ophiolites has to be done carefully and by integrating several geochemical tools. 

Consequently, in order to accurately assess the geochemical fingerprinting of ophiolites, it is necessary 

to look at the fluid-immobile element data. Fluid-immobile elements remain unaltered during 

weathering and low-temperature alteration. These elements are characterized by high to intermediate 

charge/radius ratios and include most of the rare-earth elements (REE) and high field strength elements 

(HFSE) (Pearce, 2014). The concentration of these elements is controlled by the chemistry of the magma 



5 
 

source and the crystallization processes that occur during the magmatic evolution. Several authors have 

worked on creating fluid-immobile element proxies, which are compared to element ratios that 

correlate with a specific geological process (Cann, 1970; Pearce and Cann, 1971; Floyd and Winchester, 

1975; Pearce, 1975; Shervais, 1982; Sun and McDonough, 1989; Pearce, 2008). 

Another useful parameter for ophiolite characterization is its preserved architecture. Variations 

of the magma supply and spreading rates can modify the architecture of the new oceanic lithosphere 

(Nicolas and Boudier, 2003; Dilek and Furnes, 2011). Ishiwatari (1985) linked petrological and 

compositional features of ophiolites to their genesis and to variations in the spreading rates (Fig. 1). In 

this regard, the structure and composition of an ophiolites can aid to the elucidation of the paleo-

spreading rate (Cannat, 1996; Godard et al., 2000; Dick et al., 2003; Michael et al., 2003; Godard et al., 

2008; Cannat et al., 2009; Till et al., 2012). Additionally, the composition of the constituent peridotites 

and associated melts can contribute to characterize the origin of an ophiolite. For instance, while 

harzburgite compositions may represent an uppermost oceanic mantle melt source and higher degrees 

of partial melting, lherzolite compositions evidence a deeper oceanic mantle, as they represent more 

fertile residues subject to lesser degrees of partial melting (Fig. 1) (Jackson and Thayer, 1972; Boudier 

and Nicolas, 1985; Dilek and Furnes, 2011). Thus, ophiolite segments around the globe provide windows 

into fossilized melt transport systems that once fed the oceanic or arc crust and upper mantle. The 

presence of a zone of intense dike emplacement that represents the melt-focusing part of the system is 

a common feature in these exposed sections of the mantle (Robinson et al., 2008). When present, these 

dike networks provide an insight to the magmatic origin and geochemical evolution of a particular 

ophiolite. 

Our study presents new 40Ar/39Ar ages, major and trace element data, and radiogenic isotopes 

from melts that intruded the Santa Elena Ophiolite, located in the northwestern Pacific coast of Costa 

Rica. This ophiolite represents an emplaced fragment of 250 km2 of upper mantle lithologies 
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overthrusting an ancient accretionary complex (Tournon, 1994; Baumgartner and Denyer, 2006; Denyer 

et al., 2006; Gazel et al., 2006; Denyer and Gazel, 2009; Tournon and Bellon, 2009; Escuder-Viruete and 

Baumgartner, 2014) (Fig. 2a). Occurrences of diabase dikes around the peninsula are frequent, however 

the well-preserved diabase dike transport system is largely exposed in two different sections of this 

ophiolite: the northwestern swarm and the southeastern swarm (Fig. 2c). In both outcrops, the diabases 

intrude lherzolite peridotite (Gazel et al., 2006; Tournon and Bellon, 2009). The goal of this integrated 

structural, geochemical and petrological analysis of the diabase melt-focusing system is to elucidate the 

magmatic origin and evolution of the Santa Elena Ophiolite and the implications of its origin in the 

understanding of melt transport and the evolution of the lithospheric mantle. 

 

2. Geotectonic Background of the Santa Elena Ophiolite 

 

Costa Rica is currently situated near the triple junction of the Cocos, Caribbean and Nazca plates 

(DeMets, 2001). Across the Middle American Trench, the Cocos plate is being subducted underneath the 

Caribbean plate resulting in an active volcanic front (Saginor et al., 2011; Saginor et al., 2013) (Fig. 2b). A 

series of oceanic complexes have been accreted onto the Caribbean Plate along the Pacific side of Costa 

Rica including the Santa Elena Ophiolite (Tournon et al., 1995; Hauff et al., 2000; Hoernle et al., 2004; 

Denyer and Gazel, 2009; Herzberg and Gazel, 2009; Buchs et al., 2013). Several authors correlated the 

Santa Elena Ophiolite with other serpentinized peridotite locations along the Costa Rica-Nicaragua 

border suggesting that it represents an E-W suture zone between different tectonic blocks (Tournon et 

al., 1995; Hauff et al., 2000; Baumgartner et al., 2008; Denyer and Gazel, 2009). 

The Santa Elena Ophiolite, constitutes a preserved fragment of the upper mantle that includes 

evidence for at least two different magmatic intrusive events. The oldest event is constituted by 
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decimetric to centimetric pegmatitic gabbroic veins that intrude the lherzolite without showing any sign 

of cooling margins, suggesting that they were emplaced when the peridotite was still at high 

temperatures and in a plastic state (Gazel et al., 2006). The second and younger event is the diabase 

dike melt-focusing system, which crops out along the peninsula (Figs. 2 and 3); generally presenting 

cooling margins in contact with the peridotite. The pillow basalts from Murcielago Islands (~110 Ma; 

Hauff et al., 2000) do not show a clear lithological relation to the rest of the Santa Elena Ophiolite. Even 

though they have been interpreted as the uppermost basaltic sequence in agreement with ophiolite 

architectural models, the contact between this unit and the peridotite cannot be observed in the field. 

These pillow lavas are probably related to other pillow basalts and mafic lithologies in the Nicoya 

peninsula included in the Nicoya Complex (Dengo, 1962). This complex is interpreted as segments of 

oceanic plateaus and the Caribbean Large Igneous Province (CLIP), with geochemical affinities that are 

unrelated to the Santa Elena Ophiolite (Sinton et al., 1997; Hoernle et al., 2004; Geldmacher et al., 

2008). 

The Santa Elena ophiolite is overlain by Campanian (Upper Cretaceous) rudists-bearing reef 

limestones (Fig. 1a) (Meschede and Frisch, 1994; Gazel et al., 2006; Baumgartner et al., 2008; Escuder-

Viruete and Baumgartner, 2014) suggesting that it was emplaced during the Upper Cretaceous with the 

peridotitic complex at the hanging-wall and an igneous-sedimentary complex at the footwall, known as 

the Santa Rosa Accretionary Complex (Baumgartner and Denyer, 2006; Denyer and Gazel, 2009; Buchs 

et al., 2013). A unit of layered gabbros (see Fig. 2a) has also been identified at the footwall (Tournon and 

Azéma, 1980; Hauff et al., 2000; Arias, 2002); this unit yielded an 40Ar/39Ar age of 124±4.1 Ma (Hauff et 

al., 2000). Previous work from Gazel et al. (2006) interpreted a suprasubduction zone origin for the 

Santa Elena ophiolite, considering the layered gabbros unit as a part of the ophiolite. Here this 

interpretation is revised in light of the new modern analytical data and our detail geologic mapping, as 
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the layered gabbros unit belongs to the footwall, in a highly deformed shear zone bellow the 

overthrusting ophiolite (see Fig. 2a).  

