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ABSTRACT 

 

Matthew Pastewait:  3D Morphometric Quantification of Maxillae and Palatal Defects for 
Patients with Unilateral Cleft Lip and Palate via Auto-segmentation 

(Under the direction of Ching-Chang Ko) 
 

The accurate quantification of the complex 3D cleft defect structure is key for optimal 

treatment planning and patient outcomes. Furthermore, very little is known about the 

morphometric differences between the affected versus the unaffected maxillary halves. The aim 

of this study is to characterize the 3D morphometry of the maxillae and cleft defects in non-

syndromic patients with unilateral cleft lip and palate. To test the hypothesis that the defect size 

is positively correlated with the affected maxillary half, CBCT images were acquired from 60 

patients presenting with unilateral cleft lip and palate. The machine learning program LINKS 

was used to segment the maxilla and defect. The height, width, and length of the maxilla and 

defect were measured from the segmented images. To fully characterize the defect, the 

distribution probability was mapped from superimposed 3D models, paired t tests were 

performed for statistical analysis, and a multiple linear regression was completed. The defect 

side demonstrated a significant decrease in maxillary length, anterior width, and volume with 

mean measurements of 34.31±2.56mm, 17.83±2.06mm, and 18.02±3.24x103mm3, respectively, 

and an increased maxillary anterior height with a mean of 25.91±4.12mm as compared to the 

non-defect side. Defect superimposition displayed a concentrated distribution near the alveolar 

bone region and anterior maxillary structures appeared to contribute to defect variability. 
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REVIEW OF THE LITERATURE 
 

Artificial Intelligence (AI) is a branch of computer science that has been fruitful in its 

utilization in many fields ranging from marketing and entertainment to medicine. The general 

understanding of AI is that machines can work and react like humans. It is a very broad field that 

covers applications from automatic light timers to a computer program that knows how to play 

chess. One domain of AI that has been widely discussed recently is machine learning (ML).  

ML, a subset of AI, is a data analysis method that allows machines to learn how to 

accomplish a particular task without being explicitly programmed. Generally, ML can be divided 

into three major categories:  supervised learning, unsupervised learning, and reinforcement 

learning.1 

Supervised learning is learning from labeled training data. A supervised learning 

algorithm analyzes the training data based on the label and proposes an inferred model, which 

can be used to predict the output of new data. Common supervised learning tasks include 

classification and regression. Cases such as tumor differentiation, in which the aim is to 

determine whether a tumor is benign or malignant based on the features of the tumor (e.g., size 

and shape), are called classification problems. In the field of orthodontics, the decision to extract 

teeth based on intraoral findings is another classification example.2 Conversely, an example of a 

regression problem is the prediction of the yield in a chemical manufacturing process in which 

the inputs are the concentrations of reactants, temperature, and pressure, and the output is a 

continuous, non-discrete value that is produced based on fitting the inputs to an inferred model.1  
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Unsupervised learning is finding hidden patterns and structures in unlabeled data. The 

primary goal of unsupervised learning is clustering, which involves discovering reoccurring 

patterns and grouping similar examples within the data based on the specific characteristics. This 

method also determines the distribution of data within the input space, known as density 

estimation, or projects the data from a high-dimensional space down to two or three dimensions 

for the purpose of visualization.1 For instance, a hierarchical agglomerative clustering (HAC) 

method was used to classify morphological variants of temporomandibular joint osteoarthritis 

among 169 patients.3  

Reinforcement learning means learning by interacting with an environment and changing 

behavior to maximize reward.4 Reinforcement learning involves a series of steps where each step 

is associated with some reward. The machine develops an algorithm that maximizes the reward. 

With the development of advanced machines, more involved learning has become feasible. As a 

result, the machine can utilize more than one learning method to design an algorithm. AlphaGo 

is a well-known recent example of ML that incorporates both supervised and reinforcement 

learning to play Go.5 In medicine, the Probabilistic Roadmap (PRM) method combined with 

reinforcement learning (RL) has been applied to a surgery robot to perform minimally invasive 

laparoscopic surgery.6 

Deep learning (DL) is another term that has been popularly discussed in relation to ML. 

