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Chapter 1

Network Diffusion

1.1 Contact Networks

A contact network describes information about the location and proxim-

ity between individuals over a fixed period of time. As individuals come

in contact, they are able to spread both intangible material, such as infor-

mation and ideologies, and tangible material, such as bacteria and viruses.

Contact networks can describe spread through a variety of sources, such

as airline networks, animal populations, plant populations, and computers.

[Kleinberg, 2010] In the majority of cases, the manner of spread will deter-

mine the intensity of the spread. For example, in the case of an epidemic,

an airborne virus will spread rapidly in comparison to a disease requiring

close contact. Much like the diffusion of a disease, the diffusion of ideas also

spread with differing intensities. However, the key differentiator between
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the two is the process of decision-making that occurs when an individual

chooses to adopt an idea. This difference outlines two approaches to diffusion

within contact networks: decision-based diffusion and probabilistic diffusion.

An idea will disperse through decision-based diffusion, while a disease will

spread through probabilistic diffusion. Random modeling using probabilities

can be applied to assess the spread of disease. The simplest way to model

this probabilistic diffusion is by using the branching process model.

1.2 The Branching Process

The branching process utilizes a tree-like network to visualize the spread of a

contagion through numerous individuals. Each of these individuals represent

a node in the tree. [Ethen, 2018] A node is a basic unit of a data structure

that is able to link to other nodes; each link between these nodes is imple-

mented by a pointer system. The branching process tree consists of a single

node at the top, labeled the ’root node’. The root node will then connect to

a set of nodes in the row below it. Every node in the tree will connect to a

node in the level above it, aside from the root node.

Additionally, the contagion will have a specific contagion probability,

which will determine if an infection will widely spread, or ultimately die

out. This probability will aid in determining the number of nodes in every

subsequent row of the tree. A higher contagion probability will result in a

larger average number of nodes in each row of the tree. If the number of
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nodes in each row remains consistent throughout the branching process, the

total number of nodes will continue to grow exponentially. There are two

common possibilities for a contagion in a branching process model – in the

first possibility, the branching process will reach a round in which no indi-

vidual is infected, which will result in the contagion dying out within a finite

number of steps. The second possibility is that the contagion will continue

to infect individuals in each wave, which will result in an infinite spread of

the infection through the contact network.

The probabilistic branching process relies on the basic productive number,

denoted R0. R0 is the expected number of new individuals that have been

infected by a single individual in the previous round. R0 is also known as

the measure of ’average contagiousness’ of a pathogen. For example, if an

individual affects an average of 2 individuals in each round, R0 = 2. R0

can be found by multiplying the dispersion of the pathogen, or the total

number of new people that an individual has come in contact, k, with by

the contagion probability, p. We can calculate the average contagiousness as

R0 = pk.

We are able to come to a variety of conclusions by analyzing R0. If R0 < 1,

the contagion is 100% likely to die out after a finite number of rounds. If

R0 > 1, then there is a probability greater than 0% that the contagion

will continue to infect a minimum of 1 person in each round. While the

differences in R0 may seem to be minute, having R0 fall just above or just

below 1 will largely impact whether a contagion spreads rapidly through a
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contact network. In the case of epidemic spread, an R0 > 1 may induce the

transformation from a small-scale disease outbreak into a large epidemic.

There are multiple precautionary measures that can be taken to reduce

the R0 in the case of an epidemic. To reduce the quantity k, individuals can

be encouraged to quarantine and social-distance. As a greater percentage

of the population takes these precautions, the total number of people that

an individual will come in contact with will also be reduced. To reduce the

contagion probability p, a community can encourage better sanitary practices

to reduce the spread of germs, such as regularly washing hands and wearing

face coverings. When computing the R0, it is essential to recognize that these

preventive measures are purely voluntary, and may not be executed by the

entire population.

There are many simple examples attributed to the common use of branch-

ing processes, one being the popular question proposed by the reputable ex-

plorer and anthropologist, Francis Galton: “How many male children must

each generation of the family have for the family name to continue forever?”

[Zitkovic, 2016] We can assess many differing situations for simple branching

processes to discern Galton’s proposition. For these situations, let us begin

with one individual, at time n = 0. We can keep track of the total number

of individuals, Z, in each round. At time n = 0, Z0 = 1. Suppose that this

first individual reproduces a certain number of times, and then dies. The

total number of individuals at time n = 1 will vary based on the contagion

probability. If Z1 = 0, the population will die out and there would be no
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more reproduction possible. If Z1 > 0, Z1 would reproduce a random num-

ber of times based on the contagion probability, and then die. It is possible

to calculate the total number of individuals in the second generation using

the offspring distribution, as follows: Z2 =
∑

Z(1, k). This process would

continue for all living individuals until Zm = 0 for all m >= n. At this point,

the population would go extinct.

Figure 1.1: This figure visualizes generational growth beginning at a root
node at time n = 0. [Kumar, 2016]

If the offspring distribution above were to be given by P (s), the generating

function to find the total population size Zn at a time n would be PZn(s) =

P (P (...P (s)...)), for n >= 1 with n number of P ’s. Suppose we have p0 = 1

and pn = 0. In this case, the population would become extinct after the first

generation of individuals. Suppose we have p0 = 0, p1 = 1, and pn = 0 for

n >= 2. In this case, the population size would remain at Zn = 1.
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1.3 Cluster Diffusion

Many viruses, such as the virus COVID-19, may be ‘over-dispersed’, meaning

that they spread in the form of clusters. We can analyze the spread of a con-

tagion in the form of clusters. For example, a virus contagion may disperse

through the individuals of a single household. This household could be iden-

tified as a single cluster. The virus would then spread to other individuals

who may also be members of a different households, or different clusters of

individuals.