Based on spatial relations between the lithological units that compose Santa the Elena Ophiolite 

at least two rotation events can be identified in its geologic record. The pillow basalts from Murcielago 

Islands display a near 80° tilt towards the north, while the northern Cretaceous (Campanian) to 

Paleogene sedimentary cover show a dipping angle of 50-40° towards the north (Fig. 2a). However, the 

Plio-Pleistocene ignimbrite veneer appears unaffected by the rotation (dipping angles of 5° E). These 

relative structural disposition suggests that the two tilting events (one pre-Campanian age and the 

second one roughly in the Upper Eocene) affected the entire sequence for a current net rotation of 80° 

towards the north (Denyer et al., 2006; Denyer and Gazel, 2009). 

 

3. Materials and methods 

 

3.1 Structural methods and peridotite/dike determinations  

Diabase dikes are exposed along the coasts and riverbeds of the Santa Elena Ophiolite intruding 

the peridotite at a variable density of diabase vs peridotite between localities (Fig. 2a). A spatial analysis 

was performed along the northwestern and southern coasts of the peninsula in order to quantitatively 

determine the dike density, dike orientation, and structural relationships (Fig. 2a and c). We collected a 

continuous photographic record and structural measurements (strike/dip angles) of all the diabase dike 

outcrops on the coast. The data were corrected using the program Win-TENSOR (Delvaux and Sperner, 

2003) to account for a tectonic 80° tilt of the entire complex towards the north in order to obtain the 

original strike and dip angle of the diabase dikes. This tilt creates an apparent 80° increase in the dip 
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angles of the dikes intruding the block (Table TS1, Supplementary Materials). The continuous 

photographic record from the coastal outcrops was used to generate panoramic sections of the 

peninsula (Fig. 3). We carried out a 2D analysis, which included calculation of Cartesian areas in each of 

the panoramic images created. Considering the rock exposure areas of every outcrop as the total area 

(100%) we calculated the relative abundance of peridotite and diabase. We focused the analysis on the 

areas that display a continuous occurrence of peridotite and diabase (i.e., along the NW and SE coast of 

Santa Elena peninsula) (Fig. 2a, c). 

 

3.2 Samples and analytical methods 

Fresh diabase dikes were sampled from coastal exposures and riverbeds in the Santa Elena 

Ophiolite. Outcrop location, GPS coordinates, and structural data are reported in Table TS1 

(Supplementary Materials). We also sampled pegmatitic gabbroic veins to constrain the timing of the 

evolution of this ophiolite given the spatial relationship between the units. 

Using a rock saw fresh pieces of the samples were cut and later crushed into gravel, cleaned 

with deionized water and dry-sieved to get rock chips of 425-300 µm in diameter. To obtain the 40Ar/39Ar 

data, the groundmass and mineral separates were irradiated for 60 hours at the Oregon State University 

TRIGA-type reactor in the Cadmium‐Lined In‐Core Irradiation Tube (Tables TS2 a to d, Supplementary 

Materials). At the University of Wisconsin-Madison Rare Gas Geochronology Laboratory, incremental 

heating experiments were conducted using a 25 Watt CO2 laser. Each step of the experiment included 

heating at a given laser power, followed by an additional 10 min for gas cleanup. The gas was cleaned 

with two SAES C50 getters, one of which was operated at ~450 °C and the other at room temperature. 

Blanks were analyzed after every second laser heating step, and were less than 5 x 10-20 mol/V for 36Ar 

and 2 x 10-17 mol/V for 40Ar, respectively. Argon isotope analyses were performed using a MAP 215–50, 
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and the isotope data was reduced using ArArCalc software version 2.5 (http://earthref.org/ArArCALC/). 

Ages were calculated from the blank-discrimination and decay-corrected Ar isotope data after 

correction for interfering isotopes produced from potassium and calcium in the nuclear reactor (Table 

TS2, Supplementary Materials). Ages are reported with 2σ uncertainties (includes the J uncertainty) and 

are calculated relative to a Fish Canyon standard age of 28.201 ± 0.046 Ma (Kuiper et al., 2008) and a 

value for λ40K of 5.463 ± 0.107 x 10−10 yr−1 (Min et al., 2000) (Tables TS2 a to d, Supplementary 

Materials). 

For major and trace element analyses, alteration-free rock chips were selected under a 

stereoscope microscope and were powdered in an alumina mill. Major element (wt%) concentrations 

were measured by X-ray fluorescence (XRF; Siemens SR3000 spectrometer) at the University of Auckland 

following the methods described by Norrish and Hutton (1969). In general, precision for each major 

element is better than ±1% (1σ) of the reported value as described by Norrish and Hutton (1969). Trace 

elements were measured by laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS) 

at the Research School of Earth Sciences, Australian National University, using Excimer LPX120 laser (193 

nm) and Agilent 7500 series mass spectrometer following the method of Eggins et al. (1998). Samples 

were run in batches of 15 using the NIST612 glass standard at the beginning and end of each run to 

calibrate. USGS glass standards BCR-2 and AGV-2 were also run to monitor analytical performance. 

Three replicate analyses of standard BCR-2 and two replicates for standard AGV-2 indicate precision of 

<4% (RSD) and accuracy better than 8% confidence level, with the exception of the elements Ni, Cu, Cr, 

La and Ta (Table TS3, Supplementary Materials). 

Basaltic glass samples collected from the Murcielago Island pillow basalts rims were selected 

under a stereoscope microscope, and arranged in a 1-inch round epoxy mount which was later polished 

for electron microprobe (EMP) analyses. These analyses were performed at the Electron Beam 

Laboratory at Virginia Tech with a Cameca SX50 Electron Microprobe using a 60 µm diameter electron 
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beam at a 10 nA current a 15 kV acceleration voltage. Trace element contents were obtained at Virginia 

Tech LA-ICPMS lab facilities using an Agilent 7500ce ICPMS coupled with a Geolas laser ablation system. 

Three analyses were performed in each glass using a 90 µm diameter spot and at 10 Hz repetition rate. 

Standards were run at the start and end of the run to correct for drift. The data was reduced using the 

USGS standards BCR-2G, BHVO-2G and BIR-1. Replicates of these standards indicate a precision of <5% 

(RSD) and accuracy better than 10% for the elements analyzed, with the exception of the elements Ni, 

Cu, Cr, Zn, Sr, Ta, Pb and U that was better than 30% (Table TS3, Supplementary Materials). 