DL is a sub-domain of ML, in which the machine itself calculates specific features of a given 

input. The precursor of DL is the artificial neural network (ANN), which was developed in the 

1900s. Due to its need for extreme computing power to calculate numerous artificial 

neurons/weights inside the networks, the network structure could only be simple, and the 

practical applications were limited. However, graphics processing unit (GPU) computing, a very 



 
 

                                                                                                                                                                                                         
3 

 

powerful parallel computing technology, has undergone rapid developments since 2010, and it 

has become possible to fulfill the need of computing power for neural network algorithms. As a 

result, researchers have been able to design more complicated and “deeper” neural networks to 

solve more complicated practical problems, and the neural network has become known as “deep 

learning.”  

Although DL is a powerful and accurate tool in many applications, the criteria for such 

precise output is extensive datasets or “big data,” which is difficult to achieve in the field of 

medicine. Therefore, some conventional ML methods, such as random forest (RF) or support 

vector machine (SVM), still play an important role in practical problems. Specifically, according 

to the “No Free Lunch” theorem, there does not exist an ML algorithm that is best for all 

problems.7 The selection of algorithm depends on numerous properties of data such as size and 

structure. 

Despite ML and DL’s popularity, there are not many related studies in the field of 

orthodontics. Nevertheless, those that do exist demonstrate great potential for AI in this area. For 

example, the research by Lee et al. demonstrates the use of a neural network to automate 

landmark identification on lateral cephalograms.8 In the following sections, we review additional 

ML orthodontic articles, covering two-dimensional (2D) and three-dimensional (3D) image 

processing, from object detection to volumetric segmentation, as well as natural language 

processing. In the first case, AI is used to identify facial traits to aid in orthodontic diagnosis.9 

The second case involves the use of the random forest classifier for volumetric analysis of 

maxillae with and without impacted canines.10 In the third case, the PointNet deep learning 

algorithm is used to automatically segment teeth on maxillary models. The fourth case involves 



 
 

                                                                                                                                                                                                         
4 

 

the use of natural language processing to analyze a patient’s clinical findings and develop a 

prioritized problem list and related treatment plan.11    

Case I:  An AI System for the Orthodontic Examination of Facial Images 
 

The face plays an important role as a means of nonverbal communication in the 

transmission of emotions and thoughts during our social lives. Thus, facial topography influences 

the social acceptability and self-image of individuals. With this in mind, orthodontic diagnosis 

and treatment planning has been changed from the “Angle” paradigm, which is based on hard 

tissue relationships, to the “soft-tissue” paradigm, which focuses on the facial outcome. 

Therefore, when making treatment plans in orthodontics, observing patients’ faces in the clinical 

setting is important. Recently, AI has emerged in the examination of faces using deep learning 

algorithms. For example, the Face2Gene software12 combines computational facial recognition 

with a clinical knowledge database in order to prioritize possible genetic syndromes for a given 

patient. More recently, systems that automatically provide clinical descriptions of oral or facial 

images for orthodontic diagnostic purposes have been reported.9,13 

In general, there are two traditional models for the deep learning of images, the 

convolutional neural network (CNN) and the recurrent neural network (RNN). The CNN is a 

traditional neural network model that is generally composed of convolutional layers (where 

filters extract the target features), pooling layers (where the spatial sizes of features and the 

amount of model parameters are reduced), and fully-connected layers (linear combinations of the 

features of the previous layer, which make up the next layer). While CNN is a feed forward 

neural network that is generally used for image recognition and classification, RNN works on the 

principle of saving the output of a layer and feeding this back to the input in order to predict the 

output of the layer. RNN is useful when a sequence of data is being processed to make a 
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classification decision, such as with time series data. Orthodontic facial diagnosis is also a time 

series examination as orthodontists diagnose a patient comprehensively by looking at the entire 

face while assessing multiple aspects of the face from different angles, rather than by simply 

targeting one part of the face. For instance, an orthodontist must first look at the frontal face of a 

patient and examine the patient for asymmetry, including inclination of the eyelids and/or 

distortion of the nose. The orthodontist must also confirm maxillary protrusion and/or 

prognathism from the side of the face, check the tooth alignment while smiling, and finally give 

the patient a facial diagnosis. This complex assessment process generates variation in the 

diagnosis among different orthodontists. To mimic an orthodontist’s comprehensive analysis 

using an AI system, Murata et al. 9 developed a hybrid CNN/RNN model with an attention 

mechanism. This model can provide an objective facial morphological assessment by identifying 

clinically relevant facial traits (e.g., concave profile, upper lip retrusion, presence of scars). The 

automation considerably reduces the assessment workload for dentists and also reduces variation 

in diagnosis.  

