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ABSTRACT 
 

Cameron M. Doyle: Unsupervised classification reveals degenerate neural representations of 
emotion 

(Under the direction of Kristen A. Lindquist) 
 

 Neural degeneracy refers to the idea that distinct neural systems are capable of 

performing the same functions (Noppeney, Friston, & Price, 2004). Consistent with neural 

degeneracy, the Theory of Constructed Emotion (TCE) suggests that emotions and other mental 

states arise from combinations of the brain’s domain-general intrinsic networks such as the 

default mode network, salience network, and frontoparietal control network (Clark-Polner, 

Johnson, & Barrett, 2017). A key prediction of degeneracy and the TCE is that the same emotion 

can emerge from distinct patterns of connectivity across time or across individuals (Barrett, 

2017). This project specifically investigates the principle of neural degeneracy in emotion for the 

first time using a data-driven model building algorithm with unsupervised classification (S-

GIMME; Gates, Lane, Varangis, Giovanello, & Guskiewicz, 2017) to quantify distinct patterns 

of between-network connectivity during self-generated experiences of anxiety and anger. 

Twenty-four subjects underwent an fMRI experiment in which they listened to unpleasant music 

and self-generated experiences of anxiety and anger. The hypotheses of this experiment were 

tested in four consecutive analysis steps. The first analysis step revealed that the S-GIMME 

procedure could roughly reproduce the experimental conditions in the present experiment by 

subgrouping individuals based on patterns of connectivity that differentiated anger and anxiety. 

The second analysis step revealed that this variation could be further subdivided into degenerate 

neural pathways within each emotion category. The third analysis step showed that subgroups 
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revealed during the anger and anxiety conditions are distinct from those found during a task-

positive control condition in which participants listened to neutral music but did not generate an 

emotional experience. Finally, the fourth analysis step provided a more stringent test of the 

degeneracy hypothesis by showing that distinct patterns of connectivity revealed in the previous 

analyses are not the result of stable individual differences that would also be present at rest. 

Taken together, these analyses show that different patterns of connectivity are associated with 

the experience of the same emotion. 
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CHAPTER 1: BACKGROUND 
 

Degeneracy refers to the ability of distinct biological mechanisms to produce the same 

outcomes (Edelman & Gally, 2001; Tononi, Sporns, & Edelman, 1999). The principle of 

degeneracy is well-documented within biological systems (see Edelman & Gally, 2001 for 

multiple examples). For instance, degeneracy is present in the genetic code, where 64 codon 

triplets code for only 20 different amino acids (Shu, 2017). Degeneracy is also present in the 

immune system, where many different antigens can bind to a single type of T-cell to produce the 

same immune response (Eisen, 2001). Degeneracy even appears in cognition, where structurally 

distinct sentences can communicate the same message (Edelman & Gally, 2001), and distinct 

acoustic outputs are understood to have the same meaning (e.g., when the phonetic form of a 

word is distorted by noise or speaker variability; Winter, 2014). Relatively less studied, however, 

is how degenerate mechanisms in the brain can produce the same outcome. This work examines, 

for the first time, how degenerate neural network patterns produce experiences of anger and 

anxiety. 

Degeneracy in the brain 

A small body of work has shown that in the brain, distinct neural systems can perform the 

same functions. For example, in rodents, different subsets of neurons in medial prefrontal cortex 

code for the same social exploration behavior (Liang et al., 2018). Similarly, degenerate 

ensembles of neurons can produce the same defensive behavior based on the context the 

organism is in (Barrett & Finlay, 2018). In healthy humans, two distinct neural pathways are 

associated with reading aloud familiar words. Whereas some participants appear to rely more on 
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left inferior frontal and anterior occipito-temporal regions, others rely on right inferior parietal 

and left posterior occipito-temporal regions when reading aloud the same familiar words 

(Seghier, Lee, Schofield, Ellis, & Price, 2008).  

Degeneracy likely exists because it makes complex systems more robust to insult 

(Sporns, Tononi, & Edelman, 2000; Tononi et al., 1999; Whitacre & Bender, 2010). For 

instance, degeneracy explains how human lesion studies can reveal preserved emotional 

functioning despite destruction of brain regions (e.g., limbic structures) that are strongly linked 

to emotional function (Becker et al., 2012; Damasio, Damasio, & Tranel, 2013; Feinstein, 2013; 

Feinstein et al., 2016, 2010). Indeed, bilateral amygdala lesions following Urbach-Wiethe 

disease caused vastly different emotional outcomes in one set of identical twins. Whereas one 

twin has impaired fear perception and startle response following amygdala lesions (consistent 

with findings in the broader literature; Adolphs, Tranel, Damasio, & Damasio, 1994, 1995; Bach, 

Hurlemann, & Dolan, 2015; Siebert, Markowitsch, & Bartel, 2003), the other has a preserved 

ability to perceive fear on faces and exhibits an intact startle response (Becker et al., 2012). One 

twin appears to require functioning amygdalae for fear-related responses, whereas the other does 

not. Another study showed that different brain networks mediate performance on a memory task 

in patients with Alzheimer’s Disease (AD). Most AD patients showed recruitment of a network 

involving left posterior temporal cortex, calcarine cortex, posterior cingulate, and the cerebellar 

vermis. However, a subset of patients showed recruitment of a network involving the left anterior 

cingulate and the anterior insula, a pattern shared with healthy controls (Stern et al., 2000).  

Despite its prevalence in biological systems, however, degeneracy has traditionally been 

under-studied in neuroscience (Mason, Domínguez, Winter, & Grignolio, 2015). It is possible 

that degeneracy is a relatively neglected topic of neuroscientific inquiry because it is 
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fundamentally at odds with traditional confirmatory approaches, which seek to find the specific 

brain region(s) or network(s) responsible for a certain outcome (De Schutter, 2016). These 

confirmatory approaches tend to assume that each brain region or network serves a mutually 

exclusive function and that the hypothesized structure-function mapping is invariant across 

instances of measurement. In human research, these assumptions were to date reaffirmed by the 

type of data collected. For instance, human lesion studies traditionally relied on dissociations of 

brain structure and function (e.g., showing that amygdala lesions produced fear deficits, but not 

deficits in other emotions; Adolphs, Tranel, Damasio, & Damasio, 1995; Feinstein, Adolphs, 

Damasio, & Tranel, 2011). Similarly, univariate neuroimaging analyses used experimental 

contrasts to reveal mean-level activation in isolated brain regions, giving the impression that 

certain regions responded to one construct and only one construct.  

Although important in their own right, such confirmatory approaches may obscure the 

degeneracy inherent in complex systems. Studies that perform interindividual analyses to find 

mean-level responses assume that mean-level responses describe the processes inherent in the 

population, more broadly. Yet it is often the case that mean-level responses do not describe any 

single participant’s response in the sample from which they were derived (Molenaar & 

Campbell, 2009). In neuroscience, there is substantial heterogeneity in terms of which brain 

regions are active across different subjects during the same task (Eisenberger, Gable, & 

Lieberman, 2007; Hester, Fassbender, & Garavan, 2004; Ojemann, Ojemann, Lettich, & Berger, 

2008; Tavor et al., 2016; Wager, Jonides, Smith, & Nichols, 2005; for reviews see Miller & Van 

Horn, 2007; van Horn, Grafton, & Miller, 2008) and how those regions are connected to one 

another (Elliot et al., 2019; Feilong, Nastase, Guntupalli, & Haxby, 2018; Gratton et al., 2018; 

Mueller et al., 2013; Vanderwal et al., 2017). A drawback of performing group-level analyses on 
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these types of data is that spurious findings can arise (see Gates & Molenaar, 2012). The study of 

emotion is no exception, where it is frequently assumed that a single emotion category (e.g., 

anxiety) is associated with a single anatomically-defined neural circuit in non-human animals 

(Izard, 2007; Panksepp, 1982; 2011) and that mean-level brain activity as measured by fMRI in 

humans reflects activity within that singular circuit. 

Degeneracy in the brain basis of emotion 

The idea that experiences of a certain type of emotion category emerge from a singular 

neural pattern is typified in the classical view of emotion, which argues that each emotion 

derives consistently from a specific neural structure (Ekman, 1992; Panksepp, 1982; Panksepp & 

Watt, 2011). In its most modular form, the classical view proposes that fear is associated with the 

amygdala (e.g., Bechara et al., 1995; LaBar, Gatenby, Gore, LeDoux, & Phelps, 1998), disgust 

with the anterior insula (e.g., Jabbi, Bastiaansen, & Keysers, 2008; Wicker et al., 2003), anger 

with orbitofrontal cortex (e.g., Harmon-Jones & Sigelman, 2001; Harmon-Jones & Allen, 1998; 

Murphy, Nimmo-Smith, & Lawrence, 2003; Vytal & Hamann, 2010), and sadness with anterior 

cingulate cortex (e.g., Murphy et al., 2003; Phan, Wager, Taylor, & Liberzon, 2002). However, 

much evidence calls the classical view into question. Studies of patients with intractable epilepsy 

reveal that intracranial stimulation of several different brain regions (e.g., amygdala, insula, 

parahippocampal gyrus) can produce the same emotional experience (i.e., fear), suggesting that 

there is not a one-to-one mapping of fear to the amygdala (Guillory & Bujarski, 2014). Meta-

analyses of the human neuroimaging literature also fail to find a consistent and specific link 

between emotion categories such as anger, fear, sadness, disgust, or happiness and any single 

anatomically-defined brain region (e.g., fear is not uniquely associated with amygdala activation) 

(Lindquist, Wager, Kober, Bliss-Moreau, & Barrett, 2012; Vytal & Hamann, 2010). Nor are 
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there consistent and specific associations between emotion categories and anatomically-defined 

brain networks (Touroutoglou, Lindquist, Dickerson, & Barrett, 2015). 

Without evidence for consistent and specific mapping of brain regions or networks to 

emotion categories, researchers turned to multivariate tools to attempt to map emotions to 

distributed patterns across large-scale brain networks (Kragel & LaBar, 2016). Studies using 

such techniques (e.g., multi-voxel pattern analysis; MVPA) to classify neural patterns associated 

with certain emotion categories can identify patterns associated with experiencing one emotion 

category (e.g., fear) v. another (e.g., anger) at levels greater than chance. However, these patterns 

span the cortex and subcortex and fail to satisfy a critical assumption of the classical view. 

Namely, these studies have been unable to show that the “neural signature” for a given emotion 

is the same across all instances (Saarimäki et al., 2016; see Clark-Polner et al., 2017 for a 

discussion), and purported neural signatures do not replicate across pattern classification studies 

(e.g., Kassam, Markey, Cherkassky, Loewenstein, & Just, 2013; Kragel & LaBar, 2015; 

Saarimäki et al., 2016; see Barrett, 2017). Moreover, MVPA does not reveal anatomical 

structures that are unique to specific emotions, but rather patterns of functional brain activation 

within arbitrarily defined voxels that span neural networks involved in a host of basic functions 

such as visceromotor control, cognitive control, the representation of body states, and the 

representation of features of the situation (Wager et al., 2015). 

 Thus, in contrast to the classical view of emotion, the evidence is more consistent with 

the constructionist systems neuroscience hypothesis that emotions are represented as complex 

interactions between brain regions that support more basic psychological processes that are not 

themselves unique to emotions. For instance, meta-analyses (Alcalá-López et al., 2018; Kober et 

al., 2008; Wager et al., 2015) as well as individual studies (Brooks et al., under revision; Raz et 
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al., 2016, 2012) find that emotional experiences such as anger and fear are associated with 

connectivity within and between the brain’s intrinsic neural networks. In a meta-analysis of 148 

studies, Wager et al. (2015) found that anger was characterized by coactivation between visual 

and frontoparietal areas, between cortical areas and the cerebellum and amygdala, within 

frontoparietal and dorsal attention networks, and within subcortical structures. Fear was 

associated with strong basal ganglia coactivation with the amygdala and thalamus, as well as 

weak cortical-subcortical coactivation and weak intracortical coactivation. I take this work one 

step further by examining degeneracy in the connectivity between these networks within a 

sample of individuals during anger and anxiety.  
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CHAPTER 2: METHOD 
 

Whereas confirmatory approaches tend to analyze the role of specific neural regions or 

networks in emotion, I relied on a data-driven method to reveal differences in neural pathways 

during emotion experience. Prior work has examined individual differences in psychological 

experience and their corresponding neural correlates, but those studies tend to investigate 

differences in the degree to which the same neural correlate of a phenomenon is activated 

between people. For example, amygdala and prefrontal connectivity is associated with individual 

differences in spontaneous use of emotion regulation techniques (Drabant, McRae, Manuck, 

Hariri, & Gross, 2009), as well as individual differences in rumination when participants are 

instructed to increase or decrease negative affect (Ray et al., 2005). In addition to the possibility 

of the same regions showing differential connectivity between individuals, degeneracy argues 

that different neural regions and networks could be involved in the experience of the same 

emotion category across individuals (Noppeney et al., 2004). In the present research, I conducted 

four analyses to test the hypothesis that distinct neural networks can produce the same category 

of emotional experience across individuals. I employed existing data from an fMRI experiment 

in which participants completed a resting state scan, followed by scans in which experiences of 

anger, anxiety, and a neutral state were evoked using the continuous music technique (Eich, 

Macaulay, & Ryan, 1994; Eich & Metcalfe, 1989). To conduct these analyses, I used a data-

driven model selection algorithm that identifies subgroups of individuals with different 

connectivity maps (Subgrouping-Group Iterative Multiple Model Estimation; Gates et al., 2017). 

The original GIMME algorithm (Gates & Molenaar, 2012) was developed as a method for 
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arriving at robust individual-level models of directed brain connectivity (i.e., networks) using the 

unified structural equation modeling (uSEM; Kim, Zhu, Chang, Bentler, & Ernst, 2007) 

framework. GIMME first seeks to identify group-level patterns of activation that are shared 

across the majority of individuals, and then uses group-level paths as priors for an individual-

level search. Simulations have shown that this process improves the recovery of individual-level 

paths (Gates & Molenaar, 2012). The subgrouping GIMME (S-GIMME) algorithm builds on the 

original GIMME algorithm by identifying subgroups of individuals with similar patterns of 

activation.  

The S-GIMME algorithm is especially well-suited for investigating degeneracy in 

emotion because it not only arrives at robust individual-level models characterizing patterns of 

activation, but it can also identify subgroups of individuals who have similar patterns of 

activation. This procedure represents a unique advantage over traditional approaches, which 

often discard individual differences in neural network activity as random noise (Dubois & 

Adolphs, 2016; Kanai & Rees, 2011; Molenaar, 2004; Seghier & Price, 2018). See Gates et al. 

