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ABSTRACT 
 

Michael Rhys Griarte Pablo: Spatiotemporal coordination of signaling at single molecule resolution 
(Under the direction of Timothy Elston and Klaus Hahn) 

 
Advances in live-cell single-molecule imaging and modeling over the past decade have invited the 

closer study of biological structure and dynamics at the nanoscale. The higher resolution of these single-

molecule experiments results in finely-grained datasets that can feed detailed quantitative models. 

Likewise, single-molecule models can account for microscopic details such as noise and heterogeneity 

inherent to diffusional and chemical processes, which are often neglected in models based on bulk 

concentrations. Examining microscale biological structures at single molecule resolution in living cells 

has led to new findings, such as the dynamic regulation of nanoscale structure. I cover three topics from 

the perspective of single molecules. Chapters 1-3 are on modeling the spatiotemporal coordination of both 

spontaneous and pheromone-guided yeast polarity establishment. Chapter 4 is on computational modeling 

and analysis for a technique called Binder/Tag, which we applied to study the conformational dynamics 

of the protein Src kinase in living cells. Chapter 5 is on modeling clustering-mediated activation of 

immunoreceptors, using the phagocytic receptor FcγRIIA as a prototypical example. 

  



 

 iv 

This is dedicated to family, friends, and teachers 
who believed in me when I did not believe in myself. 

  



 

 v 

ACKNOWLEDGEMENTS 
 

I am forever grateful for the support my family has given me throughout my PhD. Your calls, texts, 

and visits were sources of kindnesss, love, and energy that lifted me up. No matter what happened during 

my time here at UNC, I could rely on you. I’ve held onto all the mail you sent me over the past five years 

as a physical reminder of your support. Thank you so much.   

I’ve had the fortune to be surrounded by many wonderful people who have been sources of 

friendship and inspiration. Amy Pomeroy and Kimiko Suzuki, it was a pleasure to spend the past five 

years together as labmates in spirit, even if not in location. J. Cody Herron, thank you for working with 

me on our shared projects; I hand off the torch to you! Sam Ramirez, Bei Liu, Orrin Stone, Khem 

Ghusinga, Kaiyun Guan, Nick Elston and Nick Henderson – thank you for collaborating with me and 

improving my work. Thank you as well to many of the other Elston and Hahn lab members who have 

offered both advice and jokes over the years, including Vinal Lakhani, Callie Miller, Jeff Snell, Shuang 

Li, Takashi Watanabe, Ellen O’Shaughnessy, Dan Marston, Nick Pinkin, and Neha Pankow, Ana 

Nogueira, Shiqiong Hu, Fred Pimenta, and Joe Szulczewski. Beyond the lab, I thank Sam Stadmiller, 

Emily Lentz, and Ben Morgan, for our many fun get-togethers spanning food, art, games, and TV. I am 

also incredibly lucky to have met my partner Tom Swiderski while at UNC. In the past year, you have 

been supportive, inspiring, and a joy to be around.

Last but not least, I have been blessed with brilliant mentors. Tim and Klaus, thank you for taking 

a chance on me, despite my lack of experience in either of your fields of expertise. Your guidance and 

support over the years have helped me to grow both as a person and a scientist. Thank you also to Danny 

Lew at Duke for his support and collaboration, and likewise to Beverly Errede and Henrik Dohlman for 

their insightful comments in lab meetings over the years. I also need to thank the Molecular and Cellular 



 

 vi 

Biophysics Training program, and especially Lisa Phillippie. Her support and the program’s support made 

it possible for me to take my first steps towards the work presented here.



 

 
 vii 

 

 

 

TABLE OF CONTENTS 

LIST OF TABLES ....................................................................................................................................... xi 

LIST OF FIGURES .................................................................................................................................... xii 

LIST OF ABBREVIATIONS ..................................................................................................................... xv 

Chapter 1: Noise drives organization in a Turing-type model of yeast polarity establishment ................ 1 

Overview ................................................................................................................................................... 1 

1.1. Introduction ................................................................................................................................... 2 

1.2. Establishing a connection between macroscopic and microscopic rate constants ........................ 6 

1.3. Previously reported kinetic parameters are strongly diffusion-limited ......................................... 8 

1.4. Microscopic fluctuations promote polarity establishment .......................................................... 10 

1.4.1. Enhanced polarization within 2D simulations .................................................................... 10 

1.4.2. Enhanced polarization within quasi-3D simulations ........................................................... 14 

1.5. Discussion ................................................................................................................................... 19 

1.6. Methods....................................................................................................................................... 22 

1.6.1. The molecular circuit for polarity establishment ................................................................ 22 

1.6.2. Particle-based simulations in 2D ......................................................................................... 25 

1.6.3. Particle-based simulations in quasi-3D ............................................................................... 26 

1.6.4. Reaction-diffusion partial differential equation simulations ............................................... 28 

1.6.5. Empirically mapping macroscopic to microscopic rate constants ...................................... 28 

1.7. Supplemental Methods and Derivations ..................................................................................... 33 

1.7.1. Quantifying polarization ..................................................................................................... 33 



 

 
 viii 

1.7.2. Determining bifurcation points ........................................................................................... 35 

1.7.3. Estimating the 2D diffusion limit ........................................................................................ 37 

1.7.4. Deriving and validating the 2D 𝜆𝜆 − 𝜚𝜚 theory ...................................................................... 39 

1.7.5. Deriving integrals for quasi-3D injection and ejection ....................................................... 44 

1.7.6. Loss of polarity with increasing membrane diffusivity ...................................................... 46 

1.7.7. An alternative to the quasi-3D system ................................................................................ 46 

REFERENCES ....................................................................................................................................... 48 

Chapter 2: Ratiometric GPCR signaling enables directional sensing in yeast ........................................ 52 

Overview ................................................................................................................................................. 52 

2.1. Introduction ................................................................................................................................. 53 

2.2. Nonuniform GPCR distributions can mislead G-protein activation ........................................... 54 

2.3. Ratiometric GPCR signaling robustly directs G-protein activation ............................................ 56 

2.4. Ratiometric GPCR signaling can sharpen the G-protein gradient .............................................. 59 

2.5. Discussion ................................................................................................................................... 60 

2.6. Methods....................................................................................................................................... 62 

2.6.1. Particle-based simulations of ratiometric and nonratiometric gradient sensing .................. 62 

2.6.2. Establishing receptor density and activity gradients ........................................................... 63 

2.6.3. Calibrating G-protein inactivation rates .............................................................................. 63 

2.6.4. Particle-based simulations of receptor gradient degradation .............................................. 64 

REFERENCES ....................................................................................................................................... 66 

Chapter 3: Yeast polarization toward mating partners ............................................................................ 69 

Overview ................................................................................................................................................. 69 

3.1. Introduction ................................................................................................................................. 70 

3.2. Stable polarization is insensitive to shallow gradients ................................................................ 72 



 

 
 ix 

3.3. Indecisive polarization is sensitive to shallow gradients ............................................................ 75 

3.4. Can polarization during the indecisive phase guide a stable polarity site? ................................. 78 

3.5. Pheromone gradients under mating conditions may be highly non-linear .................................. 78 

3.6. Discussion ................................................................................................................................... 80 

3.7. Methods....................................................................................................................................... 81 

3.7.1. Particle-based simulations of GPCR-coupled polarity establishment ................................. 81 

3.7.2. Quantifying patch movement with frame-to-frame correlation .......................................... 83 

3.7.3. Analyzing polarization relative to the gradient ................................................................... 83 

3.7.4. Simulating pheromone gradients experienced by a mating pair ......................................... 83 

REFERENCES ....................................................................................................................................... 85 

Chapter 4: Probing conformational changes of single molecules in living cells with Binder/Tag ......... 87 

Overview ................................................................................................................................................. 87 

4.1. Introduction ................................................................................................................................. 89 

4.2. Single particle tracking of total and active Src with Binder/Tag ................................................ 90 

4.3. Accumulation of active Src in adhesions in a size-dependent process ....................................... 94 

4.4. Nanoscale clusters of Src are dynamic hotspots of activity ........................................................ 97 

4.5. Inferring in vivo biochemical kinetics ....................................................................................... 102 

4.6. Discussion ................................................................................................................................. 107 

4.7. Methods..................................................................................................................................... 110 

4.7.1. Single molecule microscopy ............................................................................................. 110 

4.7.2. Diffusional analysis........................................................................................................... 111 

4.7.3. Correlating adhesion imaging with single particle tracking .............................................. 112 

4.7.4. Cluster analysis ................................................................................................................. 112 

4.7.5. Co-diffusion events and kinetic modeling ........................................................................ 114 

4.7.6. Statistical tests ................................................................................................................... 115 



 

 
 x 

REFERENCES ..................................................................................................................................... 116 

Chapter 5: Modeling clustering-induced activation of receptor immunotyrosine activation motifs .... 120 

Overview ............................................................................................................................................... 120 

5.1. Introduction ............................................................................................................................... 121 

5.2. Clustering-mediated receptor activation with tunable response thresholds .............................. 123 

5.3. Investigating the role of specific parameters in controlling the clustering threshold ............... 126 

5.4. Full and committed vs. partial and indecisive cluster activation .............................................. 129 

5.5. Discussion and Future Directions ............................................................................................. 131 

5.5.1. Simulation speed and model simplicity ............................................................................ 132 

5.5.2. Receptor co-clustering ...................................................................................................... 132 

5.5.3. Receptor pre-clustering ..................................................................................................... 133 

5.5.4. Downstream feedback regulation of clustering and activation ......................................... 133 

5.5.5. Noise in receptor abundance and activation ...................................................................... 134 

5.6. Methods..................................................................................................................................... 136 

5.6.1. Particle-based simulation .................................................................................................. 136 

5.6.2. Parameter optimization via evolutionary algorithm .......................................................... 137 

REFERENCES ..................................................................................................................................... 138 

 

  



 

 
 xi 

LIST OF TABLES 

Table 1.1. A list of common computational approaches for simulating spatial and temporal stochasticity 
in biochemical reaction networks. ......................................................................................................... 5 

Table 1.2. Microscopic parameters and effective macroscopic rate constants for reversible/irreversible 
bimolecular reactions of the form A + B ↔ C. ................................................................................... 10 

Table 1.3. Parameters used to perform simulations described in the main text. ......................................... 24 

Table 1.4. Microscopic parameters and effective macroscopic parameters for reversible/irreversible 
bimolecular reactions of the form A + B ↔ C, individual fits to each initial condition. .................... 32 

Table 3.1 Model parameters. ...................................................................................................................... 82 

 

  



 

 
 xii 

LIST OF FIGURES 

Figure 1.1. Computational modeling schematics. ......................................................................................... 5 

Figure 1.2. Illustration of the different reaction regimes (reaction-limited, diffusion-influenced, and 
diffusion-limited) and the range of validity for the 2D λ-ϱ theory. ...................................................... 7 

Figure 1.3. Empirical estimates for macroscopic rate constants in the yeast polarity model for the two 
different parameter sets. ........................................................................................................................ 9 

Figure 1.4. Simulations of polarity establishment within the Turing unstable regime. .............................. 11 

Figure 1.5. Variability in 2D polarization from microscopic fluctuations. ................................................. 13 

Figure 1.6. Stochasticity facilitates polarization. ........................................................................................ 14 

Figure 1.7. Quasi-3D particle-based simulations of the polarity establishment model. ............................. 15 

Figure 1.8. Quantitative comparisons of polarization in quasi-3D particle-based simulations and 
corresponding RDEs. .......................................................................................................................... 17 

Figure 1.9. The effect of Cdc42 concentration on polarization for quasi-3D particle-based simulations. . 18 

Figure 1.10. Reservoir approach schematics and validation. ...................................................................... 27 

Figure 1.11. Comparisons of deterministic rate equations in 2D and the polarity establishment network 
in a Turing stable regime. .................................................................................................................... 29 

Figure 1.12. Fitting simulations using 2D parameters to the deterministic rate equations. ........................ 30 

Figure 1.13. Fitting simulations using quasi-3D parameters to the deterministic rate equations. .............. 31 

Figure 1.14. Different choices of r in H(r) do not change the qualitative features of our results. .............. 34 

Figure 1.15. Representative H(r) curves for the particle-based and RDE simulations showing similarity 
in polarization. .................................................................................................................................... 34 

Figure 1.16. Polarity establishment is still slower for the RDE model if equations are seeded with later 
distributions from the particle-based simulations. .............................................................................. 35 

Figure 1.17. Bifurcation point identification with linear stability analysis. ................................................ 36 

Figure 1.18. Quantifying H(r) at t=1800s for pre-polarized q3D-RDEs is a reasonable marker for 
maintenance vs. loss of polarity. ......................................................................................................... 37 

Figure 1.19. Accepted parameters for the yeast polarization model appear supra-diffusive in a 2D 
context. ................................................................................................................................................ 39 

Figure 1.20. Comparisons between the deterministic rate equations in 2D and multiple realizations of 
the particle-based simulation for the simple reversible bimolecular reaction A+B ↔ C. .................. 43 



 

 
 xiii 

Figure 1.21. Comparisons between the deterministic rate equations in 2D and multiple realizations of 
the particle-based simulation for the polarity establishment network under reaction-limited, non-
polarizing conditions. .......................................................................................................................... 44 

Figure 1.22. Loss of polarization with increasing membrane diffusivity. .................................................. 46 

Figure 1.23. Considering the volume-adjusted, two-compartment RDE system makes no qualitative 
difference for our observations. .......................................................................................................... 47 

Figure 2.1. GPCR density variation along the cell membrane can mislead G protein activation. .............. 56 

Figure 2.2. Ratiometric sensing allows cells to orient up-gradient despite uneven receptor density. ........ 58 

Figure 2.3. Ratiometric sensing amplifies the gradient signal and improves accuracy even when 
receptors are distributed uniformly. .................................................................................................... 60 

Figure 2.4. Calibration of G-protein inactivation rates for model comparison, and effect of diffusion-
limited versus reaction-limited regimes. ............................................................................................. 64 

Figure 2.5. Robustness of simulation results to varying receptor abundance and diffusion. ...................... 65 

Figure 2.6. Effects of receptor diffusion in particle simulations. ................................................................ 65 

Figure 3.1. GPCR signaling couples pheromone sensing to the Cdc42-mediated polarity machinery....... 73 

Figure 3.2. Stable polarization is insensitive to shallow gradients. ............................................................ 74 

Figure 3.3. Stable polarization is insensitive to shallow gradients. ............................................................ 76 

Figure 3.4. The indecisive polarity phenotype is sensitive to shallow gradients. ....................................... 77 

Figure 3.5. Pheromone gradients experienced by a simulated emitter and receiver cell. ........................... 79 

Figure 4.1. Applying Binder/Tag to probe Src conformations with single particle tracking (SPT). .......... 92 

Figure 4.2. Working expression levels of tagSrc and Binder are non-perturbing. ...................................... 93 

Figure 4.3. Two independent diffusional analyses reveal slow-diffusing open-form Src. ......................... 94 

Figure 4.4. Interweaving adhesion imaging and dual-color single particle tracking of tagSrc and Binder 
reveals accumulation of slow-moving active Src. ............................................................................... 96 

Figure 4.5. Observing nanoscale clusters of Src. ........................................................................................ 98 

Figure 4.6. Src clusters are hotspots of activity. ....................................................................................... 100 

Figure 4.7. Src clusters are dynamic, heterogenous structures. ................................................................ 101 

Figure 4.8. Inferring in vivo Src regulatory kinetics through co-diffusion analysis. ................................ 103 

Figure 4.9. Controls for analyzing in vivo kinetics. .................................................................................. 105 



 

 
 xiv 

Figure 5.1. Simulating clustering-mediated activation of receptors. ........................................................ 125 

Figure 5.2. Parameter distributions obtained at different levels of clustering-triggered activation. ......... 126 

Figure 5.3. Effects of perturbing specific parameters one-by-one. ........................................................... 127 

Figure 5.4. Full and committed versus partial and indecisive modes of cluster activation....................... 130 

Figure 5.5. Even under strongly-activating conditions, full activation dominates at the low activation 
threshold (“dimer”), but disappears at higher activation thresholds (“decamer”). ............................ 130 

 

 

  



 

 
 xv 

LIST OF ABBREVIATIONS 
 

2D Two dimensional 

3D Three dimensional 

ANOVA Analysis of Variance 

BCR B cell receptor 

CI Confidence Interval 

EGFR Epidermal growth factor receptor 

FcR Fc receptor, or fragment, crystallizable receptor 

FRET Fӧrster resonance energy transfer 

GAP GTPase-activating protein 

GDI Guanine nucleotide dissociation inhibitor 

GDP Guanosine diphosphate 

GEF Guanine nucleotide exchange factor 

GPCR G-protein coupled receptor 

GTP Guanosine triphosphate  

HMM Hidden Markov Model 

Ig Immunoglobulin 

ITAM Immunotyrosine activation motif 

KDE Kernel density estimate 

MAT Mating type 

MEF Mouse embryonic fibroblast 

MSD Mean squared displacement 

MSS Moment scaling spectrum 

PALM Photo-activated localization microscopy 

PB Particle-based 



 

 
 xvi 

PDE Partial differential equation 

PM Plasma membrane 

q3D Quasi-three dimensional 

RDE Reaction-diffusion equation 

SFK Src family kinase 

SH2 Src homology 2 

SH3 Src homology 3 

SPT Single particle tracking 

TCR T cell receptor 

TIRF Total internal reflection fluorescence  

Tyr Tyrosine 

 
  



 

 
 1 

CHAPTER 1: NOISE DRIVES ORGANIZATION IN A TURING-TYPE MODEL OF 
YEAST POLARITY ESTABLISHMENT1 

 

Overview 

Cell polarity is the asymmetric localization of signaling molecules. Polarity provides directionality 

in fundamental processes such as migration, growth, and division. The changes in cell shape inherent to 

such processes are driven in part by the local accumulation of active Rho-family GTPases, which regulate 

cytoskeletal remodeling (Etienne-Manneville, 2004). In the budding yeast Saccharomyces cerevisiae, 

polarization of the Rho GTPase Cdc42 is required during both the budding and mating reproductive 

programs (Slaughter et al., 2009). The protein Cdc42 is a master polarity regulator conserved among 

Ascomycetes, including budding yeast and fission yeast, as well as in more complex organisms such as 

humans (Chiou et al., 2017). In S. cerevisiae, Cdc42 is the only Rho GTPase important for polarization, 

but in other systems, other Rho GTPases can play complimentary and antagonistic roles. In addition, S. 

cerevisiae has been historically favored as a model organism because of its amenability to genetic 

manipulation (Duina et al., 2014). Thus, because of its experimental tractability and biochemical 

simplicity, S. cerevisiae is a powerful model for studying polarity establishment.

Cell polarization is often guided by spatial cues. S. cerevisiae (hereafter, yeast) polarize up gradients 

of pheromone to find mates, the social amoebae Dictyostelium discoideum polarize up gradients of cyclic 

adenosine monophosphate to aggregate into fruiting bodies, and the axons of hippocampal neurons grow 

either up or down gradients of Netrin-1 depending upon the overall concentration (Bhattacharjee and 

Folch, 2017; Rappel and Edelstein-Keshet, 2017; von Philipsborn and Bastmeyer, 2007). However, cell 

 
1 This chapter previously appeared as an article in the journal PLoS Computational Biology. The original citation is 
as follows: Pablo M, Ramirez SA, Elston TC. “Particle-based Simulations of Polarity Establishment Reveal 
Stochastic Promotion of Turing Pattern Formation,” PLoS Comp. Biol. 14(3): e1006016. 
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polarization can occur independent of gradients. Yeast can polarize in the absence of pheromone 

gradients and bud guidance machinery. Dictyostelium pseudopods can form at rates independent of 

gradients (Andrew and Insall, 2007). Hippocampal neurons can randomly grow dendrites and axons when 

grown on a plate in the absence of gradients (Tahirovic and Bradke, 2009). A possible explanation for 

cue-less polarization is the amplification of noise by positive feedback loops, which allow symmetry-

breaking molecular fluctuations to initiate polarity establishment.  

Investigating the spatiotemporal dynamics of the Rho GTPase circuitry is fundamental to 

understanding polarity establishment. Historically, mathematical models and numerical simulations of the 

biochemistry and biophysics have provided insights into the intrinsic properties of signaling circuitry, 

complementary to experimental investigations. Famously, Turing-type models provide a mathematical 

framework for understanding how spontaneous patterns can emerge within biochemical reaction-diffusion 

systems (Turing, 1952). These models are classically seeded with an initial noisy distribution and allowed 

to evolve deterministically, which neglects the constitutive fluctuations over time intrinsic to individual 

molecules. Conceptually, this noise could disrupt nascent polarity sites. Here we demonstrate instead that 

the noise inherent to diffusional and chemical processes can enhance cell-scale polarity establishment.  

 
1.1. Introduction 

Yeast polarization is typically guided by spatial cues such as bud scars and pheromone gradients. 

Polarization is still possible when these cues are removed, albeit in random directions (Slaughter et al., 

2009). Weak asymmetries created by molecular noise may provide the impetus for spontaneous 

polarization, as proposed by mathematical models of spontaneous patterning in biochemical systems 

(Gierer and Meinhardt, 1972; Turing, 1952). These models use diffusion-driven instabilities of the 

chemical reaction dynamics to generate symmetry breaking without relying on mechanisms such as 

diffusional barriers, directed transport, and molecular cross-linking. Instead, these systems require: (1) 

positive feedback to amplify local fluctuations; (2) chemical species that diffuse at different rates; and (3) 

a mechanism for limiting the growth of the polarity site. Models in which patterning can be induced by an 
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arbitrarily weak perturbation (e.g. molecular-level fluctuations) are called Turing-type. Goryachev and 

Pokhilko were the earliest to use a Turing-type model to study yeast polarization (Goryachev and 

Pokhilko, 2008). Other, non-Turing type models of polarity require perturbations of finite strength to 

induce pattern formation, but still require the same fundamental ingredients: positive feedback, 

differences in diffusion rates, and a way to limit the growth of the polarity site (Mori et al., 2008). 

A common approach to modeling the spatiotemporal dynamics of polarizing biochemical systems is 

to use deterministic reaction-diffusion equations (RDEs) in the form of non-linear partial differential 

equations (PDEs). Deterministic RDEs ignore stochastic effects intrinsic to chemical reactions and 

thermal diffusion. However, stochastic effects are known to enhance pattern formation in some 

biochemical systems (Dziekan et al., 2012; Lemarchand and Nowakowski, 2011). There are many 

approaches to study stochastic effects in biological signaling models. In roughly increasing order of 

granularity, there are stochastic differential equations, such as chemical Langevin equations (Gillespie, 

2000; McKane et al., 2014); spatially discretized, temporally-continuous approaches, such as the spatial 

Gillespie algorithm (Fange et al., 2010; Gillespie, 1977; Hattne et al., 2005); direct particle-based 

simulations, as implemented in Smoldyn and MCell (Andrews and Bray, 2004; Kerr et al., 2008); and 

exact Brownian dynamics, such as Green’s function reaction dynamics (van Zon and ten Wolde, 2005a, 

2005b). Rather than attempting to cover the full spectrum of approaches and computational tools here, we 

refer the reader to excellent reviews that describe the theoretical underpinnings and software 

implementations of these methods (Agbanusi and Isaacson, 2014; Angermann et al., 2012; Schöneberg et 

al., 2014; Sept and Carlsson, 2014). The advantages and limitations for some of the more common 

methods are described in Table 1.1. Hybrid approaches that mix particle simulations with a deterministic 

partial differential equation solver are most similar to the approach taken here (Schaff et al., 2016). 

A variety of stochastic methods have been used to study the effects of noise in non-Turing models of 

yeast polarization (Altschuler et al., 2008; Schaff et al., 2016; Walther et al., 2012). Some models, such as 

the neutral drift polarity model, used particle-based approaches (Jilkine et al., 2011); others, like models 

based on wave-pinning, used Gillespie or stochastic PDE-based approaches (Ozbudak et al., 2005; 
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Wedlich-Soldner et al., 2003). Other investigations of stochasticity in polarization with more detailed 

signaling models, including the Turing-type Goryachev–Pokhilko model, leveraged Gillespie and 

stochastic PDE approaches (Freisinger et al., 2013; Wu et al., 2015). Here, we present stochastic particle-

based simulations of the Goryachev–Pokhilko model, and compare them to deterministic RDE 

simulations of the same system to evaluate stochastic effects on polarization. In this model, bimolecular 

reactions can occur between two reactants on the membrane, and between a reactant on the membrane 

and a reactant in the cytoplasm. Molecules can exchange between the membrane and cytoplasm. These 

simulations explicitly track molecules at and near the cell membrane, where polarization occurs, and 

implicitly handle molecules away from the membrane. We present two different scenarios. In the first, the 

cell membrane and the nearby cytoplasm are assumed to be purely two-dimensional (2D), ignoring the 

remaining bulk cytoplasm. In the second, the bulk cytoplasm is approximated by attaching a molecular 

reservoir that tracks molecular abundances without explicitly simulating individual molecules. Mass is 

stochastically exchanged between the 2D particle-based domain and the reservoir with rates determined 

by diffusion, thus creating a quasi-3D system (Figure 1.1). 
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Approach Spatially 
discretized? 

Temporally 
discretized? 

Comment 

Stochastic 
partial 
differential 
equations 

Yes Yes More efficient than particle-based simulations. 
Breaks down in low concentration limits. 

Spatial Gillespie Yes No Can be more efficient than particle-based 
simulations. Can suffer from artifacts due to spatial 
discretization. 

Hybrid particle-
based-PDE 
methods (this 
work) 

No Yes Approximation of full particle-based methods by 
explicitly modeling only a portion of the domain of 
interest, and implicitly modeling the remainder using 
either deterministic or stochastic methods. 

Fully particle-
based 

No Yes More accurate than PDE and Gillespie approaches. 
Computationally demanding. 

Exact Brownian 
dynamics 

No No More accurate than particle-based simulation, but can 
come at a higher computational demand. Also called 
an “event-driven” approach, but this can cause 
confusion with Gillespie-type approaches. 

Table 1.1. A list of common computational approaches for simulating spatial and temporal 
stochasticity in biochemical reaction networks. 

 
Figure 1.1. Computational modeling schematics.  
(A) Molecules at the cell membrane and a thin slice of adjacent cytoplasm are simulated explicitly. Both 
compartments are modeled as 2D surface. (B) In the quasi-3D simulations, a well-stirred compartment 
representing bulk cytoplasm is added to approximate 3D effects. (C) Reaction scheme for Turing-type 
Cdc42-dependent yeast polarity establishment, based on the Goryachev and Polkhilko model. 
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1.2. Establishing a connection between macroscopic and microscopic rate constants 

Investigating the role of molecular fluctuations in polarity establishment requires a way to compare 

stochastic particle-based simulation results to the behavior of the system in the deterministic macroscopic 

limit, where the spatiotemporal dynamics of biochemical concentrations are governed by RDEs. 

Therefore, it is critical to relate microscopic parameters to macroscopic rate constants. For first-order 

reactions, this is trivial, and follows the relation 𝑃𝑃 = 1 − exp(−𝑘𝑘Δ𝑡𝑡), where P is the probability of the 

reaction for an individual molecule, k is the macroscopic rate constant, and Δ𝑡𝑡 is the simulation timestep. 

The situation is more complicated for second-order reactions, because all of the reactions in this system 

involve the cell membrane. 

In chemical kinetic theory, there are two limiting regimes for second-order reactions: the diffusion 

limit and the reaction limit. The diffusion limit is the maximum rate at which a second-order reaction can 

proceed, and is where two particles react upon their first encounter. In solution or in the cytoplasm (i.e. in 

3D), it is possible to define a macroscopic rate constant in the diffusion limit by considering the 

diffusional flux through an absorbing sphere of radius 𝜚̅𝜚 located at the origin, when the concentration C of 

the reactant is held fixed at infinity (Erban and Chapman, 2009; Lipková et al., 2011). The flux is given 

by 𝐽𝐽 = 4𝜋𝜋𝜋𝜋𝜚̅𝜚𝐶𝐶, where D is the sum of the diffusion coefficients of the reactants, and the diffusion-limited 

rate constant is 𝑘𝑘 = 4𝜋𝜋𝜋𝜋𝜚̅𝜚. However, on membranes (i.e. in 2D), diffusion-limited rate constants are not 

well-defined (Fange et al., 2010; Yogurtcu and Johnson, 2015). As an estimate of the appropriate time 

scale, the flux through an absorbing circle of radius 𝜚̅𝜚 when the computational domain remains finite (see 

1.7.3 Estimating the 2D diffusion limit). The flux is given by 𝐽𝐽 = 2𝜋𝜋𝜋𝜋𝜋𝜋/ ln(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚/𝜚̅𝜚), where rmax 

characterizes the size of the computational domain. In contrast to the 3D case, in the limit 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 → ∞, the 

2D flux goes to zero. We used the flux on a finite domain to estimate a time scale for second-order 

diffusion-limited reactions, 𝑘𝑘𝐷𝐷𝐷𝐷 = 2𝜋𝜋𝜋𝜋/ ln(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚/𝜚̅𝜚), which has the units of a 2D second-order rate 

constant. This expression is represented by the red curve in Figure 1.2. 



 

 
 7 

 

Figure 1.2. Illustration of the different reaction regimes (reaction-limited, diffusion-influenced, and 
diffusion-limited) and the range of validity for the 2D 𝝀𝝀 − 𝝔𝝔� theory.  
The left panel shows estimated rate constants (yellow diamonds) for the 2D second order reaction A+B → 
C obtained by fitting chemical rate equations (black curves, right panels) to results from particle-based 
simulations (yellow curves, right panels). The reaction limit, 𝑘𝑘𝑅𝑅𝑅𝑅 = 𝜋𝜋𝜚̅𝜚2𝜆𝜆, is indicated by the black dot-
dashed line and the estimate for the diffusion limit 𝑘𝑘𝐷𝐷𝐷𝐷 = 2𝜋𝜋𝜋𝜋/ ln(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚/𝜚̅𝜚) is represented by the red 
curve. The results from the 2D 𝜆𝜆 − 𝜚̅𝜚 theory are shown as the green-dashed line. Parameters chosen are 
DA = DB = ½D (x-axis of left panel), 𝜆𝜆 = 2.5554 s-1, rmax = 2.5 µm, 𝜚̅𝜚 = 0.05 µm. Simulations were 
conducted on a L = 5 µm domain. 