Radiogenic isotope analyses were conducted in the Geochronology and Isotope Geochemistry 

Laboratory at the University of North Carolina, Chapel Hill (Table TS3, Supplementary Materials). 500 mg 

of the selected powdered samples were digested with a mixture of HF+HNO3 in Teflon beakers. These 

solutions were placed on a hotplate for three days at a temperature of 165 °C. Each sample was dried 

and re-dissolved in HCl. After their dissolution three aliquots were separated for Sr, Nd and Pb, each one 

containing 5 mg of sample; these aliquots were dried and re-dissolved in the appropriate acid solution 

to undergo ion exchange chromatography columns (Gray et al., 2008). The separates were analyzed 

using a Micromass VG Sector 54 thermal ionization mass spectrometer (TIMS). Strontium measurements 

were normalized to 86Sr/88Sr = 0.1194, and Nd isotopes to 146Nd/144Nd = 0.7219. Standard replicate 

measurements yielded a mean 87Sr/86Sr = 0.710257 ± 0.000022 (2σ) for NBS 987, a mean 143Nd/144Nd = 

0.512112 ± 0.000011 (2σ) for JNdi-1, and a mean 206Pb/207Pb = 1.0940 ± 0.0003 (2σ) for NBS-981 with a 

mean fractionation correction of 0.098 ± 0.008% per amu (Coleman et al., 2004; Gray et al., 2008). 

 

4. Results 

 

4.1 Structural analysis of the diabase unit 
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After correcting for the 80° northward tilt of the ophiolite determined in the field the general 

strike orientation for the diabase dikes throughout the Santa Elena Ophiolite is NNE in a sub-parallel 

arrangement. The resulting dip angles reflect a predominance of angles higher than 60°, with a primary 

population of dikes dipping between 70° and 90°. Evidence of this disposition is largely visible at the NW 

coast of the peninsula (Fig. 2a). 

The northwestern dike swarm (Fig. 2a) represents the higher density of diabase intruding the 

peridotite in the entire ophiolite with a dip between 70° and 80° (Fig. 2c). Our density analysis suggests 

that in this section there is a significant increase of diabase dikes from ~78% to ~92% (relative to the 

peridotite) towards the southwest in the direction of Punta Santa Elena (Fig. 2a), where the peridotites 

became boudins embedded in the net of diabase dikes.  

The outcrops along the southern coast of the peninsula are predominantly composed of 

peridotite with scarcer occurrences of diabase dikes. In this area the presence of diabase versus 

peridotite is less than 20% (Fig. 2a). The preferential strike direction for the southeastern dike swarm is 

towards the NW, with a secondary population striking ENE-WSW. In this area, the arrangement of the 

intrusions is clearly not parallel; however, most of the dip angles remain in a range between 60° and 90° 

(Fig. 2c). Additionally, other diabase intrusions measured in the interior of the peninsula yielded a 

preferential strike of NNE-NNW with sub-vertical dip angles (Fig. 2a). 

 

4.2 Geochronology and geochemistry data 

The four new 40Ar/39Ar ages collected in this work yielded an average age of 121 Ma (considering 

the uncertainty within the measurements) for the diabase dike intrusion event (Tables S2 a to d). 

Diabase samples collected from the NW end of the Santa Elena Peninsula yielded 126.6 ± 2.1 Ma to 116 

± 5.1 Ma (Fig. 2a). A sample from the southern coast of the peninsula yielded an age of 118.7 ± 3.5 Ma. 
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Also, a diabase sample from the inner part of the ophiolite was analyzed to achieve a good geographical 

distribution throughout the peninsula; this sample provided an age of 124.7 ± 3.0 Ma. One of the 

pegmatitic gabbroic veins sampled that intruded the peridotite when it was still hot and plastic (Gazel et 

al., 2006) yielded an age of 131 ± 3.8 Ma (Table TS2e). Detailed step-heating experiments and 40Ar/39Ar 

spectra for all the samples are available in Tables TS2 a to e (Supplementary Materials). 

For this study we report 18 new major and trace element analyses for diabase dikes and 5 for 

Murcielago Islands basaltic glasses (Table TS3, Supplementary Materials). The compositions of the 

diabase dikes are basaltic and belong to the tholeiitic magmatic series (Fig. 4a, b). Petrographically, they 

are aphyric and consist of a fine grained equigranular ensemble of semi-euhedral clinopyroxene and 

plagioclase and minor olivine, with a predominately ophitic texture characteristic of mafic hypabyssal 

intrusions. The rim glasses from Murcielago Islands are basaltic-andesite in composition and also belong 

to the tholeiitic series (Fig. 4a, b). 

Along with the new analyses provided in this work from the diabase dikes, we also compiled 

geochemical data from previous studies (Kussmaul et al., 1982; Tournon, 1984; Wildberg, 1984; 

Meschede and Frisch, 1994; Tournon, 1994; Ragazzi, 1996; Beccaluva et al., 1999; Hauff et al., 2000; 

Arias, 2002; Tournon and Bellon, 2009) (Table TS3, Supplementary Materials), which are plotted as a 

shaded area in Fig. 4. Major element data were plotted against MgO (Fig. 5 and 6) to evaluate 

differentiation trends in the sample suite collected. Trace element data, normalized to a primitive 

mantle composition (McDonough and Sun, 1995) show a depleted composition in light rare earth 

elements (LREE) and a flat pattern in the heavy rare earth elements (HREE), suggesting a garnet-free, 

shallow mantle source (e.g. Salters and Stracke, 2004) (Fig 7). Elevated concentrations in fluid-mobile 

large ion lithophile elements (LILE) such as Ba, K and Sr are indicative of seafloor alteration (Staudigel et 

al., 1981; Staudigel et al., 1996; Staudigel, 2003). Thus, to avoid the signature of ocean floor alteration, 

only fluid immobile ratios were used to generate the discrimination diagrams shown in Fig. 8. The 
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Murcielago Islands pillow basalt glass rims show a more enriched incompatible-element signature 

compared to that of the Santa Elena diabase dikes (Fig 7e) which is almost identical to the basaltic 

glasses that belong to the Caribbean Large Igneous Province (CLIP) and other basaltic suites found in 

Nicoya Peninsula (Hauff et al., 1997; Sinton et al., 1997; Hauff et al., 2000; Hoernle et al., 2004). 

The new Sr, Nd, and Pb radiogenic isotope analyses were carried out using the freshest samples 

of the diabase dikes, however Sr isotopes could still be affected by any low-grade ocean floor alteration, 

and thus explaining the spread in the data (Table TS3). The measured diabase dikes isotope values range 

from 0.70283 to 0.70396 in 87Sr/86Sr; 0.51299 to 0.51341 in 143Nd/144Nd; 18.149 to 18.536 in 206Pb/204Pb; 

15.500 to 15.595 in 207Pb/204Pb; and 37.839 to 38.166 in 208Pb/204Pb (Fig. 9). These measured Sr-Nd-Pb 

ratios were then calculated to the initial (in) eruptive ratios using the parent/daughter ratios from 

elements reported in Table TS3 and an average age of 121 Ma (Table TS3, Supplementary Materials). 

Age corrected ratios representative of the mantle source were then projected to 121 Ma using 

parent/daughter ratios obtained inverting the source composition from the most primitive diabase dike 

sample (A-28-7-05) to recreate the evolution of the source in 121 Ma and compared with recently 

erupted material. The model was done using aggregated fractional melting equations (Shaw, 1970) with 

a modal composition of 50% olivine, 25% orthopyroxene, 20% clinopyroxene and 5% spinel and the 

partition coefficients compiled by Kelemen et al. (2003). This data were plotted in Fig. 9 and discussed in 

section 5.4. 

