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Preface

It was not until my freshman year of college that I heard of the field of medi-
cal physics. Of course, I was quite familiar with each individual word prior to
that point, but I had never considered it to be possible to put them together in
such a way. Since I could work I was involved with the medical field, providing
direct support and care to individuals at nursing homes and immediate care fa-
cilities for individuals with intellectual disabilities (ICF-IID homes), and I took
college-level physics courses in high school, yet I never heard of medical physics.
Admittedly, I was immediately smitten with the very concept of medical physics
when two of my professors for an introductory physics course offhandedly men-
tioned such research being performed at Chapel Hill. That same day, I furiously
searched the web for this medical physics, and found an entire world’s worth of
knowledge. I read on in awe of all the things that, unbeknownst to me, spoke to
one of my deepest desires of combining my love for the sciences, mathematics,
and medicine in such a unique way all into one career field, my dream job. It
was at that moment that I decided to change my degree path into physics, and
pursue a career as a medical physicist.

A year following that decision, I joined the Zhou laboratories and have ad-
vanced my knowledge in medical physics considerably. In such a short time
it feels, I had learned so much about the many interconnecting parts which
constitute the life of a medical physicist, from research to financing to project
defenses, my appreciation for the field grew daily, but so did my worries. It
felt at times overwhelming, too daunting of a field to involve oneself in and
too abstract of a task to complete for each project I involved myself with, and
becoming overwhelmed would impact my own ability to do research. There was
always an undercurrent of hesitation I took with each task presented to me, a
sort of doubt that I would not understand what I needed to accomplish and
would disappoint the advanced researchers who put their trust in my abilities.
What it was that pushed me through each day of overwhelming doubt and dis-
appointment in myself, was a reminder of that very day I first learned about
medical physics, of that awe and wonder I felt at this world of science applied in
such a unique and helpful way, in the way that I always wanted to help others.

This honors thesis serves, certainly, as a culmination of all that I have learned
from my time as an undergraduate researcher, a testament to that which I have
accomplished under the tutelage of the Zhou laboratories. While I write this
paper though, I cannot help but think of the younger man I once was who,
simply from a passing comment, changed his entire field of study for something
he believed he would enjoy all the more. It is for that younger man, and for any
and all people who might hold that same desire I once had in medical physics,
that I write this honors thesis for as well. It is written to be accessible to
any person interested in learning about synthetic image production applied to
medical physics, and to those who already know much about it. I hope that,
by writing this honors thesis, I may help cultivate any of the curious minds
which may desire to learn more about what it is that may constitute the world
of medical physics, from an aspiring medical physicist themselves.
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1 Introduction

The measure of greatness in a
scientific idea is the extent to
which it stimulates thought and
opens up new lines of research.

P.A.M. Dirac [1]

1.1 Abstract

The focus of this thesis is on the process of developing synthetic images from
a digital chest tomosynthesis scan and evaluating the quality of the synthetic
images for five patients using this process. Results demonstrate that the out-
lined PRIISM method is capable of producing intelligible synthetic chest images
when compared to chest radiographs of the same body. The full-stack synthetic
images possess high in-plane resolution with expected lacking depth resolution
but often included numerous bright spots, low body coverage, and heightened
bone presence. Slabbing the synthetic images removed most bright spots promi-
nent in the full stack synthetic images and reduced rib bone presence over the
lungs, but decreased the in-plane resolution and highly contrasted rib bones
along the left and right edges of the lungs. Avenues for further evaluations of
the quality of PRIISM, including ROC curve analysis and 3D simulation of the
tomosynthesis data for viewing at various angular coverages, are discussed.

1.2 Historical Background

It is the prevailing consideration that the study of medical physics was born
in the year of 1895 with Wilhelm Conrad Röntgen’s observation of a form of
electromagnetic radiation generated from cathode radiation studies that, when
impinging on photographic plates, made the material fluoresce [2]. The dis-
covery of this unique form of electromagnetic radiation, what were once called
Röntgen rays and are now referred to as X-rays, would net Röntgen the first
Nobel Prize in Physics in 1901. The wide applicability of X-rays to other fields
of research, chief among them being medicine, was made apparent after Röntgen
released one of the first, and perhaps the most famous, images produced from
X-rays: a scan of his wife’s hand, as shown in Fig. 1.
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Figure 1: The “Hand mit Ringen,” (literally, hand with rings) one of the first
ever X-ray scans performed, shown is Anna Bertha Ludwig’s hand. The large
mass concentration on the 4th finger’s proximal phalanx is Ludwig’s ring, which
she wore during the scan [3].

It comes as no surprise as to why there would be such an interest in the
newly-found X-rays in the medical field: medical professionals could observe
the inner workings of the human body via noninvasive means. Within days
of Röntgen’s published discovery of the X-rays, doctors were producing radio-
graphs to demonstrate its potential applications in dental work, and within a
year X-ray images were being produced to help gunshot victims [4].1 The use
and application of X-rays would expand into and create new and unique fields of
research over the next 100 years, but its usage in the field of medicine is almost
decidedly the most important consequence of X-rays to date.

Multiple different imaging techniques have been developed since the advent
of X-rays to maximize the information gained from images produced while min-
imizing the plethora of issues that come with the practice of X-ray imaging
including, but not limited to: uncomfortable or painful positioning of body
parts preceding and during the active imaging phase, radiation exposure, en-
ergy required to power the source and scanning device, and lackluster image
reconstruction techniques [5]–[12]. Computed tomography (CT) is one such
technique, where an X-ray source is rotated about the body of a patient and can
produce images at different angles of a bodily region of interest, with the imag-
ing information being processed by a computer. Digital tomosynthesis (DT) is
another such technique, similar to CT where one takes sectional images of the
human body and reconstructs them into images via digital analysis. Comparing
the two, modern DT offers a number of advantages over modern CT: reduced

1It is unfortunate to note that most of these medical professionals, including those pro-
ducing the devices which could produce X-rays, the X-ray tube, and those patients being
irradiated, would suffer greatly from prolonged radiation exposure [4].
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rotation of the source-detector setup over the imaging surface, fewer sectional
images required to create a reconstructed image, reduced radiation exposure,
and generally being more cost effective [13]–[20].