(2017) and Lane, Gates, Pike, Beltz, & Wright (2018) for full details documenting the 

performance and finite sampling behavior of the S-GIMME algorithm. Discovering subgroups of 

individuals who differ in their patterns of neural activation during the same emotional experience 

would provide evidence for degeneracy in the brain basis of emotion. 

My approach is ultimately exploratory, but I nonetheless had a priori hypotheses about 

the neural networks that would be involved in anger and anxiety and the features of experience 

they might correspond to. For instance, based on prior research (e.g., Kober et al., 2008; Wager 

et al., 2015), I predicted that emotion experience would be characterized by distributed activity 

within and between a set of intrinsic networks including the default mode network (DMN), the 
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frontoparietal control network (FPC), the salience network (SAL), and the dorsal attention 

network (DAN). See Table 1 for a list of intrinsic networks and the cognitive processes with 

which they are associated. 

Table 1. Intrinsic networks of interest and their general functions. 
Network Functions 
Default Mode (DMN) Self-referential thought, autobiographical memory, 

mentalization (Buckner, Andrews-Hanna, & Schacter, 2008). 
 

Frontoparietal Control (FPC) Cognitive control (Dosenbach et al., 2007), decision-making 
(Vincent, Kahn, Snyder, Raichle, & Buckner, 2008). 

 
Salience (SAL) Represents cognitive, homeostatic, or emotional salience 

(Seeley et al., 2007). 
 

Dorsal Attention (DAN) Voluntary direction of attention towards environmental stimuli 
(Corbetta & Shulman, 2002; Fox, Corbetta, Snyder, Vincent, & 

Raichle, 2006; Vossel, Geng, & Fink, 2014) 
Note: this list of networks and functions should not be considered comprehensive. There are more intrinsic networks 
than those listed, and each network likely plays a role in myriad functions other than those listed. 
 

 
In analysis 1, I assessed whether distinct emotional experiences could be identified based 

on patterns of brain connectivity. Consistent with my predictions, I found that the S-GIMME 

procedure roughly reproduced the experimental conditions in the present experiment on the basis 

of participants’ brain connectivity. In analysis 2, I assessed the possibility of degeneracy in the 

distributed patterns of brain activation within the experience of anger and anxiety. I predicted 

and found that some aspects of connectivity patterns were shared by subsets of the sample, and 

that those subsets could be identified through an unsupervised classification search. Although the 

subgroups did not experience categorically distinct emotional states, they experienced 

differences in the phenomenological features associated with those states (e.g., how intense v. 

unpleasant v. activated an experience of anger is). These findings suggest degeneracy in the 

patterns of neural activation during the same emotional experience. However, it remains possible 

that the observed subgroups reflect person-level factors and are not a specific product of the 
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evoked anger and anxiety states. To rule out this alternate explanation, I conducted two 

additional analyses. In analysis 3, I implemented the subgrouping procedure on the neutral music 

condition to assess whether the same subgroups might be revealed during a task-positive control 

condition in which participants listened to neutral music but did not generate an emotional 

experience. I predicted and found that subgroups revealed during the neutral condition did not 

correspond to the subgroups revealed during the emotion induction conditions. In analysis 4, I 

tested whether the subgroups revealed in previous conditions might also be present at rest, which 

would suggest that the classification procedure used in the present study is selecting on 

individual differences unrelated to the experience of emotion or any other task-based state. I 

predicted and found that the brain states revealed during rest were consistent with typical resting 

state functional connectivity patterns, and that these patterns were distinct from those revealed 

during the previous conditions. 

Participants. Twenty-four adults (13 female, Mage = 22.92, SDage = 4.95) were recruited 

from the community to participate in a neuroimaging study on “music and the brain.” 

Participants were healthy, right-handed, and had no MRI contraindications or history of 

psychiatric illness. All participants had normal hearing and wore MRI-compatible headphones 

during their scans. Participants provided informed consent and were financially compensated in a 

manner jointly approved by the Institutional Review Boards at The University of North Carolina 

at Chapel Hill and The University of North Carolina at Greensboro.  

MRI Acquisition. Participants were scanned on a 3T Siemens Magnetom Trio at the Joint 

School for Nanoscience and Nanoengineering at The University of North Carolina at 

Greensboro. Structural images were acquired using a 3D MPRAGE T1-weighted sequence with 

the following parameters: TR = 2530ms, TE = 2.26ms, voxel size = 1.0 mm3. Functional images 
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were collected using a single-shot gradient-echo echo-planar imaging sequence with a TR of 

2000ms, a TE of 30ms, and a voxel size of 3.1 x 3.1 x 4.0 mm. 

Procedure 

The continuous music technique (CMT; Eich, Macaulay, & Ryan, 1994; Eich & 

Metcalfe, 1989) was used to induce emotion in the scanner. In a typical CMT paradigm, 

participants listen to emotionally evocative music while recalling or imagining emotional events. 

The CMT has been shown to successfully induce stable and substantial changes in participants’ 

moods (Eich, 1995).  Participants completed six runs in a single fMRI session. Participants first 

completed a resting state scan, followed by a neutral music run, where they simply listened to 

neutral music with no specific instructions, and a negative music run, where they listened to a 

piece of music intended to induce unspecified negative affect. During the negative music run, 

participants were not given any specific instructions to generate a negative emotional experience. 

Next, participants listened to the same negative music and were asked to self-generate an 

experience of either anger or anxiety (order was counterbalanced across participants). 

Participants then completed a second negative music run where they listened to a different piece 

of negative music without specific instructions. Finally, participants listened to that second piece 

of negative music again and generated an experience of the other discrete emotion (i.e., if they 

generated an experience of anger in run 4, they generated an experience of anxiety in run 6). 

Each run lasted 5 minutes, for a total of 30 minutes of scan time. 

For each emotion induction run, participants listened to either Holst’s The Planets or 

Beethoven’s Gross Fugue Op. 133 in B Flat. As in prior work (e.g., Eich, Macaulay, & Ryan, 

1994; Eich & Metcalfe, 1989; Lindquist & Barrett, 2008), compositions were selected to induce 

negative, high arousal affect. Run order and emotion-music pairing were counterbalanced across 
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participants. For example, some participants were randomly assigned to generate a feeling of 

anger while listening to The Planets and a feeling of anxiety while listening to Gross Fugue Op. 

133 in B Flat, and other participants were randomly assigned to generate a feeling of anxiety 

while listening to The Planets and a feeling of anger while listening to Gross Fugue Op. 133 in B 

Flat. The present analyses focus on the resting state, neutral music, and specific anger and 

anxiety conditions during which participants were asked to generate an experience of anger or 

anxiety, respectively. I provide additional information on those conditions below. 

Resting state. Participants completed a resting state scan, which served as a task-neutral 

control condition. Participants viewed a blank screen and were told to “keep [their] eyes open 

and [their] mind at rest.” 

Neutral music. Participants listened to an instrumental piece called A New Day Has 

Come by the pianist and composer George Skaroulis. A collaborator and classically trained 

musician selected this piece for the neutral music run because it is as affectively neutral as 

possible based on key and beats per minute. Participants viewed a blank screen and were told to 

“listen to the music and maintain a calm and neutral state throughout.” 

Negative music 1 and anger induction. Participants listened to one of the 

counterbalanced selections of unpleasant music and were asked to self-generate an experience of 

anger by drawing on prior experiences or visualizing imaginary experiences. They were told 

“this piece has been shown to make people feel very angry. Cultivate a feeling of anger in 

response to it.” 

Negative music 2 and anxiety induction. Participants listened to the other 

counterbalanced selection of unpleasant music and were asked to self-generate an experience of 

anxiety by drawing on prior experiences or visualizing imaginary experiences. They were told 
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“this piece has been shown to make people feel very anxious. Cultivate a feeling of anxiety in 

response to it.” 

Measures. During breaks between runs, participants used a visual analog scale (VAS) to 

rate the extent to which they felt unpleasant, activated, anxious, and angry during the previous 

run. Rating options ranged continuously from 0 (not at all) to 10 (extremely). Following the 

entire scanning procedure, participants completed a series of questionnaires and reported on what 

they chose to imagine to evoke emotional experiences while in the scanner. Questionnaires 

included the Range and Differentiation of Emotional Experiences Scale (RDEES; Kang & 

Shaver, 2004) and the Twenty-Item Toronto Alexithymia Scale (TAS-20; Bagby, Parker, & 

Taylor, 1994). The RDEES includes 14 items designed to assess individual differences in 

emotional complexity. The scale is composed of two subscales measuring 1) range and 2) 

differentiation of emotional experience. The range subscale assesses the span of different 

emotions experienced by an individual, and the differentiation subscale assesses how well an 

individual distinguishes between “similar” emotions (Kang & Shaver, 2004). The TAS-20 

includes 20 items designed to measure Alexithymia, a subclinical condition marked by the 

inability to characterize one’s own emotions (Parker, Taylor, & Bagby, 1989; Sifneos, 1973). 

The TAS-20 is divided into three subscales assessing 1) Difficulty Identifying Feelings, 2) 

Difficulty Describing Feelings, and 3) Externally Oriented Thinking. I reasoned that the RDEES 

and TAS-20 measures would capture individual differences in the complexity and quality of 

people’s daily emotional experiences, which may relate to how they self-generated emotions in 

the scanner. 

Finally, participants were asked to report what they chose to imagine while generating 

emotional experiences in the scanner. The self-report data were coded based on presence and 
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frequency of certain words in participants’ reports. Coded information included the frequency of 

emotion words (e.g., “anger”), frequency of valence words (e.g., “unpleasant”), frequency of 

arousal words (e.g., “activated”), and frequency of body state words (e.g., “sweating”). In 

addition, participants’ self-reports were coded for the extent to which they were internally or 

externally focused, the extent to which they included social or non-social content, and whether 

they reported autobiographical or prospective scenarios (scored on 1-7 Likert scales). 

Data Preparation 

Preprocessing. Data were preprocessed using the CONN functional connectivity toolbox 

(Whitfield-Gabrieli & Nieto-Castanon, 2012), which implements preprocessing steps from 

SPM12. Functional data were realigned and unwarped, slice-timing corrected, examined for 

excessive motion using the Artifact Detection Tools (ART) toolbox 

(https://www.nitrc.org/projects/artifact_detect/), co-registered to structural images, normalized to 

MNI space, and spatially smoothed using an 8mm FWHM Gaussian kernel. Rather than using 

global signal regression, which may potentially induce spurious negative correlations among 

intrinsic networks (Murphy, Birn, Handwerker, Jones, & Bandettini, 2009), functional data were 

denoised using the CompCor toolbox (Behzadi, Restom, Liau, & Liu, 2007). CompCor is a 

components-based correction method which regresses signal from five principal components of 

white matter and cerebrospinal fluid, rather than the average signal from all voxels in the brain. 

This method circumvents the issue of potentially inducing artefactual negative correlations while 

still removing noise from white matter and CSF voxels. 

Time Series Extraction. In addition to implementing a standard SPM12 preprocessing 

pipeline, I used the CONN toolbox to extract time series from ninety ROIs within fourteen 

intrinsic functional networks (Shirer, Ryali, Rykhlevskaia, Menon, & Greicius, 2012) for 
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network-based analyses within S-GIMME. I uploaded ROI masks for each of the ninety ROIs in 

the Shirer et al. (2012) parcellation prior to preprocessing the data in CONN. Upon completion 

of the preprocessing steps, CONN produced a data file for each participant containing the 

denoised time series for each of the uploaded ROIs. Thus, each participant’s data file contained 

150 time points per condition for each of the 90 ROIs in the Shirer et al. (2012) parcellation.  

Whereas most applications of GIMME or S-GIMME examine connectivity between ROIs 

forming hubs within a single network (Gates, Molenaar, Iyer, Nigg, & Fair, 2014; McCormick & 

Telzer, 2018) or ROIs distributed across several networks (McCormick, Gates, & Telzer, 2019; 

Yang, Gates, Molenaar, & Li, 2015; Zelle, Gates, Fiez, Sayette, & Wilson, 2017), the present 

application is novel in that it performs data reduction of ROIs to examine connectivity between 

entire networks. GIMME is based in a structural equation modeling (SEM) framework, which 

requires a large sample size (here, a large number of time points) relative to the number of 

parameters to be estimated (Bentler & Chou, 1987). Further, the algorithm employs a 

computationally intensive iterative process for arriving at group-, subgroup-, and individual-level 

connectivity maps. Thus, data reduction was required to improve the feasibility of between-

network analyses, from both a modeling and a computational perspective.  

Network Selection. As a first step in reducing the number of parameters to be estimated, I 

excluded 3 primary sensory networks from the Shirer et al. (2012) parcellation that were less 

critical to the present study (i.e., auditory, primary visual, and high visual networks). Including 

these networks would be an interesting avenue for future research, as I would expect to see 

differences in sensory involvement across emotion categories, as well as across individuals. 

However, such differences in these networks are less likely to meaningfully correspond to the 

phenomenological features of participants’ emotional experiences, which are the focus of the 
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present study. Thus, the present analyses were conducted on the 11 remaining functional 

networks in the Shirer et al. (2012) parcellation. 

Several of the Shirer et al. functional networks are subnetworks of broader intrinsic 

networks. It is well-known in the literature that intrinsic networks can be combined or 

decomposed to form either broader networks or more granular subnetworks (Andrews-Hanna, 

Reidler, Sepulcre, Poulin, & Buckner, 2010; Dixon et al., 2018; Hyatt, Calhoun, Pearlson, & 

Assaf, 2015; Yeo et al., 2011). The ways in which networks fractionate into subnetworks tends 

to replicate across the literature. I thus opted to analyze the more granular parcellation of the 

functional networks described in Shirer et al. (2012) with the hope of revealing more 

heterogeneity across individuals.  

I included the Shirer et al. (2012) dorsal and ventral default mode subnetworks (dDMN 

and vDMN, respectively), which together comprise the canonical default mode network 

(Greicius, Krasnow, Reiss, & Menon, 2003; Raichle, 2015; Raichle et al., 2001). I also examined 

the anterior and posterior salience subnetworks (aSAL and pSAL, respectively) which comprise 

the canonical salience network (Seeley et al., 2007). I examined the Shirer et al. (2012) left and 

right executive control networks (LECN and RECN, respectively), which together comprise the 

canonical frontoparietal control network (FPC; Dosenbach et al., 2007; Fair et al., 2007, 

hereafter referred to as lFPC and rFPC).  I also examined Shirer et al.’s (2012) visuospatial 

network, referred to here and elsewhere as the dorsal attention network (DAN; Corbetta & 

Shulman, 2002; Fox, Corbetta, Snyder, Vincent, & Raichle, 2006; Vossel, Geng, & Fink, 2014).   