 

5. Discussion 

 

5.1 Architecture of the Santa Elena Ophiolite: diabase melt focusing zone analysis 
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The arrangement of dike intrusions in different tectonic environments provides important 

insight into the type of melt emplacement that occurred at a given location. For instance, radial 

arrangements of dikes typically indicate environments such as arc volcanoes or ocean islands (i.e. 

Ancochea et al., 2008; Acocella and Neri, 2009; Maccaferri et al., 2011). Whereas, in environments 

characterized by extension regimes, melts are likely to migrate perpendicularly to the direction of the 

minimum compressive stress (Macdonald, 1982; Gudmundsson, 1990a; Paquet et al., 2007; 

Gudmundsson, 2011), resulting in sub-parallel to parallel dike assemblages. This commonly occurs at 

mid-ocean ridges and back arc basins, where the intrusions normally show similar strike orientations 

perpendicular to extension as well as parallel sub-vertical arrangements. 

Ophiolites, as preserved fragments of extension environments (e.g., mid-ocean ridges, back arc 

basins), usually display sheeted dike complexes composed by dike-intruding-dike structures of tholeiitic 

composition, that have been interpreted as the feeder channels between magma chamber/lenses and 

the overlying extrusive oceanic crust (Robinson et al., 2008 and references therein). At fast spreading 

ridges, such as in the exposed section at Hess Deep in the Pacific, the sheeted dike complex is a well-

developed feature of the oceanic crust suggesting a high spreading rate and a steady magma supply 

(Stewart et al., 2005; Veloso et al., 2014). In contrast, at slow (<60 mm/yr full rate), and ultraslow 

spreading (<20 mm/yr full rate) ridges the magma generation is slow and tectonic extension and 

detachment faulting are the predominant trigger for melting, resulting in the absence of a well-

developed sheeted dike complex (Snow and Edmonds, 2007; Robinson et al., 2008; Lagabrielle et al., 

2015). The Santa Elena Ophiolite preserves a relatively high density of diabase intrusions, however, in 

contrast to sheeted dike complexes, it lacks the typical gabbro–sheeted dike–basalt sequence and 

instead the dikes intrude the lithospheric mantle peridotite directly and there is not an overlying well-

developed basaltic crust. 
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The absence of horizontal intrusions indicates that during melt migration no rheological or 

mechanical barrier was encountered that led to lateral migration. The dike swarms exhibit an almost 

vertical arrangement. Since dike emplacement tends to follow pre-existing paths, we suggest that this 

vertical to sub-vertical emplacement corresponds to the location of previous extension fractures, 

perpendicular to the direction of the minimum compressional stress. The results presented in this work 

indicate that the Santa Elena Ophiolite was formed in a tectonic environment subject to extension, with 

an expected dike arrangement of a mid-ocean ridge system (e.g. Gudmundsson, 1990b; Gudmundsson, 

2011) 

Mid-ocean ridge systems with slow and ultra-slow spreading rates can account for the 

emplacement of almost exclusively vertical intrusions due to limited melt productivity (Michael and 

Cornell, 1998; Dick et al., 2003; Gudmundsson, 2011). In these environments, dikes form at greater 

depths intruding directly in the lithospheric mantle. Even though it has been recognized that the 

rheological barrier of the crust-mantle boundary favors the formation of melt ponding (i.e., magma 

chambers or lenses) (Gudmundsson, 2011), there is no field evidence for such melt accumulations in the 

Santa Elena Ophiolite. Commonly, melt migration in slow and ultra-slow spreading mid-ocean ridges 

show little and generally deep melt ponding as a consequence of the low rates of melt productivity in 

this tectonic environment (Michael and Cornell, 1998). Melt forming in such conditions will travel along 

paths of minimum stress like the extensional fractures and faults inherent to slow and ultra-slow 

spreading ridges which are essentially vertical as observed in the Santa Elena Ophiolite. 

As melts are transported from the melt generation zone to the axis of extension, the frequency 

of intrusions decreases while their size and width increase (Kelemen et al., 1997; Kelemen et al., 2000). 

In the Santa Elena Ophiolite, we encountered a high spatial density of intrusions combined with distinct 

coalescent dikes as shown in Fig. 3. The presence of lherzolitic peridotite and the coalescing channels of 

diabase correlate with what would be expected at greater depths of the melt transport system in an 
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extensional environment, characterized by a scarce magmatic supply at deeper levels in the lithospheric 

mantle (see Fig. 1). Moreover, this ophiolite lacks of an extrusive well-developed basaltic crust on top of 

the sequence which supports the interpretation that this ophiolite corresponds to a slow to ultra-slow 

spreading center (Dick et al., 2003; Cannat et al., 2009; Sauter et al., 2011). The absence of a well-

developed gabbroic crust is also evident in this ophiolite. This is a noted characteristic in ultraslow 

spreading ridges, where the reduced melt production can lead to a small to nearly inexistent gabbroic 

crust (Jokat et al., 2003; Michael et al., 2003). 

 

5.2 Geochronology data 

The spatial relationships between the diabase and gabbroic intrusions of the Santa Elena 

Ophiolite become clearer in the light of the new 40Ar/39Ar data collected in this study. Both units post-

date the formation of the peridotitic massif, but the pegmatitic gabbroic veins are the first magmatic 

event to occur (evidenced by cross-cutting relationships), at circa 131 ± 3.8 Ma. This event is particularly 

interesting since the field evidence suggests that there are no cooling margins between the pegmatitic 

gabbro veins and the host peridotite. This implies that during the emplacement the host rock and the 

intrusion were roughly at the same temperature. Most likely the gabbroic melts infiltrated when the 

peridotite was still under plastic deformation conditions (Gazel et al., 2006). 

On the other hand, the diabase dikes present clear cooling margins suggesting that by the time 

the diabase magmatic event occurred (roughly circa 121 Ma) the peridotite had already reached 

lithospheric temperatures. Consequently, the 40Ar/39Ar ages obtained in this study constrain the cooling 

of the ophiolite massif to sometime between 131 ± 3.8 Ma and the youngest of the diabase dikes, 116 ± 

5.1 Ma, which coincides with a Barremian to Aptian age. This interpretation is in good agreement with 

the age constraints from other authors based in the rudist-bearing reef ages, that also places the 
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tectonic emplacement no earlier than Campanian (Upper Cretaceous) (Meschede and Wolfgang, 1998; 

Gazel et al., 2006; Baumgartner et al., 2008; Escuder-Viruete and Baumgartner, 2014). 