Suppose we have an individual, i, living in a house with an additional

individual, j. [Borowiak et al., 2020] We can identify pH as the probability

that individual i infects individual j with the virus. We could also identify

pG as the probability of infecting an individual j who does not live in the

same house, or cluster, as individual i. Households will contain differing

numbers of people. Due to this fluctuation in cluster size, we can identify

(pi)k as the probability that individual i belongs to a cluster of size k. We

can also find the average cluster size by finding the mean of all cluster sizes,

µ =
∑

k(kpk). Therefore, the generating function for a cluster of size k would

be GH(z) =
∑

k(pkz
k). For a population of size N = mn, with m being the

number of households and n being the number of people in each household,

the average measure of contagiousness would be calculated as R0 = µNpG.

Each individual i will have a unique generating function. Suppose we

have two individuals, X and Y . If we were to find X + Y , or the combined
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generating function of the cluster size that is impacted by the interaction

between X and Y , we would have to multiply the generating functions of

individuals X and Y . This would result in an exponential increase of the

cluster size, depending on the number of individuals involved in the interac-

tion. As interactions between individuals increase, the total cluster size that

is impacted by the contagion rises at an exponentially higher rate.
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Chapter 2

Game Theory in Networks

2.1 Virus Diffusion and Contagion Interac-

tion

As the virus contagion disperses at a high rate, the likelihood of attaining

epidemic or pandemic level increases. During a pandemic, there is little to

no herd immunity within the community. [Wey et al., 2020] Herd immunity

will develop when there are enough individuals who are immune to a disease,

making an escalated spread of the virus unlikely. Herd immunity is beneficial

to the community due to the lessened risk of those who are not immune to the

virus contracting the virus. The most common way to achieve herd immunity

is through either vaccinating the community, or allowing the virus to spread

naturally through enough individuals to reach herd immunity.

If there is no vaccination available for a virus, the virus will naturally
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spread through the community by human interaction. We can measure the

spread of this virus using the mathematical models developed above. How-

ever, many of these calculations, such as the average contagiousness R0, will

be crude measures of the true impact of the virus. The true values of spread

will be dependent on both the environment and the behavior of the infectious

individuals who have contracted the virus. For example, if an individual with

a virus is in a tightly packed space with poor ventilation, nearly all members

of the room will contract the virus. In this case, the true average contagious-

ness will be much higher than the R0 value.

Individual behavior is also crucial in determining the true R0 value. In

a common workplace, there will be two types of workers. The first will be

the ‘transparents’, who will take precautions if they have contracted the

virus. These precautions will include regular testing and safety measures.

The second will be the ‘opaques’, who will not take precautions if they have

contracted the virus. Of all infected individuals, approximately 10− 20% of

individuals, who are more likely to be opaques, may be responsible for as

much as 80− 90% of virus transmission. [Tufekci, 2020]

This leads to a circumstance comparable to the ‘prisoner’s dilemma’.

[Asu Ozdaglar, n.d.] In the case of a workplace, there will be two conflicting

necessities – the safety of the workers, and the productivity of the company.

If the R0 value of the virus is initially low, the company may want to remain

open to maximize its economic incentives. However, if the workers were to

get infected with the virus, both the company and the employees will be
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negatively affected.

The prisoner’s dilemma takes into account the selfish incentives of users.

This brings about the concept of ‘game theory’, an efficient manner of as-

sessing the decision-making process of individuals. [Chang et al., 2020] Many

decisions will be beneficial to one individual, but have a negative impact on

another. The common usage for game theory involves assessing the levels of

benefit for each individual in comparison to the harm that the decision will

cause. Each ‘player’ will attempt to choose the option that will result in the

optimal benefit to themselves. This benefit is referred to as the ‘utility’ of

the player. Moreover, the best strategy will be dependent on the choices of

the other players. In the case of epidemic spread, the carrier of the virus

will be at a gain, while the people who are infected by the virus will be at

a loss. Within a group of people, there will always be those who are solely

interested in their own benefit, and will not make decisions that will lead to

the socially optimal result. For example, while choosing to quarantine is the

decision that will be optimal for all parties, there will be those who select

their personal enjoyment over the safety of themselves and the surrounding

community.

2.2 Decision-Making Modeling

This decision-making process can be modeled in multiple ways. The first

manner is through ‘self-learning’, in which individuals will develop their own
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understanding of the disease through gaining knowledge. The second manner

is through imitation, in which people are influenced by the decisions of the

surrounding population. This is determined by the way in which the contact

network is constructed. For example, to model the distribution of a vaccine,

one can simulate the ‘committed vaccinators’, who will choose to take the

vaccine without considering the benefits or losses of taking it. The surround-

ing population will watch this action and likely mimic this behavior. Over

time, the vaccine will be taken by much of the population. This demonstrates

the development of ‘behavioral clusters’. These behavioral clusters could also

have a negative impact on the community – those who do not take safety

precautions against the virus may inspire others to also not take precautions.

This behavior and interaction develops contact networks through the com-

munity. These networks are influenced by a multitude of factors, including

the social, cultural, and geographic characteristics of the community. The

interactions within these networks can be represented using network links.

These networks can be either static or dynamic. A static network will remain

unchanging as a contagion spreads through the network, while a dynamic net-

work will continue to grow in size as the contagion spreads. The spread of

an epidemic can be modeled using a dynamic network.