In addition to these more canonical intrinsic networks, I examined the language network 

(Lang), which includes brain regions responsible for language production and comprehension 

(Tomasi & Volkow, 2012), because access to semantic emotion concepts (e.g., the word “anger”) 
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contributes to experiences of emotion (Brooks et al., 2017; Lindquist, MacCormack, & Shablack, 

2015). I examined the sensorimotor network (SMN) because emotion potentiates motor action 

(Hajcak et al., 2007), and the basal ganglia (BG) because recent evidence has implicated these 

subcortical nuclei in various cognitive and affective processes (Arsalidou, Duerden, & Taylor, 

2013). Finally, I examined Shirer et al.’s precuneus network (PCUN; which, in this parcellation, 

also includes portions of PCC and angular gyrus) because the precuneus has been implicated in 

episodic memory retrieval and first-person perspective taking processes (Cavanna & Trimble, 

2006), which are likely to be involved in the emotion induction task.  

Principal Component Analysis. Following network selection, I conducted my second data 

reduction step. Specifically, I used Principal Component Analysis (PCA) to reduce each network 

into a single representative variable (i.e., the first principal component). To conduct these 

analyses, I used the PCA function from the ‘FactoMineR’ R package (Lê, Josse, & Husson, 

2008). This process reduced the ROIs within a given network to a smaller number of 

uncorrelated principal components representing the variability within that network.  One 

drawback of using PCA is that some information is inevitably lost in the feature reduction 

process. This drawback is offset, however, by the fact that dimension reduction through PCA 

reduced the potential for computational burden that would have precluded me from conducting 

between-network connectivity analyses using GIMME. In the present analyses, the first principal 

component of each network served as a single variable representing a linear combination of ROIs 

that explained the most variability within that network. Networks with fewer ROIs tend to have 

higher percentages of variance explained by the first principal component, whereas networks 

with more ROIs tend to have lower percentages of variance explained by the first principal 

component. The first principal component of each network explained between 25-53% of the 
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variance in that network. Across conditions, the average percent of variance explained by the 

first principal component of each network was about 40% (M = 39.51% for the anger condition, 

M = 39.21% for the anxiety condition, M = 39.57% for the neutral condition, and M = 39.53% 

for resting state; see Table 2 for the percentage of variance explained by the first principal 

component of each network across conditions). Thus, the first principal component of each 

network accounted for a substantial amount of the variance within the given network.  

 
Table 2. Percentage of variance explained by first principal component for each network across 
conditions. 

Network Number of ROIs Anger Anxiety Neutral Rest 
aSAL 7 46.55 47.90 47.18 48.08 
BG 5 35.94 36.98 36.55 35.79 
DAN 11 25.12 27.09 27.51 27.12 
dDMN 9 35.50 37.24 36.39 40.34 
Lang 7 38.15 39.12 38.34 37.92 
lFPC 6 44.54 40.51 47.11 43.46 
PCUN 4 52.71 48.96 48.91 51.68 
pSAL 12 26.20 25.53 25.35 27.09 
rFPC 6 53.13 49.20 49.27 46.44 
SMN 6 36.49 36.22 34.64 35.37 
vDMN 10 40.35 42.58 44.07 41.51 

 

In the present analyses, I retain only the first principal component of each network for 

multiple reasons. First, because my interest is in directed connectivity between networks, I do not 

wish to introduce multiple uncorrelated components from within networks into the model 

selection procedure. Second, because the S-GIMME algorithm uses a block-Toeplitz structure 

for model estimation, the number of variables is doubled to account for lagged relationships, 

which nonlinearly increases the computation time. Finally, given the number of networks I am 

interested in, retaining multiple principal components per network would push this application 

past the boundary of any existing simulation work evaluating the performance of S-GIMME. 

Data reduction techniques are frequently used in the network literature to get estimates of brain 

regions that show correlated functional activity (i.e., regions that form a network). Importantly, 
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simulations have demonstrated that GIMME performs similarly well in terms of true path 

recovery when using the first principal component derived from PCA as compared to other forms 

of data reduction (e.g., scaling indicators, sum scores, pseudo-ML, and model-implied 

instrumental variables with two-stage least square; (Gates, Fisher, & Bollen, 2020). For 

simplicity, I will henceforth refer to the first principal component of each network as that 

network (e.g., the first principal component of the dorsal attention network will be referred to as 

“dorsal attention network” or “DAN”). 

Subgrouping GIMME 

I implemented the S-GIMME algorithm on the eleven networks of interest using the 

‘GIMME’ R package (Lane, Gates, & Molenaar, 2016). I first ran S-GIMME on both conditions 

together to assess whether I could recover the experimental conditions participants completed 

(i.e., anger and anxiety) on the basis of their connectivity patterns. Next, I ran the analysis 

separately for the two emotion conditions to better characterize heterogeneity within an induced 

emotional state. Finally, I ran the S-GIMME procedure on the neutral and resting state scans to 

rule out the alternate hypothesis that the algorithm is simply selecting on stable individual 

differences that would also be present during task-positive and/or task-negative states. 

During GIMME’s classification procedure, a similarity matrix is formed representing the 

similarity of connections for each pair of individuals. This similarity matrix represents the 

number of connections that each pair of individuals has in common, as defined by 1) having 

above-threshold significance, and 2) having the same sign. During the subgrouping procedure, S-

GIMME employs the Walktrap community detection algorithm (Pons & Latapy, 2005) to assign 

individuals to subgroups in an unsupervised manner based on the similarity of their connections 

to those of other individuals. Unsupervised classification does not start with a prespecified 
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number of subgroups into which individuals are categorized. Rather, individuals are categorized 

into the number of subgroups that best captures the similarities within the subgroups and the 

differences between them. I then probed those subgroups based on individual difference 

measures collected during the experiment. In this way, there are no top-down constraints on the 

classification of individuals into subgroups, leaving open the possibility that no subgroups are 

identified on the basis of participants’ connectivity patterns. This procedure also avoids the 

pitfalls of confirmatory and seed-based approaches, which may focus exclusively on specific 

brain networks or regions that are thought to be important for a given cognitive task. 

S-GIMME arrived at individual-, subgroup-, and group-level connectivity maps 

representing neural activation during the anger and anxiety runs (separately and combined), as 

well as during the neutral and resting state runs. The present analyses focus on subgroup-level 

connectivity. For all search levels, the S-GIMME algorithm revealed temporal patterns of 

activation across networks. These patterns included paths that were contemporaneous (i.e., 

activation in both networks occurred at the same point in time) as well as lagged (i.e., activation 

in the networks occurred at separate points in time; Beltz & Gates, 2017). It is important to note 

that because the temporal resolution of fMRI (seconds) is slower than the biological process it 

aims to capture (milliseconds), some relationships that are truly lagged may be revealed as 

contemporaneous (Lane et al., 2019). Thus, the present analyses give equal evaluative weight to 

both contemporaneous and lagged paths. 

Characterizing Subgroups. I visually evaluated subgroups based on their connectivity 

patterns, and characterized them based on individual difference measures collected during the 

experiment. These measures were the VAS ratings of what participants experienced while in the 

scanner (i.e., the degree of anger, anxiety, activation, and unpleasantness experienced during 
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each run), the post-scan measures of emotional complexity (RDEES) and alexithymia (TAS-20), 

and participants’ self-reports of what they chose to imagine to evoke emotional experiences in 

the scanner. Depending on the number of subgroups revealed for a given condition, I assessed 

differences in these measures using t-tests and analysis of variance, as well as their non-

parametric equivalents (Mann-Whitney U-test and Kruskal-Wallis H-test, respectively). I also 

assessed whether there were differences between subgroups in demographic factors (e.g., age, 

sex, number of years of music training). To assess differences in age and years of music training, 

I used t-tests and analysis of variance, whereas to assess differences in sex, I used Chi-square 

tests for independence. 
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CHAPTER 3: ANALYSIS 1 – RECOVERING EXPERIMENTAL CONDITIONS VIA S-
GIMME 

   
My first goal was to assess whether the subgrouping procedure could reproduce the 

experimental conditions (i.e., anger v. anxiety) on the basis of participants’ connectivity patterns. 

This first analysis served as a validation of the S-GIMME procedure by assessing whether S-

GIMME could produce sub-groups where they should reasonably exist. I thus implemented S-

GIMME on the ROI time-series-derived PCAs for each participant for each of the emotion 

conditions (i.e., the anxiety run and the anger run). Note that if S-GIMME were only sensitive to 

something like individual differences, it could have reasonably revealed subgroups 

corresponding to individual participants (e.g., a subgroup representing the anger and anxiety runs 

for participant 1, a subgroup for participant 2, a subgroup for participant 3, etc.). Rather, if S-

GIMME revealed subgroups consisting of time-series representing anger v. anxiety runs 

irrespective of participant, then this would be evidence that it was reliably detecting brain 

differences that are a product of the experimental manipulation (i.e., emotion experiences). I 

predicted that the latter would occur. 

Analysis 1: Combined Conditions 

To conduct this analysis, I combined the data from the anger and anxiety conditions such 

that each participant contributed two time series to the sample. After implementing the S-

GIMME procedure, I visually assessed differences in connectivity patterns across the subgroups 

revealed during the combined analysis. I then created a crosstabulation of subgroup membership 

and experimental condition. I assessed the degree to which the subgroups revealed corresponded 
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to the experimental conditions participants completed. I was specifically interested in whether 

brain states from the anger and anxiety conditions were classified into the same v. separate 

subgroups. Finally, I compared the subgroups based on VAS ratings of what participants 

experienced while in the scanner. 

 
Subgroup connectivity. S-GIMME revealed three major subgroups1 of neural responses 

across the experience of anger and anxiety. Subgroup 1 (n = 22)2 had connectivity within 

subnetworks of SAL (from aSAL to pSAL) and DMN (from vDMN to dDMN). Subgroup 1 was 

also characterized by connectivity from posterior SAL to DAN, as well as from PCUN to both 

subnetworks of FPC. As with Subgroup 1, Subgroup 2 (n = 13) had connectivity within 

subnetworks of SAL (from aSAL to pSAL) and DMN (from vDMN to dDMN). Subgroup 2 also 

had connectivity from lFPC to rFPC, as well as connectivity from anterior SAL to Lang, both of 

which were not present in Subgroup 1. However, Subgroup 2 was not characterized by 

connectivity between posterior SAL and DAN. Finally, Subgroup 3 (n = 11) had several 

between-network paths that were not present in Subgroups 1 and 2. Specifically, Subgroup 3 had 

connectivity from dorsal DMN to PCUN, from Lang to dorsal DMN, and from BG to SMN, 

anterior SAL, and right FPC. Interestingly, Subgroup 3 did not have within-network connectivity 

between the subnetworks of DMN. Subgroups 1-3 are depicted in Figure 1. 

  

 
1 Major subgroups were defined a priori as consisting of data from four or more individuals. Two subgroups 
included anger data from only one individual per subgroup. Thus, data from those two individuals’ anger runs (one 
per subgroup) are not characterized in the combined anger and anxiety analyses. 
 
2 For the combined analysis, each participant contributed data from two runs (the anger condition and the anxiety 
condition). Thus, “n” in this case refers to the number of brain states rather than the number of participants included 
in each subgroup. 
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Figure 1. Subgroup-level connectivity maps across anger and anxiety. S-GIMME revealed three subgroups of 
connectivity patterns during the experience of anger and anxiety. Solid lines represent contemporaneous 
relationships and dashed lines represent lagged (X at time-1 predicts Y at time) relationships. Autoregressive paths 
(X at time-1 predicts X at time) appear as dashed loops. All subgroup-level paths (green) were significant for at least 
75% of the brain states within that subgroup. Individual-level paths (gray) represent each path that exists for at least 
one brain state within the subgroup. 
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I investigated whether connectivity patterns from the anger and anxiety conditions 

clustered meaningfully into the three subgroups. I found that Subgroup 1 was primarily 

composed of brain states from the anger condition (64%), whereas Subgroup 3 was primarily 

composed of brain states from the anxiety condition (82%). Subgroup 2 was approximately 

evenly split, containing similar numbers of brain states from both the anger (46%) and anxiety 

(54%) conditions (see Figure 2). The connectivity maps for Subgroups 1 and 3 lend themselves 

to interpretation in terms of the emotion that is predominantly represented in each subgroup. For 

Subgroup 1 (the de facto Anger Subgroup), greater SAL to DAN connectivity suggests that SAL 

is directing DAN to salient events so that participants can engage in goal-directed stimulus and 

response selection (Corbetta & Schulman, 2002). This finding is also consistent with work 

showing greater intensity of activation in DAN during the experience of anger as compared to 

other categories of emotion (Wager et al., 2015). In addition, Wager et al., (2015) found greater 

intensity of activation in FPC and DMN during the experience of anger as compared to fear, 

mapping onto Subgroup 1, which is characterized by connectivity between FPC and PCUN (a 

major node of DMN; Utevsky, Smith, & Huettel, 2014). For Subgroup 3 (the de facto Anxiety 

Subgroup), the presence of directed connectivity from BG to aSAL and rFPC is consistent with 

seed-based analyses demonstrating that increased connectivity between nuclei of the basal 

ganglia and regions of FPC and aSAL are associated with social anxiety disorder (Anteraper et 

al., 2014). Further, Subgroup 3’s lack of within-network DMN connectivity is consistent with 

recent work showing that anxiety is associated with reduced functional connectivity in regions of 

the DMN (Imperatori et al., 2019; Modi, Kumar, Kumar, & Khushu, 2015). Finally, finding that 

Subgroup 3 had greater connectivity between BG and SMN is consistent with Wager et al., 2015, 
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who found greater intensity of activation between these networks during the experience of fear as 

compared to anger. 

 
 
Figure 2.  Percentages of anger and anxiety brain states in each subgroup. Subgroup 1 was composed of 64% anger 
brain states and 36% anxiety brain states, whereas Subgroup 3 was composed of 82% anxiety brain states and 18% 
anger brain states. Subgroup 2 contained an approximately even split of anger and anxiety brain states. 