 

In the reaction limit, multiple encounters on average are required before the reaction occurs. We 

computed a rate constant in the reaction limit by assuming the reactants are uniformly distributed. In 2D, 

this produces an overall reaction rate of (𝜋𝜋𝜚̅𝜚2/𝐴𝐴)𝜆𝜆𝑁𝑁𝐴𝐴𝑁𝑁𝐵𝐵, where 𝜋𝜋𝜚̅𝜚2 is the capture area, A is the area of 

the system, λ is the microscopic reaction rate, and NA and NB are the particle numbers for the two 

reactants. This leads to a rate constant of 𝑘𝑘𝑅𝑅𝑅𝑅 = 𝜋𝜋𝜚̅𝜚2𝜆𝜆, plotted as the black dashed line in Figure 1.2. 

The macroscopic rate constants for bimolecular reactions can be calculated from the underlying 

microscopic parameters using 𝜆𝜆 − 𝜚̅𝜚 theory. The theory assumes the two reactants have a summed 

diffusivity D, and that reactions proceed with rate λ if the two reactants are within 𝜚̅𝜚 of one another. In 

3D, the 𝜆𝜆 − 𝜚̅𝜚 theory can be used in both the reaction and diffusion limit; i.e. regardless of the reactants' 

diffusion coefficients (Erban and Chapman, 2009; Lipková et al., 2011). In 2D, the 𝜆𝜆 − 𝜚̅𝜚 theory can map 
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macro- and microscopic parameters only in the reaction limit. Despite that, we used the 𝜆𝜆 − 𝜚̅𝜚 formulism 

to compute 2D rate constants (see 1.7.4 Deriving and validating the 2D λ − ϱ� theory). This was a 

reasonable prediction of reaction kinetics (green dashed line vs. yellow diamonds, left panel, Figure 1.2) 

if the system was not too far from the reaction limit (black dot-dashed line). 

 

1.3. Previously reported kinetic parameters are strongly diffusion-limited 

We attempted to estimate microscopic rate constants λ from macroscopic rate constants k used in 

published models of yeast polarity establishment. In doing so, we found that several published second-

order rate constants were orders of magnitude larger than our estimate for the diffusion limit, kDL (Figure 

1.19). The most likely explanation is that kDL does not account for the membrane-cytoplasm exchange of 

polarity molecules. In the biochemical network, reactive chemical species can exchange between the 

membrane, where diffusion is relatively slow, and the cytoplasm, where diffusion is relatively fast. The 

different diffusion coefficients associated with these cellular compartments complicates the mapping 

between microscopic and macroscopic parameters. Furthermore, the reactivity of these species also 

changes depending upon whether they are in the membrane or cytoplasm.  

To work around this issue, we estimated effective rate constants by fitting chemical rate equations to 

results from particle-based simulations. The simulations contained reversible second-order association 

reactions that accounted for mass exchange between the cytoplasm and membrane in a purely 2D system. 

For each bimolecular reaction, we started with previously published rate constants from RDE models for 

polarity establishment (Howell et al., 2012; Woods et al., 2016; Wu et al., 2015), used the 𝜆𝜆 − 𝜚̅𝜚 

formalism to estimate λ’s, performed corresponding particle simulations, then fit chemical rate equations 

to compute the macroscopic rate constants. For purely 2D simulations, significant changes to the 

published parameter values were made to facilitate polarization for benchmarking purposes. For whole 

cell, quasi-3D simulations, parameters were held close to published values with exceptions for the 

bimolecular reactions obtained from the fitting procedure. The fits for the purely 2D and quasi-3D cases 

are shown (Figure 1.3, Figure 1.12, Figure 1.13), and the resulting rate constants are provided in Table 1.2 
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amd Table 1.4. Fitting the simulation results to appropriate chemical rate equations produced good 

estimates for the quasi-3D case and reasonable ones for the purely 2D case. Additional analyses of the 

polarity network, discussed below, further supported the validity of the mapping. 

 

 

Figure 1.3. Empirical estimates for macroscopic rate constants in the yeast polarity model for the 
two different parameter sets. 
Results from particle-based simulations that include membrane exchange are shown as yellow curves. Fits 
to the simulation results using appropriate rate equations are shown as black curves. Top row, parameters 
used for purely 2D simulation. Bottom row, parameters used for quasi-3D simulation. 
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Usage Reaction 
Membrane on/off rates 

(1/s) 
Fitted bimolecular 
association rates 

kA,on kA,off kB,on kB,off kf kr 

2D 

Cdc42Dm + BemGEFm 
→ Cdc42T 36 13 10 40 0.040 µm2s-1 - 

Cdc42Dm + BemGEF42 
→ Cdc42T 36 13 - - 0.184 µm2s-1 - 

BemGEFm + Cdc42T 
↔ BemGEF42 10 40 - - 0.054 µm2s-1 31.4 s-1 

q3D 

Cdc42Dm + BemGEFm 
→ Cdc42T 36 0.65 10 10 0.16 µM-1s-1 - 

Cdc42Dm + BemGEF42 
→ Cdc42T 36 0.65 - - 0.16 µM-1s-1 - 

BemGEFm + Cdc42T 
↔ BemGEF42 10 10 - - 0.79 µM-1s-1 0.37 s-1 

Table 1.2. Microscopic parameters and effective macroscopic rate constants for 
reversible/irreversible bimolecular reactions of the form A + B ↔ C. 
The rate constants kA,on and kB,on are the rates at which reactants A and B associate with the membrane, 
and the rate constants kA,off and kB,off are the corresponding dissociation rates. The reported fitted rates are 
the averaged results from fitting to simulations with five separate initial conditions. See Table 1.4 for 
more details. 
 
1.4. Microscopic fluctuations promote polarity establishment 

1.4.1. Enhanced polarization within 2D simulations 

Stochastic particle-based simulations were first performed in a purely 2D system (see 1.6.2 Particle-

based simulations in 2D). The particle-based simulations were initialized with all molecules inactive, in 

the cytoplasm, and unbound. As expected, stochastic fluctuations permitted escape from this spatially 

homogeneous initial state, ultimately leading to polarization (Figure 1.4). To fairly compare particle 

simulation results with solutions of the RDEs, molecular distributions from particle-based simulations at t 

= 1 second were used as initial conditions for the RDEs. The two simulation methods generated similar 

polarized distributions. 
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Figure 1.4. Simulations of polarity establishment within the Turing unstable regime. 
Snapshots of total Cdc42-GTP (both Cdc42-GTP and Bem1-GEF-Cdc42-GTP). Top: Particle-based 
simulations. Red dots represent individual molecules. Bottom: Reaction-diffusion partial differential 
equation simulations. (A) Individual molecules in particle-based simulations, and individual pixels in 
100x100 grid RDE simulations. Scale bar, 0.5 μm. (B) To compare the polarity patches, 2D histograms of 
the final polarized states were computed, where both distributions were binned on coarsened 20x20 grids. 

 

Quantitative comparison of polarization was based on the function H(r), which measures the 

deviation of a particle distribution from a uniform distribution based on the pairwise distance distribution 

(1.7.1 Quantifying polarization). H(r) and the related metric, Ripley's K-function, have been used 

frequently to study clustering in biology (Owen et al., 2010; Wehrens et al., 2014). Positive values of H(r) 

correspond to increased particle density at distances r, and a maximum in H(r) denotes a characteristic 

size. Rather than choosing the r that maximizes H(r) under different conditions, r = 0.5 μm was used for 

all analyses. This value allowed comparisons across all data sets, including those where the simulation 

domain size was varied. Qualitative features of the results do not depend on the choice of r, nor on the 

particle-based time point used to initialize the RDEs (Figure 1.14 and Figure 1.16). 

At steady-state, polarized distributions from the particle-based and RDE simulations had similar H(r) 

curves (Figure 1.15), suggesting the two systems were equivalently parameterized. H(r) over time was 

also calculated to quantitatively compare the polarization dynamics for particle-based and RDE 

simulations. Examining multiple realizations of single simulation conditions (Figure 1.5) revealed that 
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metastable multi-polar states could emerge from initially unpolarized distributions, consistent with prior 

theoretical and experimental work (Goryachev and Pokhilko, 2008; Howell et al., 2009, 2012). In one 

realization, resolution into a single polarity site did not occur by 200 seconds (Figure 1.5, Simulation 3). 

For other realizations of the same parameter set, the simulation yielded a unique polarity site in half the 

time. The particle-based simulations polarized more rapidly than the RDEs, which were completely 

unpolarized at t = 200s. This indicates that molecular fluctuations increased the rate at which polarity 

establishment occurred. Additionally, the RDEs did not exhibit transient plateaus in H(r), indicating 

metastable multi-patch states did not emerge. 

Sufficiently strong fluctuations can cause polarization outside of the Turing unstable regime 

(Dziekan et al., 2012; Goryachev and Leda, 2017; Lemarchand and Nowakowski, 2011; Trong et al., 

2014). These investigations relied on simplified models or phenomenological methods for introducing 

noise into the system. To test if intrinsic fluctuations are sufficient to produce “noise-induced” polarity 

outside of the Turing unstable regime, we examined 2D polarity establishment as a function of Cdc42 

concentration, Bem1-Cdc24 (interchangeably, BemGEF or GEF in this chapter) concentration, and total 

particle number at fixed concentration, generating bifurcation diagrams for these parameters. Linear 

stability analysis of the RDEs was used to determine the bifurcation point at which the spatially 

homogenous solution goes through a Turing instability as molecular abundances and system size were 

varied (see 1.7.2 Determining bifurcation points and Figure 1.17). This analysis established threshold 

values at which the RDEs no longer polarize, i.e. the homogeneous stable regime. The bifurcation plots 

are shown in Figure 1.6. 
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Figure 1.5. Variability in 2D polarization from microscopic fluctuations. 
(A) Measurements of H(r = 0.5 μm) at 10 second intervals across n = 5 particle-based simulation 
realizations. (B) Measurements of H(r = 0.5 μm) across the corresponding RDE simulations. (C) The 
pairwise distance distribution P(r) and our polarity metric H(r) for polarized (red) and uniform (black) 
particle distributions. (D) Snapshots of total Cdc42-GTP for each particle-based realization at t = 100 and 
t = 200 seconds. In some cases, particle coordinates were re-centered after simulation to keep polarity 
patches from visually wrapping around to the other side of the periodic domain. Scale bars 0.5 μm. 
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Figure 1.6. Stochasticity facilitates polarization. 
Bifurcation plots showing polarization, measured by H(r = 0.5 μm), versus parameters influencing the 
total particle numbers in the simulation. (A) Varying Cdc42 concentration on a fixed domain. (B) Varying 
GEF concentration on a fixed domain. (C) Varying the simulation area and particle numbers at constant 
concentrations. Bifurcations were found via linear stability analysis of the deterministic RDEs. 
 

Across all parameters tested, none of the RDE simulations polarized to a measurable degree after 

200 seconds. In contrast, most particle-based simulations exhibited polarity by then. Within the Turing 

unstable regime, the RDE simulations show similar levels of polarization around 600 seconds compared 

to the particle-based simulations. However, near the bifurcation point within the Turing unstable regime, 

the RDEs did not polarize even after 600s, consistent with the slowed patterning expected from 

bifurcation theory. In this parameter regime, the particle-based simulations still clearly exhibited polarity 

within 200 seconds. Furthermore, for the Cdc42 and GEF bifurcation diagrams, the particle-based 

simulations showed polarization below the critical point, in the Turing stable regime, showing that 

molecular fluctuations can increase the range over which polarity establishment occurs. Together, our 

observations reveal that stochastic effects facilitate polarization in this 2D instance of the Turing-type 

model by decreasing time to polarize and expanding the parameter space in which polarity can occur. 

 

1.4.2. Enhanced polarization within quasi-3D simulations 

Quasi-3D (q3D) simulations of a whole yeast cell were performed by combining the 2D particle-

based approach with stochastic exchange to and from a molecular reservoir representing the bulk 

cytoplasm (for detail, see 1.6.3 Particle-based simulations in quasi-3D). Empirical estimation of rate 
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constants was again performed by fitting rate equations to the particle-based simulations. Simulations 

used 0.050 to 0.3 μM Cdc42, and 0.06 μM BemGEF (NCdc42 = 1,970 to 11,820 and NBemGEF = 2364 

assuming a volume corresponding to a spherical cell with a 5 μm diameter). Quantitative Western blotting 

experiments support 5,000–10,000 Cdc42 copies per cell, consistent with the simulated concentration 

range (Watson et al., 2014), while previous models assumed Cdc42 concentrations ranging from 19.3 nM 

(Klünder et al., 2013) to 5 μM (Wu et al., 2015). Models specify BemGEF concentrations ranging from 

0.017 μM (Goryachev and Pokhilko, 2008; Wu et al., 2015) to 0.06 μM (Woods et al., 2016). Since prior 

experimental work showed that multi-polar states can resolve within 2 minutes (Howell et al., 2009, 

2012), particle-based simulations were initially limited to 200 seconds. This simulation time was 

insufficient for complete polarization, as multiple or misshapen patches were often observed (Figure 1.7). 

This is possibly because the initial conditions of the model conservatively place all molecules in the 

cytoplasm, in inactive states. 

 

Figure 1.7. Quasi-3D particle-based simulations of the polarity establishment model. 
Shown are snapshots of total Cdc42-GTP. Scale bar, 1.0 μm. Corresponding 2D histograms of the local 
number of molecules are shown. 
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Extending the q3D particle-based simulations was computationally expensive, so to identify specific 

simulation conditions of interest, the bifurcation point as a function of Cdc42 concentration was 

determined. The reservoir equations made linear stability analysis problematic, so instead pre-polarized 

distributions were generated and allowed to either decay towards homogeneity or persist (Figure 1.18). 

Under these conditions, [Cdc42] ≥ 0.055 μM was sufficient for polarization, but [Cdc42] = 0.050 μM 

could not sustain polarity, so particle-based simulations with [Cdc42] = 0.050, 0.055, 0.060, 0.150, and 

0.155 μM were extended for another 400 seconds. This simulation time was sufficient to tighten 

misshapen polarity sites and resolve metastable multi-polar states in some cases (Figure 1.7 and 

Simulations 2 and 3 in Figure 1.8). This suggests biologically relevant competition time scales can be 

obtained purely through stochastic molecular fluctuations. The time scale for competition observed here is 

consistent with prior theoretical work on this signaling model, where about 5 minutes was needed to 

resolve two-patch competition in the context of an RDE with Gaussian noise added (Wu et al., 2015). 

To compare with the deterministic case, q3D RDE simulations were run for 1800s total, initialized 

with molecular distributions from t = 1 s of the q3D particle-based simulations. Polarization dynamics 

were quantified using H(r = 2 μm), which matched the size of a fully-formed polarity site. Similar to the 

purely 2D case, fully polarized particle-based simulations were quantitatively consistent with fully 

polarized RDE simulations, and the RDE simulations took much longer to polarize than the 

corresponding particle-based simulations (Figure 1.8). No multi-patch states emerged in the RDEs, but it 

is likely that multi-patch states would also compete slowly. This highlights the importance of molecular 

fluctuations in using a Turing-type model to capture appropriate polarization timescales. 
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Figure 1.8. Quantitative comparisons of polarization in quasi-3D particle-based simulations and 
corresponding RDEs. 
Top: time courses of H(r = 2 μm). Results across multiple realizations of [Cdc42] = 0.150 μM are shown. 
Bottom: Plots of H(r) at final time points. By 1800s, the q3D RDEs did not fully polarize, so the H(r) 
starting from a pre-polarized distribution is shown instead. 

 

Finally, to examine the robustness of this behavior over realistic concentration regimes, polarization 

in the q3D particle-based and q3D RDE systems was compared as a function of Cdc42 concentration. The 

results were consistent with the purely 2D model. Particle-based simulations at t = 600s exhibited clear 

polarization, even at [Cdc42] = 0.050 μM, outside the deterministically non-polarizing region (Figure 

1.9). At the highest concentration, q3D RDE simulations exhibited partial polarization at t = 600s, but by t 

= 1800s, most of the RDEs beyond the bifurcation exhibited measurable polarization. 
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The macroscopic system studied here represents a 3-compartment model (membrane, near-

membrane, and bulk cytoplasm). A prior study of polarity competition in the presence of noise reported a 

similar competition time scale, but it utilized a volume-adjusted, two-compartment model of the RDEs 

(Wu et al., 2015). To facilitate comparison, we performed particle-based simulations to examine the 

volume-adjusted, two-compartment system's bifurcation diagram with respect to Cdc42 concentration. 

There is qualitatively no change in the results, and linear stability analysis of the volume-adjusted, two-

compartment system is similar to the numerically determined bifurcation point for the q3D RDEs (Figure 

1.23). 

 

Figure 1.9. The effect of Cdc42 concentration on polarization for quasi-3D particle-based 
simulations. 
A bifurcation diagram comparing polarity, measured via H(r = 2 μm), in the particle-based and reaction-
diffusion simulations as a function of Cdc42 concentration. Simulations with pre-polarized RDEs were 
used to identify an estimated range for the bifurcation point. All other points are given by the mean±1s.d. 
(n = 5 realizations, except for t = 600s particle-based simulations at [Cdc42] = 0.150 μM, n = 3, and 0.155 
μM, n = 4). 
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1.5. Discussion 

Strong positive feedback to amplify heterogeneities in molecular distributions is an important 

component of many models of cellular polarity establishment. Given the stochastic nature of biochemical 

reactions involved in the polarity circuit, local heterogeneities are expected to emerge everywhere along 

the cell. Work in both non-Turing type (Altschuler et al., 2008; Jilkine et al., 2011; Schaff et al., 2016), 

and Turing-type systems (Dziekan et al., 2012; Goryachev and Leda, 2017; Lemarchand and 

Nowakowski, 2011; Trong et al., 2014) has shown that stochasticity can aid pattern formation. Here, we 

provide the first simulations of particle-based Turing-type yeast polarity establishment. Both our 2D and 

quasi-3D particle-based simulations capture microscopic stochastic effects, which indeed facilitate 

polarization. As anticipated, differences between the particle-based and reaction-diffusion approaches 

were most obvious around the bifurcation point (Figure 1.6 and Figure 1.9). Stochastic fluctuations 

allowed for polarization outside of the Turing unstable regime and more rapid polarity establishment 

across all parameters tested. Turing-type patterning mechanisms have been described as slow relative to 

other hypothesized patterning mechanisms, such as wave-pinning, making it a less likely biological 

mechanism in some contexts. Our simulations highlight that molecular fluctuations can alleviate such 

issues. Given our simulations do not include other sources of fluctuations, such as endocytic and exocytic 

events (Dyer et al., 2013; McClure et al., 2015), our results represent the minimal level of variability 

expected to be observed in polarity establishment. This minimal variability is sufficient to generate 

significant variations in competition times across multiple realizations of a single parameter set (Figure 

1.5 and Figure 1.8), even at molecular abundances representative of whole yeast cells. Therefore, particle-

based simulations are an important computational tool for understanding the dynamics and control of 

biological pattern formation. 

Polarity establishment is often modeled using reaction-diffusion equations that ignore the discrete 

nature of biomolecules, and treat concentrations of molecular species as continuous variables. The 

chemical rate constants that appear in these equations represent macroscopic quantities that depend on 

microscopic properties, such as diffusion coefficients and molecular size. In three-dimensional domains 
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where particles diffuse with a single diffusion coefficient, theories for computing macroscopic rate 

constants from the underlying microscopic dynamics are well established (Andrews and Bray, 2004; 

Erban and Chapman, 2009). However, for two-dimensional systems, second-order rate constants in the 

diffusion limit are not well-defined (Yogurtcu and Johnson, 2015). Additionally, in the polarity system, 

molecular species transition between the cytoplasm, where diffusion is relatively fast, to the plasma 

membrane, where diffusion is relatively slow. Developing theories for computing appropriate rate 

constants under these conditions is an active area of research, and a theoretical framework is not provided 

here. An empirical approach was used instead, estimating effective second-order rate constants by fitting 

rate equations to the results of particle-based simulations of isolated reactions (Figure 1.3, Figure 1.12, 

and Figure 1.13). This approach allowed fair comparisons between our particle-based and RDE 

simulation simulations, as evidenced by quantitative similarities in polarization (Figure 1.8 and Figure 

1.15) and equivalent kinetics under non-polarizing conditions (Figure 1.11 and Figure 1.21). Still, this 

empirical approach to estimating rate constants cannot capture the correct kinetics under all conditions: in 

general, a single rate constant is inappropriate for describing 2D diffusion-limited reactions (Yogurtcu 

and Johnson, 2015). While this discrepancy presents challenges for comparing particle-based simulations 

to RDEs, it also highlights an advantage of particle-based simulations: the real behavior of a system might 

not be well-described with macroscopic approximations. Note that many polarity models based on RDEs 

employ effective kinetics, such as Michaelis-Menten or Hill kinetics. To perform particle-based 

simulations of these models requires “unpacking” these effective kinetic schemes into their elementary 

chemical steps. Doing so not only allows an investigation into the effects of molecular-level noise, but 

also provides a rigorous test for the validity of the approximate reaction schemes, whose derivations 

typically rely on a separation of time scales. 

The slow diffusivity of membrane-bound species is important. Other reports in the literature have 

used a faster membrane diffusion coefficient, Dm = 0.03 μm2s-1 (Klünder et al., 2013). Simulations with 

this diffusion coefficient lose polarization in the pure 2D system if all other parameters are fixed (Figure 
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1.22). This occurs even though Dm = 0.03 μm2s-1 maintains more than two orders of magnitude difference 

from the cytoplasmic diffusivity Dc. 

It is important to acknowledge some limitations of the present approach. First, while treating the 

membrane and adjacent cytoplasm as a single 2D plane seems reasonable, it ignores effects from 3D 

curvature, which can play a role in the polarization process (Giese et al., 2015; Ramirez et al., 2015). 

Additionally, the implied geometry of the system, a rectangular prism, means that cytoplasmic protein 

abundances are overestimated near the cell membrane. To illustrate, a typical yeast cell has a diameter of 

5 μm. This corresponds to a surface area of 78.5 μm2, treating the cell as a sphere. Mapping this surface 

area to a square produces a square side length of 8.86 μm. The volume for a spherical d = 5 μm yeast cell 

is 26.2 μm3. To achieve an equal-volume rectangular prism, with a top face surface area of 78.5 μm2, the 

depth of the prism must be 0.833 μm. This is much smaller than the cell radius of 2.5 μm. Aside from the 

geometry of the system, this approach also neglects gradients that might develop between the cell 

membrane and interior of the cell, either via chemical means or sufficiently slow cytoplasmic diffusion. 

The polarity network studied here does not involve reactions between two cytoplasmic species, so the 

reservoir component of the simulation is chemically inert. If reactions did occur within the cytoplasm, our 

particle-based approach could be extended to include chemical rate equations for the concentrations of the 

reservoir species, and our method for injection and ejection of particles would still be sufficient as long as 

cytoplasmic gradients were not of interest. However, if gradients of cytoplasmic components were 

required, then the reservoir would need to be modeled with PDEs, and the methods defining particle 

injection and ejection would need to be suitably adapted, along the lines of work done in (Franz et al., 

2013). Full treatment of the reservoir with a PDE approach would make the approach presented here more 

similar to hybrid methods such as (Schaff et al., 2016). Having acknowledged these limitations, we have 

also performed these particle-based simulations on a spherical cell in true 3D and observed qualitatively 

similar features, as shown in Chapter 3. 

In summary, we have shown that molecular stochasticity can facilitate cellular polarity establishment 

by promoting the speed of polarization and expanding the effectively Turing unstable regime. This 
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phenomenon was examined in the context of a Turing-type model of yeast signaling involving Cdc42 and 

Bem1-Cdc24 in a positive feedback loop. In particular, polarization within the quasi-3D system appears 

to occur roughly on biologically relevant timescales, which does not seem possible with deterministic 

RDEs. We also have highlighted general considerations for comparing the spatiotemporal dynamics of 

membrane-bound proteins at molecular, particle-based scales and at coarser, concentration-based scales. 

Symmetry breaking in many contexts involves guiding cues not considered here, such as a pheromone 

gradients or bud scars in yeast (Slaughter et al., 2009). However, these cues can be surprisingly weak: a 

computational study of yeast pheromone receptors in a pheromone gradient predicted differences in 

receptor occupancy as small as 45±50 molecules between the front (towards with the gradient) and the 

back (Lakhani and Elston, 2017). I visit how this may affect polarity establishment in Chapter 3. 

 

1.6. Methods 

1.6.1. The molecular circuit for polarity establishment 

The molecular signaling network used in this study, illustrated in Figure 1.1C, is based on earlier 

work (Goryachev and Pokhilko, 2008; Wu et al., 2015). The network contains a positive feedback loop 

because Cdc42-GTP can bind a Bem1-Cdc42 complex to increase the GEF's catalytic activity. Cdc24 is a 

GEF, while Bem1 is a scaffold protein. It is assumed that Cdc24 and Bem1 function as essentially a 

single unit (Woods et al., 2016). Table 1.3 provides parameters used for simulations. The corresponding 

reaction-diffusion equations (RDEs) that govern the system are as follows: 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕42𝑇𝑇
𝜕𝜕𝜕𝜕

= (𝑘𝑘2𝑎𝑎𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐹𝐹𝑚𝑚 + 𝑘𝑘3𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵42) ∙ 𝐶𝐶𝐶𝐶𝐶𝐶42𝐷𝐷𝑚𝑚 − (𝑘𝑘2𝑏𝑏 + 𝑘𝑘4𝑎𝑎𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐹𝐹𝑚𝑚 + 𝑘𝑘7𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐹𝐹𝑐𝑐)

∙ 𝐶𝐶𝐶𝐶𝐶𝐶42𝑇𝑇 + 𝑘𝑘4𝑏𝑏𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵42 + 𝐷𝐷𝑚𝑚Δ𝐶𝐶𝐶𝐶𝐶𝐶42𝑇𝑇 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕42𝐷𝐷𝑚𝑚
𝜕𝜕𝜕𝜕

= 𝑘𝑘2𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶42𝑇𝑇 − (𝑘𝑘2𝑎𝑎𝐵𝐵𝐵𝐵𝑚𝑚𝐺𝐺𝐺𝐺𝐹𝐹𝑚𝑚 + 𝑘𝑘3𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵42 + 𝑘𝑘5𝑏𝑏) ∙ 𝐶𝐶𝐶𝐶𝐶𝐶42𝐷𝐷𝑚𝑚 + 𝑘𝑘5𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶42𝐷𝐷𝑐𝑐

+ 𝐷𝐷𝑚𝑚Δ𝐶𝐶𝐶𝐶𝐶𝐶42𝐷𝐷𝑚𝑚 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕42
𝜕𝜕𝜕𝜕

= (𝑘𝑘4𝑎𝑎𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐹𝐹𝑚𝑚 + 𝑘𝑘7𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐹𝐹𝐶𝐶) ∙ 𝐶𝐶𝐶𝐶𝑐𝑐42𝑇𝑇 − 𝑘𝑘4𝑏𝑏𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵42 + 𝐷𝐷𝑚𝑚Δ𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵42 
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𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝐹𝐹𝑚𝑚
𝜕𝜕𝜕𝜕

= 𝑘𝑘1𝑎𝑎𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐹𝐹𝑐𝑐 + 𝑘𝑘4𝑏𝑏𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵42− (𝑘𝑘1𝑏𝑏 + 𝑘𝑘4𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶42𝑇𝑇)𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐹𝐹𝑚𝑚 + 𝐷𝐷𝑚𝑚Δ𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐹𝐹𝑚𝑚 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝐹𝐹𝑐𝑐
𝜕𝜕𝜕𝜕

= 𝑘𝑘1𝑏𝑏𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐹𝐹𝑚𝑚 − (𝑘𝑘1𝑎𝑎 + 𝑘𝑘7𝐶𝐶𝐶𝐶𝐶𝐶42𝑇𝑇) ∙ 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐹𝐹𝑐𝑐 + 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐸𝐸𝐹𝐹𝑐𝑐,𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐹𝐹𝑐𝑐

+ 𝐷𝐷𝑐𝑐Δ𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐹𝐹𝑐𝑐 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐹𝐹𝑐𝑐,𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝑑𝑑
= � �−𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐹𝐹𝑐𝑐,𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐹𝐹𝑐𝑐�𝑑𝑑𝑑𝑑

𝛺𝛺∈Reservoir

 

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕42𝐷𝐷𝑐𝑐
𝜕𝜕𝜕𝜕

= 𝑘𝑘5𝑏𝑏𝐶𝐶𝐶𝐶𝐶𝐶42𝐷𝐷𝑚𝑚 − 𝑘𝑘5𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶42𝐷𝐷𝑐𝑐 + 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶42𝐷𝐷𝑐𝑐,𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶42𝐷𝐷𝑐𝑐 + 𝐷𝐷𝐶𝐶Δ𝐶𝐶𝐶𝐶𝐶𝐶42𝐷𝐷𝑐𝑐 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑42𝐷𝐷𝑐𝑐,𝑟𝑟𝑟𝑟𝑟𝑟

𝑑𝑑𝑑𝑑
= � �−𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶42𝐷𝐷𝑐𝑐,𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶42𝐷𝐷𝑐𝑐�𝑑𝑑𝑑𝑑

𝛺𝛺∈Reservoir

 

𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 = � 𝑃𝑃𝑖𝑖𝑛𝑛𝑗𝑗(𝑧𝑧)𝑑𝑑𝑑𝑑

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚−𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

0

 

𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 = � 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧)𝑑𝑑𝑑𝑑

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚−𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 

where Δ here denotes the two-dimensional Laplacian, and the terms containing the rates kinj and kejc 

are for the cytoplasmic reservoir. In the purely 2D form of the RDEs, these reservoir terms are absent. 