 

5.3 Fractional crystallization models and implications for crystallization pressures 

The architecture of the Santa Elena Ophiolite along with the variable observed cooling textures 

suggests that the diabase dikes were emplaced at depths within the lithospheric mantle (Fig. 3). In order 

to better determine these depths, we used Petrolog3 (Danyushevsky and Plechov, 2011) to produce 

models that simulate the fractional crystallization processes at different pressures (results in Fig. 5 and 

6). For these calculations, we used the olivine (ol), plagioclase (plag) and clinopyroxene (cpx) models of 

Danyushevsky (2001). The cotectic crystallization was modeled at a 100% fractionation of these minerals 

in equilibrium with a liquid (L+ol+plag+cpx). When more than one mineral phase crystallizes together, 

the software calculates a “pseudoliquidus” temperature (PST), which is the highest recorded 

temperature of crystallization of the two or three mineral phases. These PST’s can be plotted as liquid 

lines of descent (LLD), where every discontinuity in the line indicates a new crystallizing mineral phase 

(Fig. 5 and 6). The calculations were made using the QFM buffer of oxygen fugacity according to the 

model of Kress and Carmichael (1988). We created models from a pressure range of 0.001 GPa (1 atm) 

to 1.0 GPa, in 0.2 GPa increments, keeping the pressure constant during each run. The amount of melt 

extracted in each step was 0.01%; this small calculation step improves the accuracy of the model 

(Danyushevsky, 2001). The calculations stopped when the melt MgO content reached 3 wt%.  

To evaluate our initial hypothesis of a mid-ocean ridge origin for the melts that formed the 

diabase dikes, we input a primary magma composition for MORB (East Pacific Rise, EPR) from Herzberg 

and O’Hara (2002), as well as a primary magma calculated from our most primitive diabase composition 

(Fig. 6). Albeit, the resulting LLDs of these models plotted in bivariate major element diagrams were able 
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to reproduce experimental MORB glasses at the same range of pressures (see references in the figure 

caption), they failed to reproduce the crystallization trends and compositional changes that can be 

observed in the diabase dike suite. Because an EPR-MORB starting composition and our most primitive 

diabase sample did not describe the differentiation path of our samples, the input composition was 

empirically modified by an optimization method to include 0.5 wt% H2O, 50.06 wt% SiO2 and 2.83 wt% 

Na2O to the initial EPR-MORB. This final composition (Table TS4, Supplementary Materials) successfully 

recreates and explains the compositional evolution of the diabase dikes. One important result from this 

modeling is that the diabase dike compositions cannot be reproduced by anhydrous MORB (Fig 6). The 

effect of small amounts of H2O on MORB melt compositions results in a displacement of the cotectic 

points (the discontinuities in the LLD) due to the suppression of plagioclase crystallization relative to 

olivine and clinopyroxene (see Fig. 6a through e) (Danyushevsky, 2001). The estimated amount of H2O 

(0.5 wt%) necessary to explain our data is atypical for MORB, however, it still falls into the high end-

member of hydrated MORB magmas (Hirth and Kohlstedt, 1996; Danyushevsky, 2001; Asimow and 

Langmuir, 2003). 

The SiO2 variation of the diabase dike suite is controlled by olivine partitioning as a function of 

temperature and pressure (Langmuir et al., 1992). The crystallization of plagioclase and pyroxene is 

most likely responsible for the increase in SiO2 contents at low pressures (<0.4 GPa). In the diabase dike 

samples, the cotectic crystallization of olivine and plagioclase is suggested by a positive correlation 

between MgO and Al2O3 (Fig. 5b). Using a MORB composition, this correlation tends to be positive 

because increasing levels of fractionation will lead to a decrease of MgO and Al2O3 in the melt due to the 

crystallization of olivine and plagioclase, respectively (Danyushevsky, 2001). As the pressure increases, 

the liquids in equilibrium with Ol+Plag+Cpx will increase their Al2O3 content and this can lead to a higher 

modal plagioclase content (Herzberg, 2004). FeOt shows the expected enrichment during fractionation 

of tholeiitic magmas (Zimmer et al., 2010). 
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CaO vs. MgO systematics (Fig. 5c and 6) can be used to evaluate whether or not a melt has 

crystallized clinopyroxene because CaO contents increase during the L+Ol and L+Ol+Plag steps of 

crystallization and promptly decrease as soon as the liquid starts to crystallize Ol+Plag+Cpx. The 

sensitivity of CaO to pressure effects was evaluated by Langmuir et al. (1992) and Herzberg (2004). The 

Santa Elena diabase dikes plot within the LLDs modeled from 1 atm to 1 GPa (Fig. 5); however, a larger 

set of samples plot at pressures >0.4 GPa. We also plotted our data onto a projection of liquids for the 

equilibrium L+Ol+Plag+Cpx into the plane Anorthite-Diopside-Enstatite following the methods of 

Herzberg and O'Hara (1998) and Herzberg (2004) (Fig. 5e). In this projection the pressures of 

crystallization of most of the diabase dikes also yielded >0.4 GPa, further supporting a deep origin for 

the dikes. Although these values are model-dependent and absolute pressures are not easy to obtain, 

our results are consistent with deep crystallization in the lithospheric mantle rather than at crustal 

levels, as it is obvious in the field exposures (Fig. 3). 

The data from the Santa Elena Ophiolite were also compared to geochemical data from mid-

ocean ridges globally, compiled by Gale et al. (2013). Fast spreading ridges group around the LLDs that 

belong to pressures from 1 atm to 0.4 GPa, which can be correlated with shallow depths of melt 

crystallization. Correlations between spreading rate and depth of crystallization have been noted by 

other authors (Grove et al., 1993; Michael and Cornell, 1998; Herzberg, 2004; Escartin et al., 2008); and 

in general, slower spreading rates are associated with deeper crystallization. In this respect, the Santa 

Elena Ophiolite diabase dikes show a range of pressures of crystallization that are consistent with deep 

crystallization environments. These pressures (>0.4 GPa) correspond to depths >15 km (assuming an 

average density of ~3.0 g/cm3 for the oceanic lithosphere). The results are in good agreement with the 

estimated pressures of partial crystallization at the top of the melting regime in slow and ultra-slow 

spreading ridges (Herzberg, 2004), thus, providing supportive information for a slow to ultra-slow 

spreading rate for the extensional environment preserved in the Santa Elena Ophiolite. 
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5.4 Trace element signatures and tectonic implications  

In order to further understand the tectonic environment in which the Santa Elena Ophiolite 

formed, the diabase dike trace element compositions were normalized to a Primitive Mantle 

composition (McDonough and Sun, 1995). Primitive-normalized data are depleted in the most 

incompatible elements, such as the LREE, consistent with the trace element composition of a depleted 

MORB-like source (Salters and Stracke, 2004) (Fig. 7a). When the trace element patterns of the Santa 

Elena Ophiolite are compared with other primitive-normalized trace element compositions of other 

extensional tectonic environments, our results are similar to signatures that are found in slow to ultra-

slow spreading ridges and back-arc spreading centers, but always at the depleted end of these 

environments consistent with a normal MORB signature (Fig. 6). 