 

Post-scan measures. The subgrouping procedure generally recovered the experimental 

conditions to which participants were assigned (i.e., Subgroup 1 predominantly consisted of 

brain states from the anger run, and Subgroup 3 predominantly consisted of brain states from the 

anxiety run). I used Student’s t-tests to examine whether participants’ self-reported VAS ratings 

of anger and anxiety conformed to these subgroups. Note that because each participant 

contributed two brain states to the combined analysis (one from the anger induction and one 

from the anxiety induction), comparisons between subgroups are not fully independent. 
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However, separate VAS scores were collected following both emotion inductions. Thus, the 

following analyses will treat individual VAS scores as the unit of measurement. 

I failed to observe differences in self-reported emotion when comparing each of the three 

subgroups of brain states on corresponding participants’ reported levels of anger or anxiety (𝑝s > 

.10). This likely reflects the fact that each subgroup contained some proportion of brain states 

from participants in both conditions. However, participants in the anxiety condition who were 

classified into the de facto anxiety subgroup on the basis of their brain processes rated 

significantly more anxiety (𝑀 = 4.44) than participants in the anger condition who were 

classified into the de facto anxiety subgroup (𝑀 = 2.30), t(5.80) = -3.15, 𝑝 = .02, d  = 1.36. In 

contrast, participants in the anger condition who were classified into the de facto anxiety 

subgroup on the basis of their brain processes did not differ in their reports of anger as compared 

to participants in the anxiety condition (𝑝 > .1). 

Similarly, participants in the anger condition who were classified into the de facto anger 

subgroup on the basis of their brain processes rated significantly more anger (𝑀 = 4.90) than 

participants in the anxiety condition who were classified into the de facto anger subgroup (𝑀 = 

1.79), t(19.64) = 4.50, p < .001, d  = 1.77. Participants in the anxiety condition who were 

classified into the de facto anger subgroup on the basis of their brain processes reported 

marginally more anxiety (𝑀 = 5.46) than participants in the anger condition (𝑀 = 3.40), t(14.59) 

= -1.84, 𝑝 = .09, d  = .82. 

Finally, participants in the anger and anxiety conditions who were classified into the 

mixed subgroup (i.e., Subgroup 2) did not differ significantly in their reports of anger or anxiety 

based on assigned condition (𝑝s > .1).  



 
   

28  

In summary, analysis 1 revealed that the subgrouping procedure was able to roughly 

reproduce the experimental conditions (i.e., anger v. anxiety) on the basis of participants’ 

connectivity patterns. Importantly, the procedure did not reveal subgroups corresponding to each 

participant, which plausibly could have occurred if S-GIMME was insensitive to the evoked 

emotional state. This finding suggests that the S-GIMME procedure is detecting true variation in 

connectivity related to each experimental condition, thus serving as a validation of the present 

task and analysis approach.  
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CHAPTER 4: ANALYSIS 2 – IDENTIFYING NEURAL DEGENERACY WITHIN 
ANGER AND ANXIETY 

 
The findings from analysis 1 provide a proof-of-concept that the S-GIMME algorithm is 

picking up on true variation related to the experimental conditions, but the most important 

question is whether this variation can be further sub-divided into distinct patterns of connectivity 

within each emotion category. Finding subgroups with distinct patterns of connectivity during 

the same emotional experience would provide the first evidence for degeneracy in the brain basis 

of emotion.  For analysis 2, I implemented S-GIMME on the data from each of the emotion runs 

separately (i.e., the anger run and the anxiety run) to examine whether degenerate functional 

connectivity patterns existed within those conditions. Within each run, I compared subgroups 

revealed by S-GIMME based on the presence of paths between networks, and characterized 

those subgroups based on differences in VAS ratings. I was particularly interested in whether 

there were differences between subgroups in the extent to which they experienced anger or 

anxiety during the corresponding scans. For example, if the S-GIMME procedure reveals 

subgroups that do not differ in their VAS ratings of anger during the anger condition, it would 

provide evidence for degenerate neural representations of anger. Following my analysis of VAS 

ratings, I assessed differences between subgroups in the post-scan measures of emotion (i.e., 

RDEES and TAS-20) and participants’ self-reports of what they chose to imagine to evoke an 

emotional experience while in the scanner. Finally, I assessed the cross-categorization of 

participants within the subgroups revealed during the anger and anxiety conditions. 
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Analysis 2a: Anger Condition 

To conduct this analysis, I implemented the S-GIMME procedure on the time series from 

the anger condition. For any subgroups revealed, I visually assessed differences in the presence 

v. absence of paths between networks during the anger condition. Next, I compared the 

subgroups based on VAS ratings of what participants experienced while in the scanner, with a 

particular focus on whether the subgroups experienced the same v. different degrees of anger 

during the task. Finally, I compared the subgroups based on individual difference measures of 

emotional complexity (RDEES) and alexithymia (TAS-20), as well as any potential differences 

in what participants chose to imagine while in the scanner. 

Subgroup connectivity. S-GIMME revealed two major subgroups of individuals3 based 

on their patterns of connectivity during the anger condition. Subgroup 1 (N = 10) had 

connectivity between subnetworks of SAL (from pSAL to aSAL) and DMN (from dDMN to 

vDMN), as well as connectivity from aSAL to DAN. Subgroup 2 (N = 12) also had connectivity 

between subnetworks of DMN (from vDMN to dDMN), but uniquely had connectivity between 

subnetworks of FPC (from lFPC to rFPC), and no connectivity between subnetworks of SAL. 

Subgroup 2 was also characterized by additional connectivity from pSAL to DAN. In addition to 

the subgroup-level paths, there was a group-level path between PCUN and lFPC, meaning that 

this path was present for at least 75% of individuals during the experience of anger. Notably, this 

path was also present at the subgroup-level in the de facto anger subgroup revealed in analysis 1. 

Subgroup-level connectivity maps for Subgroups 1 and 2 are depicted in Figure 3. 

 
3 As previously noted, major subgroups were defined a priori as consisting of data from four or more individuals. 
Two individuals comprised a third “subgroup” which was not characterized because it did not meet this criterion. 
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Figure 3.  Subgroup-level connectivity maps for anger. S-GIMME revealed two subgroups of connectivity patterns 
during the experience of anger. Solid lines represent contemporaneous relationships and dashed lines represent 
lagged (X at time-1 predicts Y at time) relationships. Autoregressive paths (X at time-1 predicts X at time) appear as 
dashed loops. One contemporaneous group-level path (black) from PCUN to lFPC was significant for at least 75% 
of individuals across both subgroups. All subgroup-level paths (blue) were significant for at least 75% of individuals 
within each subgroup. Individual-level paths (gray) represent each path that exists for at least one individual within 
the subgroup. 
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Music training and demographic measures. Because prior work has shown that 

musicians process music differently than those with no music training (Angulo-Perkins et al., 

2014; Ohnishi et al., 2001; Seung, Kyong, Woo, Lee, & Lee, 2005), I first investigated whether 

the two subgroups revealed by S-GIMME differed in number of years of self-taught or formal 

music training. A Student’s t-test revealed that Subgroup 1 (𝑀 = 3.80) and Subgroup 2 (𝑀 = 

4.50) did not differ in number of years of music training (𝑝 =.80). I also investigated whether the 

two subgroups differed on key demographic variables. Specifically, I compared average age 

across the two subgroups, and I assessed whether the classification into subgroups depended on 

sex. A Student’s t-test revealed that Subgroup 1 (𝑀 = 21.20) and Subgroup 2 (𝑀 = 24.33) did not 

significantly differ in age (𝑝 =.14), and a Pearson’s Chi-square test for independence with Yates’ 

continuity correction revealed that subgroup classification was independent of sex, 

𝜒!	(1, 𝑁 = 24) = 0.002, 𝑝 = 0.97. I next assessed whether there were any significant 

differences in the post-scan measures of emotion. 

Post-scan measures. I used Student’s t-tests to assess mean differences between 

subgroups in the measures of emotion that were collected after each run (i.e., VAS ratings of the 

intensity of anger, anxiety, unpleasantness, and activation), as well as the RDEES and TAS-20 

questionnaire responses. Critically, consistent with my hypothesis that different patterns of 

neural activation can produce the same emotion, there was no difference between Subgroup 1 (𝑀 

= 5.08) and Subgroup 2 (𝑀 = 3.65) in the intensity of anger experienced (𝑝 =.11). However, 

differences in neural representations during the experience of anger may have been related to 

differences in the features that each subgroup experienced as part of anger. For instance, 

Subgroup 1 experienced anger as significantly more unpleasant (𝑀 = 4.91) as compared to 
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Subgroup 2 (𝑀 = 2.81), t(15.45) = 2.72, 𝑝 = .02, Cohen’s d = 1.21, 95% CI [0.24, 2.18]. This 

finding suggests that greater within-network connectivity in SAL in Subgroup 1 may confer 

relatively more unpleasant anger experiences. Prior meta-analytic work has linked activation 

within regions that comprise SAL with the experience of unpleasant affect (Lindquist, Satpute, 

Wager, Weber, & Barrett, 2016) and fluctuations within SAL are associated with greater self-

reported intensity of negative affect (Seeley et al., 2007; Touroutoglou, Hollenbeck, Dickerson, 

& Barrett, 2012).  

In addition to observing differences in the features of participants’ experienced anger, I 

also found that Subgroup 1 contained participants who scored, on average, higher on the Toronto 

Alexithymia Scale (𝑀 = 44.20) as compared to Subgroup 2 (𝑀 = 37.67), t(18.99) = 2.51, 𝑝 = 

.02, Cohen’s d  = 1.04, 95% CI [0.08, 1.99].  Alexithymia is a construct characterized by 

difficulty describing one’s feelings and is associated with experiencing greater intensity of 

negative affect and physiological activation (Byrne & Ditto, 2005; Friedlander, Lumley, 

Farchione, & Doyal, 1997; Luminet, Rimé, Bagby, & Taylor, 2004). Subgroups did not differ in 

emotional complexity as measured by scores on the RDEES, they did not differ in VAS ratings 

of anxiety and activation, and they did not differ in their self-reports of what they imagined while 

generating experiences of anger in the scanner (𝑝s > .10). See Table 3 for results from all tests, 

as well as their nonparametric equivalents. 
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Table 3. Parametric (Student’s t-test) and Nonparametric (Mann-Whitney U-test) Comparisons of Anger Subgroups 
1 and 2 

Measure Subscale Parametric Test Nonparametric Test 

VAS 

Anger t = 1.66, p = 0.11 U = 81.5, p = 0.17 

Anxiety t = 1.04, p = 0.31 U = 74.5, p = 0.36 

Activation t = -0.68, p = 0.51 U = 48.5, p = 0.47 

Unpleasantness t = 2.72, p = 0.02 U = 96.5, p = 0.02 

TAS-20 

Overall Score t = 2.51, p = 0.02 U = 90, p = 0.05 

Difficulty Describing Feelings t = 3.10, p = 0.01 U = 101.5, p = 0.01 

Difficulty Identifying Feelings t = 1.87, p = 0.08 U = 85.5, p = 0.10 

Externally-Oriented Thinking t = -0.98, p = 0.34 U = 42, p = 0.24 

RDEES 

Overall Score t = 0.20, p = 0.85 U = 60, p = 1.00 

Range t = 0.75, p = 0.46 U = 70, p = 0.53 

Differentiation t = -0.50, p = 0.62 U = 53, p = 0.67 

Self-reported 
descriptions of 
what participants 
chose to think 
about while in the 
scanner 

Frequency of Emotion Words Used t = 1.23, p = 0.25 U = 54, p = 0.27 

Frequency of Valence Words Used t = 0.88, p = 0.40 U = 50, p = 0.48 

Frequency of Arousal Words Used t = -0.80, p = 0.44 U = 35.5, p = 0.55 

Frequency of Body Words Used t = 1.00, p = 0.36 U = 48, p = 0.23 

Internal v. External Scenario t = 0.56, p = 0.59 U = 43, p = 0.96 

Social vs. Nonsocial Scenario t = 1.49, p = 0.17 U = 39, p = 0.18 

Remembered v. Imagined Scenario t = 0.83, p = 0.42 U = 45, p = 0.51 

 

Although participants had the same experience of anger during the anger induction, the 

features and corresponding neural representations of their experiences differed across subgroups. 

These findings demonstrate initial evidence for degeneracy across participants in the experience 

of anger. Following my analysis of subgroup differences during the experience of anger, I 

investigated differences in subgroups revealed during the experience of anxiety. 
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Analysis 2b: Anxiety Condition 

To conduct this analysis, I implemented the S-GIMME procedure on the time series from 

the anxiety condition. For any subgroups revealed, I visually assessed differences in the presence 

v. absence of paths between networks during the anxiety condition. Next, I compared the 

subgroups based on VAS ratings of what participants experienced while in the scanner, with a 

particular focus on whether the subgroups experienced the same v. differing degrees of anxiety 

during the task. Finally, I compared the subgroups based on individual difference measures of 

emotional complexity (RDEES) and alexithymia (TAS-20), as well as any potential differences 

in what participants chose to imagine to evoke an experience of anxiety while in the scanner. 

Subgroup connectivity. An analysis of the anxiety condition revealed two subgroups of 

individuals based on their connectivity patterns. Subgroup 1 (N = 12) had greater connectivity 

between subnetworks of SAL (from aSAL to pSAL) and DMN (from vDMN to dDMN). 

Individuals in Subgroup 1 also had connectivity from PCUN to both subnetworks of FPC, as 

well as from PCUN to aSAL (none of which surfaced consistently in Subgroup 2). Finally, 

Subgroup 1 had connectivity from dDMN to PCUN and from dDMN to DAN. Subgroup 2 (N = 

12) had connectivity between the subnetworks of SAL (from pSAL to aSAL), but not between 

subnetworks of DMN, and was characterized by connectivity from DAN to pSAL. Subgroup 2 

also had connectivity from Lang to lFPC, as well as from BG to rFPC. There was also a group-

level path between Lang and dDMN, meaning that this path was present for at least 75% of 

individuals across both subgroups during the experience of anxiety. Interestingly, this path also 

emerged as a subgroup-level path in the de facto anxiety subgroup revealed in analysis 1. 