Within a network model, individual behavior is represented using ‘util-

ity functions’. These utility functions demonstrate the game-theoretical

decision-making process. The network model for a virus will contain an ad-

justable level of transparency, level of interaction between individuals, and
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average contagiousness R0. A common method of modeling decision-making

in this interactive manner is by using agent-based modeling.
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Chapter 3

Agent-Based Models

3.1 Agent-Based Modeling Concepts

An agent-based model is a model composed of multiple entities called ‘agents’.

Each agent is able to make decisions based on its current situation and a set of

pre-determined rules. Agent-based modeling is used to emulate and analyze

real-world systems. [Bonabeau, 2002] This form of modeling is extremely

useful for hypothesis testing, which is a statistical manner of analyzing sam-

ples from a population to make estimates about the behavior of the entirety

of the population. Hypothesis testing is used to make estimations about

real-world situations.

Agent-based modeling is commonly used to make predictions in many

real-world situations. For example, this technique is used to assess traffic

and customer flow, stock market risk analysis, collective panic behavior, and
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even the length of rides at amusement parks. Agent-based models are uti-

lized in situations involving changing behaviors and strategies. For example,

fluctuations in the financial market are influenced by a variety of conditions.

The agent-based model allows users to examine a variety of strategies and the

resulting behaviors of the agents. This allows for the faster implementation

of new protocols, and lessened risk in the real financial market. Agent-based

models are also an excellent way to limit the spread of COVID-19 within the

workplace. Many workplaces have faced the difficult decision between em-

ployee safety and monetary optimization. However, the likelihood of being

infected with COVID-19 within a facility is very high, due to the close-knit

contact networks within the workplace and the high average contagiousness

of COVID-19. By using agent-based modeling, facilities will be able to simu-

late the spread of COVID-19 under different conditions and take the correct

precautions in order to find the optimal balance between employee safety and

economic standing.

There are many benefits of using agent-based modeling. These models

provide a method of examining ‘emergence’, or behaviors that are only seen

when the parts of a system interact with each other. Agent-based models

also allow users to simulate and visualize complex problems, which are often

difficult to solve using real-world data. It is also very simple to add and

subtract agents from the model, and to change the behaviors of the agents.

When running agent-based models, a simulation of real-world data is created

for analyzation. Agent-based models are also useful in assessing natural
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systems. For example, it is unethical to perform a real-world human test to

collect information about virus infection. In this case, it is only possible to

perform this test using an agent-based simulation.

Agent-based models are often utilized when the behavior of individuals

is ‘nonlinear’, meaning the change in the behavior of each output is not

proportional to the change in the behavior of each individual. A nonlinear

system is often created when the behavior of individuals involves learning and

adaptation. A nonlinear system results in a high level of unpredictability, and

is only easily analyzed through simulation.

An important step for creating an agent-based model is developing a

strong conceptual model. [Auchincloss & Garcia, 2015] The conceptual model

will consist many parts, including the experiment plan, the agents and their

characteristics, the design of the simulation space, and the behavior of the

agents.

3.2 Building an Agent-Based Model

The model will begin with a group of randomly chosen agents, each placed

in a specific position within the simulation space. These agents will follow

a specific set of rules that have been determined by the user. These rules

will influence the position of each agent and the relationship with the sur-

rounding agents. Agent behaviors, also known as the utility functions of

the model, will allow the agent to practice decision-making. The agent will
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be given multiple choices and will rank these options to make a behavioral

decision. Agent interactions are determined through stochasticity, or ran-

domness. [Jalayer et al., 2020] As agents interact, they will be put in various

situations in which they must make decisions. The agents will produce a

variety of responses based on their environment.

An example of an agent-based model is the COVID-19 model. [Cuevas, 2020]

This model contains two types of agents, agents Ak (susceptible individuals)

and Bk (infected individuals). Each time the simulation is rerun, the charac-

teristics of the agents are randomly reassigned. As the simulation is run, the

agents will make either local or long-distance moves. The probability of mov-

ing locally is 1−a. The a-value for long-distance displacement will generally

fall between 0.6 and 0.8. Therefore, it is more likely for the agent to move

locally. The probability of being infected, or Pi, is impacted by the health

condition characteristics and the prevention measurement characteristics of

the agents.

Each agent also has a risk characteristic, r, describing the level of conta-

giousness of the individual. r is a random number generated within a uniform

distribution. During each k iteration of the simulation, a random number r

between 0 and 1 is selected for P1. The value of r will determine the risk

associated with each agent. r values that are closer to 0 represent agents that

are more immune. r values close to 0.2 represent the normal transmission

rate of an individual. A high transmission rate will have r values closer to

1. When the simulation is run, Ak will be infected if its r value is less than
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Figure 3.1: The value of R describes the level of contact under a certain
risk contagiousness r. This figure demonstrates the (a) initial and (b) final
configurations of infected agent bj inside an enclosed area. The decision
process will determine whether agent ai is infected. [Cuevas, 2020]

or equal to the probability of infection Pi. Every agent A that gets infected

is deleted from A and added to B. This model will be run many times to

produce a distribution of outcomes.

3.3 Network Analysis Using Agent-Based Mod-

els

The use of agent-based models is an increasingly common approach within

epidemiological research. The application of ABMs closely coincides with

a second approach, called social network analysis. [El-Sayed et al., 2012]

Social network analysis involves the analysis of social networks in order to
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understand the impacts of different characteristics of the network on the risk

characteristic, r, of the network. This approach takes an observational direc-

tion, gathering data through methods such as surveys and random sampling.