The foundation of digital tomosynthesis can be attributed to the Dutch
researcher Bernard George Ziedses des Plantes who, in 1932, developed a de-
vice where an X-ray tube and an image receptor moved simultaneously over
an anatomical region that produced multiple thin layer image slices of the re-
gion that could highlight small abnormalities otherwise overlooked in larger-slice
imaging [21], [22]. Ziedses des Plantes named the method of image acquisition
tomography, for each of the images taken in a selected plane of the anatomical
region filled the same position while regions outside of the selected plane were
blurred and unfocused. While the device and method Ziedses des Plantes of-
fered to the medical community had the potential to characterize small masses
previously undetectable, it did not come without notable issues: the method of
image acquisition presented by Ziedses des Plantes was complex, multiple pro-
cedures would have to be run to produce more than a single slice which brought
increased risk of high X-ray exposure, and it proved difficult to suppress mul-
tiple details coming from outside of the select plane of interest from projecting
into the final image [21]–[23]. It would take until 1969 for Ziedses des Plantes’
work to be commercially implemented, the “three-dimensional roentgenogra-
phy” developed by Garrison et al could produce a 3D image from one scan and
reduce much of the issues initially found with Ziedses des Plantes’ tomography
apparatus [21], [24]. Even with the new findings and advancements made by
Garrison et al, DT would lose traction in the medical field with the advent of
CT technology in the 1970s, spearheaded by scientists Sir Godfrey Hounsfield
and Allan Cormack.2 The revolution that was CT technology shifted focus
from improving DT technology, to implementing CT technology in hospitals
and research laboratories.

1.3 Motivation of Study

To call the resurgence of DT application and study in the modern medical world
a revival would undermine its usage: even with the significant rise in popular-
ity that CT technology brought with it, the study of DT never ended [25]–[28].
Rather, its momentum has been building slowly with the refinement of the tech-
nology over time, with new avenues of study becoming viable. Digital breast
tomosynthesis (DBT), for instance, is an FDA-approved method of screening for
breast cancer alongside standard mammography and has demonstrated higher
sensitivity for detecting cancers and a decreased false-positive rate when com-
pared to mammography [29]. Digital chest tomosynthesis (DCT) is another
burgeoning subclass of DT, focusing on imaging parts of the body that reside
within the chest - objects such as the lungs or the heart - and detecting po-
tential abnormalities. DCT has been studied for its applicability in identifying

2Their work would lead to them receiving the Nobel Prize in Physiology or Medicine in
1979.
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and tracking the progress of cystic fibrosis in patients through the detection of
bronchiectasis, mycobacterial infections, and lung cancer with the characteriza-
tion of lung lesions and nodules, along with the potential of DCT to be used
in conjunction with chest radiography [17], [19], [30]–[32]. Given the current
state of the COVID-19 pandemic, investigations have also been made on the
application of DCT images in clinical settings for detecting COVID-19 and its
variants [33], [34]. Furthering the understanding of DCT and demonstrating its
applicability as an alternative or supplement to current chest imaging modal-
ities can provide those same aforementioned general benefits of DT: reduced
radiation exposure, shorter procedure length, and being cost-effective. Multiple
different avenues are available to test the potential improvements that DCT
can offer: apparatus design, X-ray production and geometries, projection and
reconstruction algorithms, and various others.
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2 Theoretical Background

E’en hell hath its peculiar laws, I
see!

Johann Wolfgang von Goethe [35]

2.1 The Radon Transform and Filtered Back Projection

The mathematical background to which most medical imaging, in particular
tomography, can be attributed is to the work of Johann Radon. By 1917,
Radon devised a method for taking the information gained from a material
that projected through some object, for tomosynthesis it being the data taken
from X-rays passing through some bodily structure and reshaping it to highlight
characteristics inside of the object [36]. The full treatment of Radon’s work is
lengthy, presupposes an understanding of various complex mathematics, and
altogether deserving of an honors thesis to be completed on it. Therefore, I
shall limit myself to discussing only the most relevant information necessary to
comprehend the underlying physics and mechanics of DT, relying heavily on
the theses [37]–[39] from which a full discussion on Radon’s work can be read,
Radon’s original work in [36], and only working through the 2-dimensional case.

We start by making a select number of assumptions about a hypothetical
setup in which one performs a parallel-beam X-ray scan on some object:

1. The X-ray beams are not subject to the effects of refraction and diffraction
- they do not scatter nor bend when they encounter a surface.

2. The X-ray beams are monochromatic - the photons are of a single energy
and propagate at the same frequency.

3. The X-ray beams are infinitesimally wide and emanate from an X-ray
source, which for each beam acts as a point source.

4. We can define some function f(P ) for all real points P = [x, y], in which
f(P ) is continuous.

5. Eq. 1, extending over the whole real plane, is continuous:∫∫
R2

|f(x, y)|√
x2 + y2

dx dy. (1)

6. For any arbitrary point P and each r ≥ 0 we can define the average
function:

fP (r) =
1

2π

∫ 2π

0

A(x+ r cosφ, y + r sinφ) dφ, (2)

such that for every point P,

lim
r→∞

fP (r) = 0. (3)
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Whenever X-rays pass through a medium, what is conventionally called the ab-
sorber, the intensity of the traversing ray can be reduced as the photons are
scattered, diffracted, absorbed, or otherwise interacted with by the absorber,
a process known as attenuation. Now we enforce condition 1, where the at-
tenuation is only a consequence of absorption by the absorber. As it has been
demonstrated that the ability of an absorber to reduce the intensity of a travers-
ing X-ray is primarily due to the absorber material, this is a fair assumption to
make [40]–[42]. Enforcing condition 2, we find that the strength of a medium to
attenuate X-rays is given in the form of the linear attenuation coefficient µ(x),
determined experimentally using the Lambert-Bouguer law of absorption:3