In Murata et al.’s research, lateral and frontal facial images of 352 patients who visited 

the Department of Orthodontics at Osaka University Dental Hospital were employed as the 

training and evaluation data. An experienced orthodontist examined all of the facial images and 

identified as many relevant facial traits as possible (e.g., deviation of the lips, deviation of the 

mouth, asymmetry of the face, concave profile, upper lip retrusion, presence of scars).  A sample 

patient image, a list of sample assessments (i.e., labels), and the multi-label data are shown in 

Figure 1.  
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Figure 1. Sample patient’s image and a list of sample assessments (i.e., labels) including the 
region of interest, evaluation, etc. In a previous study by Murata et al., they employed labels 
representing only the facial part (mouth, chin, and whole face), distorted direction (right and 
left), and its severity (severe, mild, no deviation). 

In general, medical images may contain multiple regions of interest to be evaluated. An 

orthodontist diagnoses a patient based on the assessment results of various facial regions from 

several different facial images. Thus, for automated diagnostic imaging, a typical single-label 

(binary or multi-class) image classification model was extended to solve the problem of 

multilabel image classification. Murata et al. proposed a hybrid model using CNN and RNN that 

sequentially focuses on multiple regions without pre-processing, such as cropping. For each 

region, the model produces a label (i.e., an assessment) consisting of words, each of which is 

predicted based on the previously predicted words (at earlier layers in the RNN). The model is 

trained on patients’ facial images to predict a set of assessments of facial attention parts, such as 

the eyes, nose, lips, chin, and profile. In practice, the assessment of different facial attention parts 

has mutual dependencies. As a result, Murata et al. designed a model that learns these 

dependencies. The attention mechanism in the RNN tells the network which sub-area of the 
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image impacts the prediction of each particular label. This mechanism helps to reduce the 

computational cost by selecting and learning the most relevant parts of the image for the 

predicted labels. 

Figure 2 shows some patients’ facial images with the visual attention. The white regions 

in the images represent the attention. Patient A has heavy distortion around his jaw while Patient 

B has only mild asymmetry. The model was able to predict both of the samples correctly. Patient 

C has only mild distortions around his mouth and jaw, but the model predicted the wrong labels. 

Table 1 shows the classification accuracy (%) for each facial part, averaged in a 10-fold cross 

validation. Although the accuracy itself is still low, the proposed model has better mechanisms to 

learn visual attention. In addition, label dependency contributes to an increase in accuracy. 

 
Figure 2. Resultant figures of the AI system. A. Images with visual attention of Patient A who 
has severe asymmetry around his mouth and chin. The model correctly predicts the labels; B. 
Images with visual attention of Patient B who does not have any severe problems. The model 
correctly predicts the labels; C. Images with visual attention of Patient C who has mild 
distortions around his mouth and chin. The model predicts incorrect labels. 
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Table 1. The average classification accuracy (%) of the results of a 10-fold cross validation.9 The 
numbers in parentheses indicate the standard deviation. 

  Traditional model  
(Multiple CNNs)  

Their Model 
(a deep CNN/RNN model with an attention 

mechanism) 
Lips 64.0 (±7.5)  65.7 (±7.4) 

Chin 57.9 (±16.5)  61.3 (±12.7) 

Whole face 67.1 (±9.7)  67.4 (±9.1) 

Average 63.0 (±9.6)  64.8 (±7.7) 

Worst, Best 40.0, 74.3  49.5, 74.3 

 

Case II:  Automated Volumetric Segmentation of Dental CBCT Images Using Prior-guided 
Sequential Random Forests 
 

Segmentation of cone-beam computed tomography (CBCT) images has been widely used 

in orthodontics, which is a crucial step for generating 3D models for the advanced diagnosis and 

treatment planning of patients. Since manual segmentation is tedious, several automatic 

volumetric segmentation methods of CT/CBCT have been presented over the last decade, based 

on different ML algorithms, like random forest (RF)14, support vector machine (SVM)15, and 

CNN16. 