The quasi-3D form directly follows schematics shown in Figure 1.1B and Figure 1.10, using a 2D 

membrane compartment, a 2D cytoplasmic compartment, and a reservoir to and from which mass is 

deterministically exchanged. The reservoir is assumed perfectly mixed, but the explicitly modeled 

cytoplasmic compartment is not. With this formulation, spatial gradients are possible in the xy plane (i.e. 

along the cell membrane), but they are ignored along z (i.e. moving into the cell). Previous work has 

considered cytoplasmic diffusion coefficients from 1 μm2/s up to infinity (i.e., perfectly well-mixed). A 

finite diffusion coefficient was chosen here. An RDE system that treats the membrane and cytoplasm as a 

two-compartment system was also considered, as in (Wu et al., 2015). Results from this system were 

qualitatively similar to our 3-compartment model (Figure 1.23). 
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Description Parameter For purely 2D 
simulations 

For quasi-3D 
simulations 

Reference 

BemGEFc → BemGEFm k1a 10 s-1 10 s-1 (Kuo et al., 
2014) 

BemGEFm → BemGEFc k1b 40 s-1 10 s-1 (Kuo et al., 
2014) 

Cdc42Dm + BemGEFm → 
Cdc42T 
  

k2a Target 0.032 μm2s-1 
Fitted 0.040 μm2s-1 

Target 0.16 μM-1s-1 

Fitted 0.16 μM-1s-1 
(Kuo et al., 
2014) 

λ2a 5.3 s-1 5.3 s-1 --- 
Cdc42T → Cdc42Dm k2b 0.35 s-1 0.32 s-1 (Howell et 

al., 2012) 
Cdc42Dm + BemGEF42 → 
Cdc42T 
  

k3 Target 0.280 μm2s-1 
Fitted 0.184 μm2s-1 

Target 0.35 μM-1s-1 

Fitted 0.16 μM-1s-1 
(Kuo et al., 
2014) 

λ3 180 s-1 15.7 s-1 --- 
BemGEFm + Cdc42T → 
BemGEF42 
 

k4a Target 0.050 μm2s-1 
Fitted 0.054 μm2s-1 

Target 10 μM-1s-1 
Fitted 0.79 μM-1s-1 

(Kuo et al., 
2014) 

λ4a 9.6 s-1 8250 s-1 --- 
BemGEF42 → BemGEFm 
+ Cdc42T 

k4b Target 40 s-1 

Fitted 31.4 s-1 
Target 10 s-1 

Fitted 0.37 s-1 
(Kuo et al., 
2014) 

Cdc42Dc → Cdc42Dm k5a 36 s-1 36 s-1 (Kuo et al., 
2014) 

Cdc42Dm → Cdc42Dc k5b 13 s-1 0.65 s-1 (Kuo et al., 
2014) 

BemGEFc + Cdc42T → 
BemGEF42 
  

k7 2.0014 μm2s-1 10 μM-1s-1 (Kuo et al., 
2014) 

 λ7 256 s-1 256 s-1 --- 
Diffusion coefficient in 
cytoplasm 

Dcyto 15 μm2s-1 15 μm2s-1 --- 

Diffusion coefficient on 
membrane 

Dmemb 0.0025 μm2s-1 0.0025 μm2s-1 (Kuo et al., 
2014) 

Membrane to cytoplasm 
volume ratio 

η 1 0.01006 (Kuo et al., 
2014) 

Membrane surface area A 0.21-10.5π 25π (Kuo et al., 
2014) 

Molecular interaction radii 𝜎𝜎�, 𝜚̅𝜚 0.050 μm 0.050 μm --- 
Total Cdc42  14.5-145.5 

particles/μm2 
0.05-0.30 μM --- 

Total BemGEF  0.87-8.8 
particles/μm2 

0.06 μM (Woods et 
al., 2016) 

Table 1.3. Parameters used to perform simulations described in the main text. 
References are for the quasi-3D parameters. “Target” and “fitted” values for k2a, k3, k4a, and k4b exist 
because of the empirical fitting described in the main text. The target was used as the input to 2D 𝜆𝜆 − 𝜚̅𝜚 
theory as the starting point, producing the corresponding microscopic rates λ2a, λ3, λ4a, and λ7. Fitted 
macroscopic rates were obtained after fitting as described earlier. Particle simulations used ∆t = 0.1 ms, 
and RDE simulations used ∆t = 1 ms. Quasi-3D simulations assumed a cell volume corresponding to a 5 
μm diameter sphere. 

 



 

 
 25 

1.6.2. Particle-based simulations in 2D 

We first considered a purely 2D computational domain representing molecules in the cell membrane 

and a thin volume of cytoplasm adjacent to the membrane. The membrane and cytoplasmic molecules 

were differentiated by their diffusivity and reactivity. The spatial coordinates of molecules x and y were 

treated as continuous variables, while time was discretized in intervals of Δt. Thermal diffusion was 

handled using the Euler-Maruyama method (Higham, 2001).  

𝑥𝑥(𝑡𝑡 + Δ𝑡𝑡) = 𝑥𝑥(𝑡𝑡) + 𝜉𝜉𝑖𝑖√2𝐷𝐷Δ𝑡𝑡 

𝑦𝑦(𝑡𝑡 + Δ𝑡𝑡) = 𝑦𝑦(𝑡𝑡) + 𝜉𝜉𝑗𝑗√2𝐷𝐷Δ𝑡𝑡 

where 𝜉𝜉𝑖𝑖 and 𝜉𝜉𝑗𝑗 are normally distributed random numbers with mean zero and variance 1. Molecules that 

undergo association or dissociation events are not updated by the Euler-Maruyama method.  

First-order or unimolecular reactions were assigned probabilities of occurring in Δt given by 𝑃𝑃𝑖𝑖 =

1 − exp(−𝑘𝑘𝑖𝑖Δ𝑡𝑡), where ki was the rate constant for the i-th reaction. If the first-order reaction involved 

the dissociation of two molecules, then the two products were placed a distance of 𝜎𝜎� apart, with one of the 

molecules located at the position of the complex, and the orientation angle chosen at random from a 

uniform distribution. For second-order or bimolecular reactions, it was assumed that two molecules react 

with probability 𝑃𝑃𝜆𝜆 = 𝜆𝜆Δ𝑡𝑡 when they are within a distance 𝜚̅𝜚. Thus, if the two reactants are within a 

reactive range 𝜚̅𝜚, they react with an average rate λ. This approach is based on the Doi method (Doi, 1976). 

It is distinct from the classic diffusion-limited Smoluchowski approach, where molecules react upon 

finding one another for the first time and molecular radii are adjusted to reach the desired kinetics 

(Smoluchowski, 1917). When two molecules bind, their positions are updated by moving one of the 

particles to the exactly same position as its binding partner. Periodic boundary conditions are assumed in 

both spatial directions, so that intermolecular distances for various calculations were solved as the 

minimum Euclidean distance along the 2D surface of a torus. 
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1.6.3. Particle-based simulations in quasi-3D 

We next expanded our approach to approximate a whole cell by introducing a molecular reservoir 

the account for contributions from the bulk cytoplasm, yielding a quasi-3D approach (Figure 1.10). The 

cytoplasmic reservoir was treated implicitly, tracking only the number of molecules in the reservoir, 

instead of the dynamics of individual particles. To simulate stochastic exchange between the explicitly-

modeled and implicitly-modeled regions of the cytoplasm, an approach similar to (Lakhani and Elston, 

2017) was used, using diffusional probability distributions to determine the number of molecules injected 

into (ninj) and ejected from (nejc) the explicitly-modeled cytoplasm at each time step. The resulting 

injection and ejection probabilities Pinj and Pejc correspond to the probability that a single molecule at a 

depth z diffuses the distance required to enter (zimpl–z) or exit (z–zimpl) the explicit simulation region (see 

1.7.5. Deriving integrals for quasi-3D injection and ejection). 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖(𝑧𝑧) =
1
2 �

erf �
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧
√4𝐷𝐷Δ𝑡𝑡

� − erf �
𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑧𝑧
√4𝐷𝐷Δ𝑡𝑡

�� 

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧) =
1
2 �

erf �
𝑧𝑧

√4𝐷𝐷Δ𝑡𝑡
� − erf �

𝑧𝑧 − 𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

√4𝐷𝐷Δ𝑡𝑡
�� 

where zmax is the total height of the implicit and explicit domains, and zimpl is the height of the implicit 

domain. Pinj(z) and Pejc(z) are approximations, since the probability densities in the derivation correspond 

to a freely diffusing particle on an infinite domain. Next, to calculate the mean number of particles that 

are injected and ejected, the injection and ejection probability densities were integrated over the 

appropriate domain, and multiplied by the 3D concentration (c) and the surface area (Ar). 

〈𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖〉(𝑡𝑡) = 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) ∙ 𝐴𝐴𝑟𝑟 ∙ � 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖(𝑧𝑧)𝑑𝑑𝑑𝑑
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚−𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

0
 

〈𝑛𝑛𝑒𝑒𝑒𝑒𝑒𝑒〉(𝑡𝑡) = 𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡) ∙ 𝐴𝐴𝑟𝑟 ∙ � 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧)𝑑𝑑𝑑𝑑
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚−𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 

Finally, to approximate the stochastic fluctuations introduced by particles diffusing in and out of the 

explicit simulation domain, Poisson distributions with means ⟨ninj⟩ and ⟨nejc⟩ were sampled at each time 

step. Coupling this reservoir to the cytoplasmic layer of the 2D particle-based method yielded the quasi-
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3D particle-based approach. Comparisons between this approximate method and Brownian dynamics 

simulations of diffusing particles showed that the molecular reservoir approach was consistent with both 

the mean and standard deviation for particle number over time (Figure 1.10). 

 

Figure 1.10. Reservoir approach schematics and validation.  
(A) Molecules can diffuse in and out of the reservoir. Although distinct molecules are shown for 
illustration, the reservoir is perfectly mixed. (B) Particles at a depth z must diffuse a distance of either 
zimpl–z to enter, or z–zimpl to exit, the explicit simulation domain. The integrals are solved numerically over 
discrete slices with thickness Δz. (C) Time courses of the number of molecules in the explicit domain, 
comparing our approach and a non-reactive Brownian dynamics simulation. The shaded regions represent 
the mean±1 S.D. over 5 realizations. (D) Time-averaged comparisons, mean±1 S.D. of fluctuations, over 
500s, 1 realization. 

 

Computing ⟨ninj⟩(t) and ⟨nejc⟩(t) in practice involved numerically integrating over 100,000 discrete 

slices using the trapezoidal rule over the appropriate domains. Instead of re-calculating the integrals each 

simulation step, the integrals were pre-calculated and stored in a table to save computation time. This 

yields the mean behavior, which is sufficient for the q3D RDEs. However, to stochastically perform 
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injection and ejection in the particle-based simulations, draw uniform random numbers x ϵ [0,1] and use 

the inverse Poisson cumulative distribution function to obtain a Poisson-distributed particle number. To 

ensure physical validity, the tails of these probability distributions are cut off at the number of available 

particles in each compartment each time step. 

 

1.6.4. Reaction-diffusion partial differential equation simulations 

Initial conditions were generated by binning molecular distributions at t = 1 sec from each 

realization of the particle-based simulation at each simulation condition. These pixellations were obtained 

on 100 x 100 grids using MATLAB's histcounts2 function, to be consistent with the grid size used for 

RDE simulation. Simulations were conducted using an operator splitting method, where reaction terms 

were solved using an adaptive Euler step, and diffusion terms were solved using a Fourier transform-

based approach. As in the particle-based simulations, periodic boundary conditions were taken. 

 

1.6.5. Empirically mapping macroscopic to microscopic rate constants 

A starting macroscopic rate constant was used to estimate an initial microscopic rate parameter λ via 

2D 𝜆𝜆 − 𝜚̅𝜚 theory (Table 1.3, “Target” values for bimolecular reactions). Then, particle-based simulations 

of the individual (ir)reversible bimolecular reactions were performed, allowing the reactants to undergo 

membrane-cytoplasm exchange as appropriate for each target reaction. Whether the parameter set was 

intended for 2D or quasi-3D simulations, these calibration simulations were performed on a 2D domain. 

For bimolecular reactions of the form Am + Bm ↔ C, with membrane-cytoplasm exchange reactions Ac ↔ 

Am and Bc ↔ Bm, time courses for particle numbers of Am, Ac, Bm, Bc, and C were extracted from each 

simulation. The membrane-cytoplasm exchange rates (specified during the particle-based simulation) 

were fixed during the fitting procedure, so that only kf and kr were fit. Fitting was done using MATLAB’s 

built-in function fminsearch, where the sum of squared errors along normalized time courses (each scaled 

so that each species’ maximum value in the time course was 1) was minimized. The rate constant k7 did 

not need to be fit, as it involves a cytoplasmic reactant and is not diffusion-limited. A height h = 0.0083 
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μm for the cytoplasmic volume adjacent to the cell membrane was assumed, consistent with 

parameterizations of the membrane-to-cytoplasm volume ratio η used previously for this system (Wu et 

al., 2015). Scaling by h converts between 3D bimolecular rate constants k3D (μm3s-1) and 2D rate 

constants k2D (μm2s-1). The empirical mapping is a fair comparison between the particle-based and RDE 

systems based on the quantitative similarities between polarity sites in the two methods (Figure 1.8 and 

Figure 1.15), as well as the consistency of species time courses in a Turing-stable regime conditions 

(Figure 1.11 and Figure 1.21). 

 

Figure 1.11. Comparisons of deterministic rate equations in 2D and the polarity establishment 
network in a Turing stable regime.  
Linear stability analysis was used to identify a high [Cdc42] regime, consistent with parameters used in 
Figure 1.6. Here, NCdc42 = 1921 and NGEF = 1500. All other parameters are the same as in the main text. 
Error bars are the mean±1s.d. from n=5 realizations of the particle-based simulation, solid lines are the 
solutions of the ordinary differential equations. 
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Figure 1.12. Fitting simulations using 2D parameters to the deterministic rate equations. 
Only the amount of product C formed is shown. Each ODE was fit to a single realization (gold). 
Additional realizations of each condition are provided to show the amount of intrinsic variability (gray). 
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Figure 1.13. Fitting simulations using quasi-3D parameters to the deterministic rate equations. 
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Reaction IC 

Membrane on/off rates Microscopic 
parameters Fitted 

kAon 
(1/s) 

kAoff 
(1/s) 

kBon 
(1/s) 

kBoff 
(1/s) 

λ  
(1/s) 

kr  
(1/s) 

kf 

(2D: µm2/s; 
3D: uM-1/s) 

kr 
(1/s) 

Pa
ra

m
et

er
s f

or
 q

ua
si

-3
D

 si
m

ul
at

io
n 

Cdc42Dm + 
BemGEFm  
→ Cdc42T 

A 

36 0.65 10 10 5.30 

- 0.1664 - 
B - 0.1584 - 
C - 0.1599 - 
D - 0.1634 - 
E - 0.1679 - 

Cdc42Dm + 
BemGEF42 
→ Cdc42T 

A 

36 0.65 - - 15.7 

- 0.14444 - 
B - 0.1484 - 
C - 0.2054 - 
D - 0.1669 - 
E - 0.1374 - 

BemGEFm 
+ Cdc42T  

↔ 
BemGEF42 

A 

10 10 - - 8245 10 

0.9943 0.492 
B 1.0043 0.480 
C 1.2541 0.546 
D 0.3997 0.179 
E 0.3098 0.157 

Pa
ra

m
et

er
s f

or
 p

ur
el

y 
2D

 si
m

ul
at

io
n Cdc42Dm + 

BemGEFm  
→ Cdc42T 

A 

36 13 10 40 5.30 

- 0.0367 - 
B - 0.0392 - 
C - 0.0411 - 
D - 0.0398 - 
E - 0.0432 - 

Cdc42Dm + 
BemGEF42  
→ Cdc42T 

A 

36 13 - - 178 

- 0.162 - 
B - 0.181 - 
C - 0.220 - 
D - 0.192 - 
E - 0.166 - 

BemGEFm 
+ Cdc42T  

↔ 
BemGEF42 

A 

10 40 - - 9.60 40 

0.0570 32.8 
B 0.0586 33.3 
C 0.0595 32.8 
D 0.0379 21.9 
E 0.0593 36.1 

Table 1.4. Microscopic parameters and effective macroscopic parameters for reversible/irreversible 
bimolecular reactions of the form A + B ↔ C, individual fits to each initial condition. 
Dm = 0.0025 μm2/s and Dc = 15 μm2/s were used in the simulations. The domain area was 64 μm2. Fits to 
rate equations were performed to five separate particle-based simulations using different initial conditions 
(ICs). The fitted rates were then averaged. Initial conditions were as follows. Set A: A0 = 1000, B0 = 
1200, C0 = 0. Set B: A0 = 3000, B0 = 2000, C0 = 0. Set C: A0 = 4500, B0 = 1500, C0 = 0. Set D: A0 = 
2000, B0 = 500, C0 = 1000. Set E: A0 = 200, B0 = 800, C0 = 200.  
 
  



 

 
 33 

1.7. Supplemental Methods and Derivations 

1.7.1. Quantifying polarization 

Polarization was measured using the H-function H(r), a rescaled version of Ripley’s K-function. 

Ripley’s K-function is a commonly used metric in experimental biology, and has been applied to study 

both experimental and simulated protein clustering (Kiskowski et al., 2009; Owen et al., 2010; Wehrens 

et al., 2014). The H(r) is related to the cumulative distribution of pairwise inter-particle distances P(r): 

𝐻𝐻(𝑟𝑟) = �
𝐿𝐿2

𝜋𝜋
� 𝑃𝑃(𝑟𝑟′)𝑑𝑑𝑟𝑟′
𝑟𝑟

0
− 𝑟𝑟 

𝑃𝑃(𝑟𝑟) =
1

𝑁𝑁(𝑁𝑁 − 1)
�𝑚𝑚𝑖𝑖(𝑟𝑟)
𝑁𝑁

𝑖𝑖=1

 

where N is the total number of particles subjected to cluster analysis, mi(r)Δr is the number of 

particles at a distance d from particle i such that r–Δr/2 ≤ d ≤ r + Δr/2, and L is the length along either the 

x- or y-axis of the square simulation domain. Since the simulation domain boundaries are periodic, d is 

the minimum Euclidean distance along the two-dimensional surface of a torus. P(r) can also be related to 

the well-known pair correlation function g(r) by normalizing mi(r)Δr by the expected density of particles 

within the area defined by r ± Δr/2. See Figure 1.5C for an example. 

H(r) = 0 if particles are distributed according to a uniform distribution. H(r) > 0 indicate the 

presence of more particles at inter-particle distances r as compared to a uniform distribution, while 

negative values of H(r) indicate fewer particles. Positive values of H(r) therefore indicate spatial 

clustering, or polarization, and the value of r for which H(r) is maximized reflects the characteristic 

cluster size. When "total Cdc42-GTP" levels were quantified or visualized, this meant both Cdc42-GTP 

and Bem1-GEF-Cdc42-GTP complexes, to reflect the total population of Cdc42-GTP molecules. H(r = 

0.5 µm) was typically used for comparisons. Qualitative features of our results do not depend on our 

choice of r, nor on the particle-based time point used to initialize the RDEs. 

H(r) was quantified in the RDE simulations by producing discrete particle distributions from 

continuous concentration data. A cumulative distribution function corresponding to the concentrations in 
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each spatially discretized bin was calculated, then pairs of random numbers p1, p2 ϵ Unif(0,1) were drawn 

to randomly select values from the cumulative distribution function, thus choosing two of the bins. 

Because the PDE assumes that molecules are uniformly distributed within each bin, four more uniform 

random numbers were drawn to pick locations within the two bins. This generated two sets of coordinates 

(x1,y1) and (x2,y2) such that (x1,y1) fits within the first bin, and (x2,y2) fits within the second. The pairwise 

distance between the points was recorded, and the process repeated many times to ensure sufficient 

sampling, typically n = 500,000. The resultant pairwise distance distribution is analogous to P(r), 

permitting similar steps as above to compute a reaction-diffusion analogue of H(r), facilitating direct 

quantitative comparison of polarization between the stochastic and deterministic simulations. 

 

Figure 1.14. Different choices of r in H(r) do not change the qualitative features of our results.  
Figure 1.5 has been replicated here alongside versions with H(r = 0.7 μm) and H(r = 0.975 μm). 

 

Figure 1.15. Representative H(r) curves for the particle-based and RDE simulations showing 
similarity in polarization. 
Quantification was performed at steady-state polarity (t=200s for particle-based simulation, t=600s for 
RDE simulation.) Uses the parameters in Figure 1.6A-B with NCdc42 = 1921 and NGEF = 116. 
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Figure 1.16. Polarity establishment is still slower for the RDE model if equations are seeded with 
later distributions from the particle-based simulations. 
The corresponding particle-based simulations are all polarized by 200s under these conditions, showing 
that the RDEs are consistently slow in comparison to the particle-based simulations. 
1.7.2. Determining bifurcation points 

For the 2D reaction-diffusion system, linear stability analysis was used to determine conditions 

where the homogeneous steady state was Turing unstable (Murray, 2003). In this analysis, the full 

reaction diffusion equations are linearized around the homogenous steady-state, and the effect of an 

arbitrary small spatial perturbation is evaluated. The small perturbation is represented as a linear 

combination of a particular set of spatial functions, which are eigenfunctions (modes) of the Laplacian 

operator and are subject to appropriate boundary conditions. Because of the linearity, the initial growth of 

each mode is proportional to where the eigenvalue λn depends on the corresponding wave number kn
2. A 

small spatial perturbation will grow if Re[λ] is greater than zero for at least one mode. For a square 

domain of side L with periodic boundary conditions, the eigenfunctions are (Haberman, 1998): 

𝑊𝑊𝑛𝑛𝑛𝑛(𝑥𝑥,𝑦𝑦) = �𝑎𝑎𝑛𝑛 cos
2𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿

+ 𝑏𝑏𝑛𝑛 sin
2𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿

� �𝑎𝑎𝑚𝑚 cos
2𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿

+ 𝑏𝑏𝑚𝑚 sin
2𝑚𝑚𝑚𝑚𝑚𝑚
𝐿𝐿

� 

where 

𝑘𝑘𝑛𝑛𝑛𝑛2 = �
2𝑛𝑛𝑛𝑛
𝐿𝐿
�
2

+ �
2𝑚𝑚𝑚𝑚
𝐿𝐿

�
2
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and n and m are integers. The coefficients an, bn, am, and bm are constants determined by the initial 

perturbation and are not relevant in this analysis. The dispersion relation Re[λ(k2
nm)] is calculated for the 

set of PDEs that define the signaling network. The system is unstable if Re[λ(k2
nm)] > 0 for any mode n,m. 

If the system is in a Turing-unstable state, then decreasing the concentration of a particular species will 

induce a bifurcation where the system becomes stable to spatial perturbations. For the cases examined 

here (decreasing domain size or species concentration) the bifurcation occurs when Re[λ(k2
nm)] becomes 

zero for the wave numbers k2
01 and k2

10 because these are the smallest relevant wave numbers (the mode n 

= 0, m = 0 corresponds to a uniform function and is not relevant in this analysis). 

 
Figure 1.17. Bifurcation point identification with linear stability analysis. 
The dispersion relation Re[λ(k2)] is plotted against wave numbers k2. The smallest number of Cdc42 
molecules such that both Re[λ(k01

2)] > 0 and Re[λ(k01
2)] > 0 is the bifurcation point. This result 

corresponds to Figure 1.6A. 
 

For the quasi-3D reaction-diffusion system, where linear stability analysis was more difficult, a 

simpler, numerical approach was used to determine the Cdc42 concentration threshold below which the 

system cannot polarize. The initial conditions were set up as follows: all the Cdc42 and BemGEF was set 

inactive in the “explicit” cytoplasmic compartment, except for a L/5 x L/5 square centered on the origin, 

where L is the domain length, in which 90% of the Cdc42 was converted into the active membrane-bound 
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state. Simulations to determine the bifurcation point by pre-polarization were carried out for 600s, which 

was sufficient to distinguish loss or maintenance of polarity on the basis of H(r = 2 μm) (Figure 1.18). 

 
Figure 1.18. Quantifying H(r) at t=1800s for pre-polarized q3D-RDEs is a reasonable marker for 
maintenance vs. loss of polarity. 
 
1.7.3. Estimating the 2D diffusion limit 

Consider a circular capture zone, centered at the origin of a circular domain. Let 𝜚̅𝜚 denote the radius 

of the capture zone, and rmax denote the radius of the domain. Then, introduce a species with diffusivity D 

with Brownian diffusion. This species, whose non-dimensionalized concentration is denoted by c(r), is 

absorbed at 𝜚̅𝜚 and has a fixed concentration at rmax. The system is described at steady state by: 

𝐷𝐷 �
𝑑𝑑2𝑐𝑐
𝑑𝑑𝑟𝑟2

+
1
𝑟𝑟
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�

= 0,       for 𝜚̅𝜚 ≤ 𝑟𝑟 ≤ 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 

with boundary conditions: 

𝑐𝑐(𝑟𝑟) = 0,      for 0 ≤ 𝑟𝑟 ≤ 𝜚̅𝜚 

𝑐𝑐(𝑟𝑟) = 𝐶𝐶,       for 𝑟𝑟 = 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 

The general solution to the differential equation is: 

𝑐𝑐(𝑟𝑟) = 𝑎𝑎1 + 𝑎𝑎2 ln(𝑟𝑟),       for 𝜚̅𝜚 ≤ 𝑟𝑟 ≤ 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 

Using the boundary conditions: 
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𝑎𝑎1 =  −
𝐶𝐶 ln(𝜚̅𝜚)

ln �𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝜚̅𝜚 �
    and     𝑎𝑎2 =

𝐶𝐶

ln �𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝜚̅𝜚 �

 

𝑐𝑐(𝑟𝑟) =
𝐶𝐶(ln(𝑟𝑟) − ln(𝜚̅𝜚))
ln(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚)− ln(𝜚̅𝜚)

,       for 𝜚̅𝜚 ≤ 𝑟𝑟 ≤ 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 

The capture rate is the total flux into rB, which can be used as an estimate for the time scale of the 

diffusion-limited 2D reaction: 

Total Flux = 𝐽𝐽 = 2𝜋𝜋𝜋𝜋𝜚̅𝜚
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�𝑟𝑟=𝜚𝜚�

=  
2𝜋𝜋𝜋𝜋𝜋𝜋

ln(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚/𝜚̅𝜚) 

Thus, the estimated time scale for the diffusion-limited second-order rate constant is: 

𝑘𝑘𝐷𝐷𝐷𝐷 =  
2𝜋𝜋𝜋𝜋

ln(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚/𝜚̅𝜚) 

This estimate can be used to assess whether the diffusion-limited conditions are relevant to published 

parameters for the yeast polarization network. Several of the rate constants appear to exceed the 𝑘𝑘𝐷𝐷𝐷𝐷 

(Figure 1.19). However, this calculation assumes molecules can only find one another by diffusion along 

the plasma membrane, and does not take into account the effect of particle exchange between the 

membrane and cytoplasm, which can lead to significantly larger effective rate constants. 
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Figure 1.19. Accepted parameters for the yeast polarization model appear supra-diffusive in a 2D 
context.  
The blank line is an estimate of the macroscopic rate constant using 2𝜋𝜋𝜋𝜋/ ln(𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚/𝜚̅𝜚). This neglects 
membrane-cytoplasm exchange. It is important to remember that, strictly, there is no well-defined 
diffusion-limited rate constant. Parameters: rmax = 2.5 µm, 𝜚̅𝜚 = 0.05 µm. Simulations were conducted on a 
L = 5 µm domain. 
 
1.7.4. Deriving and validating the 2D 𝜆𝜆 − 𝜚̅𝜚 theory 

The ratio between the unbinding and binding radii 𝛼𝛼 ≡ 𝜎𝜎�/𝜚̅𝜚 is crucial in defining the appropriate 

relation that describes the microscopic rate constant λ for the reversible bimolecular reaction A + B  

C. In a manner similar to (Lipková et al., 2011), we begin by considering a coordinate system with a 

particle of B placed at the origin. In this frame of reference, the independent diffusion of A and B can be 

equivalently described as the random walk of a molecule A with diffusion coefficient 𝐷𝐷𝐴𝐴 + 𝐷𝐷𝐵𝐵. When a 

molecule A diffuses within a distance 𝜚̅𝜚 of B, it is removed with a rate λ. The reverse dissociation reaction 

can be described with the introduction of new molecules of A at a distance 𝜎𝜎� from the origin. In our 2D 
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system, we must work with 2D bimolecular rate constants – to convert a 3D rate constant to a 2D rate 

constant, we simply divide by the assumed depth of our explicit region (0.00833 µm). Let c(r) be the 

equilibrium concentration of molecules of A at distance r from the origin. We non-dimensionalize the 

problem by defining the reduced quantities: 

𝛽𝛽 ≡ 𝜚̅𝜚�
𝜆𝜆

𝐷𝐷𝐴𝐴 + 𝐷𝐷𝐵𝐵
 

 

𝑟̂𝑟 ≡
𝑟𝑟
𝜚̅𝜚

 

 

𝜅𝜅 ≡
𝑘𝑘1

(𝐷𝐷𝐴𝐴 + 𝐷𝐷𝐵𝐵) 𝑐̂𝑐 =
𝑐𝑐
𝑐𝑐∞

 

 

we have scaled lengths by 𝜚̅𝜚, time by 𝜚̅𝜚2(𝐷𝐷𝐴𝐴 + 𝐷𝐷𝐵𝐵)−1, and concentrations by the bulk concentration: 

lim
𝑟𝑟→∞

𝑐𝑐(𝑟𝑟) = 𝑐𝑐∞ 

We consider the case where 𝛼𝛼 > 1, and ignore 𝛼𝛼 ≤ 1, as the second case turns out to be unusable. If 

𝛼𝛼 > 1, the dissociation radius 𝜎𝜎� is greater than the binding radius 𝜚̅𝜚. The equations describing the 

microscopic reaction-diffusion system in polar coordinates are: 

(𝐷𝐷𝐴𝐴 + 𝐷𝐷𝐵𝐵)�
d2𝑐𝑐
d𝑟𝑟2

+
1
𝑟𝑟

d𝑐𝑐
d𝑟𝑟�

− 𝜆𝜆𝜆𝜆 = 0,    for 𝑟𝑟 ≤ 𝜚̅𝜚  

(𝐷𝐷𝐴𝐴 + 𝐷𝐷𝐵𝐵)�
d2𝑐𝑐
d𝑟𝑟2

+
1
𝑟𝑟

d𝑐𝑐
d𝑟𝑟�

+ 𝑄𝑄(𝑟𝑟 − 𝜎𝜎�) = 0,    for 𝑟𝑟 ≥ 𝜚̅𝜚  

where 𝑄𝑄(𝑟𝑟 − 𝜎𝜎�) is a Dirac-like distribution describing the production of molecules at 𝑟𝑟 = 𝜎𝜎�. In terms of 

the non-dimensional variables, we have: 

d2𝑐̂𝑐
d𝑟̂𝑟2

+
1
𝑟̂𝑟

d𝑐̂𝑐
d𝑟̂𝑟

− 𝛽𝛽2𝑐̂𝑐 = 0,    for 𝑟̂𝑟 ≤ 1 Equation 1.1 

d2𝑐̂𝑐
d𝑟̂𝑟2

+
1
𝑟̂𝑟

d𝑐̂𝑐
d𝑟̂𝑟

+ 𝜔𝜔𝜔𝜔(𝑟̂𝑟 − 𝛼𝛼) = 0,    for 𝑟̂𝑟 ≥ 1 Equation 1.2 

 

where 𝛿𝛿(𝑟̂𝑟 − 𝛼𝛼) is a Dirac-delta function, and 𝜔𝜔 is the rate of creation of molecules at 𝑟̂𝑟 = 𝛼𝛼. The average 

number of molecules produced by the forward and backward reactions must balance at equilibrium, and 

therefore we have: 
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2𝜋𝜋𝜋𝜋𝜋𝜋 = 𝜅𝜅 = 2𝜋𝜋
𝑑𝑑𝑐̂𝑐
𝑑𝑑𝑟̂𝑟

 �
𝑟̂𝑟=1

 Equation 1.3 

 

where 𝜅𝜅 represents the association rate constant. This 𝜅𝜅 is directly equal to the flux through the circle of 

radius 1, because it corresponds to a macroscopic bimolecular rate constant, in contrast to the synthesis 

term 𝜔𝜔. Substituting 𝜔𝜔 =  𝜅𝜅/(2𝜋𝜋𝜋𝜋) into Equation 1.2, we obtain: 

d2𝑐̂𝑐
d𝑟̂𝑟2

+
1
𝑟̂𝑟

d𝑐̂𝑐
d𝑟̂𝑟

+
𝜅𝜅𝜅𝜅(𝑟̂𝑟 − 𝛼𝛼)

2𝜋𝜋𝜋𝜋
= 0,    for 𝑟̂𝑟 ≥ 1 

Equation 1.4 
 

 

We can write down the general solutions of Equation 1.1 and Equation 1.4 in the form: 

𝑐̂𝑐(𝑟̂𝑟) = 𝑎𝑎1𝐼𝐼0(𝛽𝛽𝑟̂𝑟) + 𝑎𝑎2𝐾𝐾0(−𝛽𝛽𝑟̂𝑟),    for 𝑟̂𝑟 ≤ 1 

𝑐̂𝑐(𝑟̂𝑟) = 𝑎𝑎3 + 𝑎𝑎4 ln(𝑟̂𝑟) + sgn(𝛼𝛼 − 𝑟̂𝑟)
κ

4𝜋𝜋
ln �

𝑟̂𝑟
𝛼𝛼
� ,    for 𝑟̂𝑟 ≥ 1 

where 𝑎𝑎1, 𝑎𝑎2, 𝑎𝑎3, and 𝑎𝑎4 are real constants to be determined, 𝐼𝐼0(𝑥𝑥) and 𝐾𝐾0(𝑥𝑥) are zeroth-order modified 

Bessel functions of the 1st and 2nd kind, respectively, and sgn(𝑥𝑥) is the signum function. We specify the 

constants by using particular boundary conditions, as follows. 