I(x) = I0e
−µ(x)·x, (4)

where I(x) is the transmitted X-ray intensity at depth x, and I0 = I(x0) is the
initial X-ray intensity at position x0 [42]. We can also define the mass attenu-
ation coefficient, given as the linear attenuation coefficient per unit density of
the medium ρ, which allows us to write Eq. 4 as

I(x) = I0e
−(µ(x)ρ )ρ·x. (5)

As it will become relevant, we can also write Eq. 4 in the form

ln

(
I0
I

)
=

∫ x

x0

µ(x′) dx′, (6)

with I being the final intensity at depth x.
We begin by shifting our coordinate system into one where we can handle

lines of an infinite slope, which Cartesian coordinates handle poorly, by normal
line parameterization as required by condition 3. Consider a rotation θ onto
the axis s, effectively treating the quantity s as an arc length; by defining the
quantity t = x cos θ + y sin θ, a consequence of the normalization of our values
over a unit circle, the parameterization can be completed via the rotation matrix
R: [

x(s)
y(s)

]
= R

[
t
s

]
=

[
cos θ − sin θ
sin θ cos θ

] [
t
s

]
=

[
t cos θ − s sin θ
t sin θ + s cos θ

]
(7)

Now enforce conditions 4-6 onto our system, meaning it has compact support.4

It is now prudent to explain what we wish to do with all that we have. Recall
the hypothetical experimental setup: we have a parallel-beam X-ray scan being
performed on some object. The X-ray source moves around the scanned object
with a detector on the other side of the object. As the incident X-rays pass
through the scanned object they are attenuated to varying degrees depending
on what they interact with, so the outputted intensity is different for each

3One may be quick to correct this to the Beer-Lambert-Bouguer law, yet note that only
the path length and intensity of the incident X-ray are named. See Lambert’s original work
in [43].

4See [36] for the full mathematical implications of compact support. Simply put, the slice
image information produced is finite and does not span the entire space in which we work.
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transmitted beam. If we wish to know the intensity density of the X-rays which
impinge upon the detector surface at one location, then we must sum over the
entire detector length the attenuations of each beam. Given strict enforcement
of condition 3, we have beams of infinitesimal width that cover an infinitesimal
portion of the detector region, so it is sensible to instead consider the summation
as an integral over the entire space by infinitesimal length segments along the
face of the detector. Under the conditions that t ε R, θ ε [0, 2π) and that
µ(t, θ) ε R2, this can be summarily written as:

S(t, θ) = Rµ(t, θ) =

∫∫
R2

µ(x, y) dx dy. (8)

Eq. 8 is the Radon transform of µ, written as Rµ. Note the similarity Eq. 8
has to Eq. 6. This is no mere happenstance: the Radon transform of µ is
the measured intensity data. The function S(t, θ) is often called a sinogram
due to the characteristic sinusoidal shape produced by a point-source object.
Some unique properties of the Radon transform are that it is a linear and even
transform.5

Eq. 8 can be written in different forms by utilizing various properties. Con-
sider the parallel-beam configuration: if we measure the intensity density of
the X-ray beams as the contribution of each of these infinitesimally-small X-
ray beams, effectively lines, along the face of a detector, then we can instead
consider the summation over the space of these lines A ⊂ R2, parallel to the
condition that µ(t, θ) ε R2, with a line integral instead:

Rµ(A) =

∫∫
A

µ(x, y) ds, (9)

ds being the infinitesimal length along the line A. As a direct consequence of
the lines producing peaks along the detector surface where they impinge, we
may alternatively write Eq. 8 using the Dirac-delta function, which selectively
chooses each line of interest over the detector region:

S(t, θ) =

∫∫
R2

µ(x, y)δ(t− x cos θ − y sin θ) dx dy. (10)

The information that we wish to obtain, though, is not the Radon transform
data, rather the attenuation density data µ, as the unique attenuation of each
part of an object characterizes what material it is, according to condition 1.
A first attempt at obtaining this data is by working in the reverse: by taking
the Radon transform data and layering it over A by following back along the
projection lines, and summing over all possible angles without double counting,
we can reconstruct the object that was scanned. This method is known as back
projection, given in Eq. 11 and shown in Fig. 2:

µBP (x, y) = BS(x, y) =
1

π

∫ π

0

S(t, θ) dθ. (11)

5That is, for constants a, b and functions f, g: R(af + bg) = aRf + bRg and Rf(x, y) =
Rf(−x,−y), respectively.
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Figure 2: The back projection of a point source (red) into the t− θ coordinate
system, from the xy coordinate system. The location t′ of the spike resultant
from the point source along a 1D detector is given by t = r sin θ, where r is the
position of the point source along the y-axis. A projection of a full body source
produces, roughly, a sine function.

Back projection alone, however, does not produce an intelligible recon-
structed image. In practice, when we back project the object to reconstruct
an image, what is unintentionally included are all other sources which interact
with the object as well, producing a blurry image due to noise from primarily
low-intensity sources. What must be done, then, is to cleave the noise from the
back projected data, typically achieved using some kind of filter. The method of
filtered back projection (FBP), one of the foremost reconstruction techniques,
becomes clear: given a set of intensity data, we can back project it over vari-
ous viewing angles while removing sources of noise via apt usage of filters. We
can derive the inverse Radon transform and recover the attenuation density
information:

µ(x, y) = − 1

2π2

∫ π

0

∫
R

∂S(t, θ)

∂t

1

t− x cos θ − y sin θ
dt dθ. (12)

Eq. 12 has a rather abstract form as given. Rewriting this equation with Fourier
analysis, specifically through the usage of the Fourier transform, inverse Fourier
transform, and the Fourier slice theorem, including the back projection operator
defined in Eq. 11, we obtain6