Chen et al.10 used a random forest algorithm to assess maxillary constriction in 

unilaterally impacted canine patients. Their results demonstrated that the maxilla of patients with 

unilaterally impacted canines had significantly smaller volumes than those without impacted 

teeth. In their work, 60 CBCT images were successfully auto-segmented. Typically, this number 

of samples would be difficult to segment manually, suggesting an advantage of machine learning 

in orthodontics.  
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Chen et al. used the random forest-based algorithm known as Learning-based multi-

source IntegratioN frameworK for Segmentation (LINKS), which was first presented by Wang et 

al. for the segmentation of infant brain magnetic resonance (MR) images,17 and then applied to 

the segmentation of patients with craniomaxillofacial (CMF) deformities14. Using this method, 

the volumetric segmentation is formulated as a classification problem, and the random forest 

serves as the classifier algorithm. The detailed implementation is referenced in the work by 

Wang.14 In general, there are three stages in a machine learning application:  a preparation stage, 

a training and testing stage, and an application stage. In the preparation stage, 36 CBCT images 

were manually segmented using the software ITK-SNAP to isolate the maxilla and mandible. 

The training stage was divided into the four steps listed below. 

Step 1. Estimation of initial probability maps with majority voting 

All the expert-segmented CBCT scans were used as training samples and further aligned 

onto every subject image by affine registration. Then, a majority voting method was employed to 

count the votes for each label at every voxel for estimating the initial probability maps of all 

labels. The initial probability maps provided rough localizations of every label, serving as spatial 

priors that were important for guiding the segmentation. 

Step 2. Extraction of CBCT appearance and context features 

The 3D Haar-like features18 were used in this method. Superficially, for each voxel 𝑥 in 

the original CBCT image or probability maps, its Haar-like features 𝑓 were computed by: 

 

𝑓(𝑥, 𝐼) =
1
|𝑅+|

, 𝐼(𝑢) − 𝑏
0∈23

1
|𝑅4|

, 𝐼(𝑣)
0∈26

, 

𝑅+ ∈ 𝑅,𝑅4 ∈ 𝑅, 𝑏 ∈ {0, 1}, 
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where 𝐼 is the intensity of an original CBCT image or a probability map; 𝑅 is the patch centered 

at voxel 𝑥; 𝑅+ and 𝑅4 are randomly displaced cubical regions in the patch 𝑅, as shown in Figure 

3; and the parameter 𝑏 is either 0 or 1, indicating whether one or two cubical regions are used. 

The features extracted from the original CBCT images and probability maps were called 

appearance features and context features, respectively. They were used to coordinate the 

segmentations in different parts of the CBCT image. These context features have been shown to 

be effective in both computer vision and medical image analysis fields.19 It is important to note 

that the extraction of context features is recursively conducted on the iteratively updated 

probability maps, whereas the extraction of appearance features is performed only on the original 

CBCT images. 

 
Figure 3. 3D Haar-like features. 
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Step 3. Training of random-forest-based classifiers 

To refine the segmentations (probability maps), a random forest classifier was trained to 

learn the complex relationship between local appearance/context features and the corresponding 

manual segmentation labels on all voxels of the training atlases. 

Step 4. Repeating Steps 2 and 3 until convergence 

In this final step, the classifiers were trained in a sequential manner. Specifically, the 

segmentation probability maps were updated based on the classifier trained in Step 3. Then, 

according to Step 2, the context features were extracted from the updated segmentation 

probability maps and further used with the original CBCT appearance features to train the next 

classifier. Eventually, a sequence of classifiers was obtained for CBCT segmentation. The 

flowchart of the entire training stage is shown in Figure 4. 

 
Figure 4. Random Forest classifier flowchart. 

In the testing stage, given a new CBCT image, the initial segmentation probability maps 

of every label were first estimated using majority voting. Then, based on the estimated 
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probability maps, the context features were extracted and, together with CBCT appearance 

features, served as the input to the sequential classifiers for iteratively updating the segmentation 

probability maps. The refined probability maps, the output of the sequential classifiers, were the 

final segmentation results. The accuracy of the segmentation classifiers was evaluated using the 

Dice Similarity Coefficient (DSC). The average DSC of the maxilla was 0.800±0.029, ranging 

from 0.742 to 0.830, based on 30 training and 6 test samples.  