Going out to infinity, the concentration 
approaches the bulk concentration 

 lim
𝑟̂𝑟→∞

𝑐̂𝑐(𝑟̂𝑟) = 1 

   
𝑐̂𝑐(0) is a finite value  𝑐̂𝑐(0) = 𝑐̂𝑐0 

   
The dimensionless concentration equations 

must agree at the boundary 𝑟̂𝑟 = 1 
 𝑐̂𝑐𝑟̂𝑟≤1(1) = 𝑐̂𝑐𝑟̂𝑟≥1(1) 

   

To determine the integration constants, begin by using the first boundary condition. 

lim
𝑟̂𝑟 →∞ 

𝑎𝑎3 + 𝑎𝑎4 ln(𝑟̂𝑟) + sgn(𝛼𝛼 − 𝑟̂𝑟)
κ

4𝜋𝜋
ln �

𝑟̂𝑟
𝛼𝛼
� = 1 

𝑎𝑎3 − 1 + lim
𝑟̂𝑟 →∞ 

𝑎𝑎4 ln(𝑟̂𝑟) −
κ

4𝜋𝜋
[ln 𝑟̂𝑟 − ln𝛼𝛼] = 0 

𝑎𝑎3 − 1 +
𝜅𝜅

4𝜋𝜋
ln𝛼𝛼 + lim

𝑟̂𝑟 →∞ 
𝑎𝑎4 ln(𝑟̂𝑟) −

κ
4𝜋𝜋

[ln 𝑟̂𝑟] = 0 
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𝑎𝑎3 − 1 +
𝜅𝜅

4𝜋𝜋
ln𝛼𝛼 + lim

𝑟̂𝑟 →∞ 
ln(𝑟̂𝑟) �𝑎𝑎4 −

κ
4𝜋𝜋�

= 0 

This requires that 𝑎𝑎4 = 𝜅𝜅
4𝜋𝜋

 , which then makes it apparent that 𝑎𝑎3 = 1 − 𝜅𝜅
4𝜋𝜋

ln(𝛼𝛼). Next, note that at 

𝑐̂𝑐(0) = 𝑐̂𝑐0, 𝐾𝐾0(𝛽𝛽𝑟̂𝑟) is infinite, requiring that a2 must be zero. Finally, requiring that the two solutions are 

equal at 𝑟̂𝑟 = 1 determines a1: 

𝑎𝑎1𝐼𝐼0(𝛽𝛽) = 1 +
𝜅𝜅

4𝜋𝜋
ln �

𝑟̂𝑟
𝛼𝛼
� [1 + sgn(𝛼𝛼 − 𝑟̂𝑟)] 

Since 𝑟̂𝑟 = 1 and 𝛼𝛼� > 1, 

𝑎𝑎1𝐼𝐼0(𝛽𝛽) = 1 +
𝜅𝜅

2𝜋𝜋
ln �

1
𝛼𝛼
� 

𝑎𝑎1 =
1 − 𝜅𝜅

2𝜋𝜋 ln(𝛼𝛼)
𝐼𝐼0(𝛽𝛽)  

Substitution of all constants into the equations for 𝑐̂𝑐(𝑟̂𝑟) yields: 

𝑐̂𝑐(𝑟̂𝑟) =
𝐼𝐼0(𝛽𝛽𝑟̂𝑟)
𝐼𝐼0(𝛽𝛽)

�1 −
𝜅𝜅 ln(𝛼𝛼)

2𝜋𝜋
� ,    for 𝑟̂𝑟 ≤ 1 

𝑐̂𝑐(𝑟̂𝑟) = 1 +
𝜅𝜅

4𝜋𝜋
ln �

𝑟̂𝑟
𝛼𝛼
� [1 + sgn(𝛼𝛼 − 𝑟̂𝑟)],    for 𝑟̂𝑟 ≥ 1 

To get an expression for 𝜅𝜅 in terms of β, which contains our microscopic rate λ, we evaluate the 

derivative 𝑐̂𝑐′(𝑟̂𝑟) at 𝑟̂𝑟 = 1 and set it equal to 𝜅𝜅/2π. 

𝜅𝜅 =
2𝜋𝜋𝜋𝜋 𝐼𝐼1(𝛽𝛽)

𝐼𝐼0(𝛽𝛽)

�1 + ln(𝛼𝛼)𝛽𝛽 𝐼𝐼1(𝛽𝛽)
𝐼𝐼0(𝛽𝛽)�

,    𝛼𝛼 > 1 

Note that, if we take the limit as α → 1 and hold β constant, κ increases. This is consistent with the 

idea that, if the probability of reacting within 𝜚̅𝜚 is kept the same, as we shrink the release radius, 

molecules of A will react with B more rapidly. Returning to experimentally measurable quantities k1, DA, 

DB, and the model parameters 𝜚̅𝜚, 𝜎𝜎�, and λ: 
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𝑘𝑘1 = (𝐷𝐷𝐴𝐴𝐴𝐴)

2𝜋𝜋𝜚̅𝜚� 𝜆𝜆
𝐷𝐷𝐴𝐴𝐴𝐴

⎝

⎜
⎛𝐼𝐼1 �𝜚̅𝜚�

𝜆𝜆
𝐷𝐷𝐴𝐴𝐴𝐴

�

𝐼𝐼0 �𝜚̅𝜚�
𝜆𝜆
𝐷𝐷𝐴𝐴𝐴𝐴

�
⎠

⎟
⎞

⎝

⎜
⎛

1 + ln �𝜎𝜎�𝜚̅𝜚� 𝜚̅𝜚�
𝜆𝜆
𝐷𝐷𝐴𝐴𝐴𝐴

𝐼𝐼1 �𝜚̅𝜚�
𝜆𝜆
𝐷𝐷𝐴𝐴𝐴𝐴

�

𝐼𝐼0 �𝜚̅𝜚�
𝜆𝜆
𝐷𝐷𝐴𝐴𝐴𝐴

�
⎠

⎟
⎞

,    𝛼𝛼 > 1 

where 𝐷𝐷𝐴𝐴𝐴𝐴 ≡ 𝐷𝐷𝐴𝐴 + 𝐷𝐷𝐵𝐵, and 𝐼𝐼0(𝑥𝑥) and 𝐼𝐼1(𝑥𝑥) are the zeroth- and first-order modified Bessel functions 

of the first kind. Although there is no analytic inverse of 𝐼𝐼𝜈𝜈(𝑥𝑥), we can numerically solve for the 

microscopic rate constant λ. To validate this calculation, we can compare particle-based simulations using 

the 2D 𝜆𝜆 − 𝜚̅𝜚 theory to deterministic rate equations based on macroscopic theory. We tested the simple 

reversible bimolecular association reaction A + B  C (Figure 1.20), as well as the more complicated 

Cdc42 signaling circuitry in a non-polarizing context (Figure 1.21). 

 

Figure 1.20. Comparisons between the deterministic rate equations in 2D and multiple realizations 
of the particle-based simulation for the simple reversible bimolecular reaction A+B ↔ C.  
The error bars for the particle-based simulations represent the mean±1s.d., n=5.  
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Figure 1.21. Comparisons between the deterministic rate equations in 2D and multiple realizations 
of the particle-based simulation for the polarity establishment network under reaction-limited, non-
polarizing conditions.  
The error bars for the particle-based simulations represent the mean±1s.d., n=5. The solid lines are 
solutions of the partial differential equations, using Dm = Dc = 1.5 µm2/s. 
 
1.7.5. Deriving integrals for quasi-3D injection and ejection 

We begin by considering the diffusional probability density defined by the diffusion equation in one 

dimension. We assume that diffusing particles are not confined – while this is not truly the case, we 

demonstrate that this assumption turns out to be reasonable.  

𝜕𝜕𝑡𝑡𝑝𝑝(𝑧𝑧, 𝑡𝑡|𝑥𝑥0, 𝑡𝑡0) = 𝐷𝐷𝜕𝜕𝑧𝑧2𝑝𝑝(𝑧𝑧, 𝑡𝑡|𝑧𝑧0, 𝑡𝑡0) 

𝑝𝑝(𝑧𝑧, 𝑡𝑡0|𝑧𝑧0, 𝑡𝑡0) = 𝛿𝛿(𝑧𝑧 − 𝑧𝑧0) 

𝑝𝑝(𝑧𝑧 → ±∞, 𝑡𝑡|𝑧𝑧0, 𝑡𝑡0) = 0 

The corresponding Green’s function solution is: 

𝑝𝑝(𝑧𝑧, 𝑡𝑡|𝑧𝑧0, 𝑡𝑡0) =
1

�4𝜋𝜋𝜋𝜋(𝑡𝑡 − 𝑡𝑡0)
exp �−

(𝑧𝑧 − 𝑧𝑧0)2

4𝐷𝐷(𝑡𝑡 − 𝑡𝑡0)
� Equation 1.5 

 

If we consider diffusion distributions pi emerging from Dirac-Delta distributions at zi within the 

cytoplasm, then each probability distribution pi satisfies Equation 1.5 at each time step. We further 
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assume that the explicit and implicit cytoplasmic domains are perfectly well-mixed along the z-axis. We 

rewrite this solution after substituting Δt = t – t0 and also redefine z = z – z0 for convenience. 

𝑝𝑝(𝑧𝑧) =
1

√4𝜋𝜋𝜋𝜋Δ𝑡𝑡
exp �−

𝑧𝑧2

4𝐷𝐷Δ𝑡𝑡
� 

To compute the probability of diffusing from one compartment to the other, we integrate p ranging 

over the distance that must be traveled. We either assume that diffusion must halt at the maximal distance 

(subsequently denoted the ‘exact case’), or include diffusional probabilities that bypass the maximal 

distance towards infinity (the ‘approximate case’). Throughout the manuscript, we use the exact case, but 

the approximate case can be intuitively examined for correctness, so we present it here. 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖(𝑧𝑧𝑖𝑖) = �
1

√4𝜋𝜋𝜋𝜋Δ𝑡𝑡
exp �−

𝑧𝑧2

4𝐷𝐷Δ𝑡𝑡
�𝑑𝑑𝑑𝑑

𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚−𝑧𝑧

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑧𝑧

 ≈ �
1

√4𝜋𝜋𝜋𝜋Δ𝑡𝑡
exp �−

𝑧𝑧2

4𝐷𝐷Δ𝑡𝑡
� 𝑑𝑑𝑑𝑑

∞

𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑧𝑧

 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖(𝑧𝑧) =
1
2 �

erf �
𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑧𝑧
√4𝐷𝐷Δ𝑡𝑡

� − erf �
𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑧𝑧
√4𝐷𝐷Δ𝑡𝑡

�� ≈
1
2 �

1 − erf �
𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑧𝑧
√4𝐷𝐷Δ𝑡𝑡

�� 

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧) = �
1

√4𝜋𝜋𝜋𝜋Δ𝑡𝑡
exp �−

𝑧𝑧2

4𝐷𝐷Δ𝑡𝑡
�𝑑𝑑𝑑𝑑

𝑧𝑧

𝑧𝑧−𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 ≈ �
1

√4𝜋𝜋𝜋𝜋Δ𝑡𝑡
exp �−

𝑧𝑧2

4𝐷𝐷Δ𝑡𝑡
� 𝑑𝑑𝑑𝑑

−∞

𝑧𝑧−𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 

𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑧𝑧) =
1
2
�erf �

𝑧𝑧
√4𝐷𝐷Δ𝑡𝑡

� − erf�
−(𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑧𝑧)

√4𝐷𝐷Δ𝑡𝑡
�� ≈

1
2
�1 − erf�

−(𝑧𝑧𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑧𝑧)
√4𝐷𝐷Δ𝑡𝑡

� � 

The term z is the depth of the particle in coordinates where z = 0 is the bottom of the implicit 

reservoir, zimpl is the depth marking the interface between the implicit and explicit domains, and zmax is the 

total height of the implicit and explicit domains, as illustrated in Figure 1.10. In the approximate forms, 

we note that if we consider a slice at the explicit-implicit boundary z = zimpl, we have Pinj = Pejc = 0.5, 

which reflects that a Brownian particle is equally likely to diffuse up or diffuse down. Cutting the 

integrals at the cytoplasmic boundaries alters this probability slightly, but not by a noticeable amount. We 

choose to use the exact integrals since there is very minimal computational advantage to using the 

approximate form. 
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1.7.6. Loss of polarity with increasing membrane diffusivity 

Other reports in the literature have assumed faster diffusion coefficients on the membrane (Klünder 

et al., 2013). Doing the same in our model without changing any other parameters causes a loss in polarity 

(Figure 1.22). 

 
Figure 1.22. Loss of polarization with increasing membrane diffusivity. 
The parameters in Figure 1.6A-B with NCdc42 = 1921 and NGEF = 116, were used to create the results for 
Dm = 0.0025 µm2/s. We then increased the diffusivity on the membrane while keeping all other 
parameters fixed. Each curve represents the mean±1s.d. from n=5 realizations. 
 
1.7.7. An alternative to the quasi-3D system 

In addition to the quasi-3D, reservoir-based approximation of the cell cytoplasm, we also considered 

a volume-adjusted, two-compartment RDE system, as had been previously reported in the literature (Wu 

et al., 2015) to complement our quasi-3D simulation results. We observe no qualitative change our 

results: the particle-based simulations still exhibit accelerated polarization relative to the RDE 

simulations, and also still polarize past the deterministically-predicted bifurcation point (Figure 1.23). 
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Figure 1.23. Considering the volume-adjusted, two-compartment RDE system makes no qualitative 
difference for our observations. 
Left: polarization dynamics and quantitative polarity site similarity, as in Figure 1.8. Here, 1800s was 
sufficient for full polarization, so the RDE H(r) curves were overlaid with the PB simulations. Right: 
Bifurcation diagram. The bifurcation point was calculated using linear stability analysis. 
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CHAPTER 2: RATIOMETRIC GPCR SIGNALING ENABLES DIRECTIONAL 
SENSING IN YEAST2 

 

Overview 

As described in Chapter 1, accurately sensing extracellular chemical gradients is essential in yeast 

polarization during mating. Gradient sensing is also important for the aggregation of social amoebae, the 

directed growth of neurons, the migration of sperm towards eggs , and the clearance of pathogens by 

neutrophils (Alvarez et al., 2014; Bhattacharjee and Folch, 2017; Rappel and Edelstein-Keshet, 2017; 

Swaney et al., 2010; von Philipsborn and Bastmeyer, 2007). In most cases, cells sense external signals via 

G-protein-coupled receptors (GPCRs), leading to cytoskeletal reorganization that produces directional 

growth or movement (Insall, 2013).

The yeast Saccharomyces cerevisiae uses GPCRs to sense extracellular gradients of pheromone 

secreted by potential mates. Pheromone-bound GPCRs activate intracellular G proteins, initiating a 

cascade to orient the polarity machinery. In collaboration with researchers at Duke University, we showed 

that yeast successfully bias their polarity sites up-gradient despite pheromone receptors that are 

asymmetrically distributed along the cell surface (Henderson et al., 2019). Receptor asymmetry can result 

in a ligand-bound gradient of receptors that do not accurately reflect the external pheromone gradient, 

implying yeast must have an error correction mechanism. 

Here, I present simulations predicting that yeast can robustly decode gradients by responding to the 

ratio of occupied to free receptors, rather than the abundance of occupied receptors. The biochemical 

mechanism involves stimulation of signaling by bound receptors together with inhibition of signaling by 

 
2 This chapter has appeared as part of an article in the journal PLoS Biology. The original citation is as follows: 
Henderson NT, Pablo M, Ghose D, Clark-Cotton MR, Zyla TR, Nolen J, Elston TC, Lew DJ. “Ratiometric GPCR 
signaling enables directional sensing in yeast.” PLoS Biol. 17(10): e3000484. 



 

 
 53 

free receptors. These predictions were tested and verified by our collaborators, whose results are provided 

in the journal publication and not here. This mechanism can also sharpen the gradient of activated G 

protein. Chapter 1 investigated yeast polarity establishment by modeling a Cdc42-centric positive 

feedback loop. This chapter begins to consider polarization in the context of mating: how are extracellular 

gradients of pheromone accurately converted into intracellular gradients? Then in Chapter 3, we will 

model how such intracellular gradients influence Cdc42-mediated polarization. 

 

2.1. Introduction 

The sequence of molecular events that convert extracellular chemical gradients to directional outputs 

is perhaps best understood in the genetically tractable budding yeast S. cerevisiae. Yeast cells of mating 

type a (MATa) can mate with cells of mating type α (MATα). The cells secrete peptide pheromones that 

bind GPCRs on cells of the opposite type (α-factor is sensed by Ste2 in a cells, and a-factor is sensed by 

Ste3 in α cells) (Wang and Dohlman, 2004). Once bound by pheromone, these GPCRs activate 

heterotrimeric G proteins to generate GTP-Gα and Gβγ. Pheromone binding is linked to polarity 

establishment through Gβγ-mediated recruitment of Far1 and the formation of a Gβγ-Far1-Cdc24 

complex, which is capable of activating the master polarity regulator Cdc42. Our model in this chapter 

stops at G protein activation, and Chapter 3 describes the subsequent steps in more detail. 

Like other eukaryotic cells, yeast are thought to compare ligand concentrations across the cell in order 

to determine the orientation of the gradient (Arkowitz, 2009). If the cellular distribution of pheromone-

activated receptors reflects the pheromone gradient, then Gβγ-Far1-Cdc24 complexes will be enriched up-

gradient, spatially biasing activation of Cdc42 to kick off positive feedback at the right location for 

mating. However, the small size of yeast (~5 µm diameter) makes such global gradient sensing difficult 

(Berg and Purcell, 1977). Indeed, simulations constrained by experimental data on binding and diffusion 

parameters have indicated that the process is inaccurate (Lakhani and Elston, 2017). When yeast are 

exposed to artificial, calibrated pheromone gradients, the initial polarization often occurs in the wrong 

direction (Moore et al., 2008; Segall, 1993). These cells are nevertheless able to re-orient the polarity site 
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(Dyer et al., 2013; Hegemann and Peter, 2017; Kelley et al., 2015), through actin and vesicle-dependent 

mechanisms (McClure et al., 2015; Savage et al., 2012). The moving patch has been theorized to operate 

like a sensor for changes in the local pheromone concentration (Ayscough and Drubin, 1998; Suchkov et 

al., 2010). It is unclear to what extent yeast cells rely on global sensing to orient the formation of a 

polarity site versus local sensing to re-orient the polarity site. A recent study found that when cells were 

placed in an artificial pheromone gradient in a microfluidics device, initial site formation was essentially 

random with respect to the gradient, and orientation occurred almost entirely by exploratory polarization 

(Hegemann et al., 2015). 

To study spatial sensing in a more natural context, our collaborators imaged mating events in mixed 

populations of MATa and MATα cells and found evidence for both global spatial sensing and subsequent 

local error correction. Importantly, they observed nonrandom initial clustering of polarity proteins biased 

towards eventual mating partners. The initial polarization was surprisingly accurate given that it occurred 

despite a highly nonuniform, and thus potentially misleading, distribution of Ste2 receptors. In principle, 

this would disrupt global sensing. In the following, I present computational simulations of Ste2 signaling 

that show how cells could correct for asymmetric receptor distributions. 

 
2.2. Nonuniform GPCR distributions can mislead G-protein activation 

The Ste2 distribution along the cell surface was highly heterogeneous in growing cells that were not 

exposed to α-factor, with on average 3-fold variation in local concentration. This nonuniform receptor 

distribution poses a potential problem for accurate gradient sensing: one might expect cells to be 

preferentially sensitive to pheromone on the side where receptors are enriched, which may not correspond 

to the side facing a mating partner. To illustrate the problem, we conducted particle-based simulations of 

a model spherical cell with receptors distributed unevenly over the surface with a 3-fold difference from 

one side of the cell to the other (Figure 2.1A). We assume that heterotrimeric G proteins diffuse at the 

membrane and become activated when they encounter a ligand-bound receptor. G-protein inactivation 

occurs at a rate that is the same everywhere (see 2.6. Methods). A stable pheromone gradient was 
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simulated by assuming that the probability that a receptor is active is 1.5-fold higher on the up-gradient 

side than the down-gradient side of the cell (Figure 2.1B). Receptor diffusion does not significantly blur 

this gradient (Figure 2.6). While pheromone gradients may not be stable under mating conditions, we use 

them in our model to allow for straightforward interpretation. 

At any given time, our simulations provide the locations of all active G proteins on the cell surface. 

From that, we calculated a resultant vector for active G protein and plotted the angle between this vector 

and the imposed pheromone gradient (Figure 2.1C). When the receptor density gradient and the 

pheromone gradient were aligned, the simulated cells identified the correct direction. However, when the 

density gradient was not aligned with the pheromone gradient, the simulated cells were easily misled, 

with active G proteins accumulating in regions with high receptor density (Figure 2.1C). Thus, without 

some compensatory mechanism, we would expect yeast cells to have difficulty decoding the pheromone 

gradient in the presence of an uncorrelated receptor density gradient. 
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Figure 2.1. GPCR density variation along the cell membrane can mislead G protein activation. 
(A) Simulated receptors were distributed unevenly: receptor density is indicated by the thickness of the 
black line (inset) and reflects a 3-fold gradient, similar to the experimental Ste2 distribution. (B) A 1.5-
fold pheromone gradient was simulated along the x axis by varying the % of active receptors from 40% to 
60% across the cell diameter. (C) Simulations were conducted with receptor activity and density gradients 
oriented as in the illustrations. The locations of all the active G proteins were used to calculate a G-
protein vector, whose angle to the direction of the pheromone gradient is plotted (y axis) against time (x 
axis) (left). 0° indicates perfect orientation: active G-protein vector in the same direction as the applied 
receptor activity gradient. The approximate range of G-protein vectors (blue wedge) is shown on the 
cartoon on the right, along with the pheromone gradient (green shading) and receptor density (as in A). 

 

2.3. Ratiometric GPCR signaling robustly directs G-protein activation 

A potential compensatory mechanism that could correct for the presence of more active receptors at 

sites of high receptor density exploits the fact that receptor-dense regions would contain more unbound 

receptor as well as ligand-bound receptor. If unbound receptor counteracts G-protein activation, that 
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could cancel out the higher rate of G-protein inactivation by ligand-bound receptors. In yeast cells, the 

regulator of G-protein signaling (RGS) protein supersensitive 2 (Sst2) that inactivates the G protein is 

recruited to the cell membrane via binding to unoccupied Ste2 (Ballon et al., 2006). A recent study 

insightfully suggested that this would cause cells to measure the ratio of ligand-bound to unbound 

receptors, i.e. ratiometric sensing (Bush et al., 2016). Pheromone-bound Ste2 loads GTP on Gα, whereas 

unbound Ste2-Sst2 promotes GTP hydrolysis by Gα, so the level of activated Gα depends on the ratio 

between the pheromone-bound and unbound Ste2 rather than the absolute level of bound Ste2 (Figure 

2.2A). Here, we explore the possibility that such ratiometric sensing would also lead to measurement of 

the spatial distribution of the ratio of active/total receptors so that differences in the local receptor density 

would not distort a cell’s ability to determine the orientation of a pheromone gradient. 

We repeated the simulations in which G proteins decode a pheromone gradient that is distorted by the 

presence of uneven receptor density. The central difference was that instead of a single G-protein 

deactivation rate regardless of spatial position, G-protein deactivation occurred when an active G protein 

encountered an unbound receptor. For fair comparison, the G-protein inactivation rate constants for the 

nonratiometric and ratiometric simulations were empirically calibrated to produce similar levels of active 

G protein at the midpoint of the gradient (see 2.6. Methods). For the ratiometric model, the simulated cell 

correctly identified the direction of the pheromone gradient no matter what the receptor density 

distribution (Figure 2.2B). These simulations assumed that bimolecular reactions were diffusion-limited, 

but similar results were obtained assuming reaction-limited kinetics (Figure 2.4B). Thus, ratiometric 

sensing provides a robust mechanism for prevent cells from being misled by uneven receptor density. 
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Figure 2.2. Ratiometric sensing allows cells to orient up-gradient despite uneven receptor density. 
(A) Proposed ratiometric pheromone sensing mechanism. The G protein is activated by pheromone-bound 
receptor (Ste2 + α-factor) and inactivated by the RGS protein Sst2. Sst2 associates with pheromone-free 
Ste2. Thus, G-protein activity reflects the ratio of bound to unbound receptors. (B). Particle-based 
simulations were repeated as in Figure 2.1, except that instead of spontaneous inactivation, G proteins 
were inactivated upon encountering inactive receptors. These “ratiometric” simulations (orange) were 
plotted as in Figure 2.1C. For comparison, both the nonratiometric (blue) and ratiometric (orange) resuls 
are depicted in the cartoons. 

 

Experimentally breaking ratiometric signaling by replacing the negative regulator Sst2 with a human 

paralog hsRGS4 that does not associate with Ste2 resulted in cells whose polarity sites correlated with 

Ste2 receptor density rather than mating partners. Furthermore, in agreement with the model, the partner-

sensing accuracy of non-ratiometric cells could be rescued replacing wildtype Ste2 with mutants that had 

impaired endocytosis and thus a more uniform membrane distribution. Therefore, we infer that yeast cells 
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use Sst2-dependent local ratiometric sensing of receptor occupancy to extract accurate information from 

the pheromone gradient despite having nonuniform receptor density. 

2.4. Ratiometric GPCR signaling can sharpen the G-protein gradient  

In addition to protecting cells from being misled by uneven receptor density, ratiometric sensing 

could, in principle, confer a benefit even in cells that had uniformly distributed receptors. This is because 

a gradient of pheromone would generate both a gradient in the concentration of ligand-bound receptors 

and an opposing gradient in the concentration of unoccupied receptors (Figure 2.3A). Consider a gradient 

of active receptor rising from left to right across the cell, with 50% active receptor in between. If we 

compare ratiometric and nonratiometric sensing models matched so that the G-protein deactivation rate in 

both models is equal when 50% of the receptor is bound to ligand, then the active G-protein concentration 

on the right side will be higher for the ratiometric model because the inactivation rate (mediated by 

inactive receptor, which is <50% on this side) is lower. Similarly, the active G-protein concentration on 

the left side will be lower for the ratiometric model because the inactivation rate is higher. Thus, the 

difference in active G-protein concentration between the two ends of the cell will always be larger in the 

ratiometric model. 

To examine the benefit of ratiometric sensing, we conducted particle-based simulations with uniform 

receptor density. As predicted, the ratiometric model reduced the noise in the direction of the gradient as 

compared to the nonratiometric model (Figure 2.3B). This benefit was preserved with receptor diffusion 

(Figure 2.5A), and ratiometric sensing outperformed nonratiometric sensing even with as few as 1,000 

total receptors (Figure 2.5B). Thus, ratiometric sensing can, in principle, provide a significant benefit 

even to cells with uniform receptors. 
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Figure 2.3. Ratiometric sensing amplifies the gradient signal and improves accuracy even when 
receptors are distributed uniformly. 
(A) When receptor distribution is uniform, a gradient of active receptors automatically implies an 
opposing gradient of inactive receptors. (B) Simulations with uniform receptor density. The ratiometric 
(orange) and nonratiometric (blue) models were simulated as in Figure 2.2B.  