Because magmas record information about their original tectonic setting of formation in their 

trace-element signatures, a series of geochemical proxies have been identified that can be used to 

discriminate paleo-tectonic environments (e.g., Pearce, 2008 and references therein). In order to better 

determine the tectonic environment that formed the Santa Elena Ophiolite, we used fluid-immobile 

elements to distinguish between a mid-ocean ridge environment and a subduction influenced 

environment. For comparison, we compiled geochemical data from various ophiolites (Mayari-Baracoa 

Ophiolitic Belt, Oman, Newfoundland, Josephine, Mirdita, Macquarie Island, Ingalls, Tangihua, 

Shuanggou, Kizildag, Anatolia, Troodos, Duarte, Loma La Monja, La Desiderade; see Table TS3 for data 

and references) as well as trace element data from other extensional environments (Atlantis Massif, 

Atlantis Bank, San Souci volcanic formation, Atlantic oceanic crust of ca. 121 Ma, ultra-slow spreading 

centers, back-arc basins; Table TS3) and plotted along with the results from the Santa Elena Ophiolite 

and the Murcielago Islands pillow basalts in Fig. 8. 
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In these fluid-immobile element systems the mantle array is defined by where MORB-OIB data 

plots. Data that plots away from this array suggests the influence of subduction processes or crustal 

interaction, as for example, samples that belong to SSZ ophiolites such as Oman, Newfoundland, Ingalls, 

Anatolia, and Kizildag, plot away from the mantle array as indicated by the “subduction interaction” 

vector as shown in the plot of Zr/Nb vs. Ti/Th (Fig. 8a). Similarly, as shown in the Ce/Nb vs. Th/Nb 

diagram (Fig. 8b), the subduction influenced samples plot towards higher Ce and higher Th. Ce can be 

considered as a proxy for H2O content, since both elements have a similar incompatible behavior during 

melting (Saunders et al., 1988). This diagram provides an easy visualization of the effect of increasing 

subduction interaction, which is especially evident in SSZ ophiolite samples. Fig. 8c shows the Th/Yb vs. 

Nb/Yb diagram first developed by Pearce (2008). Th and Nb are well-known proxies for subduction input 

within a system, as Th is carried by subduction fluids (especially sediment recycling) and Nb is retained 

by a residual phase in the subducting slab (Wood et al., 1979; Pearce, 2008; Pearce, 2014). Thus, 

samples influenced by subduction fluids trend towards higher Th contents and lower Nb contents 

relative to the mantle array. This is why samples coming from back-arc basins plot parallel to and higher 

than the mantle array and SSZ ophiolites also show an upward trend. 

Our results indicate that the Murcielago Islands pillow basalts plot well into the mantle array 

limits, trending towards the enriched endmember of MORB. Meanwhile, the Santa Elena Ophiolite 

diabase dikes plot on the limits between the data from back-arc basins and slow to ultra-slow spreading 

ridge MORB consistent with our previously discussed major element results. In comparison with the 

global compilation, our data also show similarities with the Atlantis Massif, Atlantic oceanic crust, and 

the Atlantis Bank (Fig. 8a, b and c). The location that shows the most consistency with the diabase dikes 

are the tholeiites from the Mirdita Ophiolite in Albania. This is a Jurassic ophiolite interpreted as a 

transition from a MORB to a SSZ environment (Dilek and Furnes, 2009). Santa Elena intrusions are also 

geochemically similar to the Continental Margin Ophiolite classification of Dilek and Furnes (2014) which 
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plot on the NMORB field of the mantle arrange and towards the upper limit. Therefore, our diabase dike 

samples resemble a MORB-type magmas that show only a “hint” of subduction interaction. 

 

5.5 Mantle signatures from radiogenic isotopes  

Radiogenic isotopes are a reliable way to evaluate the source of a given sample, since they do 

not fractionate during magmatic processes such as melting or crystal fractionation. In terms of 

radiogenic isotopes, MORB was thought to be derived through melting of a homogeneous mantle 

reservoir (the upper mantle). However, more recent studies reveal the significant variations in the 

radiogenic isotope ratios indicating that it is more likely that they are generated from mantle sources 

that are heterogeneous (Salters and Stracke, 2004; Workman and Hart, 2005). Isotopic variability in 

MORB from fast spreading and slow spreading ridges may differ depending on the mixing mechanisms 

intervening in the systems. In this regard, small-scale convection contributes to mixing of different 

sources at slow spreading ridges, producing geochemically homogeneous reservoirs (Samuel and King, 

2014). 

The new age corrected (accounting for the source evolution in ~121 Ma) data from the Santa 

Elena Ophiolite mafic dikes are presented in Fig. 9. The diabase dikes share isotopic signatures that 

resemble those from back-arc basins and slow to ultra-slow spreading ridges and are separate from 

those of fast spreading ridges (Fig. 9). This is consistent with the results discussed above for major and 

trace element compositions. The diabase samples yield 87Sr/86Sr values between 0.70285 and 0.70357 

(Fig. 8a), which are on the higher end for NMORB but not as high as the range of EMORB. Also, they 

overlap with the lower 87Sr/86Sr values for back-arc basins. The εNd values obtained for the diabase 

dikes range between +6 and +12, and when plotted against 87Sr/86Sr they overlap with data from slow 

and ultraslow spreading ridges, and with data from back arc basins to a lesser extent (Fig. 9a).  
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The data also show that the diabase dikes are more enriched in 206Pb/204Pb, 207Pb/204Pb and 

208Pb/204Pb than depleted DMM (Fig. 9b, c and d), following a linear array that suggests a mixture of a 

depleted component and an enriched component (EMII), most likely due to small-scale convection, a 

consistent characteristic in slow-spreading systems (Samuel and King, 2014). The EMII mantle reservoir 

is interpreted as deep mantle storage of metasomatized oceanic lithosphere or sub-continental 

lithosphere (Workman et al., 2004). Detachment of sub-continental lithosphere may occur during 

continental break-up (Saunders et al., 1988). Therefore, this isotopic signature can be correlated with 

the remnants of lithospheric mantle components disseminated during the opening of the Atlantic and 

the proto-Caribbean ocean. Additionally, the presence and mixing of these likely subduction-modified 

remnants of the sub-continental lithosphere could account for the subtle subduction signature evident 

in our samples (see discussion in Gazel et al., 2012). 

 

5.6 Paleotectonic setting for the Santa Elena Ophiolite formation 

Data presented in this work shows that the Santa Elena Ophiolite preserves structural and 

geochemical evidences for an extension environment of formation. Whether it is a mid-ocean ridge or a 

back-arc basin environment is still a matter of further constraints, such as paleomagnetic surveys and 

detailed tectonic reconstructions. However, the similarities with data coming from back-arc basin 

tectonic settings like Lau Basin and Marianas (Fig. 8) suggest that Santa Elena Ophiolite might have 

originated from an analogous setting.  

Moreover, the Santa Elena Ophiolite characteristics are comparable with the structure and 

geochemical affinities present in some oceanic core complexes (OCC). For instance, the Godzilla 

Megamullion located in the extinct Parece Vela Rift in the back-arc basin of the Marianas (Fig. 10) 

consists of an exposed lower crust to mantle sequence of plutonic rocks including peridotites (lherzolites 
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and harzburgites), gabbroic and diabase intrusions and a varying presence of a basaltic crust (Ohara et 

al., 2001; Ohara et al., 2003; Loocke et al., 2013). Sanfilippo et al. (2013) also mention that the basalts 

retain their MORB affinity and their REE and isotope compositions appear enriched by a minor slab 

component. OCCs like the Kane Megamullion (Dick et al., 2008) and the Atlantis Massif (Blackman et al., 

2002) in the Mid-Atlantic Ridge, or the Atlantis Bank in the Indian Ridge (Baines et al., 2003) also show 

mantle sequences consisting in peridotites, diabase dikes and to a lesser extent gabbros. 