Subgroup-level connectivity maps for Subgroups 1 and 2 are depicted in Figure 4. 
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Figure 4. Subgroup-level connectivity maps for anxiety. S-GIMME revealed two subgroups of connectivity patterns 
during the experience of anxiety. Solid lines represent contemporaneous relationships and dashed lines represent 
lagged (X at time-1 predicts Y at time) relationships. Autoregressive paths (X at time-1 predicts X at time) appear as 
dashed loops. Contemporaneous and lagged group-level paths (black) from Lang to dDMN were significant for at 
least 75% of individuals across subgroups. All subgroup-level paths (yellow) were significant for at least 75% of 
individuals within each subgroup. Individual-level paths (gray) represent each path that exists for at least one 
individual within the subgroup. 
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Music training and demographic measures. As with the anger induction, a Student’s t-

test revealed that Subgroup 1 (𝑀 = 4.17) and Subgroup 2 (𝑀 = 3.92) did not differ in number of 

years of music training (𝑝 = .92). Similarly, a Student’s t-test revealed that Subgroup 1 (𝑀 = 

23.33) and Subgroup 2 (𝑀 = 22.50) did not significantly differ in age (𝑝 = .69), and a Pearson’s 

Chi-square test for independence with Yates’ continuity correction revealed that subgroup 

classification was independent of sex, 𝜒!	(1, 𝑁 = 24) = 0.000, 𝑝 = 1.00. I next assessed 

whether there were any significant differences between subgroups in the post-scan measures 

collected. 

Post-scan measures.  I again used Student’s t-tests to assess differences between the 

subgroups identified by the S-GIMME procedure. Subgroup 2 experienced greater intensity of 

self-reported anxiety (𝑀 = 5.66) as compared to Subgroup 1 (𝑀 = 3.99), t(21.31) = -2.26, 𝑝 = 

.03, Cohen’s d  = -.92, 95% CI [-1.81, 0.03]. However, this effect was not present in the non-

parametric analysis (𝑝 = 0.16), and it appeared to be largely driven by a potential outlier in the 

parametric analysis.4  I calculated Cook’s Distance to assess whether this potential outlier had 

undue leverage on the results. Using the recommended threshold of 𝐷" >
#

$%&%'
  where	𝑛 is the 

sample size and 𝑘 is the number of independent variables in the model (Chatterjee & Hadi, 

1988), I determined that the suspected outlier was indeed having undue leverage. More 

specifically, the threshold for undue leverage is #
!#%'%'

= .18 and the outlying data point has a 

Cook’s Distance value of .29. I conducted a sensitivity analysis by removing the outlier and 

recomputing the parametric test. Without this outlier, the difference in self-reported anxiety 

between Subgroup 1 (𝑀 = 3.99) and Subgroup 2 (𝑀 = 5.26) is only marginal (𝑝 =.06). 

 
4 The outlying individual reported on a scale of 1-10 that their anxiety level was 10, but their unpleasantness level 
was 2.4 and their activation level was 3.6 (raw scores). This case was not a data entry mistake, but I cannot rule out 
whether it was recorded incorrectly during the scan or whether the participant mislabeled his/her state. 
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As with the anger condition, subgroups revealed during the anxiety condition differed in 

the features that they experienced as part of their experience of anxiety. Subgroup 1 tended to 

contain participants who scored higher on the Difficulty Identifying Feeling (DIF) Subscale of 

the Toronto Alexithymia Scale (𝑀 = 15.33) as compared to Subgroup 2 (𝑀 = 12.00), t(21.47) = 

2.30, 𝑝 = .03, Cohen’s d = .94, 95% CI [0.05, 1.83]. The finding that Subgroup 1 scored higher 

on the DIF subscale and had less connectivity between Lang and lFPC may reflect difficulty in 

the semantic selection and retrieval necessary to reflect upon and label one’s emotional state 

(Chiou, Humphreys, Jung, & Lambon Ralph, 2018; Hirshorn & Thompson-Schill, 2006; Klein, 

Milner, Zatorre, Meyer, & Evans, 2006; Whitney, Kirk, O’Sullivan, Lambon Ralph, & Jefferies, 

2011). Subgroups revealed during the anxiety condition did not differ in emotional complexity as 

measured by scores on the RDEES, nor did they differ in their VAS ratings of unpleasantness, 

activation, and anger experienced during the anxiety induction (𝑝s > .10). There was, however, a 

marginal difference in participants’ self-reports such that Subgroup 2 focused marginally more 

on imagined v. prospective scenarios while generating experiences of anxiety in the scanner (𝑝 = 

.08). See Table 4 for results from all tests, as well as their nonparametric equivalents. 
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Table 4. Parametric (Student’s t-test) and Nonparametric (Mann-Whitney U-test) Comparisons of Anxiety 
Subgroups 1 and 2 

Measure Subscale Parametric Test Nonparametric Test 

VAS 

Anger t = 0.67, p = 0.51 U = 74.5, p = 0.91 

Anxiety t = -2.26, p = 0.03 U = 42.5, p = 0.16 

Activation t = -0.41, p = 0.68 U = 61.5, p = 0.56 

Unpleasantness t = -0.85, p = 0.41 U = 62.5, p = 0.60 

TAS-20 

Overall Score t = 1.27, p = 0.22 U = 95, p = 0.19 

Difficulty Describing Feelings t = 1.00, p = 0.33 U = 87.5, p = 0.38 

Difficulty Identifying Feelings t = 2.30, p = 0.03 U = 107, p = 0.05 

Externally-Oriented Thinking t = -1.21, p = 0.24 U = 50, p = 0.21 

RDEES 

Overall Score t = 0.66, p = 0.52 U = 80.5, p = 0.64 

Range t = 0.64, p = 0.53 U = 80.5, p = 0.64 

Differentiation t = 0.42, p = 0.68 U = 81.5, p = 0.60 

Self-reported 
descriptions of 
what participants 
chose to think 
about while in the 
scanner 

Frequency of Emotion Words Used t = 0.00, p = 1.00 U = 52, p = 0.90 

Frequency of Valence Words Used t = 0.00, p = 1.00 U = 51, p = 0.96 

Frequency of Arousal Words Used t = 0.37, p = 0.71 U = 58, p = 0.48 

Frequency of Body Words Used t = 0.00, p = 1.00 U = 50, p = 1.00 

Internal v. External Scenario t = 0.26, p = 0.80 U = 47, p = 0.84 

Social vs. Nonsocial Scenario t = 0.52, p = 0.61 U = 52, p = 0.87 

Remembered v. Imagined Scenario t = -1.87, p = 0.08 U = 23.5, p = 0.10 

 

Analysis of the anxiety condition revealed that participants in both subgroups had similar 

experiences of anxiety (with the caveat that one outlier was removed because that individual was 

having undue leverage on the results). Additionally, as in the anger condition, the features and 

corresponding neural representations of participants’ experiences differed across subgroups. 

Taken together, the findings from the anger and anxiety conditions provide further evidence for 

degeneracy across participants in the brain basis of emotion experience. 
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Analysis 2c: Subgroup Membership Across Runs 

Following my analysis of the subgroups revealed during the anger and anxiety 

conditions, I investigated whether the same individuals tended to cluster together across the two 

conditions. If individuals clustered together, it would suggest that some stable person-level factor 

caused them to have similar brain patterns across distinct emotions (e.g., some people may rely 

more on autobiographical memories when experiencing emotions than others, which may result 

in a subgroup characterized by greater connectivity between PCUN and subnetworks of DMN). 

Alternatively, if individuals are not more likely to share the same subgroup across conditions, it 

would suggest even greater stochasticity in the degenerate neural response to emotion than 

previously uncovered.  

To conduct this analysis, I created an alluvial diagram using the alluvial function from 

the ‘alluvial’ R package (Bojanowski & Edwards, 2016). The alluvial function takes as input a 

dataset indicating the subgroup to which participants were assigned for each condition. The 

dataset included one column corresponding to each condition (i.e., anger and anxiety) and one 

column of frequencies. The condition column contained the subgroup that a participant might be 

classified into (e.g., Subgroup 1), and the frequency column contained the number of participants 

that shared the same pattern of subgroup membership across the two conditions (i.e., the number 

of participants that were assigned to Subgroup 1 for anger and Subgroup 1 for anxiety, the 

number of participants that were assigned to Subgroup 1 for anger and Subgroup 2 for anxiety, 

and so on). The alluvial function produces a visualization of the cross-categorization of 

participants into anger and anxiety subgroups (Figure 5). 

Consistent with my predictions, individuals did not tend to cluster into the same 

subgroups across conditions. For instance, if two participants shared the same subgroup for the 
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anger condition, there was a 50/50 chance that they shared the same subgroup for the anxiety 

condition. Of the 10 participants in Anger Subgroup 1, five were in Anxiety Subgroup 1 and five 

were in Anxiety Subgroup 2. Of the 12 participants in Anger Subgroup 2, six were in Anxiety 

Subgroup 1 and six were in Anxiety Subgroup 2. Finally, of the two participants in Anger 

Subgroup 3 (which was not characterized above because N < 4), one was in Anxiety Subgroup 1 

and one was in Anxiety Subgroup 2.  

 

 
 

 
Figure 5.  Subgroup membership across anger and anxiety conditions. Participants were equally likely to share the 
same subgroup across conditions as they were to be in different subgroups across conditions (e.g., 50% of 
participants in Anger Subgroup 1 were in Anxiety Subgroup 1, and the other 50% of participants in Anger Subgroup 
1 were in Anxiety Subgroup 2). 
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Analysis 2d: Neural Representation of Emotional Complexity 

As a final analysis of the anger and anxiety conditions, I investigated whether emotional 

complexity might be represented in the brain as within-person differences in connectivity 

patterns across anger and anxiety. To conduct this analysis, I quantified the number of unique 

paths a given participant had in their individual-level connectivity maps for anger and anxiety 

(i.e., paths that are not common across both anger and anxiety). I then computed a complexity 

ratio where the numerator is the number of unique paths, and the denominator is the total number 

of paths across both anger and anxiety:  

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 	
𝑈𝑛𝑖𝑞𝑢𝑒	𝑃𝑎𝑡ℎ𝑠

𝑈𝑛𝑖𝑞𝑢𝑒 + 𝐶𝑜𝑚𝑚𝑜𝑛	𝑃𝑎𝑡ℎ𝑠 

Finally, I assessed whether this complexity ratio was correlated with the post-scan measure of 

emotional complexity (i.e., RDEES) collected in the present experiment.  

I found that participants’ scores on the RDEES were not significantly correlated with the 

complexity of their brain states as measured by the difference in connectivity patterns across 

anger and anxiety (𝑝 >.10). However, visual inspection of a scatterplot of these variables 

revealed a clear outlier who had a low score on the RDEES and a rather high ratio of brain state 

complexity. I conducted a sensitivity analysis by removing this outlier and re-running the test to 

assess whether there was any impact on the results. Without this outlier, there is a marginally 

significant positive correlation between scores on the RDEES and the complexity of participants’ 

brain states across anger and anxiety, 𝑟(22) = 	 .39, 𝑝 =.06). See Figure 6 for scatterplots 

depicting this relationship with and without the outlier (left panel and right panel, respectively). 

This finding provides evidence that the individual-level brain states identified by the GIMME 

algorithm map on to a self-report measure of the emotion. Specifically, the extent to which 
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participants’ brain states were differentiated across anger and anxiety was marginally 

significantly related to participants’ self-reported ability to differentiate between different 

emotional states. 

 

 
 

 
 
Figure 6. Relationship between complexity of brain states and scores on a self-report measure of emotional 
complexity. The panel on the left shows the relationship between complexity of participants’ brain states (i.e., the 
extent to which anger and anxiety are differentiated at the neural level) and scores on the RDEES measure of 
emotional complexity. Although the relationship is non-significant, there appears to be a potential outlier. The panel 
on the right depicts the relationship between complexity of participants’ brain states and scores on the RDEES after 
removing the outlier. This sensitivity analysis revealed a marginally significant relationship between neural and self-
report measures of emotional complexity. 
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CHAPTER 5: ANALYSIS 3 – USING A TASK-POSITIVE CONTROL CONDITION TO 
RULE OUT THE POSSIBILITY THAT SUBGROUPS WERE DETERMINED BY 

INDIVIDUAL-LEVEL FACTORS 
 

The above analyses of the anger and anxiety conditions suggest that degenerate neural 

representations are associated with the experience of emotion. Specifically, S-GIMME roughly 

reproduced the experimental conditions in the present task, and identified subgroups of 

individuals with different patterns of brain activation in response to the same emotional 

experience. Because individuals did not cluster together into the same subgroups across the anger 

and anxiety conditions, it seems unlikely that these results reflect person-level factors that are 

stable across distinct experiences. Nonetheless, the design of the fMRI experiment affords 

additional analyses that will help rule out the alternate hypothesis that the observed subgroups 

reflect person-level factors and are not a product of the evoked anger and anxiety states. I 

implemented the S-GIMME procedure on the neutral music condition in order to rule out the 

possibility that features of the subgroups revealed during the anger and anxiety conditions would 

also be present during an affectively neutral condition. 

The neutral condition provides a task-positive control because participants listened to 

music without generating an emotional experience. I predicted that the S-GIMME algorithm 

would reveal subgroups of individuals during the neutral condition. I also predicted that 

individuals in these subgroups would likely differ in their affective responses to the neutral 

composition they heard during the task. These individual differences may be evident in VAS 

scores, self-reports of experiences during the scan, or the number of years of music training they 

may have received.  However, I anticipated that any subgroups revealed during the neutral music 
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condition would not differ on individual difference measures of emotion (e.g., RDEES and TAS-

20). Most importantly, I predicted that these subgroups would be different from those revealed 

during the anger and anxiety conditions, which would suggest that the findings from my previous 

analyses are a result of the evoked states rather than stable individual differences not measured in 

the present experiment. Confirmation of my hypotheses will provide further evidence in support 

of degeneracy in the brain basis of emotional experience. 

Analysis 3: Neutral Condition 

To conduct this analysis, I implemented the S-GIMME procedure on the time series from 

the neutral condition. For any subgroups revealed, I visually assessed differences in the presence 

v. absence of paths between networks during the neutral condition. I then compared the 

subgroups based on VAS ratings of what participants experienced while in the scanner, 

individual difference measures of emotional complexity (RDEES) and alexithymia (TAS-20), as 

well as any potential differences in what participants chose to imagine while in the scanner. 

Finally, I assessed the extent to which the subgroups revealed during the neutral condition 

differed from those revealed during the anger and anxiety conditions. 