µ(x, y) =
1

2
B[F−1(|T |FS(t, θ))](x, y). (13)

6For a full discussion on the derivation of the inversion formula for the Radon transform,
especially in dimensions greater than 2, refer to [44].
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The process of FBP becomes clear: by taking the Fourier transform of the sino-
gram, you multiply the result by a filtering factor |T | and take the inverse Fourier
transform, then apply a back projection to obtain the attenuation data. We may
also rewrite Eq. 12 using the property of convolution between the measured in-
tensity data and a filter φ, which cleaves the low-intensity blurring information
out while accentuating high-intensity contrasting features in the data and also
has a Fourier transform exactly equal to the filtering factor. This is written as:

µ(x, y) = B(S ∗ φ) =

∫ π

0

S(t, θ) ∗ φ(t) dθ. (14)

2.2 Alternate Reconstruction Methods

In the realm of DT, one of the earliest methods of image reconstruction was the
shift-and-add method, in all ways equivalent to the aforementioned standard
back projection method sans filtration. FBP was one of the first deblurring
methods to account for the shift-and-add method’s reduced contrast in im-
ages, another such method being matrix inversion tomosynthesis (MITS). MITS
accounts for a local blurring matrix in individual tomosynthesis slices that,
through Fourier and matrix inversion, can be subtracted from all other slices
to heighten the contrast of anatomical regions of interest [17], [21]. Comparing
the two, MITS has shown noted advantages over FBP with high-frequency con-
tent while FBP handles low-frequency data with greater accuracy than MITS
[45]. In terms of application, FBP was certainly the standard method of recon-
struction and deblurring in imaging due to it being a long-time practice that is
comparatively easy to understand and implement. There have been attempts
at combining MITS and FBP, appealing to the advantages of both methods
while trying to minimize the faults of either, in what is called Gaussian fre-
quency blending (GFB). By blending a low-pass and high-pass Gaussian filter,
effectively mixing the methods of FBP and MITS respectively, into a weighted
distribution, it is possible for improvements to identifying both high and low-
frequency content in bodies while reducing noise [45].

At current, though, methods such as FBP, MITS, and GFB have been sub-
stituted for iterative reconstruction (IR) techniques with Siemens Healthineers
introduction of the iterative reconstruction in image space, or IRIS, algorithm
in 2009. Most IR algorithms obey a set of core principles: the algorithm starts
with an image that is assumed to be equivalent to the actual bodily image being
produced and is corrected to match the actual patient based on the difference
between the assumed model’s projection data and the actual projection data
of the patient. As of current, IR is paving the way in reconstruction, current
algorithms including GE Healthcare’s adaptive statistical iterative reconstruc-
tion (ASIR-V), Philips Healthcare’s iterative model reconstruction (IMR) and
iDose4, Siemens Healthineers advanced modeled iterative reconstruction (AD-
MIRE), and Canon Healthcare’s forward projected model-based iterative recon-
struction solution (FIRST) [11], [46].
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3 Methods

Do not read so much, look about
you and think of what you see
there.

Richard Feynman [47]

3.1 Creating a Final Image

By utilization of any one of the methods discussed in Sec. 2.2, one can develop
a collection of tomographic slice images, referred to as an image stack, that can
be processed into a final image that contains the information of each individual
slice. Reconstruction is not a perfect process, however. Given the necessity
to develop images within a reasonably short time frame, a balance must be
struck between developing images rapidly, with minimal information loss, with
file sizes that are not too large, and are readily accessible to both human and
software analysis. A wide variety of processing tools already exist which can
produce 2D and even 3D final images, such as MATLAB’s image processing
toolbox and related DICOM-based commands, or ImageJ’s image analysis fea-
tures. The discussion henceforth will revolve around MATLAB code developed
in the Zhou laboratories, originally written by Dr. Connor Puett for digital
breast tomosynthesis and intraoral tomosynthesis, that has been modified to
process chest tomography scans.7 A description of how the code functions are
what follows. The collection of images investigated came from a project utiliz-
ing a Carestream DRX chest radiograph against chest tomosynthesis scans from
the same system performed on five different patients. System specifications are
listed in Tables 1 and 2 for each patient’s chest tomosynthesis and chest radio-
graphs, respectively. Not included in the table is that the final synthetic images
for the tomosynthesis scan, shown in Sec. 4, come from a combination of 116
total tomosynthesis slice images for each patient.

Definitions of the terms used in Tables 1 and 2 are given here, each of them
important attributes taken from the patient’s DICOM files:

1. Slice Thicnkess: A complete tomosynthesis scan of one person produces
multiple images from the selected region at different layers. The spacing
between these image layers is the slice thickness, with typical values on
the order of millimeters.

2. kVp: The kilovoltage peak (kVp) is the greatest value produced from the
X-ray device during an active exposure, that is, during an imaging event.

3. Exposure Time: The span of time under which an imaged volume is under
X-ray radiation.

7There are original papers authored by Dr. Puett and members of the Zhou laboratories
that describe the functioning and use of the code in practice, found in [48] and [49].
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4. Source Image Count: The number of source images used in the devel-
opment of the tomosynthetic image. Source images are images developed
directly from the scan, they have a one-to-one pixel data relation. Derived
images, on the other hand, are any other images included that have pixel
values found by interpolating between the pixel data of the source images.
The total number of images produced in a tomosynthesis scan is made up
of both source and derived images.

5. Exposure Time per Projection: The amount of time it takes to scan over
one of the source image regions. This is determined by dividing the expo-
sure time by the number of source images.

6. S2D Distance: The distance between the X-ray source and the center of
the detector region. This is also known as the source image receptor (SIR)
distance.

7. Tube Current: The current passing through the X-ray source. The cathode
of the X-ray tube is heated with a low-current voltage that, in the presence
of a strong electric potential will have electrons break free from the cathode
and attract strongly to a corresponding anode. The flow of the electrons
between the cathode and anode is the tube current and is regulated by
alternating the low-current voltage source.