The idea of OCCs being preserved as ophiolites has been suggested by several authors (i.e. 

Nicolas et al., 1999; Tremblay et al., 2009; Manatschal et al., 2011; Lagabrielle et al., 2015). If Santa 

Elena is an OCC preserved as an ophiolite, it would explain the lack of a basaltic crust since in many OCCs 

low magmatic supply is common and the basaltic crust gets variably displaced by the hanging-wall 

during detachment (Escartín et al., 2003; Dick et al., 2008). 

An alternative model for the origin of Santa Elena would be that it represents a fragment of the 

Mesquito Composite Oceanic Terrane (Baumgartner et al., 2008), a series of accreted Pacific oceanic 

terranes conformed by mafic and ultramafic lithologies. This explanation is supported by findings of 

Pacific Radiolarian fauna in different Caribbean locations that pre-dates the opening of the Proto-

Caribbean (Baumgartner and Denyer, 2006; Baumgartner et al., 2008; Bandini et al., 2011). This 

hypothesis however is not mutually exclusive to the OCC origin, since the preservation and 

emplacement of this fragment of the lithospheric mantle could have happened in the context of 

accretion of distinct Pacific terranes. 

Finally, a Proto-Caribbean origin should also be explored in future studies. Proto-Caribbean 

remnants have been found along the Great and Lesser Antilles (Lapierre et al., 1999; Marchesi et al., 

2006; Escuder-Viruete et al., 2009). For instance, samples from the San Souci Volcanic Group, in Trinidad 

y Tobago, which have been interpreted as preserved pieces of Proto-Caribbean oceanic crust (Neill et 
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al., 2014) show similar fluid immobile element signatures as the diabase dikes explored in this study (Fig. 

8).  

 

6. Conclusions 

 

Structural and geochemical evidence suggest an extensional environment for the formation of 

the Santa Elena Ophiolite. The ophiolite architecture shows clear characteristics of mid-ocean ridge 

origin that include sub-parallel and sub-vertical arrangement of the dikes, coalescing channels of melt, 

absence of horizontal intrusions, zones of higher density of dikes relative to peridotite. Additionally, the 

lack of overlaying sequences of developed oceanic crust, the predominant presence of lherzolite as 

opposed to harzburgite, and the absence of significant magma chamber or lenses suggest that the Santa 

Elena Ophiolite is a preserved deep section (in the lithospheric mantle) of a melt-focusing zone in a slow 

to ultra-slow spreading ridge. 

Major and trace element data are also in good agreement with the assessment of the origin of 

the Santa Elena Ophiolite as a slow/ultra-slow spreading center, possibly with a limited subduction 

interaction. The calculated pressures of crystallization are more consistent of slow to ultra-slow 

spreading ridges, where partial crystallization can occur deeper in the mantle since there is a lower 

magma supply and thus less heat flow. However, as evidenced from our geochemical data, the tectonic 

environment of formation for Santa Elena Ophiolite, even though it corresponds with an oceanic 

extension environment, it was not purely a Mid-Ocean Ridge nor a Back-Arc Basin setting sensu stricto, 

but possibly a combination between both environments. A possible analogous tectonic scenario could 

be similar to what is found at an oceanic core complex that developed in a back-arc basin, where the 
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proximity to transform faults reduces the velocity of the spreading rates and induces detachment which 

emplaces the lithospheric mantle and the melt-focusing zone of the system at the seafloor.  
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Figure Captions for printed version: 

Figure 1: Two models of the architecture of the oceanic crust modified from Kelemen et al. 

(2000) and Cannat (1996). A) At a fast spreading ridge, magmatic supply is abundant and melting occurs 

at shallower levels in the lithosphere; these melts ascend and form coalescing channels (Kelemen, 

2000). Melt fractions are higher than at slow spreading ridges, which allow the development of an 

oceanic crust on top (Cannat et al., 2006). B) At ultra-slow spreading centers, melts are triggered by 

detachment faulting which drives a much deeper melting regime. Slower magma generation and lower 

melt fraction are characteristic of this environment. In this model, melt travels along a pre-existing 

oceanic mantle lithosphere composed predominantly of lherzolite (Dick et al., 2003; Cannat et al., 2009). 

 

Figure 2: Overview map of the Santa Elena peninsula. A) Geologic map modified by our field 

observations from Tournon et al. (1994), Gazel et al. (2006) and Escuder-Viruete and Baumgartner 

(2014); two cross sections are provided to illustrate the spatial relationship between lithologies from N 

to S (A-A’) and SW to NE (B-B’). B) Geotectonic setting of the Santa Elena Ophiolite after Denyer and 

Gazel (2009). C) Structural data for the diabase dikes from the NW dike swarm and SE dike swarm 

measured and corrected in this study. 

 

Figure 3. Photograph from the diabase dike swarms in the Santa Elena Ophiolite; β denotes 

diabase dikes and π peridotite. A) Southeastern diabase swarm; diabase dikes intrude the peridotite in a 

sub-parallel arrangement. B) Boudins of peridotite created by the intruding diabase. C) Boudins of 

peridotite northwestern diabase swarm. D) and E) Diabase dikes branching out in the shape of an 

“inverted bush” at a metric scale. 
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Figure 4. Geochemical classification of the diabase dikes of the Santa Elena Ophiolite. A) Total 

Alkalis-Silica (TAS) diagram (Le Maitre et al., 1989) where the samples from the Santa Elena Ophiolite 

display a dominant basaltic composition. B) AFM classification diagram (Irvine and Baragar, 1971) 

suggesting a predominant tholeiitic affinity for the diabase samples. Dark gray circles denote the new 

data presented in this paper and gray fields includes data compiled from literature (Table TS3). The 

dashed lines show the compositional range of MORB data (Gale et al., 2013). 

 

Figure 5. Major element variation diagrams for the diabase dikes of the Santa Elena ophiolite. 

Liquid Lines of Descent (LLD) were calculated using Petrolog3 (Danyushevsky and Plechov, 2011) at 

different pressures (1.0 atm to 1.0 GPa in increments of 0.2 GPa). The crystallization processes modeled 

start at a primary magma (PM) that has been modified from the EPR composition of Herzberg and 

O’hara (2002) in order to explain our data. For the fast spreading ridges we used values from the East 

Pacific Rise (EPR); for slow spreading ridges we used values from slow segments of the Mid-Atlantic 

ridge (MARR) (<60 mm/yr); for ultra-slow spreading ridges we used values from the Southwestern Indian 

Ridge (SWIR) and Gakkel Ridge (GAK); for back arc basins we used values from Marianas (BMRN), Lau 

Basin (LAU) and Scotia Back Arc (SCO) (data compiled by Gale et al., 2013). 