Subgroup connectivity. S-GIMME revealed four subgroups of individuals based on 

their brain connectivity during the neutral condition. Subgroup 1 (N = 5) was marked by less 

overall connectivity between subnetworks of DMN (no subgroup-level paths between dDMN, 

vDMN, and PCUN) and between subnetworks of FPC (no subgroup-level paths between lFPC 

and rFPC). Subgroup 2 (N = 5) had connectivity between subnetworks of DMN (from dDMN to 

vDMN), but not between subnetworks of FPC. Subgroup 3 (N = 7) had connectivity between 

subnetworks of DMN (from vDMN to dDMN), connectivity between subnetworks of FPC (from 

rFPC to lFPC), and connectivity between subnetworks of SAL (from aSAL to pSAL). Subgroup 
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4 (N = 7) had connectivity between subnetworks of DMN (from vDMN to dDMN), and 

connectivity between subnetworks of SAL (from pSAL to aSAL). In addition, Subgroup 4 had 

connectivity from aSAL to dDMN and from vDMN to pSAL. Subgroup-level connectivity maps 

for Subgroups 1-4 are depicted in Figure 7. 
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Figure 7.  Subgroup-level connectivity maps for the neutral condition. S-GIMME revealed four subgroups of 
connectivity patterns during the neutral condition. Solid lines represent contemporaneous relationships and dashed 
lines represent lagged (X at time-1 predicts Y at time) relationships. Autoregressive paths (X at time-1 predicts X at 
time) appear as dashed loops. A lagged group-level path (black) from lFPC to Lang was significant for at least 75% 
of individuals across subgroups. All subgroup-level paths (teal) were significant for at least 75% of individuals 
within each subgroup. Individual-level paths (gray) represent each path that exists for at least one individual within 
the subgroup. 
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Music training and demographic measures. As with the anger and anxiety conditions, I 

assessed whether subgroups differed in terms of age, sex, or years of music training. A one-way 

analysis of variance revealed that Subgroup 1 (𝑀 = 5.40), Subgroup 2 (𝑀 = 6.20), Subgroup 3 

(𝑀 = 1.00), and Subgroup 4 (𝑀 = 4.57) did not significantly differ in number of years of music 

training (𝑝 = .47). Similarly, a one-way analysis of variance revealed that Subgroup 1 (𝑀 = 

23.40), Subgroup 2 (𝑀 = 20.80), Subgroup 3 (𝑀 = 22.14), and Subgroup 4 (𝑀 = 24.86) did not 

significantly differ in age (𝑝 = .55). Finally, a Pearson’s Chi-square test for independence with 

Yates’ continuity correction revealed that subgroup classification was independent of sex, 

𝜒!	(3, 𝑁 = 24) = 4.44, 𝑝 = 0.22. I next assessed whether there were any significant 

differences in the post-scan measures of interest. 

Post-scan measures.  I first used analysis of variance to assess differences in VAS scores 

between the four subgroups identified by the S-GIMME procedure during the neutral condition. 

These tests revealed no differences in the extent to which participants experienced feelings of 

anger, anxiety, activation, or unpleasantness during the neutral condition (𝑝s > .10). However, 

non-parametric analyses using the Kruskal-Wallis H-test revealed a significant difference 

between subgroups in the extent to which individuals felt activation during the scan, H(3) = 9.67, 

𝑝 = .02. Post-hoc analysis using Dunn’s test for multiple comparisons revealed significant 

differences between Subgroup 1 (𝑀 = 0.42) and Subgroup 2 (𝑀 = 2.94), 𝑝 = .01, and between 

Subgroup 2 (𝑀 = 2.94), and Subgroup 4 (𝑀 = 0.47), 𝑝 = .01. This finding is consistent with 

analyses of the frequency of arousal words participants in used their self-reports of what they 

chose to imagine while in the scanner for both the parametric (F(3, 16) = 5.43, 𝑝 = .01, 

𝜂p2 = .50) and nonparametric tests (H(3) = 8.94, 𝑝 = .03). The subgroups that differed in VAS 

ratings of activation also differed in the frequency of arousal words used in their self-reports. 
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Specifically, post-hoc analysis using Tukey’s Honestly Significant Difference test revealed a 

marginal difference between Subgroup 1 (𝑀 = 0.80) and Subgroup 2 (𝑀 = 2.25), 𝑝 = .07, and a 

significant difference between Subgroup 2 (𝑀 = 2.25), and Subgroup 4 (𝑀 = 0.17), 𝑝 = .01. 

Dunn’s post-hoc test for the non-parametric analysis similarly revealed a marginal difference 

between Subgroups 1 and 2 (𝑝 = .07) and a significant difference between Subgroups 2 and 4 (𝑝 

= .003). These findings are consistent with recent evidence demonstrating that arousal is 

associated with neuro-modulatory changes in intrinsic network connectivity (e.g., higher levels 

of arousal are associated with increased connectivity within the salience network; Young et al., 

2017). In the present analysis, Subgroup 1, which had lower average scores on our measures of 

activation and arousal, had no connectivity between subnetworks of SAL (note however, that 

Subgroup 4 also had low scores on both measures of arousal/activation but did have connectivity 

between subnetworks of SAL). 

Analyses of the remaining measures collected in the experiment revealed a marginally 

significant difference between subgroups on the TAS-20 measure of alexithymia, F(3, 20) = 

2.76, 𝑝 = .07, 𝜂p2 = .29. Post-hoc analysis using Tukey’s Honestly Significant Difference test 

revealed that this effect is being driven a marginal difference between Subgroup 3 (𝑀 = 45.43), 

and Subgroup 4 (𝑀 = 36.29), 𝑝 = .05. There were no differences between subgroups in 

emotional complexity scores as measured by the RDEES (𝑝 = .90). See Table 5 for results from 

all tests, as well as their nonparametric equivalents. 
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Table 5. Parametric (Fisher’s F-test) and Nonparametric (Kruskal-Wallis H-test) Comparisons of Neutral Subgroups 
1-4 

Measure Subscale Parametric Test Nonparametric Test 

VAS 

Anger F = 0.70, p = 0.56 H = 6.87, p = 0.08 

Anxiety F = 0.98, p = 0.42 H = 2.03, p = 0.57 

Activation F = 2.30, p = 0.11 H = 9.67, p = 0.02 

Unpleasantness F = 0.98, p = 0.42 H = 6.30, p = 0.10 

TAS-20 

Overall Score F = 2.76, p = 0.07 H = 6.27, p = 0.10 

Difficulty Describing Feelings F = 0.92, p = 0.45 H = 3.97, p = 0.26 

Difficulty Identifying Feelings F = 0.86, p = 0.48 H = 2.73, p = 0.44 

Externally-Oriented Thinking F = 1.78, p = 0.18 H = 4.09, p = 0.25 

RDEES 

Overall Score F = 0.19, p = 0.90 H = 0.66, p = 0.88 

Range F = 1.47, p = 0.25 H = 3.92, p = 0.27 

Differentiation F = 0.39, p = 0.76 H = 1.11, p = 0.78 

Self-reported 
descriptions of 
what participants 
chose to think 
about while in the 
scanner 

Frequency of Emotion Words Used F = 0.89, p = 0.47 H = 2.35, p = 0.50 

Frequency of Valence Words Used F = 1.31, p = 0.31 H = 3.31, p = 0.35 

Frequency of Arousal Words Used F = 5.43, p = 0.01 H = 8.94, p = 0.03 

Frequency of Body Words Used F = 0.04, p = 0.99 H = 0.14, p = 0.99 

Internal v. External Scenario F = 0.23, p = 0.87 H = 0.86, p = 0.84 

Social vs. Nonsocial Scenario F = 0.68, p = 0.58 H = 1.78, p = 0.62 

Remembered v. Imagined Scenario F = 1.00, p = 0.43 H = 3.00, p = 0.40 

 

 

Comparison to previous subgroups. Of most interest to the present study is the 

comparison of the neutral subgroups to those revealed during the anger and anxiety conditions. 

Although the neutral music task is similar to the anger and anxiety conditions in that participants 

were listening to music, the subgrouping procedure revealed different subgroups of individuals 
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than those in the two emotion induction conditions (See Figure 8). However, individuals did not 

differ in VAS ratings of emotion felt during the task, nor were there substantial differences in 

individual difference measures of emotion (no difference in RDEES scores and only a 

marginally significant difference between two subgroups in TAS-20 scores). One notable 

difference between the neutral subgroups and those revealed during the anger and anxiety 

condition is the greater degree (i.e., higher number of paths) of connectivity across networks. 

Greater degree of connectivity for the neutral subgroups as compared to the anger and 

anxiety subgroups suggests degeneracy in cognitive processing that is related to factors not 

measured during the present experiment. This finding may also be consistent with growing 

evidence that neural networks are dynamically reconfigured to meet task demands (see Shine & 

Poldrack, 2018 for a review). For example, engaging in high-level construal results in global 

integration of networks (e.g., greater connectivity across distant nodes) as compared to low-level 

construal, which results in segregation of networks (e.g., greater connectivity between 

neighboring nodes; Stillman, Lu, & Fujita, 2020). Because there were fewer constraints imposed 

on participants during the neutral condition (i.e., they were not required to cultivate an emotional 

experience) it is plausible that they were engaging in higher level construal as compared to when 

they completed the emotion induction conditions, which required them to recall or imagine 

specific events in order to induce a particular emotion. Thus, it is possible that greater between-

network connectivity in the neutral condition is a result of the level of construal required by the 

task. Further, the unconstrained nature of the task may have facilitated more mind-wandering or 

other cognitive processes extraneous to the music listening task. Ultimately, these findings show 

further evidence that the subgrouping procedure is not selecting on stable individual differences, 

but rather demonstrating the presence of degeneracy in the brain basis of emotion experience. 
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Figure 8. Subgroup membership across anger, anxiety, and neutral conditions. Subgroup classification during the 
neutral condition differed from that of the anger and anxiety conditions. These findings suggest that the subgroups 
revealed during the anger and anxiety conditions are the result of the evoked states rather than stable individual 
differences that would also be present during a task-positive control condition. 
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CHAPTER 6: ANALYSIS 4 – USING A TASK-NEGATIVE CONTROL CONDITION TO 
RULE OUT THE POSSIBILITY THAT SUBGROUPS WERE DETERMINED BY 

INDIVIDUAL-LEVEL FACTORS 
 

As a final analysis step, I implemented the S-GIMME procedure on the resting state scan 

collected at the beginning of the fMRI experiment to investigate whether subgroups also emerge 

during a task-negative state. The purpose of this analysis is to provide additional evidence to rule 

out the possibility that the subgrouping procedure is selecting on stable individual differences 

that would also be present at rest.  

The resting state scan provides a task-negative control condition because participants 

were asked to simply lie at rest without listening to music or generating an emotional experience. 

I predicted that for the resting state scan, GIMME would reveal patterns of brain activation that 

correspond to typical resting state functional connectivity (e.g., connectivity within Shirer et al.’s 

subnetworks of the DMN and PCUN). In terms of the subgrouping procedure, I predicted that 

any subgroups revealed would reflect normal variability that occurs during task-negative states 

(e.g., variation in the configuration of the default mode network; Deco, Jirsa, & McIntosh, 2011; 

Deco et al., 2009). Finally, I predicted that resting state subgroups, if revealed, would be distinct 

from subgroups revealed for the previous analyses. Confirmation of these hypotheses would 

bolster the existing evidence for degeneracy in the brain basis of emotion experience. 

Analysis 4: Resting State 

To conduct this analysis, I implemented the S-GIMME procedure on the time series from 

the resting state scan. For any subgroups revealed, I visually assessed differences in the presence 

v. absence of paths between networks during rest. VAS ratings and post-scan self-reports were 
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not collected for the resting state scan. However, I was able to compare subgroups revealed 

during rest based on the individual difference measures of emotional complexity (RDEES) and 

alexithymia (TAS-20) collected during the experiment. Finally, I again assessed the extent to 

which the subgroups revealed during rest differed from those revealed during the anger, anxiety, 

and neutral conditions. 

Subgroup connectivity. S-GIMME revealed two subgroups of individuals based on their 

connectivity patterns during the resting state scan. Subgroup 1 (N = 6) had connectivity between 

subnetworks of DMN (from vDMN to dDMN) as well as from Lang to dDMN. However, 

Subgroup 1 did not have subgroup-level connectivity between PCUN and either of the 

subnetworks of DMN, suggesting less overall connectivity within DMN. Subgroup 2 (N = 18) 

had connectivity between subnetworks of DMN (from dDMN to vDMN), as well as from vDMN 

to PCUN. Subgroup-level connectivity maps for Subgroups 1 and 2 are depicted in Figure 9. 

  



 
   

55  

 

Figure 9.  Subgroup-level connectivity maps for resting state. S-GIMME revealed two subgroups of connectivity 
patterns during resting state. Solid lines represent contemporaneous relationships and dashed lines represent lagged 
(X at time-1 predicts Y at time) relationships. Autoregressive paths (X at time-1 predicts X at time) appear as dashed 
loops. Contemporaneous group-level paths (black) from BG to rFPC, and contemporaneous and lagged group-level 
paths from rFPC to lFPC were significant for at least 75% of individuals across subgroups. All subgroup-level paths 
(purple) were significant for at least 75% of individuals within each subgroup. Individual-level paths (gray) 
represent each path that exists for at least one individual within the subgroup. 
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Music training and demographic measures. I again assessed whether subgroups 

differed in terms of age, sex, or years of music training. A Student’s t-test revealed that 

Subgroup 1 (𝑀 = 2.33) and Subgroup 2 (𝑀 = 4.61) did not significantly differ in number of years 

of music training (𝑝 = .27). Similarly, a Student’s t-test revealed that Subgroup 1 (𝑀 = 20.83) 

and Subgroup 2 (𝑀 = 23.61) did not significantly differ in age (𝑝 = .27). Finally, a Pearson’s 

Chi-square test for independence with Yates’ continuity correction revealed that subgroup 

classification was independent of sex, 𝜒!	(1, 𝑁 = 24) = 0.00, 𝑝 = 1.00. I next assessed 

whether there were any significant differences in the post-scan measures of interest. 