8. Exposure: The amount of radiation produced over time from the system
that is traveling to and through the patient.

9. Patient Orientation: The direction of orientation of the patient, given
in the format of rows\columns. In this instance, the orientation of the
patient is left\foot, or L\F. That is, the left side of the patient is on the
right side of the image, and the feet of the patient are at the bottom of
the image.

10. Angle Span: The angular span in degrees of rotation of the X-ray source
during the image acquisition phase.

11. Area Dose Product: Specifically, this is the image and fluoroscopy area
dose product. The X-ray dose that the patient was exposed to during
the image acquisition including any fluoroscopic dosage used to aid image
acquisition.

12. Focal Spot: The nominal focal spot size. The focal spot is the area from
which the X-rays are generated in each instance along the outward panel of
the source region. That is, the focal spot is the area of the anode from the
X-ray tube that is illuminated by electrons jettisoned from the cathode.

13. Image Resolution: More specifically, this is the native image resolution for
the patient scans. Given as the pixels per inch (PPI) for an image.

14. Viewable Image Size: Also known as the display size, the physical area
spanned by the display of the image.
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15. Pixel Pitch: The separation distance between any two consecutive pixels,
given in both the horizontal and vertical directions. Typically, the smaller
the pixel pitch, the higher the resolution of an image.

It is instructive to note the ways in which information from medical imaging
scans is stored. Typically, an image from a medical scan is saved in the DI-
COM (Digital Imaging and Communications in Medicine) file format. DICOM
files include both the image obtained from a medical scan, as well as impor-
tant information about both the patient and the scanner device as well. This
information is attached to each individual DICOM file as data sets listed as at-
tributes to the image, embedded in such a way to prevent accidental separation
of the identifying patient and scanner information from the image.

3.2 Image Initialization and Superficial Slices

Given a collection of tomographic slices, there are certain parameters that must
be met in order for the images to be observed and our code to execute. We start
by ensuring that each tomographic slice is cropped over the same region. If the
tomographs include information out of the plane of interest, they must be re-
moved before processing begins. Further, it is of importance that we understand
how images are geometrically produced from the patient. Image slices acquired
from chest tomosynthesis fill out a cone-like space: given the proportions of the
body, as image slices pass from supracostal to intercostal, the spatial domain
expands to fill a larger section of the body so as to include as much information
as possible. Images, if not cropped before processing, can result in poor final
image quality as shown in the image sequence of Fig. 3.

It is also a possibility that the superficial slices in the series can interfere with
feature identification in the final result, as these images tend to include greater
blur from a lack of focus over the region of interest. Evident in Figs. 3.(a) and
(c) when compared to Fig. 3.(b), the focus on the chest is lacking at the supra-
and infracostal slices when compared to the intercostal slice. To address this,
we weigh the appropriate superficial slices such that their impact on the feature
identification and segmentation are minimal, while still including important
information from those slices. In particular, by down weighting the superficial
slices in a segmented frequency stack, that is, a collection of images that can
highlight unique characteristics that are displayed at certain frequencies, the
impact of the blur from the superficial images is minimized.

3.3 Image Mask

It is equally important to assign to the image certain values which correspond to
the outputted intensity of observable objects in the scanning region. We begin
this process by generating an image mask for each set of data. The process of
masking an image is what sets the background of the final image by assigning
pixel values a weight relative to a unique threshold value. Values below the
threshold are oftentimes set to zero (black), and values above that threshold
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(a) Supracostal slice. (b) Intercostal slice. (c) Infracostal slice.

(d) Final image.

Figure 3: (a) - (c): Tomosynthesis slice images of patient 1 before cropping.
Note the inclusion of the black space in the entire image space. (d): If the black
space is not cropped and the images are not the same size, the resultant image
will have a streaked layering artifact.

are displayed as they are, but weighted by their relative numerical separation
from the threshold value. Typically, masking is achieved by either using a
preexisting image as the mask or selecting multiple regions of interest (ROIs)
that define the mask from each tomographic slice. As ROI-masking can be
tailored to each image slice while constructing the mask profile and is generally
more user-friendly and controllable, we adopt it as the main method of image
mask generation for our project.

To determine the ROIs, one takes the average image projection and perform
image segmentation to identify and group together pixels of the image which
have similar elements. A popular method of image segmentation that we use
here is k-means segmentation: by creating k-many homogeneous groups for
pixels to be assigned to, with groups formed such that pixel elements are more
similar to members of their assigned group than other groups, the pixels are
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weighted to nearby clustered groups based on their distance from the center of
the cluster and their similarity to the existing elements of the cluster. If the
element is added to the new cluster, the center of the cluster changes until each
cluster cannot add any more elements to itself or a pre-established runtime is
exceeded. An example of this is shown in Fig. 4.

Figure 4: A k-means clustering of (left) one tomosynthesis slice from patient
1 of (middle) k = 10 and (right) k = 20. Note the inclusion of the lower left
lungs in the right image as opposed to the middle image: with increasing k, the
number of clusters and unique data points increase also. This clustering was
performed using the open source IJ-Plugins Toolkit for ImageJ, accessible under
[50].

As it is important to include as much information as possible within a tomo-
graphic slice, we can go further and obtain a soft mask of the image projection
by weighting the intensity of pixels that surround an ROI but are not within
a cluster and, instead of setting their value to the background, lower their in-
tensity values proportional to the weight of the pixel amount if it were within
the ROI. A hard mask on a k-means segmentation would result in all non-ROI
pixels being set to the background without weighting. While soft masking can
include more information that hard masking could set to be background val-
ues, soft masking inherently results in issues with contrast brightening: with a
greater number of pixels, increasing the contrast becomes a proportionally more
pronounced effect.