However, social network analysis has its limitations. The largest limita-

tion is the trade-off between the quality of data collection and the level of

generalizability of the data. Carrying out surveys amongst large samples

of individuals may not collect data with enough technicality to apply the

results to an entire population. Contrarily, focusing on the detail in the

surveys may introduce the confounding variable of homophily to the data,

decreasing its generalizability to the larger population. The social concept of

homophily involves a higher frequency of communication between the people

in a network who are similar (in their daily routines and liking), encouraging

a level of homogeneity to the data. [Khanam et al., 2020] This may result

in a homoscedastic distribution of the data, which would fail the regression

diagnostic assumption of having a constant variance within the data. There-

fore, we take the original approach of using a stochastic agent-based model

to analyze our network data.

The combination of network analysis with the use of ABMs allows us

to deeply understand the spread of a contagion through a population with a

recognizable degree of social interaction. ABMs allow researchers to simulate

this analysis to produce inferences about the population through the use of

programming. We will be using the EpiModel [Jenness et al., 2018a] package

within R to carry out our agent-based modeling.
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Chapter 4

EpiModel for Agent-Based

Modeling

4.1 What is EpiModel?

EpiModel is an open-source software package that is used in the R program-

ming platform. [Jenness et al., 2018b] R is a language that is used to conduct

statistical analysis and create mathematical graphics. It is commonly used

by statisticians and data analysts and is supported by the R Foundation

for Statistical Computing. R provides an easy way to produce high-quality

graphics and plots. The R environment simplifies the mining and manipula-

tion of data by providing a variety of effective tools for data analysis.

The Epimodel package allows its users to simulate and analyze infectious

diseases by using a mathematical model. EpiModel was created in order
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to further the exploration of modeling amongst students and advanced re-

searchers. This package will allow us to simulate agent interactions through

the use of stochastic agent-based models. These network models are created

using the methods of Exponential Random Graph Models, or ERGMs, from

the suite of software packages in R called statnet.

The EpiModel Package characterizes the following processes that estab-

lish the transmission of an infection through a population [Jenness et al., 2018a]:

1. The Contact Process

2. The Infection Process

3. The Demographic Process

4.2 The EpiModel Network Model

This paper will highlight the use of the EpiModel network model. This

network model provides an adjustable and controllable structure for showing

the contact between individuals in a population. The network simulation in

EpiModel is implemented using the ergm package, specifically the Markov

Chain Monte Carlo algorithm. The Monte Carlo algorithm is used to simulate

the probabilities of differing outcomes that are difficult to predict due to

the presence of other random variables in the data. [Kenton, 2020] This

algorithm allows the network model to vary stochastically (randomly) over

time.
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Each epidemiological model type in EpiModel, called the base model,

accepts a different set of parameters. These parameters include the rate

of infection, rate of recovery, the number of time steps in the simulation,

and the size of the simulated population. The simulated examples within

this paper will follow the Susceptible-Infectious-Recovered/Immune (SIR)

compartmental model type. [Jenness et al., 2018a] The SIR model type is a

compartmental model consisting of the following three states:

• State 1: Those who are susceptible (S) to being infected by the disease.

If a susceptible individual comes into contact with an infected individ-

ual, the susceptible individual will contract the disease according to a

certain infection probability.

• State 2: Those who are currently infected (I) with the disease. Infected

individuals are able to infect others with a specific infection probability.

• State 3: Those who have already recovered (R) from the disease and

are now immune to the disease, or the deceased who have been removed

from the system.

Examples of diseases that follow the SIR model type include influenza,

measles, and COVID-19. Using EpiModel to analyze the SIR model of a

specific disease allows us to predict the manner in which the disease will

spread through a population and observe the impacts of various public health

interventions on the epidemic.
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The stochastic network model that will be highlighted in this paper in-

volves an arrangement of discrete individuals, acting as nodes within the

system, and the partnerships between the individuals, acting as the edges

between the nodes. One node is capable of having multiple edges. Each

partnership has a certain dissolution rate, which will determine the aver-

age duration of a partnership. Furthermore, transitions between states are

stochastic, meaning individual transitions are randomly assigned based on

a distribution that is determined by the chosen set of parameters. Addi-

tionally, the network model is represented through discrete time, meaning

multiple events can sequentially occur in a single time step.

4.3 Exponential Random Graph Models

The package statnet implements Exponential Random Graph Models (ERGMs)

in order to simulate network frameworks according to specific nodal patterns.

[Wasserman & Pattison, 1996] These patterns include the density of the sim-

ulated network, triad closure due to homophily between nodes, and other

features.

ERGMs are used to predict the probability of the existence of an edge

between two nodes. [soc, n.d.] Many may resort to the use of standard regres-

sion methods, however ERGMs allow us to analyze the interactions between

nodes, edges, and the predictor network at a much deeper level. When ana-

lyzing social interactions, it is not enough to view only the binary relation-
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ships between the pairs of nodes. As once stated by Jacob Levy Moreno and

Helen Hall Jennings, “a pertinent form of statistical treatment would be one

which deals with social configurations as wholes, and not with single series

of facts, more or less artificially separated from the total picture.” Therefore,

we must look at the larger picture of human social interactions. Using stan-

dard regression would violate the basic assumption of independence, since

ties between individuals in the real world are often brought about through

homophily and association, and are often clustered. ERGMs allow for the

modeling of these dependent nodes.

This simulation framework supposes the random graph model of “Erdős-

Rényi”, which acts as the null hypothesis for our ERGM framework. It is

assumed that any variation from this random graph model and the simulation

is due to chance. [Hayes, 2021] The Erdős-Rényi random graph is a network

of n nodes. The edges between these nodes form with a probability p. This

formation of nodes follows a Bernoulli distribution, [Upe, n.d.] which is the

discrete probability distribution of a random variable taking the value 1 with

probability p, and the value 0 with probablility 1 − p. In an Erdős-Rényi

random graph, this probability p is found by calculating the network density

of the graph. This value is found by dividing the total number of edges in

the network by the number of possible edges in the network.