In the application stage, Chen et al. used this random forest-based method to segment the 

maxillae of 60 CBCT images, with 30 scans of unilaterally impacted canines, i.e., the Study 

Group (SG) and 30 scans without impacted teeth, i.e., the Control Group (CG). Their clinical 

outcomes are listed in Table 2. 

Table 2. The clinical outcomes of Study Group and Control Group in Ref.10. 

 Study Group Control Group 
Bone volume 
Impacted side for study group 

Left side for control group 

Mean ± SD1 (10; mm3) 

2.36±0.35 2.57±0.30 

Bone volume 

Non-impacted side for study group 
Right side for control group 

Mean ± SD1 (10; mm3) 

2.37±0.34 2.65±0.38 

Maxillary width (mm) 64.3±5.3 66.6±3.6 

Maxillary height (mm) 65.1±3.6 67.0±3.5 

Maxillary depth (mm) 47.7±3.6 49.6±3.3 
 

Generally, Chen et al. found that the difference between SG (4.73±0.67×104 mm3) and 

CG (5.22±0.65×104 mm3) was significant in volume, even after adjusting for gender and age, 

                                                             
1 SD=Standard Deviation 
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showing that the SG tended to have a smaller maxillary volume (roughly 5000 mm3 less) than 

the CG. In addition, in the SG, the average volumes of the non-impacted ((2.36±0.35)×104 mm3) 

and impacted sides ((2.37±0.34)×104 mm3) were not significantly different. Their data might 

explain O’Neill’s finding, in which the use of rapid maxillary expansion (RME) in the early 

mixed dentition effectively increased the rate of eruption of palatally displaced maxillary canines 

compared to an untreated control group.20 

In conclusion, the work done by Chen et al. is an excellent example to illustrate the 

advantages of machine learning in orthodontics. The amount of data is almost impossible to 

collect manually, particularly the tedious work of volumetric segmentation.  

Case III:  Automatic Segmentation of Dental Surface Images Using POINTNET 
 

Computer-aided design/computer-aided manufacturing (CAD/CAM) technology has been 

widely used in orthodontics. For example, 3D dental surface images can be easily obtained 

through an intraoral scanner in orthodontic practices. As a fundamental part of CAD/CAM-based 

treatment plans, labeling teeth accurately on 3D dental surfaces is a crucial step for advanced 

diagnosis. However, automation of this labeling/segmentation task is challenging on the raw 

dental surface image acquired from the intraoral scanners for multiple reasons, including large 

non-tooth and irregular parts (e.g., gingival tissues) in the image. 

Since volumetric CNNs have demonstrated their outstanding image processing abilities, 

many researchers transform the surface images to regular 3D voxel grids and feed them into a 

CNN-based deep learning network. However, this method is not efficient in terms of computing 

and storage and also results in blurring natural images. For this reason, Qi et al. reported a deep 

learning architecture, called PointNet, on a point/mesh set for 3D segmentation.21 
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In this section, we demonstrate a tooth-segmentation task using PointNet and discuss its 

performance. The PointNet architecture shown in Figure 5 is slightly different than the original 

one, which only takes 3D position (i.e., 𝑥, 𝑦, and 𝑧) of vertices as input features.21 Instead, we 

consider 𝑁 triangles in the surface mesh as input and use a total of 15 features for each triangle. 

The 15 features are 3D positions of three vertices (9 features) and the normal vector (3 features) 

of each triangle as well as the relative position (3 features) of each triangle with respect to the 

whole surface. The raw dataset here consists of 20 maxillary dental surfaces from a 3D intraoral 

scanner (iTero Element). All surfaces were down-sampled to 10,000 triangles while preserving 

the original topologies and augmented by random rotation, translation, and rescaling of each 

surface image in reasonable ranges. The number of categories (𝑀) is 15, including 14 teeth 

between the left and right second molars as well as the remaining part in the surface image (i.e., 

background). 

 
Figure 5. PointNet architecture. 