3.4 Segmentation and Identification

It is a natural consequence following the clustering of an image to perform seg-
mentation upon it. The process of segmentation is what identifies pixel-level
regions of interest from the background given distinctions between brightness,
contrast, gray level, and texture between pixels [51]. Segmentation algorithms
are unique to the whole body region that is being studied: a segmentation
process tailored to the brain, for instance, would not perform well for a seg-
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mentation of the breast due to a host of factors that account for partial volume
effects, differing prominent artifacts, sensor and electronic noise, soft tissue gray
level similarity, and the inhomogeneity of intensities in clusters [51], [52]. In the
process of developing our image mask, we created k-many clusters that, during
segmentation, are partitioned for higher analysis. K-means segmentation is a
form of unsupervised learning, a process that does not necessarily require inputs
or labeling from some external expert source.8

Blob detection and analysis typically follow pixel-based segmentation. Blob
detection and analysis, or simply blob detection, is the differentiation of large-
scale regions in an image by comparison of features such as orientation, area, and
contrast. Notably, the differentiation of regions during blob detection is similar
to the methods used during segmentation. This is not a surprising similarity:
blob detection considers the multitude of blobs that construct an image, those
being the pixel ROIs identified during segmentation, like pixels in segmentation,
and processes them in a similar manner. A simple blob detection of the same
tomographic slice from Fig. 4 is shown in Fig. 5.

Figure 5: A simple blob detection from a single tomosynthesis slice of patient
1, with the (left) original image, (middle) the thresholded image, and (right)
the image with detected blobs. A basic blob detection works as such: a base
image is thresholded to identify objects in the image that is then outlined and
filled, marked white, to clearly separate the blob from surrounding background
regions, marked red, with black markers indicating the edges of the blob. This
blob detection was performed using the Analyze Particles command prepackaged
with ImageJ.

Of the many types of blob detectors, we use the maximally stable extremal
regions, or MSER, method. A method with demonstrated power in detecting
various regions of various sizes with a high degree of stability in reproducing
the same regions under changes in view, scale, and light, the advantages that

8For this reason alone, the appeal to using k-means segmentation is large, especially with
the rise of deep learning methods that can improve the performance of the method. Refer to
[53] for more.
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MSER offers outweighs many of the easier to implement, but less rigorous, blob
detectors [54]. In application, an MSER detection method parses through image
frequency stacks to select potential regions that, based on that region’s averaged
pixel information, total size, and shape are identified to be blobs. The unique-
ness, and strength, of MSER is the criterion for accepting blobs: as the name
would suggest, blobs that are selected demonstrate a high level of invariance
under various transforms, such as contrast shifting, position transforms, and di-
lation, being “maximally stable”.9 Similar to segmentation, any blob detector
tailored for one region of the body would perform poorly if used for another
bodily region, as the determination of potential and actual blobs differs for the
region of the body being considered.

3.5 Weighted Forward Projection and Recombination

Once blobs have been identified through blob detection, with the characteristics
of each blob determined through segmentation, we turn our focus into enhanc-
ing the focus of our final image to emphasize unique ROIs and their immediate
background while de-emphasizing surrounding objects such as tissue and bone.
This can be achieved by creating a weighting function that weights the deter-
mined ROIs from each tomographic slice against the mask of each slice. Once
the weighting function of the ROIs is developed, it is convolved against the
image mask through the entire image stack and smoothed to correct for sharp
weighting around the boundaries of ROIs and the edges of the image. When a
weighting function is applied to an entire image stack in such a way, the process
is known as a weighted forward projection, as the weighting starts with the
initial image in the stack, updating with each subsequent tomographic slice in
the depth of the image until the final image is weighted. Once the weighted
forward projection is completed, the images in the stack can be recombined to
produce the final synthetic image. Image recombination is typically achieved
through a form of pyramid representation which aids in the identification of
patterns in a produced image, determining properties unique to specific blobs,
reducing noise in an image, and sharpening image features [56], [57]. Any class
of bandpass pyramid generation is ideal as it allows for better distinctions be-
tween ROI pixel values per image structure. The Laplacian pyramid is a simple
yet effective bandpass pyramid method, derived from the Gaussian pyramid.
In a Gaussian pyramid method applied to an image stack, an original image
is weighted down by applying a Gaussian blur and dilated down by half of its
original size, as shown in Fig. 6. The Laplacian pyramid, on the other hand,
takes images from a Gaussian pyramid and subtracts from them the preceding
Gaussian pyramid image, properly scaled so sizes match, the difference being
the Laplacian pyramid. Developing images as a Laplacian pyramid is partic-
ularly useful as the resulting pyramid is easily compressible, unlike Gaussian
pyramid images, and can return the original image with few manipulations as
it is an invertible image representation [57].

9For a more complete discussion of the stability of MSER-selected blobs, refer to [54] and
[55].

21



Figure 6: A Gaussian pyramid of the final synthetic image for patient 1, of
order 9. The order of the pyramid starts with the top left image at zero, and
with subsequent levels the prior ordered image undergoes a Gaussian blur and is
subsampled to produce an image of halved resolution. This Gaussian pyramid
was created using the Image Pyramid plugin for ImageJ, accessible under [58].

In the process of recombination, it is important to account for any potential
differences in the backgrounds of each individual slice before the synthetic image
is produced. This is handled by correcting the backgrounds of each image with
an equalization process. In this case, we use histogram equalization, also known
as windowing or gray level mapping, as the relevant intensity data for each slice
has already been determined through the k-means segmentation process. With
the full range of intensities for each image collected, histogram equalization en-
hances the contrast of regions with lower contrast that are near the background
threshold by normalizing the blob regions which all possess a similar intensity to
one another, that is, the collection of intensity values that are most prominent
in the original image is adjusted down to enhance the contrast of the intensity
values that are not as prominent.