Post-scan measures.  Because the resting state scan did not involve music or an emotion 

induction task, participants did not complete the VAS ratings of anger, anxiety, unpleasantness, 

or activation after the scan. For the same reason, I did not collect self-reported descriptions of 

what participants chose to imagine while in the scanner. I was thus unable to assess any potential 

differences in these features of participants’ experiences. I did, however, use Student’s t-tests to 

assess differences between the subgroups on the other post-scan measures collected. These tests 

revealed no differences between subgroups in emotional complexity as measured by scores on 

the RDEES (𝑝 = .86), as well as no differences between subgroups on the TAS-20 measure of 

Alexithymia (𝑝 = .62). See Table 6 for results from all tests, as well as their nonparametric 

equivalents. 
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Table 6. Parametric (Student’s t-test) and Nonparametric (Mann-Whitney U-test) Comparisons of Resting State 
Subgroups 1 and 2 

Measure Subscale Parametric Test Nonparametric Test 

TAS-20 

Overall Score t = 0.51, p = 0.62 U = 59, p = 0.76 

Difficulty Describing Feelings t = -0.06, p = 0.95 U = 55, p = 0.97 

Difficulty Identifying Feelings t = -0.11, p = 0.92 U = 55, p = 0.97 

Externally-Oriented Thinking t = 1.01, p = 0.35 U = 70, p = 0.30 

RDEES 

Overall Score t = -0.18, p = 0.86 U = 52.5, p = 0.95 

Range t = -0.51, p = 0.62 U = 45.5, p = 0.59 

Differentiation t = 0.12, p = 0.91 U = 61.5, p = 0.64 

Note: VAS ratings and self-reported descriptions of what participants thought about while in the scanner were not 
collected for the resting state scan 
 

Comparison to previous subgroups. The subgroups revealed during the resting state 

scan were distinct from those revealed during the neutral condition, as well as those revealed 

during the two emotion induction conditions (See Figure 10). As might be expected, both 

subgroups revealed during the resting state scan exhibited different sub-configurations of 

canonical resting state connectivity (i.e., activity within the default mode network; Raichle et al., 

2001). However, the fact that two subgroups were revealed during rest may reflect individual 

differences in resting state functional connectivity that are obscured when only considering 

mean-level activation. The subgroups revealed may again reflect degeneracy in cognitive 

processing that is related to factors not measured during the present experiment. Nonetheless, the 

finding that these subgroups differ from those revealed during other conditions provides further 

evidence that the subgrouping procedure is selecting on degenerate patterns of connectivity 

related to the experience of emotion. 
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Figure 10. Subgroup membership across anger, anxiety, neutral, and resting state. Subgroup classification during 
resting state differed from that of the neutral condition as well as the anger and anxiety conditions. These findings 
demonstrate that the subgroups revealed during the anger and anxiety conditions are the result of the evoked states 
rather than stable individual differences that would also be present during task-positive or task-negative control 
conditions. 
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CHAPTER 7: REMAINING QUESTIONS 
 

This project is a promising first step toward demonstrating the extent to which the 

experience of emotion is characterized by degeneracy. It employed a novel data-driven model 

selection algorithm to identify subgroups of individuals who have similar patterns of brain 

activation during the experience of emotion. However, there are several alternate hypotheses for 

the basis of the subgroups revealed in the present study. While some alternate hypotheses must 

be tested in future research, several can be tested with the data presently available. In this 

chapter, I will address three remaining questions regarding the nature of the subgroups: 1) is 

subgroup membership related to differences in degree of connectivity for individuals who scored 

higher v. lower on alexithymia? 2) is subgroup membership related to counterbalanced run 

order? 3) is subgroup membership related to subject head motion? 

 Is subgroup membership related to degree of connectivity in alexithymia? 

 The first remaining question involves whether the degree of connectivity underlying 

participants’ emotional experiences contributed to subgroup membership over and above the 

individual difference measure of alexithymia. In three out of four conditions in the present study, 

I observed differences across subgroups in scores on the TAS-20 measure of alexithymia (i.e., 

anger, anxiety, and neutral). It is possible that the subgroups revealed also differed in degree of 

individual-level connectivity based on whether they scored higher v. lower on the TAS-20 

measure. If the subgroups with higher alexithymia scores also had greater degree of connectivity, 

it would leave open the possibility that subgroup membership is simply based on the number of 

paths between networks, rather than differences in the features of participants’ experiences. To 
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test for subgroup differences in degree of connectivity, I computed the number of paths in each 

participant’s individual-level connectivity map for each of the three conditions. Within each 

condition, I compared average degree of connectivity between the two subgroups that differed on 

the TAS-20 measure of alexithymia. 

Anger Condition. Participants in Subgroup 1 contained participants who scored, on 

average, higher on the TAS-20 (𝑀 = 44.20) as compared to participants in Subgroup 2 (𝑀 = 

37.67), t(18.99) = 2.51, 𝑝 = .02, Cohen’s d  = 1.04, 95% CI [0.08, 1.99].  However, there was no 

difference in average degree of connectivity for participants in Subgroup 1 (𝑀 = 43.70 paths) 

and Subgroup 2 (𝑀 = 43.92 paths), 𝑝 = .94. 

Anxiety Condition. Participants in Subgroup 1 scored higher on the Difficulty 

Identifying Feeling (DIF) Subscale of the TAS-20 (𝑀 = 15.33) as compared to participants in 

Subgroup 2 (𝑀 = 12.00), t(21.47) = 2.30, 𝑝 = .03, Cohen’s d = .94, 95% CI [0.05, 1.83]. As with 

the anger condition, however, there was no difference in average degree of connectivity for 

participants in Subgroup 1 (𝑀 = 41.83 paths) and Subgroup 2 (𝑀 = 45.92 paths), 𝑝 = .20. 

Neutral Condition. An analysis of variance revealed a marginal difference between 

subgroups on the TAS-20 measure of alexithymia, F(3, 20) = 2.76, (𝑝 = .07), 𝜂p2 = .29. Post-hoc 

analysis using Tukey’s Honestly Significant Difference test revealed that this effect was driven a 

marginal difference between Subgroup 3 (𝑀 = 45.43), and Subgroup 4 (𝑀 = 36.29), 𝑝 = .05. 

However, consistent with my analyses of the emotion induction conditions, there was no 

difference in average degree of connectivity for participants in Subgroup 3 (𝑀 = 27.29 paths) 

and Subgroup 4 (𝑀 = 31.00 paths), 𝑝 = .47. 

The above analyses demonstrate that the subgroups revealed during the anger, anxiety, 

and neutral conditions were not merely the result of differences in degree of connectivity related 
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to higher scores on the TAS-20 measure of alexithymia. This is perhaps because alexithymia has 

been associated with diminished connectivity within the DMN, and simultaneously greater 

connectivity between DMN and areas involved in sensory input and cognitive control 

(Liemburg, Swart, Bruggeman, Kortekaas, & Knegtering, 2012; Moriguchi & Komaki, 2013). 

Put differently, overall degree of connectivity may not differ across these subgroups because 

decreased connectivity within self-referential regions of the brain in alexithymia may be 

canceled out by greater connectivity elsewhere. Nonetheless, these findings suggest that the 

subgroups revealed in the present study are associated with the features of participants’ 

experiences rather than the degree of connectivity underlying those experiences. 

Is subgroup membership related to counterbalanced run order? 

 The second remaining question involves whether the subgroups identified in the present 

experiment depended on the order in which participants completed the within-subjects emotion 

induction conditions. The scan procedure involved counterbalancing the order in which 

participants engaged in the anger and anxiety inductions, so it is possible that participants’ 

experiences may have differed depending on whether they completed the anger condition first or 

the anxiety condition first. For example, completing the anxiety condition first could have had a 

residual effect on the anger condition such that those participants’ angry brain states looked 

different from “pure” angry states, and vice versa. To assess this possibility, I conducted Chi-

square analyses for both the anger and anxiety conditions to test for independence between 

subgroup membership and counterbalanced run order.  

Anger Condition. Pearson’s Chi-square test for independence with Yates’ continuity 

correction revealed that subgroup classification during the anger condition was independent of 
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whether participants completed the anger induction before or after completing the anxiety 

induction, 𝜒!	(1, 𝑁 = 22) = 0.002, 𝑝 = 0.97. 

Anxiety Condition. Pearson’s Chi-square test for independence with Yates’ continuity 

correction revealed that subgroup classification during the anxiety condition was independent of 

whether participants completed the anxiety induction before or after completing the anger 

induction, 𝜒!	(1, 𝑁 = 24) = 0.00, 𝑝 = 1.00. 

The above analyses demonstrate that subgroup membership in the anger and anxiety 

conditions is independent of counterbalanced run order. Thus, I can rule out the alternate 

explanation that the counterbalanced order in which participants completed the within-subjects 

conditions shaped their experiences in ways that determined their subgroup membership. 

 Is subgroup membership related to head motion? 

 The final remaining question that can be answered with the available data is whether 

subgroup membership is related to differences in head motion during the experiment. The data 

collected in the present experiment were censored for head motion using the ART toolbox. ART 

identifies timepoints with excessive motion and uses them as nuisance regressors in the first-

level analysis step. Despite the implementation of this procedure, however, it remains possible 

that motion artifacts still contributed to the findings. Because head motion mimics functional 

connectivity (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012), it is critical to rule out the 

alternate hypothesis that subgroup classification in the present study was influenced by motion 

artifacts. As a conservative test of whether there were differences in motion across the subgroups 

revealed, I conducted a separate analysis of subgroup differences in head motion prior to the 

implementation of the ART procedure. 
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Following Van Dijk, Sabuncu, and Buckner (2012), I computed mean and max 

displacement for each participant as the root mean square (RMS) of the translation parameters 

such that 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = 𝑠𝑞𝑟𝑡(𝑥! +	𝑦! +	𝑧!). I then assessed whether there were differences 

between subgroups in the mean and max displacement metrics. 

Anger Condition. There were no differences between Subgroup 1 (𝑀 = .133 mm) and 

Subgroup 2 (𝑀 = .139 mm) in mean displacement during the anger condition, 𝑝 = .79. Similarly, 

there were no differences between Subgroup 1 (𝑀 = .398 mm) and Subgroup 2 (𝑀 = .635 mm) 

in max displacement during the anger condition, 𝑝 = .41. 

Anxiety Condition. There were no differences between Subgroup 1 (𝑀 = .145 mm) and 

Subgroup 2 (𝑀 = .176 mm) in mean displacement during the anxiety condition, 𝑝 = .30. 

Similarly, there were no differences between Subgroup 1 (𝑀 = .693 mm) and Subgroup 2 (𝑀 = 

.787 mm) in max displacement during the anxiety condition, 𝑝 = .75. 

Neutral Condition. There were no differences between Subgroup 1 (𝑀 = .134 mm), 

Subgroup 2 (𝑀 = .149 mm), Subgroup 3 (𝑀 = .135 mm), and Subgroup 4 (𝑀 = .134 mm) in 

mean displacement during the neutral condition, 𝑝 = .40. Similarly, there were no differences 

between Subgroup 1 (𝑀 = .502 mm), Subgroup 2 (𝑀 = .695 mm), Subgroup 3 (𝑀 = .362 mm), 

and Subgroup 4 (𝑀 = .339 mm) in max displacement during the neutral condition, 𝑝 = .18. 

Resting State. There were no differences between Subgroup 1 (𝑀 = .139 mm) and 

Subgroup 2 (𝑀 = .142 mm) in mean displacement during resting state, 𝑝 = .91. Similarly, there 

were no differences between Subgroup 1 (𝑀 = .437 mm) and Subgroup 2 (𝑀 = .727 mm) in max 

displacement during resting state, 𝑝 = .32. 

In sum, there were no differences between subgroups in mean or max displacement 

during any of the four within-subjects conditions. I can thus rule out the alternate explanation 
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that the subgroups revealed in the present study are the result of motion artifacts. Together, the 

findings from these three additional analyses help to rule out the alternate hypothesis that the 

subgroups revealed during the anger and anxiety conditions are a result of noise or some other 

factor unrelated to the experience of emotion. Rather, these subgroups represent initial evidence 

for between-person degeneracy in the experience of anger and anxiety.  
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CHAPTER 8: GENERAL DISCUSSION 
 

This work is the first to empirically investigate the principle of degeneracy in the brain 

basis of emotion experience. I predicted and found that across participants, different neural 

pathways can produce the same category of emotional experience. During the experience of 

anger and anxiety, subgroups of individuals had emotional experiences that differed in terms of 

the features of that category, but not in the category experienced itself.  

In my first analysis, S-GIMME revealed two subgroups approximating the experimental 

conditions participants completed. This finding suggests that the algorithm was selecting on 

variability related to differences in the experiences of anger and anxiety participants generated in 

the scanner. However, I also found a third subgroup which contained brain states from both the 

anger and anxiety conditions. This is interesting because it suggests that some features of the 

neural representations of anger and anxiety are shared across both experiences. The finding that 

there was not perfect segregation of experimental conditions is consistent with the psychological 

constructionist view that emotions are not characterized by specific “neural signatures.” Rather, 

the experience of emotion is represented in distributed brain regions and networks that support 

psychological processes that are not themselves unique to emotion (see Barrett, 2017). Thus, it is 

not surprising that some brain states associated with anger and anxiety were classified into the 

same subgroup. 

My primary hypothesis was that there would be degeneracy within instances of anger and 

anxiety. The results from my second analysis supported this hypothesis. Participants in both of 
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the anger subgroups experienced the same degree of anger, despite the fact that Subgroup 1 

experienced anger as a slightly more unpleasant state. Subgroup 1 also scored higher on 

alexithymia, a subclinical emotional disorder that has been linked to the experience of greater 

intensity of negative affect (Byrne & Ditto, 2005; Friedlander et al., 1997; Luminet et al., 2004). 

In terms of connectivity patterns, Subgroup 1 was characterized by greater connectivity within 

subnetworks of the salience network. These findings converge nicely with prior work showing 

that activation within regions of the salience network is associated with the experience and 

intensity of negative affect (Lindquist et al., 2016; Seeley et al., 2007; Touroutoglou, 

Hollenbeck, Dickerson, & Barrett, 2012b). On the one hand, it may be tempting to conclude that 

individuals who were experiencing anger that was more intensely negative were experiencing a 

categorically different state. However, there is substantial variability within an emotion category 

in terms of the features that are experienced. Although it is commonly assumed that each 

emotion category is characterized by a prototypical degree of valence and activation, in actuality, 

there is substantial variance in how unpleasant or activating any given instance of an emotion 

category is experienced to be (Kuppens, Tuerlinckx, Russell, & Barrett, 2013; Kuppens et al., 

2017; Wilson-Mendenhall, Barrett, & Barsalou, 2014). Thus, it is reasonable to assume that 

participants were experiencing instances of anger with slightly different features; the subgroups 

revealed in the present study seemed to reflect these distinctions.  