 

Figure 6. Variation diagrams for CaO and MgO at different initial compositions. LLDs were 

modeled for pressures from 0.001 GPa (1atm) to 1.0 GPa using Petrolog3 (Danyushevsky and Plechov, 

2011). Panels A and B show experimental glass compositions for pressures at 1 atm, 0.2 GPa, 0.8 GPa 

and 1 GPa. The experimental glass data collected by different authors was compiled by Herzberg (2004) 

and includes data from: Bender et al. (1978); Walker et al. (1979), Grove et al. (1982); Grove and Bryan 
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(1983); Kinzler and Grove (1985); Mahood and Baker (1986); Baker and Eggler (1987); Falloon and Green 

(1987); Tormey et al. (1987); Juster et al. (1989); Ussler III and Glazner (1989); Bartels et al. (1991); Thy 

and Lofgren (1992); Grove et al. (1993); Thy and Lofgren (1994); Yang et al. (1996). We also compiled 

data from Falloon et al. (2001); Villiger et al. (2004); Villiger et al. (2007); and Falloon et al. (2008). The 

experimental data was plotted against the LLDs generated for a primary magma from the East Pacific 

Rise (EPR) calculated by Herzberg and O’Hara (2002) with 0 wt% H20 added (A) and for the same primary 

EPR magma containing 0.5 wt% H2O (B). Note how the experimental data consistently plots in the 

appropriate LLD for each value. Also, it should be note how adding H2O in these two model causes an 

upward displacement in the cotectic points. Panels C and D show the data collected in this work using 

the same LLDs as in A and B, respectively. It should be noted that neither of the two models seem to 

appropriately describe the trends in the diabase dikes, however, the model with 0.5 wt% H2O added has 

the best correlation of the two models. Panel E shows the diabase dike compositions with the LLDs 

generated based on the optimized crystallization model for our data. The model parameters used to 

generate the LLDs are shown in the inset. The resulting model shows a displacement towards lower CaO 

and lower MgO providing a better fit for the diabase samples, where the majority of our samples fall in 

the LLDs for pressures >0.4 GPa.  

 

Figure 7. Multi-element diagram showing the incompatible element compositions for the Santa 

Elena Ophiolite diabase dikes and Murcielago Islands pillow basalt glasses normalized to primitive 

mantle (McDonough and Sun, 1995). Shaded fields represent the values compiled by Gale et al. (2013) 

from different types of spreading centers. A) Comparison of the Santa Elena diabases and standard 

values of NMORB, EMORB and OIB (Sun and McDonough, 1989). B) The dark gray shaded area 

represents values of fast spreading ridges from the East Pacific Rise (EPR). C) The gray area represents 

values from ultra-slow spreading ridges form Gakkel ridge (GAK) and Southwestern Indian ridge (SWIR). 
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Values for slow spreading segments of the Mid-Atlantic ridge (MARR) are represented as a dotted line. 

D) The light gray shaded area are values from Marianas (BMRN), Lau (LAU) and Scotia (SCO) back-arc 

basins. E) Samples from the Santa Elena Ophiolite melt-focusing zone compared to the Murcielago 

Islands basaltic glasses. Note that the Murcielago Islands basaltic glasses share a more similar 

geochemical signature with the Nicoya peninsula basaltic glasses related to the CLIP. Samples that 

showed significant spikes in fluid mobile elements were excluded from this figure since seafloor 

alteration can be accounted for these enrichments. 

 

Figure 8. Tectonic environment discrimination diagrams of Santa Elena Ophiolite and Murcielago 

Islands samples compared to other ophiolites or oceanic environments. A) and B) Zr/Nb vs. Ti/Th 

diagram. Lower Ti/Th and higher Zr/Nb indicate increasing subduction fluid interaction. C) and D) Ce/Nb 

vs. Th/Nb diagram. Subduction influenced samples plot towards higher Ce and higher Th. Ce can be 

considered as a proxy for H2O content, since both elements have a similar incompatible behavior during 

melting (Saunders et al., 1988). E) and F) Th/Yb vs. Nb/Yb diagram. Th/Nb is a well-known proxy for 

subduction input within a system as Th is mobile in fluids and Nb is retained by a residual phase in the 

subducting slab (Pearce, 2008). We compiled the most recent geochemical data for similar tholeiitic 

magmas related to ophiolites: Oman, Newfoundland, Josephine, Mirdita, Macquarie Island, Ingalls, 

Tangihua, Shuanggou, Kizildag, Anatolia and Troodos, Mayarí-Baracoa Ophiolitic Belt, Loma La Monja, La 

Desiderade. Information from other analog tectonic environments was also collected: Atlantis Massif in 

the Mid-Atlantic Ridge, Atlantis Bank in the South West Indian Ridge, the San Souci volcanic formation in 

Trinidad, contemporaneous Atlantic oceanic crust, Aves Ridge crust, slow (Mid-Atlantic Ridge, MARR) 

and ultra-slow spreading ridges (Gakkel, GAK and Southwest Indian Ridge, SWIR) and back-arc basins 

(Marianas, BMRN, Lau Basin, LAU, and Scotia Basin, SCO). Note that the diabase dike samples plot in the 
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transition between a MORB environment and a SSZ environment. See Table TS3 in the Supplementary 

Materials, for data references. 

 

Figure 9. Results from the radiogenic isotope analyses. Values were corrected to the initial ratios 

and projected considering the evolution of the source at 121 Ma. A) εNd vs 87Sr/86Sr. B) 206Pb/204Pb 

vs87Sr/86Sr. C) 207Pb/204Pb vs 206Pb/204Pb. Santa Elena Diabase dikes data show a mixing trend between 

DMM and EMII. D) 208Pb/204Pb vs 206Pb/204Pb. The linearity of the data points also denotes the mixing of 

DMM and EMII. Note that the isotope signatures of the Santa Elena diabases show similarities with data 

from slow spreading ridges (Mid-Atlantic ridge, MARR), ultra-slow spreading ridges (Gakkel, GAK and 

Southwest Indian Ridge, SWIR) and Back Arc Basins, and separates from fast spreading ridges (East 

Pacific Rise, EPR). Data from Gale et al. (2013). DMM: Depleted MORB Mantle; EMI: Enriched Mantle I; 

EMII: Enriched Mantle II. Note that samples SE-060111-15 and SE-010510-1 were not included in Fig. 8 a 

and b, given that they show the effect of seafloor alteration. 

 

Figure 10. Location of the Godzilla Megamullion in the Parece Vela Basin, Marianas back-arc 

(Loocke et al., 2013). A similar geotectonic scenario is proposed for the formation of the Santa Elena 

Ophiolite. The architectural and geochemical affinities of oceanic core complexes are in good agreement 

with the evidences found for the Santa Elena Ophiolite. Map obtained from GeoMapApp 

(http://www.geomapapp.org). B) Schematic section of an OCC, modified from Karson et al. (2006). C) 

Schematic cross section of Santa Elena Ophiolite. 
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Highlights 

 Santa Elena Ophiolite is a preserved melt-focusing zone of the lithospheric mantle. 

 Its architecture & geochemistry are similar to a slow/ultra-slow spreading system. 

 It represents a fossil-fragment of an oceanic core complex from a back-arc basin. 
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