One can model this random graph as a G(n, p) model. [gee, 2017] In this

model, a network graph is created by randomly connecting the nodes using

edges that occur with a probability p. Each edge is created independently.
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As the value of p increases, the graph becomes denser, meaning the nodes are

interconnected to a higher degree. Another manner of modeling the Erdős-

Rényi random graph is with a G(n,M) model. In this model, a single graph

is chosen from the set of all graphs with n nodes and M edges.
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Chapter 5

Epidemic Modeling of

COVID-19

5.1 Model Background

The epidemic simulation discussed in this chapter will be created using the

EpiModel package available in the R library. This simulation will model the

spread of the COVID-19 virus through a population of 1,000 individuals over

a span of 100 days.

The COVID-19 epidemic has taken the world by storm. With over 500,000

coronavirus deaths in the United States alone, the country has been tasked

with the difficult job of updating its national safety standards and precau-

tionary health measures in order to reduce the number of COVID-19 cases.

We will model the epidemic spread of this virus through a population and
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assess the effectiveness of the precautionary measures taken to inhibit the

spread of this virus. We are assessing the following protocols popularly im-

plemented during the COVID-19 epidemic:

1. The Mask Mandate

2. The Social Distancing Protocol

3. Reduction of Initial Infected Population Size (ex. Travel Restrictions)

4. National Vaccination

Our network model utilizes the following formation formula:

formation <- ~edges

This formation model includes the network property of density, the ERGM

term for which is edges. The density property is the count of the number of

edges that are created in this network. This network model is modeled as

an Erdős-Rényi random graph with a G(n,M) model. We set the number of

nodes n to be 1,000. We calculate the number of edges in the system using

the following formula:

2 ∗ (number of edges) = (average number of individuals with whom in-

teraction occurs) ∗ (total number of individuals in the network)

We calculate the total number of edges M to be 4,000 by assuming that

the average American has approximately 8 − 9 close friends. [Team, 2019]

Using the above statistics, we produce a connected network with 1,000 nodes

and 4,000 edges. One example of such a network is the following:
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Figure 5.1: This figure visualizes a network of 1,000 nodes and 4,000 edges.

We will run 10 total simulations of the epidemic spread of the COVID-19

virus over the span of 100 time steps. The R code for the simulation that

is discussed can be found in the Appendix. After running 10 simulations of

our epidemic model, we refer to the plot formation statistics to find that the

number of edges M does remain evenly distributed around the value of 4000

for all 100 timesteps:

Variations in the number of edges are due to the arrival of new individuals,

the death of individuals due to the virus, and the dissolution coefficient. The

dissolution coefficient refers to the probability of edge dissolution at each

time step. We set this dissolution to a high value to minimize the number of

edge dissolutions in our model.

This EpiModel simulation requires the use of the following functions:

1. The netest function generates an approximated model for the dynamic
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Figure 5.2: Number of edges within the network model at each timestep.
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network.

2. The netdx function simulates the dynamic network model created us-

ing netest multiple times to run diagnostics on whether the dynamic

network model can be replicated over time.

3. The netsim function uses the dynamic network model created using

netest to run the stochastic epidemic simulation. In our independent

model, the epidemic simulation will be run after the dynamic network

model is created.

5.2 Control Model

We begin with a control model with 5 individuals initially infected. We

assign the infection probability to be 0.015, [Staff, 2020] referring to a 1.5%

risk of the transmission of COVID-19 between a contagion carrier and a non-

carrier, both wearing facial masks. We will also set the rate of exposure to a

low value of 2, assuming that the two individuals are social distancing to a

certain extent. We set the recovery rate to be 1/17, referring to an average

incubation period of 6 days [hea, 2020] in addition to a period of 10 days

[Lee, 2020] until the symptoms have passed. An individual will not be a

coronavirus carrier after an average period of 17 days and will shift to the

recovered state.

We run the EpiModel simulation with the above parameters and produce
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the following model at times 1, 25, 50, and 100:

Figure 5.3: This figure visualizes a network of 1,000 nodes at times 1, 25, 50,
and 100. The network consists of nodes of 3 colors: blue (susceptible), red
(infected), and green (recovered).

Over a span of 100 days, a total of 251 individuals have been infected by

COVID-19 with the above protocols in place. 25.1% of the population has

been infected.
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5.3 Removal of Mask Mandate

We now simulate the results of removing the population-wide mask mandate.

With no facial masks, the risk of transmission between a coronavirus carrier

and non-carrier will increase to approximately 70%. [Staff, 2020]

We run the EpiModel simulation with the infection probability set to a

value of 0.7 and produce the following model at times 1, 25, 50, and 100:

Figure 5.4: This figure visualizes a network of 1,000 nodes at times 1, 25, 50,
and 100. The network consists of nodes of 3 colors: blue (susceptible), red
(infected), and green (recovered).
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In a span of 100 days, a total of 998 individuals have been infected by

COVID-19 with the above protocols in place. 99.8% of the population has

been infected over the length of this simulation.

Figure 5.5: This graph visualizes the count of cases for each time step, sepa-
rated by susceptible, infected, and recovered individuals. The network con-
sists of 3 states: blue (susceptible), red (infected), and green (recovered).

Analyzing the line graph above, we can observe that the highest rate of

infection occurs within the first 10 days of the simulation. Therefore, we can

conclude that the failure to implement a mask mandate will correlate with

an extremely sudden rise in COVID-19 cases throughout the population.
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5.4 Removal of Social Distancing Protocol

We now simulate the results of removing the social-distancing protocol, with

the mask mandate in place and the initial number of infected individuals

being 5. With no social distancing, the rate of exposure between individuals

is increased. We increase this exposure rate, or the number of “acts”, or

“actions”, between the individuals from 1 to 5.