As with the anger condition, participants in both of the anxiety subgroups experienced the 

same degree of anxiety (note that the parametric—but not the nonparametric—analysis of VAS 

ratings of anxiety revealed a significant difference in reported anxiety prior to the removal of one 

outlier that was having undue leverage on the results). Subgroup 1 contained individuals who 

scored higher on the Difficulty Identifying Feelings (DIF) subscale of the TAS-20. This same 
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subgroup was also characterized by less connectivity between the language network and the left 

frontoparietal control network. Lack of connectivity between these networks may explain 

Subgroup 1’s higher scores on the DIF subscale of the TAS-20 insofar as decreased connectivity 

within these networks reflects difficulty in semantic selection and retrieval that is necessary to 

identify and label one’s emotional state (Chiou, Humphreys, Jung, & Lambon Ralph, 2018; 

Hirshorn & Thompson-Schill, 2006; Klein, Milner, Zatorre, Meyer, & Evans, 2006; Whitney, 

Kirk, O’Sullivan, Lambon Ralph, & Jefferies, 2011). Unlike the anger condition, participants did 

not appear to differ in any of the qualitative features of anxiety, as assessed by VAS scores or 

open-ended reports.  

The findings from the anger and anxiety conditions suggest degeneracy in the brain basis 

of emotion experience. However, those findings alone are unable to fully rule out the alternate 

hypothesis that the observed subgroups refelct person-level factors that are unrelated to the 

evoked anger and anxiety states. I thus conducted two additional analyses afforded by the 

experimental design—one of a task-positive control condition (neutral), and one of a task-

negative control condition (resting state). My analysis of the neutral condition revealed four 

subgroups of individuals. Those subgroups collectively exhibited a greater degree of connectivity 

(i.e., total paths between networks) compared to the subgroups revealed during the anger and 

anxiety conditions. This increase in degree of connectivity between networks may reflect the 

unconstrained nature of the task, as greater global connectivity has been associated with tasks 

that involve a more expansive scope (i.e., higher level of construal; Stillman et al., 2020). 

Importantly, the four subgroups revealed during the neutral condition were similar in their 

reports of what they experienced during the scan, except that they differed in the degree to which 

they felt activation during the task and used more arousal-related words to describe what they 
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chose to imagine in the scanner. They also differed only slightly in the individual difference 

measures collected following the experiment (i.e., one marginally significant difference in TAS-

20 scores between Subgroups 3 and 4). Critically, consistent with my hypothesis, the subgroups 

revealed during the neutral condition were distinct from those revealed during the anger and 

anxiety conditions. These findings provide further evidence that the subgroups revealed during 

the evoked anger and anxiety states were not a result of stable person-level factors that would be 

present during an affectively neutral, task-positive control condition. 

As a final analysis step, I implemented the S-GIMME procedure on the resting state data 

collected at the beginning of the experiment. The purpose of this step was to provide the most 

stringent test of the alternate hypothesis that the subgroups revealed during the anger and anxiety 

conitions are the result of stable person-level factors that would also be present during a task-

negative control condition. Analysis of the resting state data revealed two subgroups of 

individuals. Both subgroups exhibited patterns of connectivity that would be expected during 

rest. Specifically, Subgroup 1 had connectivity between subnetworks of default mode and 

between the default mode and the language network, whereas Subgroup 2 had connectivity 

between subnetworks of default mode and the precuneus network. The subgroups revealed 

during rest likely reflect two sub-configurations of the default mode network, as prior work 

shows that the canonical default mode network can be fractionated into subnetworks. For 

instance, the medial aspects of the default mode network (containing the precuneus) can be 

differentiated from the lateral language areas and the angular gyrus (Yeo et al., 2011). The 

precuneous is associated with memory and self-relevant visual imagery (Cavanna & Trimble, 

2006) whereas the language network is associated with semantic processing (Demonet et al., 

1992). These networks may thus reflect people who are in relatively different “modes” of the 
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default state, such as mind-wandering that is relatively more autobiographical/imagery-based v. 

mind wandering that is more semantic and linguistic. It would be interesting to investigate this 

finding in future research. Most critically, the subgroups revealed during rest are distinct from 

those revealed during the anger, anxiety, and neutral conditions.  

Taken together, the findings observed in the present study suggest degeneracy in the 

brain basis of emotion experience. Evidence for degeneracy in the distributed patterns of brain 

activation during the experience of emotion is ultimately consistent with the Theory of 

Constructed Emotion (TCE), which proposes that emotions are variable populations of instances 

that arise from combinations amongst a set of domain-general intrinsic networks (Clark-Polner et 

al., 2017; Touroutoglou et al., 2015; Wager et al., 2015; see Barrett & Satpute, 2013 for a 

review). These findings add to growing evidence that the brain processes associated with 

different emotion categories are not as categorical as typically assumed (Lindquist et al., 2012; 

Wilson-Mendenhall, Barrett, Simmons, & Barsalou, 2011). For instance, the amygdala is 

involved in almost every type of emotion experience and perception—not just the category of 

fear. The brain states associated with emotion experience are characterized by between-category 

variation, but critically, also by important within-category variation (Leshin, McCormick, Doyle, 

Nam, & Lindquist, in prep; Wang, Boatman, & Satpute, in prep; Wilson-Mendenhall et al., 

2014). This within-category variation corresponds to differences in the situated behaviors, 

sensations, and phenomenology that people experience across different instances of the same 

emotion.  

Emotions are situated conceptualizations that are tailored to the immediate environment 

(Barrett & Lindquist, 2008). As such, the features that make up an emotion category are thought 

to vary across contexts. The present work revealed some evidence that the features of an emotion 
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experience may vary, although questions remain about what those features might be. 

Nonetheless, it is possible that those features contributed to the subgroups observed.  However, 

to the extent that one might subscribe to the idea that emotion categories should be fractionated 

into subtypes (Adolphs, 2017; Scarantino, 2009; Silva et al., 2013), it could be argued that the 

subgroups revealed simply represent different subtypes of the same emotion (e.g., social fear v. 

fear of a predator). Future research would be needed to rule out this alternate explanation, and 

would require conducting the same experiment across multiple samples or within the same 

sample across time. If the same connectivity patterns were to appear across multiple samples or 

within the same sample across time, it would suggest that these subgroups reflect subtypes of the 

same emotion (i.e., Subgroups 1 and 2 from the anger condition reflect two distinct subtypes of 

anger). However, if there are differences in connectivity patterns across samples or across time 

during the experience of the same emotion, it would provide evidence for degeneracy in the brain 

basis of emotion experience.  The latter would most likely be the case, as there is probably more 

variability in emotion experience than can be captured by a select group of emotion subtypes. If 

variability in emotion is linked to situational context, then there would be as many emotion 

“subtypes” as there are situations. 

The idea that emotions vary based on situational context underscores why degeneracy in 

brain function likely exists. Manipulating the situational context surrounding an affective 

experience alters the distributed patterns of neural activation underlying that experience. For 

instance, emotions such as anger and fear are represented differently when experienced in a 

physical danger situation vs. a social evaluation situation (Wilson-Mendenhall et al., 2011). The 

present research adds to growing evidence that emotions are not biologically determined 

responses with stable neural signatures, but rather situated conceptualizations with distributed 
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neural representations that vary across individuals. Within-category variation, and corresponding 

neural degeneracy, even exists within the relatively more constrained adaptive behavioral 

responses that non-human animals engage in (Barrett & Finlay, 2019).  

Limitations and Caveats 

There are several limitations and caveats of the present research. First, this study was 

limited by a small sample size, as has traditionally been common in neuroimaging research. 

However, my analytic approach relies on the uSEM framework, in which time points—rather 

than participants—serve as sampling units. In the present study, each participant has 150 time 

points per run, and simulations show that S-GIMME can recover reliable subgroups with as few 

as 60 timepoints (Lane et al., 2019). Thus, I was well-powered to detect subgroups if they existed 

using S-GIMME. I may have been underpowered to find differences in behavioral or self-report 

data that characterized those subgroups, however. Future studies might use a larger sample size 

to see if the general pattern observed here replicates. 

 A second limitation is related to the emotion induction method employed in the present 

experiment. While the continuous music technique is a well-established method for reliably and 

robustly inducing emotion (Eich, 1995), it affords researchers little control over the content of 

participants’ emotional experiences in the scanner. It is (perhaps erroneously) assumed that there 

is more homogeneity in the processes invoked via visual methods of emotion induction (e.g., 

viewing slides from the International Affective Pictures System; Lang, Bradley, & Cuthbert, 

2008), yet this is ultimately an empirical question. A meta-analysis of emotion induction 

techniques found that the effect size associated with viewing pictures was large (Hedges’ g = 

.81), whereas the effect size associated with imagination or music inductions were considered 

medium (Hedges’ g = .51 and .53, respectively; Lench, Flores, & Bench, 2011). However, tasks 
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that induce emotion in the scanner using aversive images lack ecological validity and idiographic 

richness. The emotion induction task used in the present study may actually be a strength for 

addressing degeneracy because it required participants to self-generate actual or prospective 

scenarios and to experience the features of the emotion category that they find most personally 

relevant to the prescribed emotion. Nonetheless, it would be important to see if degeneracy in 

emotional brain states occurs across different induction methods, including those that might 

produce more heterogenous brain states. 

 A third limitation of the present research is that the subgroup differences revealed may 

reflect unmeasured processes rather than degeneracy in emotion experience per se. For instance, 

it is possible that the subgroups revealed in the present study reflect differences in the extent to 

which participants may have engaged in emotion regulation or allowed their minds to wander 

during the task. It is also possible that these subgroups reflect differences in strategies 

participants used to cultivate emotional experiences (e.g., differences in the types of scenarios 

that participants simulated during the emotion induction tasks) that are peripheral to the emotion 

being experienced. The lack of meaningful differences in self-reports of what participants chose 

to imagine while in the scanner suggests that this is not the case. However, I cannot fully rule out 

the possibility that I failed to detect such differences because participants were simply not asked 

the right questions, and that collecting additional self-report measures may have revealed those 

differences. Especially with regard to the question about emotion regulation, future research 

might address the extent to which participants were explicitly trying to reduce the intensity of 

their unpleasant feelings during the task.  

A final caveat of the present research is that I chose one set of network-based ROIs to 

guide my approach. There are multiple parcellations of intrinsic networks available in the 
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literature, including those that prioritize temporal segregation v. those that prioritize spatial 

segregation of brain structures (Smith et al., 2012). I opted for the Shirer et al. (2012) ROIs 

because their multiple networks offered a level of granularity that would allow me to assess 

connectivity between multiple networks during emotion rather than merely focusing on one or 

two networks, as in past work (e.g., Raz et al. 2012; 2016). The Shirer et al. (2012) parcellation 

includes 90 functional ROIS comprising 14 intrinsic networks known to be involved in emotion. 

These ROIs were derived during rest and validated through classification of three subject-driven 

cognitive states. Because these ROIs outperformed existing structural ROIs in terms of their 

classification accuracy (Shirer et al., 2012), I felt they were appropriate for use in the present 

study.  

One potential drawback of the Shirer et al. (2012) ROIs is that certain regions fall into 

multiple networks. Perhaps most notably, the precuneus is a region in several of Shirer et al.’s 

(2012) functionally defined networks (e.g., both subnetworks of DMN, left FPC, posterior SAL, 

and of course PCUN). However, this partially overlapping network parcellation respects the 

functional architecture of the brain. Indeed, while canonical networks have been traditionally 

assumed to be constellations of mutually exclusive brain regions functioning in parallel, there is 

considerable overlap such that regions in association cortex belong to multiple networks (Najafi, 

McMenamin, Simon, & Pessoa, 2016; Xu et al., 2013; Yeo, Krienen, Chee, & Buckner, 2014). 

Moreover, this functional overlap is dynamic, such that brain regions are continually shifting 

network affiliation over time (Ciric, Nomi, Uddin, & Satpute, 2017). Such overlap is consistent 

with degeneracy’s complimentary opposite—pluripotentiality—where a single brain region or 

structure can perform multiple functions (Noppeney et al., 2004). It would be interesting in 
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future work to examine the degree of consistency v. differentiation that is found in subgroups 

depending on the network configurations assessed. 

Future Directions 

The present work focused on degeneracy in the neural representation of emotion across 

individuals. However, findings from lesion studies, which demonstrate unimpaired affective 

functioning despite damage to limbic structures (e.g., Becker et al., 2012; Damasio, Damasio, & 

Tranel, 2013; Feinstein, 2013; Feinstein et al., 2016, 2010), suggest that degeneracy is also likely 

to occur within individuals. Future work should examine intra-individual degeneracy in neural 

network activity during emotional experience. For instance, this could be achieved by conducting 

multiple-session experiments in which participants complete the same emotion task across at 

least two time points. A study designed to investigate intra-individual degeneracy should differ 

from typical longitudinal designs in that sessions should be linked closely in time (e.g., within 

the same day or separated by only a few days) in order to preclude the possibility that intra-

individual changes in neural activation during the same task across scans is a result of typical 

developmental changes in functional connectivity that occur across time. If the same individuals 

are found to cluster into the same subgroups across time, it would mean that the subgroups might 

represent subtypes of the given emotion category. Alternatively, if subgroups differ across time, 

not only in their composition but also in the constellations of connectivity they represent, it 

would provide evidence for intra-individual degeneracy in the experience of emotion. This type 

of approach would also allow researchers to begin to home in on the extent to which stable 

individual differences v. situated variability contribute to degenerate brain states of emotion.  

Finally, an obvious next step of this research program would be to examine how 

degeneracy is related to emotional dysfunction. It would be interesting to explore how intra-
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individual degeneracy exists across people with and without emotion-based psychopathology.  

There is some evidence that variation in functional connectivity is adaptive for network function 

(Deco et al., 2009; Ghosh, Rho, McIntosh, Kötter, & Jirsa, 2008; McDonnell & Ward, 2011) and 

is related to cognitive flexibility (Cohen, 2018).  Thus, individuals with psychopathology may 

have less neural degeneracy. Finding that degeneracy is associated with adaptive cognitive and 

emotional functioning would provide further evidence for the importance of studying individual 

differences in network connectivity. This research would be an important first step toward 

understanding factors that predict variability in the extent to which intra-individual degeneracy 

exists in the brain basis of emotion experience. 

Conclusion 

Recent methodological advances in neuroscience have enabled researchers to study 

emotions as dynamic, contextualized experiences (Barrett & Satpute, 2017), an approach that is 

more consistent with the emerging scientific picture of the nature of emotion. This work 

contributes to this movement by applying a novel unsupervised classification algorithm to 

investigate the principle of degeneracy in emotional experience across individuals. The S-

GIMME algorithm enabled me to investigate individual-level differences that traditional 

neuroimaging analyses do not allow. These findings suggest that patterns of neural activation 

during emotion experience are characterized by considerable degeneracy across individuals. 

Although generally well-accepted in the biological sciences, the notion of degeneracy in the 

brain basis of emotion experience is just beginning to take hold. I hope that these findings will 

help set the stage for future research examining degeneracy in processes related to emotion and 

beyond. 
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