 

2.5. Discussion 

The rapid diffusion of peptide pheromones and the small size of the yeast cell led to the 

expectation that there would be only a small difference in pheromone concentration between the up- and 

down-gradient sides of the cell. This poses a fundamental difficulty in extracting accurate directional 

information in the face of molecular noise (Berg and Purcell, 1977). Indeed, cells responding to a 0.5 

nM/μm pheromone gradient were reported to orient initial polarity clusters almost at random (Hegemann 

et al., 2015). Moreover, the polarity circuit in yeast contains strong positive feedback (Chiou et al., 2017; 

Johnson et al., 2011), which allows cells to polarize in random directions when treated with uniform 

pheromone concentrations (Dyer et al., 2013; Strickfaden and Pryciak, 2008). This would be expected to 

enable noise-driven polarization in random directions in cells exposed to shallow gradients (Chou et al., 

2008). Making matters even worse, we documented significant receptor asymmetry, with (on average) 3-
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fold more concentrated receptors on one side of the cell than the other. This creates a receptor density 

gradient that is significantly steeper than the assumed pheromone gradient. Because the receptor density 

gradient is randomly oriented with respect to the mating partner, this poses a serious hurdle in accurate 

gradient detection. Despite the difficulties enumerated above, the location of initial polarity factor 

clustering in mating mixtures is highly nonrandom and surprisingly accurate, with more than 50% of cells 

clustering within 30° of the correct direction and less than 5% of cells clustering in the opposite segment 

(a random process would have 17% of cells polarizing in each segment). 

One way to avoid being misled by an asymmetric receptor distribution would be to compare the 

local ratio of occupied and unoccupied receptors, rather than simply the density of occupied receptors, 

across the cell surface. An elegant mechanism to extract such information was proposed by (Bush et al., 

2016). Because the RGS protein Sst2 binds to unoccupied receptors (Ballon et al., 2006), those receptors 

promote GTP hydrolysis by Gα. Conversely, occupied receptors catalyze GTP-loading by Gα. Thus, the 

net level of GTP–Gα reflects the fraction (and not the number) of occupied receptors on the cell (Bush et 

al., 2016). For this mechanism to promote local ratiometric sensing, it requires additionally that a 

pheromone-bound receptor diffuse slowly relative to its lifetime at the surface (approximately 10 min) 

(Jenness and Spatrick, 1986) so that information about where receptors were when they bound to 

pheromone is not lost. We found that receptors do indeed diffuse very slowly (D < 0.0005 μm2/s) at the 

yeast plasma membrane. Moreover, ratiometric gradient sensing requires that the ratio of active to 

inactive receptors is measured locally rather than globally. Simulations with realistic numbers of receptors 

and G proteins demonstrated that this mechanism has the potential to extract unbiased information about 

the pheromone gradient even in the face of uneven receptor density. 

When RGS function was delocalized by replacing Sst2 (which binds unoccupied receptors) with 

an equivalently active amount of hsRGS4 (which binds the plasma membrane), the accuracy of initial 

polarity clustering was severely compromised. Instead of polarizing towards potential partners, these cells 

assembled polarity clusters at regions where receptors were concentrated. Thus, abrogating the Sst2-based 

ratiometric sensing mechanism allowed cells to be misled by the asymmetric receptor distribution. 
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Accurate orientation could be restored to these cells by making receptor distribution more uniform. In 

sum, our findings suggest that local ratiometric sensing compensates for uneven receptor distribution and 

allows more accurate polarization towards mating partners. 

An additional benefit of ratiometric sensing in terms of gradient detection is that this mechanism 

exploits both the gradient in ligand-bound receptors and the complementary gradient in unoccupied 

receptors to sharpen the downstream G-protein gradient. This feature would be beneficial even in cells 

with uniform receptor density. Whereas for yeast, the main function of ratiometric sensing appears to be 

to correct for the uneven receptor distribution, we speculate that in other systems in which receptors are 

distributed more uniformly, ratiometric sensing would still be beneficial as a gradient amplification 

mechanism. Interactions between mammalian RGS proteins and specific GPCRs, analogous to the Sst2–

Ste2 interaction in yeast, have been identified in many contexts (Georgoussi et al., 2006; Ghil et al., 2014; 

Neitzel and Hepler, 2006). Indeed, one such interaction involved CXC chemokine receptor 2 (CXCR2), 

which mediates chemotactic responses in leukocytes (Snow et al., 1998). It will be interesting to 

determine whether other GPCRs exploit ratiometric sensing to sharpen gradient detection. 

 
2.6. Methods 

2.6.1. Particle-based simulations of ratiometric and nonratiometric gradient sensing 

Simulations of the ratiometric and nonratiometric models were performed using the Smoldyn 

software (v2.56) on Mac (3.4 GHz Intel processor) and Linux systems (2.50 GHz and 2.30 GHz Intel 

processors, Longleaf cluster at UNC Chapel Hill, Chapel Hill, NC, USA) (Andrews and Bray, 2004; 

Andrews et al., 2010). The main components of the code are publicly available at 

https://github.com/mikepab/ratiometric-gpcr-particle-sims. Unless otherwise noted, the simulations were 

performed using the following conditions: 1) 10,000 receptor molecules and 2,500 G proteins diffusing as 

point particles on a sphere with diameter 5 μm; 2) the G-protein diffusion coefficient was D = 0.002 

μm2/s, and receptors were not allowed to diffuse (but see section 2.6.4 Particle-based simulations of 

receptor gradient degradation); and 3) for second-order reactions, the lambda-rho algorithm, with a fixed 

https://github.com/mikepab/ratiometric-gpcr-particle-sims
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reactive radius (ρ = 4 nm) and fixed reaction probability (Pλ = 1 per simulation step), was used to compute 

rate constants. A reaction probability of 1 results in diffusion-limited reactions. We also studied reaction-

limited versions of our models and found similar results (Figure 2.4B). The simulation time step was set 

to 100 ms so that the root-mean-squared displacements were below the reactive radius. The ratiometric 

models had a bimolecular G-protein inactivation reaction dependent upon inactive (pheromone-free) 

receptor, while the nonratiometric models had a unimolecular G-protein inactivation reaction that 

occurred with a single rate constant throughout the cell. 

 

2.6.2. Establishing receptor density and activity gradients 

Receptor density and activity gradients were established prior to performing simulations using 

inverse transform sampling. A desired gradient (receptor or activity) was used to produce a probability 

distribution as a function of the spatial coordinates. A random number Pi ~ Unif(0,1) was drawn for each 

receptor with proposed coordinates (xi, yi, zi), and if Pi < P(xi, yi, zi), a receptor was placed at the specified 

location (for density gradients) or was activated (for activity gradients). 

 

2.6.3. Calibrating G-protein inactivation rates 

We determined inactivation rates for the nonratiometric model that produced active G protein 

equivalent to the inactivation rates specified for the ratiometric model (Figure 2.4A). Simulation-based 

calibration was used to determine these first-order rates rather than analytic equations for relating 

microscopic reaction probabilities and macroscopic rates because such equations to relate the two 

quantities can break down on membranes in the diffusion limit (Mahmutovic et al., 2012; Yogurtcu and 

Johnson, 2015). For consistency, the same calibration process was done for the reaction-limited versions 

of our simulations. 



 

 
 64 

 
Figure 2.4. Calibration of G-protein inactivation rates for model comparison, and effect of 
diffusion-limited versus reaction-limited regimes. 
(A) G-protein inactivation rate constant calibration, relating the nonratiometric and ratiometric models. 
The results shown are for the mean of 10 simulations for each condition, and the error bars represent ± 1 
SD. Changing the number of receptor molecules (N) requires recalibration of the inactivation rate in the 
nonratiometric model. (B) Effect of decreasing the reaction rates to a reaction-limited regime (Pλ = 0.0001 
per time step). The corresponding nonratiometric G-protein inactivation rate was k = 0.0031 s−1. The 
results shown are for 50 realizations of each model. Although it now takes longer for simulations to reach 
steady state, once at steady state, the G-protein distributions are similar to those in the diffusion-limited 
scenario. 
 
2.6.4. Particle-based simulations of receptor gradient degradation 

Neither the ratiometric nor nonratiometric simulations exhibited noticeable loss in gradient 

sensing capability when the receptor diffusion was increased from D = 0 to D = 0.0005 μm2/s (Figure 

2.5A), leading us to question whether the receptor gradient was actually degraded by diffusion over the 

10-min timescale of interest. To test this, we removed the G proteins from the simulations to reduce 

computational costs and varied the receptor diffusivity in extended simulations (2,000 seconds, or >30 

min) with a 40% to 60% receptor activity gradient and no density gradient (Figure 2.6A). The active 
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receptor gradient was measured by linear regression of the number of molecules detected in 250 nm bins 

along the direction of the initial gradient (Figure 2.6B). 

 
Figure 2.5. Robustness of simulation results to varying receptor abundance and diffusion. 
(A) Accuracy of G-protein activity gradients for the nonratiometric (blue) and ratiometric (orange) 
models with uniform receptor density, as in Figure 2.3B but allowing receptor diffusion at D = 0.0005 
μm2/s. Left: illustrative simulation with measurements every 10 seconds. Right: Variability in orientation 
angle from 10 simulations of each model, at t = 100 s and 600 s snapshots (SD). (B) Effect of decreasing 
receptor abundance. Variability in orientation angle from 50 simulations of each condition. 

 
Figure 2.6. Effects of receptor diffusion in particle simulations. 
(A) Snapshots of the active receptor gradient at t = 0 (black) and 2,000 s (red) for different values of the 
diffusion coefficient. Each curve represents a histogram with 250 nm bins derived from a single 
simulation. (B) Decay of the active receptor gradient as measured by the slopes of linear regressions fitted 
to the data in (A). The results show the mean of 10 realizations ± 1 SD for the four diffusion coefficients 
tested. 
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CHAPTER 3: YEAST POLARIZATION TOWARD MATING PARTNERS3 
 

Overview 

As described in Chapters 1 and 2, yeast cells must accurately sense the orientation of extracellular 

pheromone gradients to polarize and grow towards a mate. Gradient sensing is important in many other 

cells, including neurons, social amoebae, sperm, and neutrophils (Alvarez et al., 2014; Bhattacharjee and 

Folch, 2017; Rappel and Edelstein-Keshet, 2017; Swaney et al., 2010; von Philipsborn and Bastmeyer, 

2007). The events converting extracellular gradients into a directed response are perhaps best understood 

in yeast, which sense pheromone gradients in order to polarize and chemotropically grow towards mating 

partners.

Sensing shallow gradients can be challenging for small cells such as yeast, because they may 

experience little difference in ligand concentration on the up-gradient and down-gradient sides of the cell 

(Berg and Purcell, 1977). In artificial, calibrated pheromone gradients as weak as 0.1 nM/μm, yeast 

polarization is essentially random (Hegemann et al., 2015; Lakhani and Elston, 2017; Moore et al., 2008; 

Segall, 1993). Polarity establishment in these shallow gradients is often corrected by actin-dependent re-

localization of the polarity site, or “wandering”, orienting the cell up-gradient (Dyer et al., 2013; 

Hegemann and Peter, 2017; Kelley et al., 2015). The situation is different within yeast mating mixtures, 

where pheromone gradients are generated by yeast rather than artificially controlled. In these more natural 

conditions, though the initial polarity site is still sometimes incorrectly oriented, it tends to be biased in 

the correct direction. Importantly, a different error correction process takes place instead of wandering 

 
3Parts of Section 3.2 of this chapter were done in collaboration with an undergraduate student, Kaiyun Guan. Parts 
of Section 3.3 of this chapter are part of a submission to the journal PLoS Computational Biology. (In preparation. 
Ramirez SA, Pablo M, Ghose D, Burk S, Lew DJ, Elston TC. A novel stochastic simulation approach enables 
exploration of mechanisms to regulate polarization dynamics). Section 3.5 was motivated by conversations with 
Prof. Daniel J Lew.  
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polarity. “Indecisive” polarity occurs, in which polarity factors cluster into weak, erratic clusters that 

rapidly fluctuate over the surface of the cell (Henderson et al., 2019).  

After a variable period of indecisive behavior, a strong, stable polarity site emerges, oriented towards 

a mate. The duration of the indecisive behavior is shorter if the initial polarity site was accurately placed, 

suggesting that the indecisive behavior is indeed related to error correction. However, it is unclear 

whether the presence of weakly clustered, erratically moving polarity factors are functionally important in 

establishing an accurate stable polarity site, or if they are simply a side effect of other signaling processes. 

Furthermore, it is unclear why a different error correction process might occur in artificial calibrated 

gradients versus mating mixtures.  

Here I present preliminary investigations on how weakly clustered polarity factors could contribute to 

more accurate polarity establishment. We have hypothesized that indecisive polarity functions as a way to 

improve the initial guess that the cell makes during the formation of a stable polarity site. Specifically, 

that the indecisive polarity phenotype allows the cell to accumulate active Cdc42 at the cell surface, 

biased upgradient, without yet committing itself to the polarity program. Our approach is to take the 

Cdc42-centric polarity model in Chapter 1, extend it to model indecisive polarity in 3D, and couple it to 

the pheromone-sensing model in Chapter 2. We find that simulations of stable polarity site were 

insensitive to shallow pheromone gradients, whereas simulations of indecisive polarity allowed biased 

Cdc42 activation along shallower gradients. Future work includes simulating the transition from 

indecisive to stable polarity and assessing changes in gradient perception. I also present here simulations 

of the pheromone concentration profile experienced by a cell near a mating partner. Our results suggest 

that the gradients experienced by cells near mates are highly nonlinear and dynamic, providing a clue to 

why the error correction process in a mating mixture would be different from a static linear gradient.  

 
3.1. Introduction 

As described in Chapter 2, yeast use GPCRs (Ste2 and Ste3) to decode gradients of pheromone (α-

factor and a-factor) generated by cells of the opposite mating type (MATa and MATα) (Wang and 
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Dohlman, 2004). Once bound to pheromone, the GPCRs activate heterotrimeric G proteins, generating 

GTP-Gα and Gβγ. Pheromone-free Ste2 can inactivate GTP-Gα via the negative regulator RGS2, driving 

re-association of the heterotrimer. Free Gβγ recruits two key scaffold proteins, Ste5 and Far1, from the 

cell interior to the membrane (Butty et al., 1998; Nern and Arkowitz, 1999; Pryciak and Huntress, 1998). 

Ste5 recruitment leads to activation of a mitogen-activated protein kinase cascade, which induces 

transcription of mating-related genes, arrests the cell cycle in G1 in preparation for mating, and promotes 

cytoskeletal polarization (Pryciak and Huntress, 1998). However, our primary focus is on Far1, which 

provides spatial information to Cdc42, the master regulator of cell polarity in yeast. Recruitment of Far1 

orients the cytoskeleton towards the mating partner by providing spatial information to the conserved 

Rho-family GTPase Cdc42, which is the master regulator of cell polarity in yeast (Bi and Park, 2012; 

Butty et al., 1998; Nern and Arkowitz, 1998, 1999). Specifically, Far1 can directly bind the guanine 

nucleotide exchange factor Cdc24 (Butty et al., 1998; Nern and Arkowitz, 1998, 1999; Wiget et al., 

2004). The Gβγ-Far1-Cdc24 complex is thought to enhance Cdc42 activation at sites with elevated levels 

of Gβγ. Though mutations that disrupt Far1-Cdc24 binding do not abolish polarity establishment, they do 

disrupt proper orientation of polarity up the pheromone gradient (Butty et al., 1998; Nern and Arkowitz, 

1999). Thus, Far1 provides a direct spatial connection between pheromone receptor-pheromone binding 

and downstream Cdc42 activation, allowing yeast to sense pheromone gradients to find partners. Weak 

gradients, however, may be ignored in favor of noise-driven spontaneous polarity establishment, which 

was described in Chapter 1. 

Studies with artificial, calibrated gradients have suggested that the shallowest gradients yeast can 

respond to are in the range of 0.1 nM/μm to 0.5 nM/μm (Hegemann et al., 2015; Moore et al., 2008; 

Segall, 1993). Yeast cells in such shallow gradients polarize essentially randomly, then exhibit 

subsequent error correction (Dyer et al., 2013; Hegemann and Peter, 2017; Kelley et al., 2015). 

Constrained by estimates of the binding affinity between pheromone (α-factor) and its receptor (Ste2), 

simulations of these gradients have predicted that the difference in average occupancy of receptors at the 

front versus back of the cell is as little as 50 molecules. This is only 50 receptors out of thousands of 
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receptors on the cell surface, suggesting the process is highly noisy, and the fluctuations caused by 

reaction and diffusion processes imply that cells must somehow integrate this information over time 

(Lakhani and Elston, 2017). Indeed, polarity establishment in these shallow artificial gradients is often 

corrected over time through actin-dependent wandering of the polarity site, orienting the cell up-gradient 

(Dyer et al., 2013; Hegemann and Peter, 2017; Kelley et al., 2015).  

Studies using mating mixtures of MATα and MATa cells are more physiologically relevant, but the 

strength and shape of the pheromone gradient is uncertain. In mating mixtures, the initial polarity site is 

often incorrectly oriented, but it is biased in the correct direction: approximately 40% of cells polarize 

within 30° of the mating partner, compared to an expected 17% under a random process (Henderson et 

al., 2019). Furthermore, yeast in these mating mixtures do not exhibit patch wandering as an error 

correction mechanism. Instead, an indecisive polarity phenotype is observed, where erratic fluctuations of 

weakly clustered polarity factors rapidly form and dissipate across the surface of the cell. This indecisive 

phase leads to the emergence of a single strong, stable polarity site oriented towards a mate, and is shorter 

if the initial polarity site was accurately placed. However, are the weak polarity clusters observed during 

the indecisive phase functionally important? It is possible that the indecisive phenotype is merely a side-

effect of other signaling processes. The transition to stable polarization correlates with the accumulation 

of MAPK activity, so perhaps accurate stable polarization merely relies on detecting sufficient pheromone 

over a prolonged period. Alternatively, indecisive polarization may allow the simple accumulation of 

polarity factors upgradient prior to committing to stable polarization, allowing cells to make a better-

informed guess. 

 
3.2. Stable polarization is insensitive to shallow gradients 

In weak pheromone gradients, initial polarization essentially follows a random process. This is likely 

because the polarity circuitry amplifies molecular noise. To demonstrate the problem, we conducted 

particle-based simulations of polarity establishment in a stable gradient of pheromone-bound receptors on 

a spherical yeast cell (see Methods). To link the polarity machinery to the GPCR signaling model 
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described in Chapter 2, we assume that active G protein recruits from a pool of intracellular Far1-Cdc24. 

At the membrane, both Far1-Cdc24 and Bem1-Cdc24 can activate Cdc42. Signaling in the polarity model 

works as in Chapter 1: both Cdc42 and the activator Bem1-Cdc24 can exchange between the membrane 

and cytoplasm. Bem1-Cdc24 can bind to active Cdc42, creating a positive feedback loop. Altogether, the 

Far1-Cdc24 complex allows activation in the direction of the pheromone gradient, while the Bem1-Cdc24 

positive feedback loop allows a polarity site to form. We omit the dynamics of G protein subunit 

dissociation and association, the dynamics of binding between Far1 and Cdc24, and the dynamics of 

binding between Bem1 and Cdc24. The model is summarized in Figure 3.1. 

 

Figure 3.1. GPCR signaling couples pheromone sensing to the Cdc42-mediated polarity machinery. 
(A) Model signaling diagram. Pheromone-bound GPCRs convert inactive G proteins to active G proteins 
while pheromone-free GPCRs catalyze the opposite reaction. Activated G protein recruits Far1-Cdc24 to 
the membrane, where it can catalyze the activation of Cdc42-GDP. Cdc42-GDP can spontaneously cycle 
between the cytoplasm and membrane, but can only become activated at the membrane. Bem1-Cdc24 can 
also spontaneously translocate to the plasma membrane. Once on the membrane, it can activate Cdc42-
GDP. Both cytosolic and membrane-associated Bem1-Cdc24 can bind to active Cdc42-GTP, creating a 
positive feedback loop. (B) Cartoon of an extracellular pheromone gradient. Instead of directly simulating 
a pheromone gradient, we simulate either a pre-formed gradient of GPCR activity (shown here) or a pre-
formed gradient of G protein-Far1-Cdc24 activity (not shown here). 
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Simulating this model suggested that, even with optimistic estimates of the parameters of GPCR, G-

protein, and Far1-Cdc24 rate constants, a stable polarity site can only be guided by steep gradients of 

extracellular pheromone (see Table 3.1 for parameters). Simulated yeast only formed correctly-oriented 

polarity sites when approximately 1,000 pheromone-bound receptors were upgradient (Figure 3.2). This is 

consistent with experimental reports that yeast polarize in random directions when in shallow, calibrated 

gradients (Hegemann et al., 2015; Moore et al., 2008; Segall, 1993) and reflects the dominance of noise-

driven spontaneous polarization over gradient-guided polarization. However, the parameters result in very 

large polarity sites, so re-parameterization may be needed to find more reasonably-sized patches. 

 

Figure 3.2. Stable polarization is insensitive to shallow gradients. 
(A) Representative simulation results using different active GPCR gradients (i.e. pheromone gradients) 
(B) The angle of the patch with respect to the pheromone gradient. P-values obtained from unpaired t-
tests against the uniform condition. (C) The number of active GPCRs at the front vs. back of the cell. 
Uniform, n=22; 40-60%, n=26; 10-90%, n=25 realizations. Boxplots show 25th, 50th, and 75th percentiles. 
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In spontaneous polarization, stochastic association of Cdc42 and Bem1-Cdc24 to the plasma 

membrane results in tiny variations in the activity of Cdc42 across the plasma membrane. Positive 

feedback amplifies these variations, which grow and compete for polarity factors until a single, dominant 

patch remains. Far1-Cdc24 does not participate in this feedback loop. Weak gradients of Gβγ-Far1-Cdc24 

(i.e. weak gradients of pheromone) are thus likely limited to influencing the initial stages of polarity 

establishment. This may be problematic, as illustrated by our simulations. A possible solution would be to 

use indecisive polarization as an initial form of polarity establishment: in this scenario, the pheromone-

mediated gradient of Cdc42 activation may be able to compete with Bem1-mediated positive feedback. 

 

3.3. Indecisive polarization is sensitive to shallow gradients 

To model indecisive polarity, we allowed the direct activation of cytosolic Cdc42 by both the Bem1-

Cdc24-Cdc42-GTP complex and the Gβγ-Far1-Cdc24 complex. This decision was motivated by 

extensive parameter exploration performed by a much more efficient stochastic simulation algorithm, 

described in a manuscript in preparation3. Biochemically, it is unclear how this additional reaction would 

function. While MAPK activity appears to set a threshold for indecisive and committed polarization 

(Henderson et al., 2019), we do not know how it would introduce direct activation of cytosolic Cdc42. 

Perhaps the guanine nucleotide dissociation inhibitor (GDI), which regulates Cdc42 exchange between 

the membrane and cytoplasm and is not explicitly included in our models, is involved. Nonetheless, 

simulations with the added reaction are able to recapitulate the indecisive polarity phenotype (Figure 3.3, 

see Table 3.1 for parameters). These results are purely driven by changes in the polarity network, and are 

independent of the pheromone-sensing side of the network. Indeed, the simulations in Figure 3.3 were 

performed in the absence of any GPCR, G protein, or Far1-Cdc24. 
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Figure 3.3. Stable polarization is insensitive to shallow gradients. 
(A) Signaling network diagram as in Figure 3.1, with added reaction arrows shown in red. (B) Snapshots 
of dynamic and stable polarity establishment with the new model. (C) Quantification of the movement of 
the patch by frame-to-frame correlation of local active Cdc42 (mean±1s.d., n=5 per condition). High 
correlation indicates the patch is not moving. 
 

Next, we asked whether adding the pheromone-sensing side of the network would bias the active 

Cdc42 distribution upgradient. The erratic, poorly-localized nature of Cdc42-GTP under these conditions 

means we cannot calculate an angle between the polarity site and the gradient, but we can readily check 

the difference in Cdc42-GTP abundance between the front and back of the cell. Quantifying the 

indecisive simulations in this way shows that the weak polarity clusters can be biased upgradient versus 

downgradient (Figure 3.4). Problematically, we observed that introducing the pheromone-sensing 

component of the signaling pathway lead to even weaker, more erratic polarity sites than in the 

pheromone-free indecisive model.  
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Figure 3.4. The indecisive polarity phenotype is sensitive to shallow gradients. 
(A) Modeling strategy. A cell exhibiting indecisive Cdc42-GTP polarization (red) is simulated in an 
approximated pheromone gradient (green). Pheromone is approximated by setting up a fixed gradient of 
pheromone-bound (active) and pheromone-free (inactive) GPCR. The number of Cdc42-GTP molecules 
at the front vs. back of the cell (∆Cdc42T) is measured over time to assess gradient sensing. (B) 
Quantification of ∆Cdc42T at the front vs. back of the simulated cell for varying GPCR gradient slopes. 
Error bars represent 95% confidence intervals. (C) Representative snapshots of a cell simulated in the 40-
60% GPCR activity gradient, with a plane separating the front and back. 

 

The pheromone-free behavior observed at 400 seconds in Figure 3.3C is clearly different from the 

pheromone-biased behavior in Figure 3.4C. Somehow adding the pheromone signaling part of the 

pathway further destabilized the indecisive polarity phenotype, resulting in nearly global activation of 

Cdc42. Therefore, optimization of model parameters is necessary to recapitulate indecisive polarization 

when combined with the pheromone pathway. This might be solved by strengthening the positive 

feedback from Bem1-Cdc24, or by weakening the activation from the Far1-Cdc24. 
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3.4. Can polarization during the indecisive phase guide a stable polarity site? 

After parameter optimization, the next step for this work is to determine whether an initial phase of 

indecisive polarity, followed by a transition into stable polarity, could improve the accuracy of the final 

Cdc42-GTP patch with respect to the gradient. This might be done by initiating simulations in the 

indecisive regime, then slowly tuning reaction parameters (i.e. strengthening the positive feedback) to 

shift the model into the stable polarity regime. 

 
3.5. Pheromone gradients under mating conditions may be highly non-linear 

The work in the preceding sections assumed that gradients of active GPCR molecules or of Gβγ-

Far1-Cdc24 complexes were linear, to approximate the nature of artificial calibrated pheromone 

gradients. However, it is unclear what the shape of the pheromone gradient actually is for two proximal 

mating partners. In particular, yeast pheromone secretion may occur in localized bursts (Martin, 2019; 

Merlini et al., 2016). The pheromone (α-factor) transporter protein Ste6 is found both in vesicles and 

concentrated towards the polarity site (Kuchler et al., 1993; Michaelis, 1993), suggesting that it is 

trafficked to the membrane along vesicles during polarization. It is possible that pheromone is also inside 

of Ste6-containing vesicles, which could cause temporal spikes in local pheromone abundance. We 

developed simple particle-based models to investigate the perceived pheromone concentration profile, by 

only modeling the 3D Brownian diffusion of pheromone between and around two cells: one secreting 

pheromone (the emitter), and one not (the receiver). We measured local pheromone concentrations around 

the emitter and the receiver (Figure 3.5). For reference, we also compared the vesicle-release simulation 

to simulations where pheromone was released deterministically at a corresponding averaged rate. 
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Figure 3.5. Pheromone gradients experienced by a simulated emitter and receiver cell.  
(A,B) Model schematic. (A) The receiver and emitter are separated by 0.25, 0.5, or 1.0 µm. Local 
concentrations are measured in angular bins (colors). (B) Comparison of pheromone production modes. 
Vesicle release is simulated as bursts of 660 pheromone molecules at a Poisson rate k=0.83 s-1, from the 
emitter surface at the point nearest to the receiver. Constant release is simulated by producing 1 
pheromone molecule every 1.8 milliseconds precisely. Over time the two modes have similar average 
levels of pheromone production. (C) Time series of local pheromone concentrations at the receiver. Each 
column represents a different separation distance, and each row represents a different angular bin (top: 
nearest, bottom: farthest). Local volumes were calculated based on a 0.25 µm shell off of the surface of 
the receiver. (D) Mean and peak pheromone concentrations observed over time.  

 

The profiles are very clearly nonlinear in the vesicle-release simulations, but the nonlinearity is 

transient, decaying as the pheromone rapidly diffuses away (D = 150 µm2/s). This is very different from a 

temporally-stable static pheromone gradients often used microfluidic devices. However, this simple 

model omits pheromone receptors that could bind molecules at the surface, and thus ignores how the 

kinetics of receptor binding would shape the gradient. The affinity between the receptor Ste2 and α-factor 
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is 6 nM, with a relatively slow dissociation rate (koff ~ 10-2 - 10-3 s-1, corresponding to roughly a half-life 

of 70 - 700 seconds for a pheromone-GPCR complex), so we anticipate the spikes in the local pheromone 

concentration (Figure 3.5C, left) to be much broader due to receptor binding/unbinding. If completely 

averaged over time, the gradient is much less steep, though still nonlinear (Figure 3.5D). 

In future work, accounting for receptor-pheromone binding interactions would give us a clearer 

picture of the pheromone gradient experienced by a pair of mating cells. It would be computationally 

challenging to explicitly simulate both the external pheromone gradient and receptor binding. Therefore, 

it would be best to implicitly model the pheromone gradient. The pheromone gradient could be implicitly 

modeled by calculating a probability distribution P(x,y,z,t) that n pheromone molecules are in a particular 

region of space, and use that to compute a spatially-dependent receptor “activation” rate kon(x,y,z). 

Calibration simulations would be necessary to ensure this rate is consistent with the 6 nM affinity. 

 
3.6. Discussion 

Yeast polarization towards pheromone in mating mixtures appears qualitatively different from yeast 

polarization within artificial gradients, suggesting that yeast have underappreciated mechanisms for 

detecting and decoding natural gradients. This chapter presents preliminary results towards understanding 

how indecisive polarity establishment, a behavior seen in mating mixtures and not artificial gradients, 

may contribute towards accurate placement of a polarity site. Models of stable polarization could bias 

Cdc42 activation accurately when in very strong gradients, while models of indecisive polarization were 

able to bias Cdc42 activation even in weak gradients. However, improved parameterization of the 

indecisive polarity model is necessary, as Cdc42 activation became too disperse when the pheromone 

sensing components of the pathway were added. More broadly, we would want to investigate the 

sensitivity of our results to variations in the other kinetic parameters.  