We run the EpiModel simulation and produce the following model at

times 1, 25, 50, and 100:

Over a span of 100 days, approximately 989 individuals have been infected

by COVID-19 with triple the initial population and the above protocols in

place. 98.9% of the population has been infected in this simulation.

The above graph visualizes the count of cases for each time step. Analyz-

ing the line graph above, we can see that the highest rate of infection occurs

within the first 20 days of the simulation, which spans twice the length of

time as the peak number of infections with the removal of the mask mandate.

We can conclude that the failure to implement the social distancing protocol

will correlate with a high rise in COVID-19 cases throughout the population.

5.5 Increased Initial Infection

We now simulate the results of increasing the initial number of infected indi-

viduals, with the mask mandate and social distancing protocol in place. This

increased count of initial infections moderately mimics the lifting of travel
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Figure 5.6: This figure visualizes a network of 1,000 nodes at times 1, 25, 50,
and 100. The network consists of nodes of 3 colors: blue (susceptible), red
(infected), and green (recovered).
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Figure 5.7: This graph visualizes the count of cases for each time step, sepa-
rated by susceptible, infected, and recovered individuals. The network con-
sists of 3 states: blue (susceptible), red (infected), and green (recovered).
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restrictions, which subsequently increases the risk of case importation. We

will triple the initial number of infected individuals from 5 to 15.

We run the EpiModel simulation and produce the following model at

times 1, 25, 50, and 100:

Figure 5.8: This figure visualizes a network of 1,000 nodes at times 1, 25, 50,
and 100. The network consists of nodes of 3 colors: blue (susceptible), red
(infected), and green (recovered).

Over a span of 100 days, approximately 446 individuals have been in-

fected by COVID-19 with three times the initial infected population and the

above protocols in place. 44.6% of the population has been infected in this
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simulation.

Figure 5.9: This graph visualizes the count of cases for each time step, sepa-
rated by susceptible, infected, and recovered individuals. The network con-
sists of 3 states: blue (susceptible), red (infected), and green (recovered).

The above graph visualizes the count of cases for each time step, showing

a nearly constant, linear increase in the number of infected individuals over

time. This pattern of increase vastly differs from the sudden, exponential

increase seen subsequent to removal of the mask mandate. An increase in the

initially infected population will correlate to a steady increase in coronavirus

cases through the population.
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5.6 Modeling Vaccination

We now simulate the spread of coronavirus through a fully vaccinated popu-

lation, with the implementation of the mask mandate and social distancing

protocols. We mimic the implementation of a vaccine by greatly increasing

an individual’s rate of recovery.

We run the EpiModel simulation with the recovery rate set to a value of

1/5 and produce the following model at times 1, 25, 50, and 100:

Figure 5.10: This figure visualizes a network of 1,000 nodes at times 1, 25,
50, and 100. The network consists of nodes of 3 colors: blue (susceptible),
red (infected), and green (recovered).
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Over a span of 100 days, approximately 10 individuals have been infected

by COVID-19 with the vaccination of the complete population and the above

protocols in place. Only 5 individuals have been infected by carrier-non

carrier interaction from an initial count of 5 infected individuals over the

span of 100 days. Therefore, we can conclude that the vaccination of a

population does in fact correlate to a drastic reduction in the epidemic spread

of COVID-19.
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Appendix A

Appendix

A.1 R Code: Epidemic Spread of COVID-19

Below is a simple implementation of creating an epidemic simulation using

the EpiModel package available within the R library. [Jenness et al., 2018a]

This simulation models the spread of the COVID-19 virus through a popu-

lation of 1,000 individuals over a span of 100 days.

The R code below requires the following parameters:
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Parameters

Term Value Notes

nsteps 100 Number of time steps in one simulation.

nsims 10 Number of simulations to be conducted.

s.num 995 Initial susceptible population count.

r.num 0 Initial recovered population count.

i.num 5 Initial infected population count.

inf.prob 0.015 The infection probability.

act.rate 1 Rate of exposure.

rec.rate 1/17 Rate of recovery.

a.rate (10.5/365)/1000 Rate of arrival of new individuals.

ds.rate (7/365)/1000 Daily death rate of susceptible individuals.

di.rate (14/365)/1000 Daily death rate of infected individuals.

dr.rate (7/365)/1000) Daily death rate of recovered individuals.

n 1000 Number of individuals in the starting population.

M 4000 Total number of edges in the network.

Please note that the values selected for each parameter are changeable and

subject to the status of the epidemic that you are modeling. Each value

above was chosen according to further research conducted on the COVID-

19 virus epidemic. All references to this research can be found within the

Bibliography.
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#Control Parameters (model type , # time steps in simulation ,

number of independent simulations)

control <- control.net(type = "SIR", nsteps = 100, nsims = 10)

#Initial Population (# susceptible , infected , and recovered)

init <- init.net(s.num = 995, i.num = 5, r.num = 0)

#Parameters (probability of infection from an encounter , rate of

exposure , rate of recovery , rate of arrival of new individuals ,

daily (individual) death rate of susceptible individuals , and

daily death rate for infected individuals , death rate for recovered

individuals )

param <- param.net(inf.prob = 0.015, act.rate = 1, rec.rate = 1/17,

a.rate = (10.5/365)/1000, ds.rate = (7/365)/1000,

di.rate = (14/365)/1000, dr.rate = (7/365)/1000)

#Initialize the network (number of individuals in the population)

nw <- network :: network.initialize(n = 1000, directed = FALSE)