The reason why it is called a synthetic image is now evident: a synthetic
image is one that has undergone some computational manipulations before re-
combination to emphasize select features. The actual acquisition of the image,
which is discussed in Sec. 2, does not determine if an image is a synthetic one or
not, it is the processing of the image after the image acquisition that does. The
total process outlined in these methods to obtain an image ready for projection
and recombination, those being to initialize the image stack to unique param-
eters and perform a segmentation and blob identification on an image mask,
shall henceforth be referred to as the PRIISM (to Project and Recombine, you
Initialize to Identify and Segment the Mask) method.
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4 Results and Analysis

...what we observe is not nature
in itself, but nature exposed to
our method of questioning.

Werner Heisenberg [59]

The total stack synthetic tomosynthesis images for each investigated patient,
including their chest radiographs, are shown in Figs. 7-11. Each of the chest ra-
diographs was windowed using ImageJ’s prepackaged window and leveling tool.
There are a host of notable differences between the synthetic and radiographic
images for each patient that I shall discuss the most noteworthy of.

As is evident for each of the synthetic images when compared to their radio-
graph counterparts, the bodily coverage is not as great in each synthetic image.
As discussed in Sec. 3.2, the entire image stack for each patient was cropped
around the first superficial image of the stack, that being the smallest, to avoid
streaking. A way in which larger portions of the body can be included would be
to instead produce a slab image. Slab images recombine only a portion of the
image stack and, as a result, will always contain less image information than if
the entire stack was recombined, but if done properly can highlight important
features that would otherwise be overlooked and, in this case, include a larger
area of the chest.

Looking particularly at Figs. 7, 8, and 10 note the large white spots in the
normal synthetic image that are not found in the radiograph. These bright
spots are areas with a correspondingly high-intensity and appear white, while
areas with low-intensity values are darker in color. The intensity of these bright
spots is enhanced with histogram equalization, so a balance must be struck
between the intensity and size of the bright spots and the level to which the
image is windowed. As an aid in determining what is an acceptable windowing
level, the Hounsfield units (HU) are often used.10 A scale which describes
the radiodensity of materials with distilled water intentionally set as the zero
point, the Hounsfield units are useful for characterizing anatomical structures
which contain water and can easily be separated from air, making it self-evident
why they would well-describe human anatomy. Setting a window level to the
approximate HU of an anatomical structure highlights its anatomy and internal
components.

Each of the synthetic images also demonstrates a greater presence of rib
bones than their radiograph counterparts. The brightening of the bone mate-
rial in these images is a consequence of the limited angular span of tomosynthe-
sis. As aforementioned, each of the tomosynthesis image stacks spans the range
from being supracostal to infracostal and, consequently, will include the bones
wrapping over, along, and behind the internal organs of the chest with short
angular movement. A heavy-handed solution to this problem can be found by

10Named after the very same Sir Godfrey Hounsfield who championed the advent of CT
technology.
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slabbing the image stack over only the intercostal region if the structures of
study are the internal organs rather than the bones, but it is not a perfect so-
lution and, as it turns out, removing the ribs from chest tomosynthesis scans is
a particularly tricky and difficult task [60]. The code also includes additional
aspects not mentioned in Sec. 3, those being processes that enhance the presence
of particular features in the final synthetic image. Enhancement features are
optional for producing the final synthetic image but can visually highlight im-
portant features above others. Here, the included enhancement feature impacts
the intensity histogram during histogram equalization to make high-intensity,
or bright, features more prominent. Since the HU of the bone is significantly
greater than air, water, and internal organs, any bone material will already be
bright compared to any internal structures and will be impacted by the enhance-
ment. A simple solution would be to remove the bright enhancement feature
altogether, correcting for both the bone presence and many of the bright spots.

Each of the synthetic images shows a notable grayscale color difference from
their chest radiographs, the result of the intensity histograms being different
from one another. In the production of the synthetic image, the multitude of
histogram modifications that were done has impacted the intensity values. It is
an issue of the synthetic and radiograph intensity histograms being offset from
one another and the histograms not spanning the same width, which results in
discoloration. There is not an easily implementable direct solution to this issue,
but there are tests that exist to determine if the qualities of the produced images
are comparable and can be used interchangeably. An evaluation of the receiver
operating characteristic curve (ROC curve), for instance, could confirm the
level of agreement in both the synthetic and radiograph images for identifying
structures in both such as organ location, organ type, and others.11

Of critical importance in medical imaging is evaluating the presence of any
artifacts in an image. An artifact is a general term that encompasses any one
of the many ways structures of the body can be misinterpreted due to the way
in which an image was captured, whether it be the process of acquisition itself,
complications with unaccounted internal body structures, or some other factor.
Each of the synthetic images has a somewhat subtle blur over the entire image
that appear as streaks over the entire image, while the radiographs have no
such artifact. It is only truly evident that this is an involuntary motion artifact
present in each patient when we refer to the scan times in Tables 1 and 2. When
comparing the exposure times for the tomosynthesis scans to the corresponding
radiograph exposure times, there is an immediately notable difference: most of
the tomosynthesis scans are nearly 200 times longer than the corresponding chest
radiograph. While all of the radiographs span the order of a few milliseconds,
all of the final synthetic images are produced on the order of 1000 to nearly 2000
milliseconds. A normal human heart can, for instance, beat once or twice within
the order of a second. Including all other involuntary organ movements within
the entire chest cavity, the amount of movement that takes place between the

11A ROC curve evaluation ranks, in this case, the ability of an image to produce true positive
results against its false positive rate. The greater the probability of detection is against its
probability of false alarm, the better the image is for the purposes of evaluation.
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entire tomosynthesis scan and the radiograph are vastly different. Note that the
final synthetic tomosynthesis image is a collection of multiple images collected
over the entire exposure time, while the radiograph image is a single image. To
discuss the time between slices when compared to the single radiograph, it is
better to use the exposure time per projection value, than the total exposure
time. Potential solutions would be to reduce the exposure times during the
image acquisition phase or to slab the imaging region. Since an image slab only
considers a portion of the total images used, the exposure time needed to acquire
the slab will always be less than the total exposure time and, consequently, will
have reduced involuntary movement. Given the exposure time per projection
and the scale of the imaging region, however, the effects of slabbing are negligible
in decreasing the overall involuntary motion blur, instead notably reducing the
in-plane spatial resolution when compared to the total stack synthetic image.