Simulating pheromone emission towards a nearby mate predict that the pheromone gradient itself is 

highly nonlinear and dynamic. This argues that artificial gradients are qualitatively different from 

gradients in mating mixtures, and suggests that strong, transient pheromone signals might be part of the 
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cause for indecisive polarization. Consideration of pheromone-receptor interactions, which might hold 

onto pheromone that otherwise rapidly diffuses away, are necessary to more accurately judge the gradient. 

The pheromone simulations could be modified to including multiple emitting source cells as well as a 

floor and/or a ceiling in the simulation (mimicking a surface, or glass slides) to further interrogate 

possible gradient profiles. Finally, considering the effect of dynamic pheromone-receptor interactions 

would also be important in the polarity models: by using a fixed GPCR activity gradient as an 

approximation, we have assumed that only the equilibrium behavior was relevant. 

 
3.7. Methods 

3.7.1. Particle-based simulations of GPCR-coupled polarity establishment 

The simulations of polarity establishment in Chapter 1 relied on custom code and approximated a 

fully 3D cell with a quasi-3D approach. The simulations of GPCR signaling in Chapter 2, however, used 

the better-optimized Smoldyn simulation software (v2.56-v2.61), in part because support for the lambda-

rho algorithm, described in Chapters 1 and 2, was added. Each molecule in the simulation was 

represented as a point particle subject to Brownian motion. Cytosolic molecules diffused within the 

sphere, and had rate-dependent membrane association probabilities upon collision with the sphere surface. 

Membrane-associated molecules diffused along the surface of the sphere. All bimolecular reactions had 

reaction probabilities defined by P = λ∆t, where λ is the rate of reaction after reactant collision, and ∆t is 

the timestep. Parameters for indecisive polarity were found by exploratory analysis using a more efficient 

stochastic simulation method, detailed in a manuscript in preparation3.  Pheromone gradients were 

approximated by a fixed GPCR activation gradient, similar to Chapter 2. Briefly, we assumed that half the 

receptors are active (pheromone-bound) at the midpoint (i.e. the implicit pheromone concentration is at 

the Kd of the receptor). We neglect receptor diffusion as described previously (see Section 2.6.4). G 

proteins diffusing on the membrane were activated upon encountering an active receptor, and are 

inactivated upon encountering an inactive receptor. Linear gradients were generated along the x-axis by 

sampling from a probability distribution: 



 

 
 82 

𝑃𝑃(𝑥𝑥) = �
𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚

2𝑅𝑅
�𝑥𝑥 + 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 

where Pmax and Pmin are the maximum and minimum probability of having an active molecule (or placing 

a Gβγ-Far1-Cdc24 molecule), and R is the cell radius. 

Parameter Description Indecisive Pol.  
(- pher.) 

Stable Pol. 
(+ pher.) 

Indecisive Pol.  
(+ pher.) 

R Cell radius 2.25675 2.5 2.25675 
ρ Reaction radius 0.05 0.05 0.05 
k1a BemGEFc → BemGEFm 5 10 5 
k1b BemGEFm → BemGEFc 10 10 10 
λ2a Cdc42Dm + BemGEFm → Cdc42T 

 
0.0637 5.3 0.0637 

k2b Cdc42T → Cdc42Dm 3 0.32 3 
λ3 Cdc42Dm + BemGEF42 → Cdc42T 

 
0 15.7 0 

λ4a BemGEFm + Cdc42T → BemGEF42 
 

0.00163 8250 0.00163 

k4b BemGEF42 → BemGEFm + Cdc42T 20 10 20 
k5a Cdc42Dc → Cdc42Dm 0.4 36 0.4 
k5b Cdc42Dm → Cdc42Dc 0.65 0.65 0.65 
λ7 BemGEFc + Cdc42T → BemGEF42 1436.7 256 1436.7 
λ8 Cdc42Dc + BemGEF42 → Cdc42T 

 
2873.4 n/a 2873.4 

λ9 Cdc42Dc + BemGEF → Cdc42T 
 

0 n/a 0 

λ10 Cdc42Dc + Far1GEFGa → Far1GEFGa42 
 

n/a n/a 0.1 

λ11 
 

Far1GEF + Ga → Far1GEFGa n/a 0.1 100 

λ12  Far1GEFGa →  Far1GEF + Ga n/a 10 10 
z Adsorption scaling factor 0.7523 0.01 0.7523 
Dm1 Memb. diffusion coeff. 1 0.01 0.0025 0.01 
Dm2 Memb. diffusion coeff. 2 n/a 0.002 0.002 
Dm3 Memb. diffusion coeff. 3 n/a 0 0 
Dc Cytosolic diffusion coeff. 15 15 15 
NCdc42 Num. Cdc42 molecules 5000 5000 5000 
NBemGEF Num. BemGEF molecules 500 2364 500 
NFar1GEF Num. Far1GEF molecules - 1000 500 
NGprotein Num. G protein molecules - 2500 2500 
NGPCR Num. GPCR molecules - 5000 5000 
∆t Timestep 0.0001 0.0001 0.0001 

Table 3.1 Model parameters. 
Dm1 applies to Cdc42Dm, Cdc42T, BemGEF42, BemGEF, Far1GEFm, and Far1GEFGam. Dm2 applies to 
G proteins. Dm3 applies to GPCRs. The membrane association rate constants (time-1) were converted to 
adsorption coefficients (length time-1) 𝜅𝜅 = 𝑧𝑧𝑧𝑧 in Smoldyn, with z = 0.7523 µm. 
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3.7.2. Quantifying patch movement with frame-to-frame correlation 

To compare the dynamics of stable and indecisive polarity, we computed frame-to-frame Pearson’s 

correlation coefficients, r, of the local active Cdc42 concentration on the surface of the cell. High 

correlations reflected stable behavior, while weak correlations reflected dynamic or erratic behavior. 

Local concentrations were determined by binning particles on the surface with a spherical triangulation 

(1280 faces generated by a 3-time subdivision of an icosahedron). 

 
3.7.3. Analyzing polarization relative to the gradient 

The orientation of stable polarity sites relative to the gradient was quantified using the following: 

angle = arccos�
COM���������⃗ 𝑥𝑥𝑥𝑥 ∙ 〈1,0〉

�COM���������⃗ 𝑥𝑥𝑥𝑥�
� 

where COMxy is the xy coordinates of the active Cdc42 center of mass. This two-dimensional calculation 

for the angle is used because surface areas of the spherical sectors for the 2D angles are all equal, while 

the spherical sectors for the 3D angles are not. This avoids artificial over/under-representation at the poles 

of the sphere. The orientation of weak, erratic polarity clusters undergoing indecisive polarization was 

quantified differently because the active Cdc42 center of mass was a poor measure of localization (since, 

i.e. multiple weak clusters could form). Instead, the difference in active Cdc42 abundance at the front vs. 

back of the cell was calculated. 

 
3.7.4. Simulating pheromone gradients experienced by a mating pair 

We set up simulations with two spheres, one denoted the emitter, and one denoted the receiver. The 

emitter released pheromone from a point on its surface nearest to the receiver. Vesicle-based secretion of 

pheromone was modeled as Poisson-distributed events (k = 0.83 s-1) generating 660 pheromone molecules 

from a point on the emitter surface closest to the receiver. For comparison, steady secretion of pheromone 

was modeled as the release of 1 molecule every 0.018 seconds from the same location. The two cells were 

simulated within a spherical domain of 50 micron diameter with absorbing boundary conditions to 

remove pheromone that diffused far away. 
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Local pheromone concentrations were computed in volumes defined by 3D angular bins extending 

rextend = 0.25 µm beyond the surface of the r = 2.5 µm receiver sphere. The volume of the region varies as 

the angle sweeps across the surface. The volumes Vi defined by six angular bins {0-30°, 30-60°, 60-90°, 

90-120°, 120-150°, 150-180°} can be calculated according to: 

𝑉𝑉𝑖𝑖 =
2𝜋𝜋
3

[(𝑟𝑟 + 𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)3 − 𝑟𝑟3] �1 − cos �
𝜋𝜋𝜋𝜋
6
�� −�𝑉𝑉𝑗𝑗

𝑖𝑖−1

𝑗𝑗=1

 

 Then, the molecules counted per bin are simply converted to nanomolar: 

[pheromone], nM =
Npheromone

Vi × 10−15 L
μm3

109 nM/M
6.02 × 1023 molecules/mol
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CHAPTER 4: PROBING CONFORMATIONAL CHANGES OF SINGLE MOLECULES 
IN LIVING CELLS WITH BINDER/TAG4 

 

Overview 

Protein conformational changes can elicit dramatic functional changes. Common outcomes of 

conformational changes include shifts in protein stability, the exposure of binding sites, the formation of 

catalytic sites, and the re-localization of the protein itself. These outcomes ultimately cause changes in 

cellular behavior. Connecting a protein’s conformational changes to specific cellular outcomes requires 

understanding both the protein’s structures as well as its subcellular context. Methods such as X-ray 

crystallography and cyro-electron microscopy have provided valuable atomic resolution structures of 

proteins, but are difficult or impossible to apply to living cells. Because X-ray crystallography requires 

protein crystals, it is generally restricted to in vitro static snapshots, with some notable exceptions where 

intracellular crystals form (Schönherr et al., 2018). Cryo-electron microscopy has been used to look 

within cells for well over a decade (Medalia et al., 2002), but requires freezing. Because these techniques 

are unsuited to living cells, they may miss dynamic changes in cellular behavior. Nuclear magnetic 

resonance (NMR) can measure both structure and dynamics in solution and even in living cells 

(Freedberg and Selenko, 2014; Smith et al., 2015). However, NMR is not well-suited to reporting 

subcellular localization.

Förster resonance energy transfer (FRET)-based biosensors are a widely used approach to 

fluorescently report the conformational changes and subcellular locations of proteins in living cells. In 

FRET, light is used to excite a donor fluorophore, and conformational states are inferred through the 

 
4This chapter is part of a manuscript in preparation for submission to Cell in which I am one of three co-first authors 
(together with Bei Liu and Orrin Stone). My contributions to the work were purely computational, but the results 
draw heavily on experimental work by my co-authors. Therefore, I include experimental data, discussion, and 
methods necessary to understanding the computational contributions I made. 
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distance- and dipole-dependent transfer of the donor emission to an acceptor fluorophore (Roy et al., 

2008). The indirect excitation of the acceptor results in poor signal-to-noise relative to a directly excited 

fluorophore, thus ensemble measurements of many proteins are required to produce meaningful readouts. 

As a result, it is difficult to investigate differences in protein conformation at the level of individual 

molecules. Single molecule FRET (smFRET) allows researchers to examine conformational changes of 

individual molecules, but this technique is largely performed with purified protein samples. Very few 

attempts have been made to apply smFRET in living cells due to technical difficulties, such as the need 

for site specific labeling in vivo and low signal-to-noise (Murakoshi et al., 2004; Sakon and Weninger, 

2010). Another fluorescence-based approach is to use fluorophore-labeled affinity reagents. Affinity 

reagents are engineered based on existing small protein domains that bind selectively to a particular 

conformation of a protein. In contrast to smFRET, affinity reagents can have good signal-to-noise through 

direct excitation of the fluorophore (Hodgson et al., 2008). However, affinity reagents can be difficult to 

design and require significant optimization for each target protein conformation. 

Researchers in Dr. Klaus Hahn’s lab developed the Binder/Tag technique, which generalizes the 

affinity reagent approach (Stone, 2018). We applied Binder/Tag to study the conformational dynamics of 

Src, an important protein in motility, proliferation, and cancer (Playford and Schaller, 2004; Roskoski, 

2015; Wheeler et al., 2009). In particular, we studied Src at single-molecule resolution, revealing the 

nanoscale organization and dynamic coordination of Src conformations in living cells. These single 

particle tracking experiments generated hundreds of thousands of trajectories, requiring sophisticated 

computational approaches to interpret. I developed and applied computational approaches to analyze data 

from the Binder/Tag technique for visualizing and tracking the conformational states of individual Src 

molecules in living cells. We found that active Src was concentrated in large adhesions, in part driven by 

enhanced recruitment and activation of Src. We also found tiny (~200 nm diameter) clusters of Src 

molecules with centralized binding sites, enriched in the active conformation. The clusters were transient 

structures, and captured Src both from the cytoplasm and from nearby membrane. Our observations imply 

selective binding and/or generation of active Src at clusters. Fitting stochastic, single-molecule models of 
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Src conformational dynamics to the data allowed us to extract kinetic rates of activation, inactivation, and 

plasma membrane dissociation in a live-cell context. We show that open-conformation Src has a 

significantly slower rate of dissociation from the plasma membrane compared to closed-conformation 

Src. These findings shed new light on Src activation and architecture at the nanoscale, and demonstrate 

new approaches to investigate single molecule kinetics and spatial organization in living cells. 

 
4.1. Introduction 

The Binder/Tag technique was developed to probe the dynamics and subcellular localization of 

protein conformational changes within living cells. Specifically, we applied Binder/Tag to autoinhibited 

proteins, which have an autoinhibitory domain that suppresses function by keeping the protein in an 

inactive conformation, regulating ligand binding, subcellular localization, and/or enzymatic activity 

(Pufall and Graves, 2002). Binder/Tag relies on two key molecules: the Tag, a seven amino acid peptide, 

and the Binder, an 18 kDa protein. Binder (also known as SspB) and Tag (also known as SsrA) are two 

bacterially-derived molecules that bind with specificity and high affinity (16 nM) (Wah et al., 2002). The 

Tag is engineered into a protein of interest such that when the protein is in the closed conformation, the 

Tag is masked. In the protein’s open conformation, the Tag is exposed and the Binder can associate. 

Thus, the Binder acts as an affinity reagent for the protein’s open conformation. Fluorescently labeling 

both the tagged protein of interest and the Binder allows us to follow both the localization and 

conformation of our protein of interest. 

We applied the Binder/Tag approach to Src kinase. Src owes its name to the word sarcoma, and 

has been extensively studied due to its association with cancer. The viral protein v-Src is encoded by the 

oncogene of Rous sarcoma virus, which was discovered over a century ago in chickens (Rous, 1911). The 

normal cellular homologue Src was characterized in the 1970s (Stehelin et al., 1976). Src is an 

autoinhibited protein that has a closed inactive state and an open active state, which are primarily 

regulated by phosphorylation of a C-terminal tyrosine (Tyr527). Phosphorylation of the C-terminal 

tyrosine results in an intramolecular pTyr-SH2 interaction, locking the protein in the closed inactive 
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conformation. Dephosphorylation and/or competitive binding for the SH2 domain results in open 

conformation Src, which can become kinase-active through subsequent phosphorylation in its kinase 

domain (Tyr416) (Kmiecik and Shalloway, 1987; Roskoski, 2005). v-Src is essentially a constitutively 

active form of Src, as it lacks seven amino acid residues at the C-terminus including the critical 

autoinhibitory tyrosine (Cooper et al., 1986). Extensive research has revealed that mutations in human Src 

are not a primary driver of tumorigenesis, but Src is nonetheless an important regulator in many related 

pathways including cell motility, proliferation, and survival (Playford and Schaller, 2004; Roskoski, 

2015; Wheeler et al., 2009). Furthermore, Src is the eponymous member of the Src family kinase (SFK) 

proteins, which are important in immunological and neurological contexts (Parsons and Parsons, 2004).  

The activation of Src and Src family kinases results in dynamic micro- and nanoscale subcellular 

localization. Work with constitutively active Src mutants showed that active Src diffused more slowly in 

the plasma membrane, and exhibited enrichment within adhesion structures (Fincham et al., 1996; 

Shvartsman et al., 2007). However, these mutants may be non-representative of native Src behavior. Early 

iterations of Src affinity reagents supported these ideas, though they had problems with specificity versus 

Src family kinases and other related proteins (Ting et al., 2001; Wang et al., 2005). Advances in protein 

engineering shed light on the microscale subcellular localization of active Src, showing activity-

dependent localization within adhesions (Chu et al., 2014; Karginov et al., 2014; Koudelková et al., 

2019). The development of superresolution microscopy led to nanoscale, sub-diffraction imaging of Src 

and Src mutants within fixed cells, revealing the existence of tiny nanoscale Src clusters (Githaka et al., 

2016; Owen et al., 2010; Smith et al., 2016). Using Binder/Tag, we can investigate the dynamics and 

localization of Src activation at single molecule resolution in living cells, without relying on Src mutants 

or on non-specific affinity reagents. 

 
4.2. Single particle tracking of total and active Src with Binder/Tag 

We performed dual-color single particle tracking (SPT) of tagSrc and Binder to report the dynamics 

of both total Src and open Src (Figure 4.1A). Several controls were performed to validate the technique. 
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First, since Binder is a cytosolic protein with little non-specific binding to the plasma membrane (PM), it 

should rapidly diffuse in the cytosol in the absence of a membrane-associated Tag. Accordingly, SPT of 

fluorescently labeled Binder expressed alone yields very few tracks in comparison to co-expression with 

Tag fused to the transmembrane receptor Stargazin (Figure 4.1B, top). Second, we considered the 

constitutively active mutant Src-Y527F. The Y527F mutation results in a C-terminal tail that cannot bind 

the SH2 domain, leaving Src in the open conformation and priming it for activation by Y416 

phosphorylation. Dual-color SPT of tagSrc-Y527F and Binder produced similar SPT maps, indicating the 

technique is working as expected (Figure 4.1B, middle). This experiment also showed that constitutively 

active Src accumulates on adhesion-like structures (confirmed by visualizing adhesions, see Section 4.3), 

which is consistent with biosensor-based studies of Src conformation (Koudelková et al., 2019) and with 

chemogenetic studies of Src kinase activation (Chu et al., 2014; Karginov et al., 2014). Although the 

Binder and tagSrc-Y527F SPT maps are similar, the majority of individual tracked molecules did not co-

diffuse. This is because only a small fraction of the tagged protein of interest and the Binder was 

fluorescently labeled, in order to resolve individual fluorophores for SPT. Next, to further demonstrate 

that Binder is reporting on the open conformation of Src, we used diffusional analyses to show that 

Binder co-expressed with tagSrc-Y527F diffuses similar to tagSrc-Y527F itself, both of which are slower 

than tagSrc-WT. This is consistent with studies using Src-Y527F (Machiyama et al., 2015; Shvartsman et 

al., 2007). SPT maps of tagSrc and Binder reconstructed from a 60-second movie are shown in Figure 

4.1D, with diffusional analyses shown in Figure 4.1E, F. 
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Figure 4.1. Applying Binder/Tag to probe Src conformations with single particle tracking (SPT). 
(A) Reporting conformational states with Binder/Tag under total internal reflection fluorescence (TIRF) 
microscopy. T: Tag, B: Binder, AID: Autoinhibitory domain, PM: plasma membrane. Cytosolic Binder 
away from the TIRF plane is not observed, and cytosolic Binder within the TIRF plane diffuses rapidly 
relative to membrane-associated Binder. (B,C) Control SPT experiments in COS-7 cells with transient 
transfection, scale bars 5 µm. (B) Binder alone compared to Binder co-transfected with tagStargazin. (C) 
Constitutively active tagSrc (tagSrc-Y527F) compared to Binder, scale bar 5 µm. (D) SPT experiments in 
mouse embryonic fibroblast (MEF) cells, stably expressing tagSrc and Binder. Trajectories colored by 
diffusion coefficient (µm2/s). (E) Diffusion coefficients extracted from mean squared displacement 
(MSD) analysis. (F) MSD curves for tagSrc and Binder, 95% CI shown. 

 

Because the overexpression of native proteins and introduction of mutant proteins into living cells 

can significantly perturb normal cell signaling, we also assessed tagSrc abundance, diffusion, and 
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signaling over a range of tagSrc and Binder expression levels (Figure 4.2). Using mouse embryonic 

fibroblasts (MEFs) stably expressing tagSrc and Binder under the control of a doxycycline-responsive 

promoter (named BT MEF cells), we found that tagSrc expression at about 4-fold of endogenous Src 

produced sufficient signal for both the tagSrc and Binder channels without perturbing Src diffusion or 

activity. Our chosen levels of Binder expression did not affect Src activation or diffusion. 

 

Figure 4.2. Working expression levels of tagSrc and Binder are non-perturbing. 
(A) Cell lysate immunoblots measuring tagSrc expression and phosphorylation relative to endogenous 
Src, Paxillin phosphorylation as a readout of Src activity, and total Paxillin abundance. Lanes: Parental, 
parent MEF cell line; GFP, transient transfection of GFP; Src, transient transfection of Src; BT MEF 
dosed with doxycycline to tune expression of tagSrc and Binder. (B,C) Measuring differences in tagSrc 
diffusion as a function of both tagSrc and Binder expression. 

 

To characterize the slowed diffusion of open conformation Src, we used two complementary 

diffusional analysis approaches. Moment scaling spectrum analysis (Ewers et al., 2005; Ferrari et al., 

2001) revealed that Src can exist in both free and confined diffusional states. Binder shows a statistically 

significant higher percentage of confined diffusion tracks than tagSrc (Figure 4.3A), indicating more 
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interactions with slow-diffusing binding partners and/or enclosure within cytoskeletal corrals (Kusumi et 

al., 2005). Note, however, that the Binder also exhibits some free (random) diffusion, indicating not all 

open-conformation Src is bound to slow-diffusing partners. An independent hidden Markov model 

approach (HMM) was also used to identify slow and fast diffusional states (Persson et al., 2013). In 

support of the MSS analysis, the HMM indicated that the Binder more readily entered the slow-diffusing 

state than tagSrc, though tagSrc and Binder had otherwise similar diffusive states and similar slow-to-fast 

transitions (Figure 4.3B). Altogether, these results support a model where open-conformation Src 

transiently interacts with slow-diffusing binding partners. 

 
Figure 4.3. Two independent diffusional analyses reveal slow-diffusing open-form Src. 
(A) Moment scaling spectrum analysis of tagSrc and Binder. (B) Two-state Hidden Markov model 
analysis of tagSrc and Binder. Mean±1s.d. shown. 
 
4.3. Accumulation of active Src in adhesions in a size-dependent process 

Our results showed that active Src was enriched within adhesion structures (Figure 4.1C and Figure 

4.4), consistent with literature on Src’s role in adhesions (Chu et al., 2014; Karginov et al., 2014; 

Koudelková et al., 2019; Webb et al., 2004; Zaidel-Bar et al., 2007). We used our approach to investigate 

Src accumulation and activation within adhesions at the single molecule level. To visualize adhesions, we 

expressed low levels of fluorescently-labeled adhesion proteins (e.g. Paxillin-EGFP) and interweaved 

TIRF imaging of the adhesion marker and dual-color SPT of tagSrc and Binder (Figure 4.4A). Paxillin-

EGFP was used for most of our studies, because Paxillin is present from the beginning of adhesion 

formation (Gardel et al., 2010), though using FAK-EGFP and Vinculin-EGFP yielded similar results. 
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Expression of the Paxillin-EGFP construct changed neither the morphology of endogenous adhesions, nor 

the overall diffusion of tagSrc. 

Diffusional analysis of tracks within adhesions highlighted the accumulation of slow-moving Src 

within adhesions (Figure 4.4A). Quantitative analysis with mean squared displacement curves showed 

that tagSrc indeed diffused more slowly in adhesions versus out of adhesions (Figure 4.4C). In contrast, 

the Binder diffused slowly whether it was on adhesions or not (Figure 4.4C). Slowed diffusion is 

therefore likely caused by additional molecular interactions Src experiences when in the open 

conformation. Furthermore, once in adhesions, 73±5% of all tagSrc tracks and 72±3% of all Binder tracks 

remained inside before the track disappeared, due to either disassociation from the plasma membrane or 

photobleaching. These results indicate that in adhesions, Src enters the open conformation and binds 

slow-diffusing substrates, leading to the accumulation of active Src within the adhesion structure. 

Since adhesion-associated tracks persisted on the membrane at least as long as non-adhesion-

associated tracks (Figure 4.4B), we were able to measure the density of observed tracks (which are 

measured over time) as a proxy for tagSrc and Binder concentration. Both tagSrc and Binder are 

concentrated on larger adhesions, up to about 2-fold versus small adhesions and the plasma membrane, 

similar to previous reports (Koudelková et al., 2019; Playford and Schaller, 2004) (Figure 4.4C, left).  
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Figure 4.4. Interweaving adhesion imaging and dual-color single particle tracking of tagSrc and 
Binder reveals accumulation of slow-moving active Src. 
(A) Strategy and example of interweaving adhesion imaging and dual-color SPT. Top: cartoon strategy. 
Bottom: Example images of segmented adhesions and tagSrc track maps (insets, representative 
snapshots). Right: zoom of cell showing tagSrc tracks colored by diffusion coefficient, and adhesion 
outlines (black dashed lines) (B) Adhesion-associated tracks persist on the membrane at least as long as 
non-adhesion-associated tracks. (C) Quantitative mean-squared displacement analysis of diffusion. Error 
bars show 95% CI. (D) Quantitative analysis of tagSrc and Binder accumulation within adhesions of 
increasing size. Left, concentrations of tagSrc and Binder. Right, recruitment of tagSrc and Binder. 
Statistical comparisons were done using ANOVA. Analysis over n=16 cells. 
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Single particle tracking also allowed us to inspect how tagSrc and Binder entered adhesions. Tracks 

could either start outside of adhesions and diffuse in, i.e. lateral membrane recruitment, or start inside 

adhesions, i.e. cytosolic recruitment. A small majority of adhesion-associated tagSrc and Binder tracks 

started within adhesions (57±6% tagSrc, 58±4% Binder; 95% CI), indicating that most adhesion-

associated Src is directly recruited from the cytoplasm. Furthermore, the cytosolic recruitment of tagSrc 

and Binder also exhibits a 2-fold increase on large adhesions compared to small adhesions and the plasma 

membrane (Figure 4.4D). We note that the cytosolic recruitment of Binder cannot distinguish between the 

cytosolic recruitment of active Src, or simply the cytosolic recruitment of Binder to Src activated after 

entering adhesions. Overall, these results show that active Src accumulates in adhesions of increasing 

size, and that the largest adhesions are more effective at recruiting Src. These changes are likely driven by 

changes in the molecular composition of adhesions as they mature, as Src activity is necessary for the 

regulation of adhesion maturity (Gardel et al., 2010; Huveneers and Danen, 2009; Webb et al., 2004).  

 
4.4. Nanoscale clusters of Src are dynamic hotspots of activity 

Our SPT maps exhibited clusters of tracks (Figure 4.4A). Studies in fixed cells have found that Src 

family kinases form clusters (Githaka et al., 2016; Owen et al., 2010; Smith et al., 2016). With fixed-cell 

PALM imaging, we also observed that wild-type tagSrc forms ~100 nm clusters on the plasma membrane 

(Figure 4.5A, B). Few corresponding studies have been done in living cells, and the dynamics of Src 

family kinase clusters under physiological conditions are still poorly understood. To address this problem, 

we studied the clustering dynamics of tagSrc and Binder using dual-color SPT in BT MEFs.  

I developed an approach to extract dynamic clustering information from SPT data based on Voronoi 

tessellation (Figure 4.5C). The method identifies sets of clustered tracks, then isolates each individual 

cluster for analysis. Voronoi tessellation, which has been used for single molecule cluster analysis 

(Andronov et al., 2016; Levet et al., 2015), was used determine local track centroid densities, followed by 

automated thresholding to propose cluster assignments based on the local density. The proposals were 

refined spatially by capturing additional tracks based on complete trajectories, and by splitting clusters 
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when unusually long gaps occurred between new track observations. Additional filters were applied to 

reject spurious clusters. While other approaches have been developed for live cell single molecule cluster 

analyses (Griffié et al., 2018), our method combines cluster analysis with single particle tracking data, 

allowing us to follow the trajectories of individual molecules within clusters. 

 
Figure 4.5. Observing nanoscale clusters of Src. 
(A) PALM imaging in fixed MEF cells, transiently transfected with Src-WT-mGeosM, scale bar, 5 µm. 
Inset is a magnification of the yellow box, scale bar, 1 µm. (B) Cluster size estimated using pair 
correlation PALM, with each dot indicating a measurement from a 3 µm x 3 µm cropped region. (C) 
Workflow for clustering tracks of tagSrc and Binder in living cells. The SPT maps (i) were transformed 
into track centroid maps and divided using Voronoi tessellation (ii). A size threshold was used to select 
for densely packed centroids, leaving behind proposed clusters (iii). Spatial and temporal refinements, and 
filtering out spurious clusters produced sets of clustered tracks (iv), scale bar, 500 nm. (D) A heat map 
showing localization densities within an isolated cluster of tracks. (E) Distributions of tagSrc and Binder 
cluster sizes within living cells. Cluster sizes were defined using regions inside clusters with >50% 
maximal localization density. Analysis represents n=61 cells with n=3972 tagSrc clusters and n=2058 
Binder clusters. 
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Cluster sizes were measured based on local density maps calculated for isolated clusters (Figure 

4.5D). Areas and effective radii were determined by thresholding the density maps at half their maximum 

density, essentially reporting on the “core” of the cluster. Binder clusters were similar in size to tagSrc 

clusters, though slightly smaller (Figure 4.5E) (95% CI for median radii: 105-113 and 120-124 nm for 

Binder and tagSrc, respectively). The “extents” of the cluster, assessed by instead thresholding the density 

maps at 5% of the maximum density, were more noticeably different (95% CI for median radii, 256-273 

nm vs. 289-297 nm for Binder and tagSrc, respectively). 

Dynamic analyses of tagSrc and Binder indicate that the clusters are centralized hotspots of activity. 

Diffusional analysis of the tracks (Figure 4.3B and Figure 4.6A) showed that clusters contain centralized 

regions of slow diffusion, surrounded by clouds of fast diffusion. The zone of slow diffusion is indicative 

of a centralized binding site. Compared to the slow tagSrc zone, the slow Binder zone was similar in size, 

though slightly smaller (95% CI for median radii, 88-94 nm Binder slow vs. 96-100 nm tagSrc slow). In 

contrast, the fast Binder zone was noticeably smaller than the fast tagSrc zone (95% CI for median radii, 

112-119 nm Binder fast vs. 129-134 nm tagSrc fast). These data suggest that the slow zone is primarily 

active material, while the fast exterior zone is a mixture of active and inactive material. 