#STERGM Formation formula

formation <- ~ edges

#Total number of edges in the network

target.stats <- c(4000)
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#The likelihood of an edge to dissolve at a certain time step

# (ex. mean duration of 80 time steps = 1/80 = 1.25% risk of

dissolving)

coef.diss <- dissolution_coefs(dissolution = ~ offset(edges),

duration = 80)

#Estimation of the statistical network model

est <- netest(nw , formation , target.stats , coef.diss)

#Simulate the stochastic network epidemic model

simulation <- netsim(est , param , init , control)

simulation

# Plot formation statistics

par(mfrow = c(1,1), mar = c(3,3,1,1), mgp = c(2,1,0))

plot(simulation , type = "formation", grid = TRUE)

#Plot the graph of the simulation (time vs. cases)

plot(simulation)

#Summarize the simulation at time 100

summary(simulation , at = 100)
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#Visualize the simulation as a network diagram at time 1 and

time 100

par(mfrow = c(2, 2), mar = c(1, 0, 1, 0), mgp = c(1, 1, 0))

plot(simulation , type = "network", at = 1, sims = "mean",

col.status = TRUE , main = "Prevalence␣at␣t1")

plot(simulation , type = "network", at = 25, sims = "mean",

col.status = TRUE , main = "Prevalence␣at␣t25")

plot(simulation , type = "network", at = 50, sims = "mean",

col.status = TRUE , main = "Prevalence␣at␣t50")

plot(simulation , type = "network", at = 100, sims = "mean",

col.status = TRUE , main = "Prevalence␣at␣t100")

A.2 R Code: Community Network Structure

Simulator Application

Below is a simple implementation of creating a community network structure

simulator using the RShiny and iGraph packages available within the R li-

brary. [RStudio, Inc, 2013] [Csardi & Nepusz, 2006] This simulation models

a variety of network structures given a set of parameters. Network structure

matrices are created in block sizes of 10 and 100. Network visualizations are

created in block sizes of 10.

The R code below requires the following parameters:
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Parameters

Term Value Notes

prob.1 0.5 Probability of spread within Group 1.

prob.between 0.05 Probability of spread between groups.

prob.2 0.5 Probability of spread within Group 2.

blocksize 50 Size of block 1.

exp.tau -0.4 Tau value used to create exponential struc-

ture.

power.tau -2 Tau value used to create power-log structure.

Please note that the values selected for each parameter are changeable and

subject to the status of the network structure that you are simulating.
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#Load the EpiModel library (make sure EpiModel is already installed)

suppressMessages(library(tidyverse ))

suppressMessages(library(ggraph ))

suppressMessages(library(igraph ))

suppressMessages(library(tidygraph ))

suppressMessages(library(dplyr))

suppressMessages(library(shiny))

suppressMessages(library(shinythemes ))

#Given 90% chance of being a pro -masker

masks <- rbinom(10, 1, 0.9)

nodes <- data.frame(masks)

nodes[’Mask_Bin’] <- masks

nodes[’Mask’] <- masks

nodes$Mask[nodes$Mask_Bin==1] <- "Pro"

nodes$Mask[nodes$Mask_Bin==0] <- "Anti"

#Build the Shiny App

ui <- fluidPage(

theme = shinytheme("sandstone"),

titlePanel("Community␣Network␣Structure␣Simulator"),

#Input Functions

#Output Functions
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sidebarPanel(

sliderInput(inputId = "prob.1",

label = "SBM:␣Probability␣of␣Spread␣within␣Group␣1",

value = 0.5, min = 0, max = 1),

sliderInput(inputId = "prob.2",

label = "SBM:␣Probability␣of␣Spread␣within␣Group␣2",

value = 0.5, min = 0, max = 1),

sliderInput(inputId = "prob.between",

label = "SBM:␣Probability␣of␣Spread␣between␣Groups",

value = 0.05, min = 0, max = 1),

sliderInput(inputId = "blocksize",

label = "SBM:␣Block␣1␣Size",

value = 50, min = 0, max = 100),

sliderInput(inputId = "exp.tau",

label = "EXP:␣Exponential␣Tau",

value = -0.4, min = -0.75, max = -0.04),

sliderInput(inputId = "power.tau",

label = "PWR:␣Power -Law␣Tau",

value = -2, min = -2.4, max = -2),

actionButton("startsim", "Start␣Simulation")

),

mainPanel(

tabsetPanel(type = "tabs",
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tabPanel("SBM␣100", plotOutput("sbm100plot")),

tabPanel("SBM␣10", plotOutput("sbm10plot")),

tabPanel("SBM␣Net", plotOutput("sbmNetplot")),

tabPanel("EXP␣100", plotOutput("exp100plot")),

tabPanel("EXP␣10", plotOutput("exp10plot")),

tabPanel("EXP␣Net", plotOutput("expNetplot")),

tabPanel("PWR␣100", plotOutput("power100plot")),

tabPanel("PWR␣10", plotOutput("power10plot")),

tabPanel("PWR␣Net", plotOutput("pwrNetplot"))

)

)

)

server <- function(input , output) {

observeEvent(input$startsim , {

output$sbm100plot <- renderPlot ({

#SBM - Sampling from the stochastic block model of networks

pm <- cbind( c(input$prob.1, input$prob.between), c(input$prob.between ,

input$prob.2) )

g <- sample_sbm(100, pref.matrix=pm, block.sizes=c(input$blocksize , (100

- input$blocksize )))

if (require(Matrix )) { image(g[]) }

})
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output$sbm10plot <- renderPlot ({