Figure 7: (left) Synthetic, (middle) slabbed synthetic, and (right) radiograph
images for patient 1. The slabbed synthetic image spans the region of the lungs
with a de-emphasis of the supracostal and infracostal ribs.
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Figure 8: (left) Synthetic, (middle) slabbed synthetic, and (right) radiograph
images for patient 2. The slabbed synthetic image spans the region of the lungs
with a de-emphasis of the supracostal and infracostal ribs.

Figure 9: (left) Synthetic, (middle) slabbed synthetic, and (right) radiograph
images for patient 3. The slabbed synthetic image spans the region of the lungs
with a de-emphasis of the supracostal and infracostal ribs.
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Figure 10: (left) Synthetic, (middle) slabbed synthetic, and (right) radiograph
images for patient 4. The slabbed synthetic image spans the region of the lungs
with a de-emphasis of the supracostal and infracostal ribs.

Figure 11: (left) Synthetic, (middle) slabbed synthetic, and (right) radiograph
images for patient 5. The slabbed synthetic image spans the region of the lungs
with a de-emphasis of the supracostal and infracostal ribs.
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5 Discussion and Conclusion

But still try, for who knows what
is possible...

Michael Faraday [61]

5.1 Discussion of Results

The PRIISM method has shown potential by producing images that share a
definite likeness to their radiograph counterparts. The PRIISM method, though,
is not perfect and there are many ways in which it can be improved.

Image initialization can be improved by providing more robustness to the
MATLAB code to handle varying types of image stacks. Of primary interest
would be providing the means to check over neighboring images in a stack to
predetermine if image cropping is a necessity, saving time by eliminating the
need to examine image stacks and manually crop them, along with potential
information loss via image file type conversion for processing in ImageJ. The
production of the image mask, also, can be updated by improving the clustering
process. Selecting the optimal number of clusters k that sufficiently characterize
the body while not impacting the runtime of the clustering process, with the ad-
dition of ineffectual information, can be achieved by analyzing the intra-cluster
variation for various values of k. This method of determining an optimal value
for k is known as the elbow method as plotting the within-cluster sum of squares
(WCSS) against k typically appears as an exponential decay, and the optimal k
value is found in-between the initially sharp decreasing behavior and the long-
term slowly decreasing behavior of the plot. The optimal k is the “elbow” of
the graph, which separates the two distinct “arms” from one another. Further,
k-means segmentation is liable to fall victim to the random initialization trap
where, if the centroid of a determined cluster is randomly initialized, then dif-
ferent WCSS vs. k graphs will be produced for each test. This can impact
the choice of k and, consequently, result in suboptimal clustering by the elbow
method. A solution to this problem was found in [62] with the so-called k-means
++ segmentation, and implementing its methodology would be useful in circum-
venting poor choices of k and improving the location of the centers for ROIs. In
the projection phase, a variety of different synthetic images can be developed
to highlight the presence, or lack, of a particular feature with highly character-
istic, distinguishable attributes. Of particular importance in chest imaging is
the screening of lung nodules and lesions, along with mycobacterial infections.
Generating separate synthetic images that are weighted specifically to empha-
size these unique objects and harmful substances can significantly aid in the
process of identifying them in the first place.

Of the image quality for the synthetic images, while the produced images
are not perfect nor one-to-one with their radiographic counterparts, most of
the notable issues with the image quality are not only expected but can also
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be reduced by more advanced computational means. The most prevalent issue
across each of the tomosynthetic image stacks is the blur due to involuntary
bodily motion over the long exposure time during the image acquisition phase.
It will be worth investigating additional patient data sets with reduced exposure
times per projection to definitively conclude if reducing the exposure time will
reduce the motion blur with the PRIISM algorithm, or highlight if the blur is
the result of another unaccounted for issue nested within the code itself.

The study of these patient data sets is ongoing. Current studies and future
projects are aimed at simulating tomosynthetic images at various angular cov-
erages with the goal to cover a 3-dimensional space. In order to do so, a chest
phantom needs to be created that can undergo a modeled x-ray projection which
can then be reconstructed in a similar manner to the process above. The power
needed to generate such models is high and requires laboratory-grade computer
processors to complete. Generation of the chest phantom model, though, is not
nearly as intensive. The 4D extended cardiac-torso (XCAT) phantom software
is a command-line application where users can produce phantom models with
an extended collection of modifiable parameters to fine-tune any phantom to
set conditions [63]. With XCAT chest phantom models developed, the phan-
tom would undergo an X-ray projection scan and the images from that would
be reconstructed into a final 3D synthetic image. The ASTRA toolbox is an
open-source MATLAB and Python toolbox for 2D and 3D tomography and can
generate a 3D model from a given set of phantom data [64]–[66]. With the
ASTRA toolbox, it is possible to model an X-ray projection and recombine the
produced images in one execution of the associated code. With the easing of re-
strictions to laboratory access due to COVID-19, first-pass multi-angle coverage
chest models are predicted to be completed by late April of 2022.

5.2 Conclusion

As recently as February of 2022, studies have been and are being carried out
to investigate the effectiveness of, and potential improvements to, digital to-
mosynthesis technology, including modern research in the fields of DCT and
DBT [60], [67]–[70]. The field of digital tomosynthesis is growing and retains a
vast potential in aiding the medical imaging community by highlighting impor-
tant features otherwise overlooked in the standard imaging modalities of today
including chest radiography, breast mammography, and others. Understanding
the process by which synthetic images are produced in this growing field is of
critical importance in appreciating the benefits of, and limitations associated
with, DT technology. PRIISM is both an easily understood and readily imple-
mentable method and serves as a standing review of the important factors which
govern synthetic image production. Future iterations of this model will confirm
its viability as a tool for clinical use, as a comparison tool, and potential ally to
modern chest radiography.
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