To further assess activity within the clusters, we identified pairs of co-diffusing tagSrc and Binder 

tracks. If the clusters were sites of activity, then the co-diffusion events (denoting open-conformation Src) 

should be enriched within clusters. Clustered tracks constituted approximately 5% of either the tagSrc or 

Binder data. This result suggests most membrane-associated Src does not participate in clusters. However, 

almost 15% of all co-diffusion events were cluster-associated. The enrichment of co-diffusion events 

within clusters is unlikely to happen by chance, based on statistical bootstrapping (Figure 4.6B), which 

indicates that a clustered Src molecule is approximately 3-fold more likely to be in the open-conformation 

versus an un-clustered Src molecule. 
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Figure 4.6. Src clusters are hotspots of activity.  
(A) SPT maps colored by slow and fast diffusive state, as defined in Figure 4.3B. Arrows point out 
enrichment of the slow diffusive state within clusters. Scale bar, 500 nm. (B) Activation within clusters 
revealed by enrichment of co-diffusion events. Clusters are 3-fold more likely to have co-diffusion events 
(i.e. active Src) than would be expected by random chance. Error bar obtained from 10 bootstrap 
selections of tracks. P-value from a two-sided, one-sample t-test. Analysis represents 61 cells with 1094 
co-diffusion events, 3972 tagSrc clusters, and 2058 Binder clusters. 

 

The dynamics revealed by our technique also allows us to follow the dynamic birth and death of 

clusters. We find that molecules arrived at clusters in bursts, a hallmark of dynamic cluster behavior 

(Cisse et al., 2013) (Figure 4.7A). The clusters existed transiently, with median lifetimes of 10.1-10.5 

seconds for tagSrc and 8.5-9.0 seconds for Binder (95% CI of the median) (Figure 4.7B).   

The population of clusters we observed was heterogenous, based on comparison to simple models 

where either a single type of tagSrc or Binder cluster existed. These simple models assume that the cluster 

contains n molecules on average, with some probability of observing each molecule p (related to the 

sparse dye labeling necessary for SPT, described in Section 4.2). If these simple models were appropriate, 

then the observed number of molecules within the cluster should follow Binomial distributions. Neither 

model fit (Figure 4.7C). Heterogeneity could be due to the diversity of Src binding partners for different 

biological functions, several of which are known to themselves form clusters, such as growth factor 

receptors (Baumgart et al., 2018; Gao et al., 2015) and integrins (Changede et al., 2015; Rossier et al., 

2012). However, we found few differences when we attempted to analyze clusters in vs. out of adhesions. 

Differences between clusters could also be time-dependent, either on the lifetime of the cluster, or on the 
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time relative to the start of imaging. However, we again found few differences when we attempted to 

correlate our measured properties with temporal characteristics.  

 

Figure 4.7. Src clusters are dynamic, heterogenous structures. 
(A) Bursts of new molecules arriving at a proposed cluster (see Figure 4.5C, iii). The black dashed line is 
the temporal density of events, while the colors of the stems denote classification into clusters after 
refinement. (B) Cluster lifetime distributions. (C) The number of tracks observed per cluster do not 
follow a Binomial distributions, indicating the simple Binomial models shown (left) are inadequate. (D) 
Both tagSrc and Binder have longer lifetimes in the plasma membrane when in clusters. (E) Measured 
recruitment of tracks to the cores of clusters (region of >50% maximal density) versus simulated random 
controls. Analysis represents 61 cells with 3972 tagSrc clusters, and 2058 Binder clusters. 

 

In support of the hypothesis that clusters contain centralized binding sites, clustered tracks persisted 

longer on the membrane than non-clustered tracks (Figure 4.7D). Our observations apply to both tagSrc 
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and Binder, which means that the binding sites interact with open-conformation Src, consistent with 

current models of Src interactions at the plasma membrane (Shvartsman et al., 2007).   

Finally, by examining where tracks started, we find that on average only 35% of tracks were 

recruited directly into the “core” of the cluster, or the zone of half-maximal density (Figure 4.7E). The 

remaining 65% of tracks entered Src clusters by lateral diffusion along the plasma membrane. In contrast, 

simulations predict that only 15% of tracks should be recruited from the cytosol by random impingement 

of Src at the membrane, suggesting that the cores of clusters are enriched in binding sites accessible from 

the cytoplasm. Altogether, these centralized binding sites represent a heterogeneous population of slow-

diffusing molecules that either selectively bind active Src or activate Src, and exist transiently in the 

plasma membrane. 

 
4.5. Inferring in vivo biochemical kinetics 

Src, as well as the ubiquitous Src homology domains SH2 and SH3, has been the subject of many 

kinetic and thermodynamic analyses (Ladbury and Arold, 2011). Most of these studies have been 

conducted in vitro, which allows rigorous characterization of the pure protein, but may not accurately 

represent in vivo kinetics because of differences in the abundance of native regulators (García-Contreras 

et al., 2012), the effects of membrane confinement on diffusion (Grecco et al., 2011; Kalay et al., 2012), 

and macromolecular crowding effects (Acosta et al., 2017; Grima and Schnell, 2006; Ryan et al., 1988; 

Schnell and Turner, 2004). Here, we inferred Src regulatory kinetics inside live cells using Binder/Tag-

based SPT and computational modeling. The kinetic analyses rely upon identifying co-diffusing pairs of 

tagSrc and Binder tracks (Figure 4.8A). From a model of the co-diffusion events (Figure 4.8B-D) we 

identified four types of observable processes that report on: i) Src opening, ii) Src closing, iii) the release 

of Src from the plasma membrane, and iv) the release of open Src from the membrane. 
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Figure 4.8. Inferring in vivo Src regulatory kinetics through co-diffusion analysis. 
(A) Co-diffusing pairs of tagSrc and Binder tracks. (B,C) Four processes that can be observed from co-
diffusion events. Process times (bars, (C)) are a function of individual kinetic steps, denoted with arrows 
(boxes, (B)). (D) Full kinetic model. (E-H) Stochastic Markov Chain simulations with optimized model 
parameters yield fits to the data. (F) Process times. (G) Track lifetimes for co-diffusing tracks and all 
tracks. (H) Sequence of arrival/departure in the co-diffusion event. Results represent n=1094 events. 
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A complicating factor is that tagSrc/Binder interaction kinetics are entwined with the Src regulatory 

kinetics of interest. For example, the Src closing process ii might only report spontaneous Binder 

dissociation (k4). To ensure this is not the case, control experiments to measure spontaneous tag/Binder 

dissociation in live cells were performed using either constitutively active tagSrc-Y527F (k=0.6 s-1) or the 

tagged transmembrane receptor tagStargazin (k=1.3 s-1) (Figure 4.9A, B). In both cases, spontaneous 

Binder dissociation was at least 3-fold slower than the measured transition rate for event ii (k=4.25 s-1) 

(Figure 4.9C). This implies that inactivating Src accelerates Binder dissociation, most likely driven by 

structural changes mediated by phosphorylation at Tyr-527. We model this effect as Binder dissociation 

in concert with tagSrc closing (k6). Another complicating factor is that Binder could force tagSrc into the 

open conformation. However, Binder does not perturb Src activation or diffusion in BT MEF cells under 

our working conditions (Figure 4.2). We therefore assume in the model that Binder cannot force tagSrc 

into the open form (k5 = 0). Photobleaching kinetics were also excluded from the model since the track 

lifetimes were robust to increases in the laser power (Figure 4.9D, E). 

The model represents a continuous time Markov chain, and was simulated stochastically using the 

three PM-associated states as initial conditions. We used an evolutionary algorithm approach to 

simultaneously fit the model to all the experimental data (Fortin et al., 2012), and the best 

parameterization found is shown in Figure 4.8E-H. Altogether, the fitted model is in agreement with the 

SPT data (Figure 4.8F-H), and the values for the fitted rate constants are given in (Figure 4.8E). There is 

some mismatch between the model and the data for the process iii waiting times and the lifetimes of co-

diffusing tagSrc tracks. This mismatch may be due to the lack of information on the tagSrc 

conformational state if Binder is not present, as well as the simplifying assumptions made for the model, 

i.e. treating all steps as first-order reactions. 

 



 

 
 105 

 
Figure 4.9. Controls for analyzing in vivo kinetics. 
(A) Measuring spontaneous tag/Binder dissociation using tagStargazin and tagSrc-Y527F. (B,C) 
Simplified model and fits treating each observable process as a first-order reaction.  Process iv was 
treated with a frequency-based approach because of the rarity of events and to demonstrate a conditional 
effect (see text). (D,E) Changing the laser power does not significantly change the average track lifetime 
(0.02 s = 1 frame). The asterisk denotes the working power. (F,G) Varying expression between 1-10x 
endogenous Src does not significantly change the measured kinetics.  

 

The inferred parameters characterize Src regulation at the plasma membrane. For example, open-

conformation Src interacts with other proteins in the PM via its SH2 and SH3 domains, whereas closed-

conformation Src interacts with the PM primarily via N-myristoylation at Gly-2 (Sandilands et al., 2007). 
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We hypothesized open conformation Src would have slower PM dissociation, as compared to the closed 

form due to protein-protein interactions mediated by its SH2- and SH3 domains. Consistent with this line 

of reasoning, we find that k7 and k8 (closed and open Src PM dissociation, respectively) are 12.5 s-1 and 

0.17 s-1, respectively. In addition to co-diffusion events, the model was fit to track lifetime distributions 

(Figure 4.8G). These included lifetime distributions for: 1) the subset of tagSrc tracks that at some point 

underwent co-diffusion with Binder, 2) all tagSrc tracks, and 3) the subset of Binder tracks that at some 

point underwent co-diffusion with tagSrc. Note that the distribution for all Binder tracks is similar to the 

subset that underwent co-diffusion. This is expected because presumably all Binder molecules at the 

plasma membrane are interacting with an open-conformation tagSrc molecule. The difference between 

the tagSrc lifetime distributions arise because the tracks that underwent co-diffusion must have had open-

form Src during this time, whereas the lifetime distribution for all tracks can include tagSrc molecules 

that were closed during the entire observed event. Therefore, the shift in the tagSrc track lifetime 

distribution for codiffusion events is likely a result of the increased stability of open tagSrc.  

While it is tempting to estimate some of the individual rate constants directly from the distributions 

in Figure 4.8F, such an approach would lead to incorrect results. For example, we might estimate k8 by 

fitting an exponential to the time distribution for process iv. The problem is that in constructing the 

distribution for process iv, we selected tracks in which the Binder and tagSrc left the membrane together 

and ignored the tracks in which the Binder dissociated from tagSrc (i.e., the transitions characterized by 

rates k4 and k6). By not taking these events into account, the distribution for process iv shown in (Figure 

4.8F) represents the distribution for the times that the co-diffusing tagSrc/Binder pair dissociated from the 

membrane before either transition k4 or k6 occurred. Therefore, the rate estimated from this time 

distribution will be greater than the value for k8. In fact, the estimated rate is the sum of the three rates 

k8+k6+k4, which is why the measured times for process iv are roughly similar to those of the other 

processes, despite the rate fitted rate k8 being slow compared to the other events (0.17 s-1). A frequency-

based analysis, which avoids the conditional effect, provides a similar estimate Figure 4.9C). 
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Finally, since changes in expression level could produce changes in tagSrc diffusion as well as 

changes in Src phosphorylation levels (Figure 4.2), we examined whether Src regulatory kinetics were 

perturbed by changes in expression. However, we observed no significant changes with expression 

between 1-10x over endogenous Src (Figure 4.9F), indicating that our kinetic measurements are robust.  

 

4.6. Discussion 

In collaboration with experimentalists in Klaus Hahn’s lab, I studied the conformation, dynamics, 

and subcellular localization of individual Src molecules. Binder/Tag allowed us to probe the 

conformational states of Src, while SPT allowed us to follow individual molecules arriving at, diffusing 

along, and departing from the plasma membrane. Combining these techniques enabled us to monitor the 

arrival and accumulation of active Src within adhesions at the plasma membrane, the organization of Src 

into activity-enriched diffraction-limited clusters, and the kinetic regulation of Src via co-diffusion 

analysis and modeling. 

We observed that open conformation Src diffuses more slowly, consistent with studies using mutated 

and truncated forms of Src (Shvartsman et al., 2007), which is most likely driven by interactions with 

membrane-bound binding partners (Figure 4.1F). We also observed that open Src is enriched within 

adhesions (Figure 4.1C and Figure 4.4D). In agreement with biosensor and chemogenetic studies (Chu et 

al., 2014; Karginov et al., 2014; Koudelková et al., 2019), Src appears to enter the open conformation 

when it enters adhesions, since tagSrc diffusion slowed within adhesions, while Binder diffusion was 

slow whether it was in or out of adhesions (Figure 4.4C). We assessed molecules entering and exiting 

adhesions: 57±6% of tagSrc tracks and 58±4% of Binder tracks (95% CI) initially started within 

adhesions, while the remainder diffused in laterally. Once within adhesions, 73±5% of tagSrc tracks and 

72±3% of Binder tracks remained inside adhesions before either dissociation from the plasma membrane 

or photobleaching. These results indicated that adhesions retain and accumulate open-conformation Src. 

Src accumulation was a function of adhesion size (Figure 4.4D), which was used to roughly distinguish 

stages of adhesion maturity (Gardel et al., 2010). The smallest adhesions exhibited statistically identical 
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accumulation and recruitment of tagSrc and Binder to non-adhesion regions of the plasma membrane. 

However, medium-sized adhesions (i.e. focal complexes) had elevated Src concentrations, elevated Src 

activation, and enhanced recruitment of Src. These changes were even more dramatic for the largest 

adhesions (i.e. focal adhesions), reaching a ~2-fold increase in concentration and recruitment relative to 

non-adhesion parts of the plasma membrane. We also observed what appeared to be molecular clusters 

within adhesions, that appeared to accumulate on the edges of adhesions (Figure 4.4A). While statistical 

analysis of many adhesions across multiple cells revealed little to no preferential localization at adhesion 

edges, this led us to carefully investigate the clustering behavior of Src in non-adhesion labeled cells. 

While the nanoscale organization of Src has been studied in fixed cell systems (Githaka et al., 2016; 

Owen et al., 2010; Smith et al., 2016), no studies have been conducted to perform single-molecule 

imaging of Src clusters in living cells. I developed a computational pipeline for detecting, isolating, and 

characterizing clustered sets of tracks in both time and space (Figure 4.4C). We found that these 

structures were dynamic, with median lifetimes of 10.1-10.5 seconds for tagSrc and 8.5-9.0 seconds for 

Binder (95% CI). Furthermore, diffusional analysis highlighted centralized binding sites holding the 

clusters together (Figure 4.6A), which is supported by prolonged track lifetimes within clusters (Figure 

4.7D) and enhanced track recruitment to clusters (Figure 4.7E). These dynamic observations would be 

inaccessible from fixed cell studies. The clusters were hotspots of Src activity, based on co-diffusion 

analyses (Figure 4.6B). There are still gaps in our knowledge of Src cluster dynamics and regulation: for 

example, it is unclear whether Src becomes activated within clusters (i.e. the clusters function as the site 

of activation) or outside of clusters (i.e. the clusters are where activity is needed). Both may be true, since 

we anticipate that there should be many different types of Src clusters, for example those driven by 

integrin clustering and those driven by EGFR clustering (Changede and Sheetz, 2017). Indeed, we 

observe heterogeneity in the population of observed clusters (Figure 4.7C). It was difficult to analyze 

adhesion-associated clusters because most tracks were not adhesion-associated. 

 Finally, we were able to leverage co-diffusion events to infer in vivo Src regulatory kinetics (Figure 

4.8). These events were rare, totaling 1094 events out of hundreds of thousands of tracks across 61 cells. 
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We used an evolutionary algorithm approach to iteratively improve the parameters for a stochastic 

Markov Chain model of the biochemical events. One striking result is the large difference between the 

predicted inactive Src plasma membrane dissociation rate (k7 = 12.5 s-1) and the predicted active Src 

plasma membrane dissociation rate (k8 = 0.17 s-1). The difference is most likely driven by the additional 

molecular interactions active Src can make in the plasma membrane. Oddly, the difference in these rates 

is not apparent from looking at the experimentally measured times corresponding to plasma membrane 

dissociation processes iii and iv (Figure 4.8F). This is because we must select for tracks where Binder and 

tagSrc left the membrane simultaneously to measure process iv, thus ignoring tracks in which Binder 

dissociated from tagSrc first (characterized by k4 and k6). As a result, the measured distribution reflects 

events where the co-diffusing tagSrc/Binder pair dissociated from the membrane before either the k4 or k6 

transition occurred. A frequency-based analysis of process iv corrects for this effect and gives a similar 

estimate for active Src plasma membrane dissociation as our full model fit (k = 0.26 s-1, Figure 4.9C).  

These types of in vivo kinetic analyses should be complementary to in vitro kinetic analysis with 

purified protein. Implicitly accounting for the native cellular environment is actually a double-edged 

sword; while it captures the normal signaling context, it also obscures the identity of many measured 

molecular interactions. For example, a database of protein-protein interactions within adhesions lists 79 

proteins Src may interact with (Zaidel-Bar et al., 2007); of course, Src also plays roles in other pathways 

such as proliferation and growth, so this is a conservative estimate. Comparative analysis of regulatory 

kinetics in different cellular contexts may help alleviate these issues. We hoped to perform differential 

kinetic analysis either through changing tagSrc and Binder expression levels or by localizing co-diffusion 

events within adhesions. However, our kinetic measurements were robust within 1-10x expression of 

tagSrc over endogenous Src (Figure 4.9F), and there were too few co-diffusion events that occurred 

within adhesions: roughly 10% of tracks were adhesion-associated in our system, so roughly 10x the data 

would be needed. Since n=61 cells were used to generate hundreds of thousands of tracks, resulting in 

only 1094 co-diffusion events, around several hundred adhesion/SPT-correlated cells would need to be 

collected, which is beyond the scope of this work. Looking forward, other experimental contexts could 
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better allow comparison of Src regulatory kinetics, such as kinetics at the front vs. back of polarized cells. 

Furthermore, the Binder/Tag-based kinetic analysis approach shown here should be applicable to 

characterizing other proteins.  

 
4.7. Methods 

4.7.1. Single molecule microscopy 

Single molecule tracking was performed on a home-built total internal reflection microscopy 

microscope based on IX81 (Olympus), equipped with four solid-state lasers (Coherent OBIS 405 nm, 488 

nm, 561 nm and 647 nm). A four-band dichroic mirror (DM: Di01-R405/488/561/635, Semrock) was 

used for multi-color imaging. Fluorescence images were collected by a 150 X TIRF objective (UAPON 

150XOTIRF, NA 1.45, Olympus), and projected to an electron-magnified charge-coupled device 

(EMCCD) camera (Evolve® 512 Delta, Photometrics). A 10-position emission filter wheel (emFW) 

(Sutter Instrument) and an imaging splitting optics (W-View GEMINI, Hamamatsu) was were mounted in 

front of the camera to enable flexibly switching between different imaging modes. For dual-color SPT, 

the filters settings were as below: in GEMINI, DM (T647lpxr, Chroma), Long-pass filter (FF01-698/70, 

semrock) and short-pass filter (FF01-600/52, semrock); emFW was set to empty. For correlative adhesion 

and dual-color SPT: in GEMINI, the short-pass filter was removed; emFW was set to HQ525/50 M 

(Chroma) for EGFP-labeled adhesion marker imaging, and was switched to ET570lp (Chroma) for dual-

color SPT.  

For tracking individual molecules, single B/T MEF cells were imaged for 60 seconds at 50 Hz, 

generating 3000 frame videos. We first applied àtrous-wavelet decomposition to extract individual single 

molecules. Each identified molecule was fit with a 2D Gaussian function to obtain a precise centroid. 

Then, we adopted a well-established trajectory linking algorithm to find the corresponding molecules in 

successive frames (Crocker and Grier, 1996). 

For fixed-cell PALM imaging, COS-7 cells were transiently transfected with mGeosM labeled Src 

for 12~16 hours and plated on fibronectin-coated coverglass for 4 hours. For fixation, cells were treated 
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with 3.7% PFA for ~20 minutes at room temperature. Each cell was imaged for 10,000–20,000 frames. 

PALM reconstruction was done by an in-house MATLAB-based software. The cluster size was estimated 

with pair-correlation PALM analysis as described previously (Sengupta et al., 2011). 

 

4.7.2. Diffusional analysis 

Mean square displacement (MSD) is one of the most common approaches to describe the diffusive 

properties of single molecules. The MSD at different time lags 𝜏𝜏 = 𝑛𝑛∆𝑡𝑡 was calculated as below: 

𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏) = < (𝑥𝑥𝜏𝜏+𝑘𝑘 − 𝑥𝑥𝜏𝜏)2 + (𝑦𝑦𝜏𝜏+𝑘𝑘 − 𝑦𝑦𝜏𝜏)2 > 

where 𝑥𝑥𝑖𝑖+𝑘𝑘 and 𝑦𝑦𝑖𝑖+𝑘𝑘 describe the position after a time interval, k, after starting at positions 𝑥𝑥𝜏𝜏 and 𝑦𝑦𝜏𝜏.  

 

To get the diffusion coefficient of each trajectory, the MSD curve was fitted to a nonlinear 

anomalous diffusion model, 𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏) = 4𝐷𝐷𝜏𝜏𝛼𝛼 + 4𝜎𝜎2, where D is the diffusion coefficient, α is the 

anomalous exponent, and σ is the localization precision. To get a reliable estimation of the diffusion 

coefficient, the minimum track length was set to 12 frames and only the first 4 points were used when fit 

to the diffusion model.  

We used moment scaling spectrum (MSS) analysis to categorize trajectories into diffusive modes, 

such as pure Brownian, confined (sub-diffusive) or directional (super-diffusive) movement (Ferrari et al., 

2001). The moments of displacement of order ν is defined as:  

𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏, 𝜈𝜈) =  〈(𝑥𝑥𝜏𝜏+𝑘𝑘 − 𝑥𝑥𝜏𝜏)𝜈𝜈 + (𝑦𝑦𝜏𝜏+𝑘𝑘 − 𝑦𝑦𝜏𝜏)𝜈𝜈〉 

where τ is the time lag. The MSD is a special case where ν = 2. Moments were calculated for ν = 0~6.  

We also used a Hidden Markov model (HMM) approach to annotate the instantaneous diffusive 

behavior of trajectories using a previously described method (Persson et al., 2013). Briefly, trajectories 

with at least 5 frames were analyzed by variational Bayes single particle tracking, producing per-frame 

classification into discrete diffusive states based on a Brownian motion approximation. Two diffusive 

states were sufficient to explain most of the dataset based on an elbow analysis of the model scores, after 
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examination of 1, 2, 3, 4, and 5-state diffusional models. Each cell was analyzed as a separate dataset, and 

variability in the HMM parameters was reported over cells. The number of iterations were set to 25, 

bootstrapping to 100, diffusional prior to [0.0001,5] µm2/s, and dwell time prior to [40,400] ms. 

Occasionally frames were missing within trajectories, so prior to HMM analysis, these frames were 

interpolated by minimizing the sum of squares of the second derivative at the gap (D’Errico, 2004). After 

construction of the HMM, the interpolated frames were removed. 

 

4.7.3. Correlating adhesion imaging with single particle tracking 

Tracks were considered ‘on adhesion’ if their centroid was within the adhesion. For each cell, 

absolute track centroid densities (also ‘track densities’) were calculated for adhesions binned into three 

size categories. The track density had units of molecules area-1 time-1. Since adhesion-associated tracks 

had a track lifetime at least as long, if not longer, than non-adhesion-associated tracks, the track density is 

a reasonable estimate for concentration (molecules area-1). The track density was normalized to the 

average track density within all adhesions, resulting in a dimensionless quantity we label ‘relative track 

density’. Tracks were considered recruited to adhesions if the first frame of the track was inside an 

adhesion. The track recruitment density was normalized to the average recruitment density across all 

adhesions. The adhesion size bins were chosen to reflect previously described estimates for nascent 

adhesions (0.05-0.25 µm2), focal complexes (0.25-1 µm2), and focal adhesions (1-5 µm2) (Gardel et al., 

2010). 

 
4.7.4. Cluster analysis 

Tracks were assigned to proposed clusters, subjected to spatial and temporal refinement steps, then 

filtered to remove spurious clusters. Cluster proposals were generated using Voronoi tessellation 

(Andronov et al., 2016; Levet et al., 2015) of the track centroids. Track centroids, rather than whole 

trajectories, were used as the input to the tessellation process to avoid bias for longer-lived tracks and to 

avoid false-positive cluster detection due to repeated observation of a slow-moving molecule. Reducing 
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the dataset to track centroids also allowed much more efficient computation. To select clustered Voronoi 

polygons (islands of small polygons), polygon size thresholds were obtained as described by Andronov et 

al. Briefly, for each centroid map, 50 realizations of randomly distributed points were subjected to 

Voronoi tessellation, and probability density functions of the experimental and mean simulated polygon 

sizes were computed. Their intersection defined the threshold. 

Proposed clusters were used as the basis for spatial and temporal refinement. In spatial 

refinement, tracks left out of the proposal were added to a proposed cluster if their trajectories entered a 

polygon island. In temporal refinement, proposed clusters were split if enough time passed between new 

observations of molecules. Since a new molecule was typically observed at a cluster at least once every 4 

seconds (>90% of all recruitment events, prior to temporal segregation), any cluster with a longer time 

gap was split into two. To remove spurious clusters, we ignored clusters that had fewer than 10 tracks, as 

well as clusters that contained 3 or more tracks at the same instant in time.  

The usual correlation analysis methods to assess cluster size for super-resolution microscopy do not 

account for repeated localization of moving molecules. For example, in PC-PALM (Sengupta et al., 

2011), the term g(r)stoch is a convolution of the protein pair correlation function at r=0 (i.e. a non-diffusing 

molecule) and the pair correlation function of the effective point spread function. However, we did apply 

PC-PALM to analyze tagSrc and Binder clusters in fixed cells for comparison to our live-cell results, and 

pair-correlation analyses to sets of single-coordinate representations of trajectories (e.g., track centroids). 

As another approach, we computed kernel density estimates (KDE) using the localizations associated with 

sets of clustered tracks. Gaussian kernels with optimized bandwidths were used (Bowman and Azzalini, 

1997). The domain was padded out by 1 µm in each direction to avoid boundary artifacts, and 

calculations were performed on 10 nm x 10 nm pixelated grids. After computing a KDE for each cluster, 

each density map was thresholded at 5% and 50% of its maximum to generate binary masks with areas 

and effective radii 𝑟𝑟 = �𝐴𝐴/ 𝜋𝜋 . Simulations were primarily performed using Linux systems (Longleaf 
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cluster at UNC Chapel Hill, 2.50 GHz and 2.30 GHz Intel Processors), with some subsequent analyses 

conducted on a Mac (3.4 GHz Intel Processor). 

 
4.7.5. Co-diffusion events and kinetic modeling 

To track individual molecules, it was necessary to use low dye concentrations to label a sub-

population of the target proteins (tagSrc and Binder), such that not all tagSrc and not all Binder are 

fluorescent. Whether dye-labeled or not, all Binder events on the membrane should have a corresponding 

tagSrc. Therefore, when quantifying the activation kinetics of Src, we selected for all tagSrc trajectories 

that co-diffuse (distance < 100 nm per frame) with another Binder trajectory for at least five consecutive 

frames (100 ms) during their residence on PM. 

The kinetic model of Src regulation has was modeled as a discrete-time Markov chain with four 

states: (1) closed tagSrc at the plasma membrane, (2) open tagSrc at the plasma membrane, (3) open 

tagSrc with Binder at the plasma membrane, and (4) an absorbing state representing translocation into the 

cytosol. The transition probability matrix is: 

𝑃𝑃 = �

𝑃𝑃𝑎𝑎𝑎𝑎 1 − exp(−𝑘𝑘1Δ𝑡𝑡)
1 − exp(−𝑘𝑘2Δ𝑡𝑡) 𝑃𝑃𝑏𝑏𝑏𝑏

1 − exp(−𝑘𝑘5Δ𝑡𝑡) 1 − exp(−𝑘𝑘7Δ𝑡𝑡)
1 − exp(−𝑘𝑘3Δ𝑡𝑡) 1 − exp(−𝑘𝑘8Δ𝑡𝑡)

1 − exp(−𝑘𝑘6Δ𝑡𝑡) 1 − exp(−𝑘𝑘4Δ𝑡𝑡)
0 0

𝑃𝑃𝑐𝑐𝑐𝑐 1 − exp(−𝑘𝑘8Δ𝑡𝑡)
              0               1

�, 

where Δ𝑡𝑡 is the simulated time step, and Paa, Pbb, Pcc, are calculated such that the rows sum to one. 

The timestep is selected such that 𝑃𝑃𝑖𝑖𝑖𝑖 < 0.1, for 𝑖𝑖 ≠ 𝑗𝑗. Markov chain simulations using a particular 

parameter vector 𝜃𝜃 result in a set of state vectors {𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛} corresponding to the time-evolution of the 

Markov chain, with each state vector 𝑠𝑠𝑖𝑖 = {𝑠𝑠𝑖𝑖1, 𝑠𝑠𝑖𝑖2, … 𝑠𝑠𝑖𝑖𝑖𝑖} a sequence of the four states. Entry to the 

absorbing state always terminates the vector. The challenge is to find an optimal parameter vector 𝜃𝜃 to 

match the behavior of the state vectors to the experimental data. 

Simulations of the Markov chain were performed several thousand times using each of the three non-

absorbing states as initial conditions. The relative proportion of events starting from the three states is 

weighted by the additional parameters f1, f2, and f3, which sum to one. Of all co-diffusion events, 24% 
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started with both tagSrc and Binder together, so f3 was fixed to 0.24. Furthermore, k5 was fixed to zero. so 

the goal is to optimize the parameter vector 𝜃⃗𝜃 = {𝑘𝑘1,𝑘𝑘2,𝑘𝑘3,𝑘𝑘4,𝑘𝑘5,𝑘𝑘7,𝑘𝑘8,𝑓𝑓2}. Simulated trajectories 

{𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑛𝑛} were analyzed to produce simulated distributions with the same constraints as the 

experimental data: tracks shorter than 12 frames (240 ms) were ignored; tracks where Binder arrived, 

departed, then arrived again were ignored; and unless Binder was present for >12 consecutive frames, the 

track was not considered a co-diffusion event. An evolutionary algorithm approach was to fit the data 

(Fortin et al., 2012). A single evolution consisted of 100 parameter sets (“individuals”) that competed, 

mated, and mutated over 40 cycles (“generations”). Three-individual tournaments were used for mating, 

where the two best-fitting individuals mixed parameters to produce a new individual, while the worst-

fitting individual was removed. Crossover and mutation rates were set to 0.5 and 0.1, respectively. Fits 

were quantified using the following score function. 