#SBM - Sampling from the stochastic block model of networks

pm <- cbind( c(input$prob.1, input$prob.between), c(input$prob.between ,

input$prob.2) )

g <- sample_sbm(10, pref.matrix=pm, block.sizes=c(ceiling(

input$blocksize / 10), 10-ceiling(input$blocksize / 10)))

if (require(Matrix )) { image(g[]) }

})

output$sbmNetplot <- renderPlot ({

#SBM - Sampling from the stochastic block model of networks

pm <- cbind( c(input$prob.1, input$prob.between), c(input$prob.between ,

input$prob.2) )

g <- sample_sbm(10, pref.matrix=pm, block.sizes=c(ceiling(

input$blocksize / 10), 10-ceiling(input$blocksize / 10)))

#concatenate g into dataframe

g_df <- data.frame(g[1], g[2], g[3], g[4], g[5], g[6], g[7], g[8],

g[9], g[10])

#Loop through g_df and make source -node table

source = data.frame()

target = data.frame()

for (i in 1:10) {

for (x in g_df[i]) {
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for (j in 1:10){

if(g_df[i,j]==1){

source = rbind(source , i)

target = rbind(target , j)

}

}

}

}

links <- data.frame(source , target)

colnames(links) <- c(’source ’, ’target ’)

links <- links %>%

filter (!( source == target ))

links <- dplyr :: distinct(links)

#Creating Graph

social_net_tbls <- tbl_graph(nodes = nodes ,

edges = links ,

directed = FALSE)

social_net <- ggraph(social_net_tbls , layout = "stress") +

geom_node_point(size = 2) +

#geom_node_text(aes(label = Mask), nudge_y = 0.05, nudge_x = 0.2)+

geom_edge_link() +

theme_void()

# Render the network

show(social_net)
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})

output$exp100plot <- renderPlot ({

degs <- sample(1:100, 100, replace=TRUE , prob=exp(

input$exp.tau*(1:100)))

if (sum(degs) %% 2 != 0) { degs[1] <- degs[1] + 1 }

g <- sample_degseq(degs , method="vl")

if (require(Matrix )) { image(g[]) }

})

output$exp10plot <- renderPlot ({

degs <- sample(1:10, 10, replace=TRUE , prob=exp(

input$exp.tau*(1:10)))

if (sum(degs) %% 2 != 0) { degs[1] <- degs[1] + 1 }

g <- sample_degseq(degs , method="vl")

if (require(Matrix )) { image(g[]) }

})

output$expNetplot <- renderPlot ({

degs <- sample(1:10, 10, replace=TRUE , prob=exp(

input$exp.tau*(1:10)))

if (sum(degs) %% 2 != 0) { degs[1] <- degs[1] + 1 }

g <- sample_degseq(degs , method="vl")

#concatenate g into dataframe
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g_df <- data.frame(g[1], g[2], g[3], g[4], g[5], g[6], g[7], g[8],

g[9], g[10])

#Loop through g_df and make source -node table

source = data.frame()

target = data.frame()

for (i in 1:10) {

for (x in g_df[i]) {

for (j in 1:10){

if(g_df[i,j]==1){

source = rbind(source , i)

target = rbind(target , j)

}

}

}

}

links <- data.frame(source , target)

colnames(links) <- c(’source ’, ’target ’)

links <- links %>%

filter (!( source == target ))

links <- dplyr :: distinct(links)

#Creating Graph

social_net_tbls <- tbl_graph(nodes = nodes ,

edges = links ,

directed = FALSE)
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social_net <- ggraph(social_net_tbls , layout = "stress") +

geom_node_point(size = 2) +

#geom_node_text(aes(label = Mask), nudge_y = 0.05, nudge_x = 0.2)+

geom_edge_link() +

theme_void()

# Render the network

show(social_net)

})

output$power100plot <- renderPlot ({

degs <- sample(1:100, 100, replace=TRUE , prob=(1:100)^ input$power.tau)

if (sum(degs) %% 2 != 0) { degs[1] <- degs[1] + 1 }

g <- sample_degseq(degs , method="vl")

if (require(Matrix )) { image(g[]) }

})

output$power10plot <- renderPlot ({

# Power -law degree distribution

degs <- sample(1:10, 10, replace=TRUE , prob=(1:10)^ input$power.tau)

if (sum(degs) %% 2 != 0) { degs[1] <- degs[1] + 1 }

g <- sample_degseq(degs , method="vl")

if (require(Matrix )) { image(g[]) }

})
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output$pwrNetplot <- renderPlot ({

degs <- sample(1:10, 10, replace=TRUE ,

prob=(1:10)^input$power.tau)if (sum(degs) %% 2 != 0) { degs[1]

<- degs[1] + 1 }g <- sample_degseq(degs , method="vl")

#concatenate g into dataframe

g_df <- data.frame(g[1], g[2], g[3], g[4], g[5], g[6], g[7], g[8],

g[9], g[10])

#Loop through g_df and make source -node table

source = data.frame()

target = data.frame()

for (i in 1:10) {

for (x in g_df[i]) {

for (j in 1:10){

if(g_df[i,j]==1){

source = rbind(source , i)target = rbind(target , j)}}}}

links <- data.frame(source , target)

colnames(links) <- c(’source ’, ’target ’)

links <- links %>%

filter (!( source == target ))

links <- dplyr :: distinct(links)

#Creating Graph

social_net_tbls <- tbl_graph(nodes = nodes , edges = links ,

directed = FALSE)
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social_net <- ggraph(social_net_tbls , layout = "stress") +

geom_node_point(size = 2) +

#geom_node_text(aes(label = Mask), nudge_y = 0.05, nudge_x = 0.2)+

geom_edge_link() +

theme_void()

# Render the network

show(social_net)

})

})

}

shinyApp(ui = ui, server = server)
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