Score = MSE(process_i) + MSE(process_ii) + MSE(process_iii) + MSE(process_iii)

+ MSE(tagSrc_lifetime_codiffuse) + MSE(tagSrc_lifetime_all)

+ MSE(Binder_lifetime_codiffuse) + MSE(codiffusion_sequence_category) 

Where the MSE(•) is the mean-squared error between experimental and simulated distributions. The 

initial range for parameter optimization was chosen based on exponential fits to a simplified model. 

Evolutions were conducted using Linux systems (Longleaf cluster at UNC Chapel Hill, 2.50 GHz and 

2.30 GHz Intel Processors), each taking at minimum 2-3 days per CPU node, with subsequent analyses 

conducted on a Mac (3.4 GHz Intel Processor). 

 
4.7.6. Statistical tests 

Unless otherwise mentioned, statistical tests were performed in MATLAB. ANOVAs were 

performed with Tukey-Kramer correction for multiple hypotheses. Multiple t-tests performed within the 

same plot were subjected to Bonferroni correction. Significance levels: n.s., P>0.05; *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001. 
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CHAPTER 5: MODELING CLUSTERING-INDUCED ACTIVATION OF RECEPTOR 
IMMUNOTYROSINE ACTIVATION MOTIFS 

 

Overview 

Clustering is a regulatory feature in signal transduction across diverse organisms, appearing in 

both unicellular organisms and humans. Clustering, also described as oligomerization and aggregation, is 

the localized accumulation of many copies of the same molecule, and can effect signaling by inducing a 

response, broadening the dynamic range of stimulus-induced responses, insulating responses from nearby 

molecules, and temporally synchronizing responses (Bray et al., 1998; Changede and Sheetz, 2017; Duke 

and Bray, 1999; Dushek et al., 2011; Goyette et al., 2019; Hartman and Groves, 2011). The simplest and 

perhaps most classic example of clustering is the dimerization of receptor tyrosine kinases in humans 

(Lemmon and Schlessinger, 2010; Ullrich and Schlessinger, 1990). Canonically, ligand binding causes 

monomeric receptors to form signaling-competent dimers. Dimerization can be driven by direct ligand-

receptor interactions (Wehrman et al., 2007), receptor-receptor interactions (Garrett et al., 2002; Ogiso et 

al., 2002), or both (Schlessinger et al., 2000). Higher-order oligomers are also key regulators of signal 

transduction, and have been observed among receptor tyrosine kinases such as Tie2 and ephrins (Barton 

et al., 2006; Himanen and Nikolov, 2003), as well as other classes of molecules such as integrins, 

cadherins (Changede and Sheetz, 2017), and immunoreceptors (Goyette et al., 2019; Holowka and Baird, 

2015; Jaumouillé and Grinstein, 2011; Li et al., 2018). 

Mammalian immunoreceptors including the T cell receptor (TCR), B cell receptor (BCR), Fcε 

receptor, and Fcγ receptor undergo ligand-induced clustering, followed by Src family kinase (SFK)-

mediated phosphorylation of immunotyrosine activation motifs (ITAMs). ITAMs have two tyrosines that 

can be phosphorylated in a tandem YxxI/L motif, and are either noncovalently or covalently associated 

with the receptor (Daëron, 1997; Getahun and Cambier, 2015; Johnson et al., 1995; Love and Hayes, 
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2010). Dually phosphorylated ITAMs in Fc receptor signaling recruit spleen tyrosine kinase (Syk) for 

subsequent signal transduction, while the TCR and BCR recruit the homologue ZAP-70 (Mócsai et al., 

2010). The number of ITAMs per receptor can vary dramatically across these systems. For example, there 

is only one ITAM per receptor in the single-chain FcγRIIA isoform (Nimmerjahn and Ravetch, 2008), but 

ten ITAMs per TCR in TCR:CD3 complexes (Guy and Vignali, 2009). How is receptor clustering 

relevant across these contexts? 

 

5.1. Introduction 

To begin, it is helpful to consider FcγR phagocytosis regulated by the FcγRIIA isoform. Fcγ 

receptor-mediated phagocytosis is the ingestion of large (≥0.5 µm) particles coated ('opsonized') with 

immunoglobulin G (IgG) by FcγR-containing cells. The initial step in FcγR-mediated phagocytosis is 

target recognition, where the receptor binds the Fc domain of surface immobilized IgG molecules. 

Binding drives FcγR molecules into discrete, sub-micron clusters through an unknown mechanism 

(Flannagan et al., 2012; Sobota et al., 2005). This process somehow facilitates phosphorylation of the 

receptor ITAM(s) by Src family kinases (SFKs), initiating the phagocytic signaling cascade. Once 

phosphorylated, the ITAMs then recruit Syk, which can phosphorylate other ITAMs, and can also initiate 

downstream signaling through the kinase PI3K, the guanine nucleotide exchange factor Vav, and many 

adaptor proteins such as Grb2, Gab2, and LAT. The phagocytic receptor FcγRIIA is an excellent system 

for studying the role of receptor clustering in signal transduction. First, it is one of the best-characterized 

phagocytic receptors (Flannagan et al., 2012). Second, FcγRIIA is a single polypeptide with a single 

ITAM, in contrast to the multi-polypeptide, multi-ITAM complexes that comprise the TCR and BCR. 

One hypothesis is that cluster formation facilitates the organization of liquid-ordered lipid 

domains (‘lipid rafts’ or ‘detergent-resistant membranes’, DRMs) around the receptors, thereby recruiting 

SFKs that have N-terminal acylated lipid moieties. Experiments in purified neutrophil plasma membrane 

indicated that clustering FcγRIIA, by crosslinking with 1° and 2° antibodies rather than IgG, caused 
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receptor enrichment in detergent-resistant membranes. The same set of experiments also indicated that 

SFKs and Syk were constitutively present in the DRMs, and that cholesterol extraction with methyl-β-

cyclodextrin caused loss of the SFK Lyn from the DRM, but did not block receptor localization (Rollet-

Labelle et al., 2004). Another study showed that methyl-β-cyclodextrin caused inhibition of FcγRIIA 

phosphorylation without disrupting clustering (Kwiatkowska and Sobota, 2001). The association of 

FcγRIIA with the DRMs was dependent upon receptor palmitoylation (García-García et al., 2007). 

However, no other FcγRs are palymitoylated, there are concerns over the side-effects of detergent 

treatments and cholesterol extraction on cells (Kenworthy, 2008). 

 A second hypothesis is that cluster formation induces conformational changes in the receptors, 

resulting in enhanced interactions with SFKs or repressed interactions with phosphatases. However, 

receptor clustering, phosphorylation, and signaling can be induced not only by exposure to surface-bound 

IgG (as might be encountered normally on opsonized targets), but also by heat-aggregated IgG, as well as 

by directly crosslinking the receptor through a combination of 1° anti-FcγR + 2° antibody (Kwiatkowska 

and Sobota, 1999; Kwiatkowska et al., 2003). This suggests clustering can activate signaling in a non-

specific way. Furthermore, treatment with only the primary anti-FcγR antibody does not elicit a response, 

nor does monomeric IgG, which is thought to bind to FcγR in a 1:1 stoichiometry (Woof and Burton, 

2004). Altogether, the variety of ways to trigger a response across different methods of receptor clustering 

suggests a more generic mechanism than binding-induced conformational changes. 

We hypothesized that clustering simply may facilitate repeated encounters with kinases, without 

altering any affinities for signaling molecules. Diffusion in the membrane is slow relative to diffusion in 

the cytoplasm. If receptors are sparsely distributed (i.e. unclustered) then a kinase that translocates to the 

plasma membrane may be unable to diffuse to and phosphorylate many receptors prior to dissociation 

back to the cytoplasm. However, if receptors are clustered, the search process may be accelerated. This 

activation must be balanced by inactivation by phosphatases, which will also have an easier time 

modifying clustered receptors. Furthermore, since fully phosphorylated ITAMs can recruit a kinase that 
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can also phosphorylate nearby receptors, the cell must somehow balance these interactions to avoid 

spurious activation due to noise.  

Here, I used computational modeling and a simple receptor signaling model to investigate how 

clustering could cause receptor ITAMs to become phosphorylated without relying upon preferential 

recruitment of kinases (i.e. via lipid rafts) and without a change in intrinsic biochemical affinities (i.e. a 

conformational change). Receptors, kinases, and phosphatases were simulated as stochastically diffusing 

and reacting particles. Clusters were simulated by placing a fixed number of receptors (n) into confined 

zones with 2≤n≤20 receptors per zone, while allowing kinases and phosphatases to diffuse in and out. We 

used an evolutionary algorithm approach to identify kinetic rate parameters that could generate robust 

phosphorylation of highly clustered receptors, while suppressing phosphorylation of unclustered 

receptors. Changing the objective function of the evolutionary algorithm allowed us to tune the 

clustering-based activation threshold. We find two types of cluster activation in our models: full and 

committed activation of the cluster, versus partial and indecisive activation of the cluster. Full, committed 

activation of the cluster was common when the clustering-induced activation threshold was low, while 

partial and indecisive activation dominated when the threshold was higher. We hope this study will 

provide a useful framework for studying clustering-induced receptor activation. 

 

5.2. Clustering-mediated receptor activation with tunable response thresholds 

We used a particle-based modeling approach, where each molecule is simulated as a discrete 

particle subject to Brownian motion and probabilistic chemical reactions. Particle-based modeling is 

computationally expensive and is often as a follow up to less detailed but more efficient approaches such 

as reaction-diffusion systems of differential equations (Pablo et al., 2018). However, there are three major 

advantages to using a particle-based to study receptor clustering. First, we are interested in behaviors 

ranging from monomers and dimers of receptors up through larger clusters containing approximately 20 

receptors. Particle-based approaches are well-suited to modeling stochasticity, and stochasticity is 

substantial in this low-abundance limit. Second, the clusters are multimers of receptors that can be in 
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many distinct molecular states, e.g. phosphorylation state and enzyme-binding state. The number of 

possible states for the overall cluster grows very rapidly with the number of receptors included per 

cluster. The combinatorial explosion of possibilities makes it impractical to write out all the state 

variables, and is a common problem in aggregating systems (Sneddon et al., 2011). Third, our hypothesis 

involves diffusion-limited interactions on a membrane. Diffusion-limited reactions on membranes are 

difficult to model in the continuum limit (Halatek and Frey, 2018; Yogurtcu and Johnson, 2015). 

 In our model, each receptor has two phosphorylation sites, similar to FcγRIIA. Cytosolic kinases 

and phosphatases can associate with the membrane, where they can form encounter complexes with the 

phosphorylation sites and subsequently catalyze a phosphorylation/dephosphorylation event. These 

enzymes are assumed to fall off after catalysis, requiring another binding event. Finally, as an 

approximation of Syk-mediated positive feedback, where Syk can bind to dually-phosphorylated ITAMs 

and phosphorylate nearby ITAMs (Mócsai et al., 2010; Pao et al., 1997; Turner et al., 2000), our model 

allows dually-phosphorylated receptors to recruit cytosolic SFK to the membrane. These dually-

phosphorylated receptors are thus considered active; non-phosphorylated and mono-phosphorylated 

receptors are not. All the reactions of our model are shown in Figure 5.1A, and a simulation snapshot is 

shown in Figure 5.1B. Not all parameter choices for the model will result in clustering-mediated 

activation. An evolutionary algorithm approach was used to train our model to exhibit clustering-

mediated activation (Figure 5.1C). Because the absolute number of receptors per cluster needed to trigger 

a response is unknown for FcγRIIA, and furthermore is different for other receptors, we checked whether 

our model could be trained respond with a variety of thresholds. Adjusting the objective function 

produced sets of parameters that allowed activation at different levels of clustering (Figure 5.1C,D). 
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Figure 5.1. Simulating clustering-mediated activation of receptors. 
(A) Signaling schematic. Kin: kinase; PPT: phosphatase; P: phosphorylated. (B) Simulation snapshot, 
showing clusters of 10 receptors each. (C) Evolutionary algorithm schematic and adjustable objective 
function. An optimal simulation has no activation with receptor monomers, full activation with receptor 
20-mers, and no activation at some adjustable, intermediate level of clustering. Each evolution contained 
200 individuals and was carried out over 50 generations (Methods). (D) Different cluster-response curves 
obtained by adjusting the objective function, with each line representing the best individual found from an 
independent evolution. Dimer, Hexamer, and Decamer refer to the adjusted objective shown in (C). 
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5.3. Investigating the role of specific parameters in controlling the clustering threshold 

In an attempt to understand the kinetic mechanisms governing changes in the clustering threshold, 

we visualized the distributions of evolved parameters for each condition (Figure 5.2). Constraints and/or 

correlations with changing cluster threshold were observed for several parameters. For example, the 

plasma membrane association rate k1b was slow, and the dissociation rate for the kinase k1a was fast; the 

kinase catalysis k9 was fast, and phosphatase-receptor association was slow relative to kinases (k7a < k5a). 

The feedback rate k3 and the kinase catalysis rate k5a both decreased with the increasing threshold. These 

parameter constraints are consistent with the proposed mechanism of clustering-induced activation. 

Because of the limited membrane-cytoplasm exchange, kinases are relatively slow to interact with and 

explore the membrane, making it difficult to activate sparsely distributed receptors. However, if the 

kinase reaches a cluster of receptors, it can quickly phosphorylate the group of receptors. The phosphatase 

interactions must be slow relative to the kinase to limit deactivation through the same mechanism. 

 

Figure 5.2. Parameter distributions obtained at different levels of clustering-triggered activation. 
The first order reaction parameters were allowed to take on values between 0 and 100, while the second 
order reaction parameters were allowed to take on values between 0 and 1 (see Section 5.6.1). Dimer, 
Hexamer, and Decamer refer to the variable midpoint constraint in the objective function (Figure 5.1C). 
Data represent the top 50 individuals from 17, 20, and 17 independent evolutions for the Dimer, Hexamer, 
and Decamer cases respectively. 

We perturbed several of these parameters to confirm their role in controlling the activation response. 

Parameter sets obtained at the most sensitive response threshold (“Dimer”) were altered to have ten-fold 

reduced k1a, k1b, k3, k5a, or k9, then repeated our simulations. We expect all of these perturbations – except 

for the k1a reduction – to suppress receptor activation.  
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Figure 5.3. Effects of perturbing specific parameters one-by-one. 
The top “dimer”-trained set of parameters from 16 independent evolutions (rows) was perturbed in 5 
different ways, reducing k1a, k1b, k3, k5a, and k9 by 10-fold each (columns). Simulations were performed 
under three levels of clustering: 1, 2, and 20 receptors per cluster (black, blue, and red curves). In the 1 
receptor/cluster case, the receptors are freely diffusing. Ten realizations of the simulation were performed 
to assess variation intrinsic to the parameter set. 

As expected, we find that all the perturbations, except reducing k1a, caused suppression of activity 

(Figure 5.3). Comparing the effect of the same perturbation across different evolved parameter sets 

(rows), reveals heterogeneity despite comparable baseline behaviors: reducing the kinase catalysis rate k9 

resulted in little effect in some cases (row 9), but caused complete loss of activity in others (row 6). This 
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indicates different regulatory features are able to produce similar baseline responses. That is, some 

evolved parameter sets were less reliant on rapid kinase catalysis because other rate parameters could 

compensate. 

Experimentally, reducing the rate of kinase association to the membrane (k1b) might be achieved by 

perturbing Src family kinase localization in the plasma membrane through either cholesterol extraction 

with methyl-β-cyclodextrin, or by inhibiting N-terminal SFK myristoylation/palmitoylation with DL-α-

hydroxymyristic acid/2-bromopalmytic acid (Kwiatkowska et al., 2003; Nadler et al., 1993). Weakening 

the positive feedback (k3) might be approximated through a Syk inhibitor such as piceatannol (Oliver et 

al., 1994), while slowing the kinase catalysis rate (k9), might be achieved with ATP-competitive Src 

family kinase inhibitors such as PP2 or Dasatinib (Kong et al., 2011; Milano et al., 2009; Pichot et al., 

2009; Roskoski, 2015; Zhu et al., 1999). Luckily, such experiments have been reported. Disrupting Src 

family kinase localization or kinase activity in U937 cells, a human monocytic cell line, resulted in 

diminished FcγRIIA phosphorylation without visually perturbing receptor clustering (Kwiatkowska et al., 

2003). In the same system, Syk inhibition with piceatannol does not seem to reduce FcγRIIA 

phosphorylation (Kwiatkowska et al., 2003). More recent work performing higher-resolution, quantitative 

analysis in primary monocyte-derived macrophages and in mouse bone marrow-derived macrophages 

indicate Syk inhibition does not influence clustering (Lopes et al., 2017), though it seems to reduce 

receptor diffusion, which was speculated to have an effect on clustering (Jaumouillé et al., 2014). These 

studies also argue that FcγRIIA clustering is affected by SFK inhibition. Perturbations of clustering are 

beyond the current scope of the model, but might indicate downstream feedback regulation of the 

clustering process.   

Returning to the model, we also noticed small, step-like increases in the receptor activity when k1b 

was reduced. We hypothesized that individual receptor clusters were becoming activated in rare, switch-

like bursts, and therefore investigated the activation state of individual clusters. 
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5.4. Full and committed vs. partial and indecisive cluster activation 

Examining individual cluster responses revealed two different underlying regulatory mechanisms: a 

“full and committed” cluster response, and a “partial and indecisive” cluster response (Figure 5.4). In the 

full response, individual clusters tended to become almost entirely active and then stay active. A set of 

clusters subject to full activation can exhibit intermediate activity on average, because not all clusters 

become activated at the same time. In the partial and indecisive regime, the degree of receptor activation 

exhibited large fluctuations around intermediate levels. 

To better understand the relevance of the two cluster activation mechanisms, we returned to the 

three different activation thresholds (Figure 5.1C). We analyzed the number of active receptors at t=10 

seconds as a measure of the full versus partial activation behavior. Interestingly, it appears that the full 

activation mode is predominant when the activation threshold is low (>60% of clusters had receptors fully 

phosphorylated at our lowest activation threshold), but rare-to-nonexistent as the activation threshold rises 

(<10% of clusters had 18 of 20 ITAMs fully phosphorylated at our highest activation threshold). This 

reveals a transition between the mechanisms: full and committed cluster responses are dominant when the 

activation threshold is low, and partial and indecisive cluster responses are dominant when the activation 

threshold is high. This is probably because negative regulation (or weakened positive regulation) of 

clusters is necessary to raise the activation threshold (Figure 5.2). Because of the repression of activity, 

fully activated clusters are not stable. 
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Figure 5.4. Full and committed versus partial and indecisive modes of cluster activation. 
A “dimer” parameter set was subjected to the five perturbations, as in Figure 5.4, and the per-cluster level 
of activation was visualized (colored lines distinguish individual clusters). Data represent a single evolved 
parameter set and one realization. 

 
Figure 5.5. Even under strongly-activating conditions, full activation dominates at the low 
activation threshold (“dimer”), but disappears at higher activation thresholds (“decamer”). 
Shown are the number of active, dually-phosphorylated receptors within individual clusters at t=10s. 
Dimer, Hexamer, and Decamer refer to the variable midpoint constraint in the objective function used to 
produce distinct thresholds of activation (Figure 5.1C). Simulations were conducted with 20 receptors per 
cluster, and represent 15 independent evolutions with 10 realizations each. 
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5.5. Discussion and Future Directions 

We set out to investigate a simple mechanism that could regulate ITAM phosphorylation upon 

receptor clustering. The proposed mechanism relied upon a diffusion-limited kinase that could rapidly 

phosphorylate a cluster upon encounter. Since clustering could enhance the activity of both the kinase and 

phosphatase, a careful kinetic balance between the two was needed to control the activation threshold. If 

the kinase was too effective, small clusters would immediately be activated and only weak thresholds 

could be obtained; if the kinase was not effective enough, it would be outcompeted by the phosphatase 

and no activation would occur. Our evolutionary algorithm approach (Figure 5.1) facilitated the search for 

parameter regimes where clustering-induced activation was possible over a range of activation thresholds. 

We perturbed several of the evolved parameters to investigate their roles in regulating receptor 

phosphorylation. As expected, allowing the kinase to stay on the membrane longer heightened the 

activation profile, while reducing kinase-receptor interactions caused reduced activation (Figure 5.3). 

Slowing kinase catalysis (k9), we see that some parameter sets lose activation, while others sustain 

activation, indicating that different parameters may compensate to maintain the same response. 

Some simulation parameters exhibited step-like bursts of receptor activation, driven by individual 

clusters becoming fully activated at different times (Figure 5.3 and Figure 5.4). We find two types of 

cluster activation: a full, committed response, and a partial, indecisive response. A shift in the response 

mechanism occurs as the activation threshold is increased: at low thresholds, where few clustered 

receptors are needed to initiate a response, full activation dominates (Figure 5.5). However, at higher 

thresholds, where many clustered receptors are needed to initiate a response, partial activation dominates. 

 Looking forward, it will be interesting to constrain our model with experimentally-measured 

parameters, such as cluster sizes, molecular abundances, diffusion coefficients, cellular geometry, and 

rate constants. Since not all the parameters will be readily measurable, fitting the remaining unconstrained 

parameters should provide insights into the feasibility of our hypothesized mechanism. Pushing the model 

to fail, then carefully examining the reason for the failure, will highlight important regulatory 

mechanisms. For example, we may need to look beyond an abundance-based activation threshold, as 
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receptor clusters might respond instead to the size of the cluster or the concentration within the cluster. 

These other thresholds could be easily examined by our modeling approach. 

 

5.5.1. Simulation speed and model simplicity 

Practically speaking, we kept our model simple to facilitate fast simulations compatible with the 

evolutionary algorithm approach. Manual exploration of the high-dimensional parameter space was 

unfruitful, and the evolutionary algorithm approach greatly facilitated unbiased exploration of the 

parameter space within the provided parameter constraints. Fast simulation times were critical, since the 

evolutionary algorithm involves many repeated simulations (200 individuals x 50 generations x 3 

objective function evaluations = 3000 simulations per evolution), and our simulations tend to take 1-10 

minutes, depending on the parameters. After distributing over 200 CPUs and accounting for 

communication overhead and synchronization, each evolution takes ~2 days (~9600 CPU hours) to 

complete. Introducing more complexity into the model, altering the timescale of the simulation, or even 

increasing the number of molecules will all require more compute time or computational optimization. 

 

5.5.2. Receptor co-clustering 

Our model ignores the effects of receptor co-clustering. One example where co-clustering may be 

important is in cells expressing receptors with ITIMs, the immunotyrosine inhibition motif. ITIMs have a 

single tyrosine that recruits negative regulators when phosphorylated. For example, in macrophage 

phagocytosis, SIRPα has an ITIM that can recruit the negative regulator SHP-1 (Oldenborg et al., 2001). 

In primary human monocyte-derived macrophages containing FcγRI, FcγRII, and SIRPα, it has been 

shown that FcγRI (but not FcγRII) co-clusters with SIRPα (Lopes et al., 2017). Thus, additional layers of 

regulation can be obtained through co-clustering. 
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5.5.3. Receptor pre-clustering 

Studies of immunoreceptors have shown that the receptors may have a basal level of clustering. For 

example, in primary human monocyte-derived macrophages, FcγRIIA forms clusters when not stimulated 

(seeded onto poly-L-lysine coated coverslips) and when stimulated (seeded onto IgG-coated coverslips) 

(Lopes et al., 2017). Stimulation allowed the clusters to grow larger over time. In murine B cells, electron 

microscopy and combined with Monte Carlo simulations demonstrated the existence of B cell receptor 

pre-clusters (Fiala et al., 2013). Pre-clusters of the T cell receptor have also been described (Alarcón et 

al., 2006; Castro et al., 2014). Understanding the basal and stimulated levels of receptor clustering will be 

important for applying our model to specific biological systems. 

 

5.5.4. Downstream feedback regulation of clustering and activation 

Because our model focuses on the earliest stages of signal transduction during receptor clustering, 

we have ignored the effects of downstream signaling events. Downstream signaling may exert negative 

and/or positive feedback on essentially all parts of our pathway. For example, in FcγR-mediated 

phagocytosis, reorganization of actin and integrin can cause both enhance clustering (Jaumouillé et al., 

2014; Lopes et al., 2017) and exclude negative regulators (Freeman et al., 2016), though at longer 

timescales than what we have considered. These feedbacks might be approximated in the model by 

increasing the number of receptors within a cluster proportionally with the number of activated receptors. 

More complicated approximations may be needed in other systems: for example, in T cells, clusters of the 

T cell receptor form at the cell periphery, then become transported to the cell center to form larger 

clusters in the central supramolecular activation cluster (Varma et al., 2006). 

Experimentally separating the regulation of the initial clustering events here versus longer-term 

feedback regulation will require rapid imaging of the first contact between a cell and the cluster-inducing 

substrate. Furthermore, understanding the oligomerization states of receptors prior to stimulation will be 

important in establishing how a response is triggered upon further clustering. 
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5.5.5. Noise in receptor abundance and activation 

The particle-based simulations identified a mechanism for clustering-induced signaling, but 

individual simulations were conducted with a fixed number of receptors per cluster. That is, the 

simulations ignored dynamic changes in the clustered receptor abundance. Preliminary experiments from 

Bei Liu (not shown) have shown that receptors can diffuse into and away from clusters.  

To model the noise in receptor abundance and activation, we set up analytic equations to investigate 

the fluctuations in the number of each molecular species. The analysis relies on an ordinary differential 

equation model of receptor activation including mass flux to/from the cluster. For simplicity of the 

analysis, we omit concentrations of kinase and phosphatase and treat those modifications as simple first-

order reactions. Since we are modeling only the individual cluster rather than the whole cell, this should 

be sufficient. The equations are listed below, along with their rates. 

Reaction Rate 
ø → R k1 + k2ppR 
R → ø k3R 
pR → ø k3pR 
ppR → ø k3ppR 
R → pR k4R 
pR → R k5pR 

pR → ppR k6pR 
ppR → pR k7ppR 

 
To couple dynamic changes in the degree of clustering to the activation state of the cluster, we 

introduced a feedback parameter, such that the rate of receptor influx scaled with the concentration of 

active receptor (k2). Analytic equations for the fluctuations in receptor abundance and in receptor activity 

can be calculated as the statistical moments of each of the species R, pR, and ppR. We used the linear 

noise approximation to compute statistical moments of all the species (Van Kampen, 2007; Singh and 

Grima, 2017). The mean-centered second-order moments Cik between the species i and k can be related to 

the coefficient of variation by normalization to the mean, which is simply computed from the steady-state 

solution of the system of ordinary differential equations. The moments at steady-state can be 

approximated using: 
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We obtained analytic equations for the moments by substituting these matrices into the equations 

above. However, the resulting equations were extremely complicated, and did not provide any clarity with 

respect to the system fluctuations. Using these equations to gain insight into noise regulation may require 

non-dimensionalization and clever term-grouping to aid analysis. 
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5.6. Methods 

5.6.1. Particle-based simulation 

Simulations were performed with Smoldyn (v2.61) (Andrews and Bray, 2004; Andrews et al., 2010) 

on Linux systems (2.4 GHz Intel processors on the Dogwood cluster, 2.50 GHz and 2.30 GHz Intel 

processors on the Longleaf cluster, both at UNC Chapel Hill, Chapel Hill, NC, USA). The Dogwood 

cluster was used for the evolutionary algorithm approach because it required parallelization across many 

CPUs (see below) while the Longleaf cluster was used for all other simulations. The lambda-rho 

algorithm was used for all simulations. The first-order rate constants (k1a, k1b, k2a, k2b, k5b, k7b, k9, k11) had 

units of s-1. The second order rate constants (k3, k5a, k7a) are unitless and actually correspond to the 

probability of reaction upon collision, which is why they are constrained between 0 and 1. The 

stoichiometry of the phosphorylation sites was considered in binding interactions such that binding was 

half as likely if one site was phosphorylated, while the other was not. For example, a kinase would 

associate with a receptor with probability k5a if both sites were unphosphorylated, but with probability 

0.5*k5a if only one site was unphosphorylated. The simulations were conducted on a square 10 µm x 10 

µm domain with reflective boundaries. Receptor clusters were constructed by placing receptor molecules 

within 0.1 µm radius circles that act as semi-permeable boundaries: receptors cannot pass through, but 

kinases and phosphatases can. The simulations contain the species drawn in Figure 5.1A. The simulation 

domain is 2D, with membrane and cytosolic species distinguished only by their diffusion coefficients and 

reactivities (Dm = 0.1, Dc = 1 µm2/s). Molecular radii (ρ) were set to 10 nm, and the simulation timestep 

was set to 0.1 ms. Simulations contained 5000 total kinases, 5000 total phosphatases, and 180 total 

receptors. All enzymes were initialized in the cytosolic state, placed randomly throughout the domain. 

Receptors were initialized in the unphosphorylated state, either randomly distributed along the membrane 

to freely diffuse with no clusters (1 receptor per cluster) or distributed equally into the semi-permeable 

clusters. The number of clusters was either 90, 60, 45, 36, 30, 18, 12, or 9, corresponding to 2, 3, 4, 5, 6, 

10, 15, or 20 receptors per cluster. 
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5.6.2. Parameter optimization via evolutionary algorithm 

DEAP (v1.2.2) in python (v2.7.12) was used to set up the evolutionary algorithm (Fortin et al., 

2012). Because each simulation took minutes to run, we needed to parallelize each evolution over many 

CPUs. We used Open MPI (v.3.0.0/intel 17.2) and mpi4py (v3.0.0), which also required cython (v0.29), 

to parallelize each evolution over 200 CPUs on the Dogwood cluster. Runs were conducted in three-

individual tournament mode with 200 individuals over 50 generations per evolution, with a crossover 

probability of 0.5, a mutation probability of 0.1, a mutation polynomial with parameters η = 0.1, low = 0, 

high = 1, indpb = 0.2. 
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