The implementation was carried out using Keras with Tensorflow as the backend. Three-

fold cross-validation was performed for this demonstration. For each training/validation sample, 

6,000 triangles were randomly selected from each surface as the network input data with a 50:50 
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ratio of triangles from each tooth and gingiva. Specifically, the input array (𝑁 × 15) and output 

array (𝑁 ×𝑀) were both 6,000 × 15. The Adam optimizer was used with a mini-batch size of 

10; the number of epochs was 100 for the training; and the loss function was generalized Dice 

loss.22 The segmentation results were evaluated by three metrics:  DSC, sensitivity (SEN), and 

positive prediction value (PPV). 

The segmentation results of DSC, SEN, and PPV (mean±standard deviation) for all teeth 

were 0.781±0.134, 0.828±0.167, and 0.766±0.163, respectively, as shown in Table 3. A 

screenshot of the results is shown in Figure 6. Although the accuracy still needs to be improved 

for clinical purposes, the results of this demonstration reveal the promise of automatically 

labeling teeth in the surface image, creating a new path for digesting surface mesh directly 

instead of converting to 3D voxel grids. A better result could be expected using a more 

sophisticated deep learning network and a larger dataset in the future. 

Table 3. Results of the labelled teeth using PointNet. 

Metric Mean±SD Min  Max 
DSC 0.781±0.134 0.695  0.882 
SEN 0.828±0.167 0.702  0.960 
PPV 0.766±0.163 0.575  0.855 
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Figure 6. Screenshot of the labelled teeth using PointNet. 

To conclude, we have demonstrated a promising path to automatically segment each 

tooth on a surface image. This task is a critical step for advanced diagnosis and customized 

treatment planning. It also serves as the first step in a series of orthodontic AI systems to obtain 

further patient data and information. 

CASE IV: USING NATURAL LANGUAGE PROCESSING TO DEVELOP AN 
AUTOMATED ORTHODONTIC DIAGNOSTIC SYSTEM 
 

An orthodontic diagnosis and treatment plan involves predicting the course of action that 

a dentist should take to obtain the optimal treatment results at the lowest possible risk.23 Making 

such an assessment requires years of knowledge and experience. As a result, inexperienced 

dentists can easily make judgment errors or misunderstand the parameters of a case. An AI 

system that can automatically summarize orthodontic diagnoses or present necessary 

examinations would be very helpful in helping these dentists avoid such oversights as well as 

reduce the heavy workload of practitioners.  
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In general, the process of modern orthodontic diagnosis and treatment planning consists 

of the following three steps:  (1) collect and itemize patient information regarding the 

problem(s), (2) contemplate solutions for each problem, and (3) determine the course of action 

and its implementation. Since these steps following a logical structure, attempts have been made 

to automate orthodontic diagnosis and treatment planning. An orthodontic diagnosis support 

system using fuzzy logic24, a system for the selection of orthodontic appliances25, and a 

mathematical model that simulates whether or not to extract teeth in optimizing orthodontic 

treatment outcomes26 have previously been developed. However, total orthodontic diagnosis and 

treatment planning support systems for use in clinics have yet to be established. 

To put the orthodontic diagnostic process in mathematical terms, if patient information 

regarding the problem is thought of as a set of feature values (or measurable characteristics), then 

Step (1) from above is comparable to representing medical conditions based on the individual 

weight of each feature value. Step (2) is analogous to learning how to treat each medical 

condition. At this point, a natural language processing (NLP) AI system could be used to find a 

solution (Kajiwara et al.11). The aim of the study by Kajiwara et al.11 was to develop an AI 

system that uses NLP on various clinical text evaluations and their accompanying treatment 

protocols in order to create an automated process of diagnosis and treatment planning.   

In their study, Kajiwara et al. worked on the task of automatically designing a treatment 

plan from the findings included in the medical certificate written by the dentist. They developed 

an AI system where the input was a document that described the patient’s medical findings and 

the output was a problem list in the order of treatment priority. The researchers employed a 

natural language processing approach to extract features from the text because medical findings 

are typically written as free-form descriptions in natural language. 
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Kajiwara et al. developed two subtasks to efficiently address the task of generating a 

treatment plan from clinical findings:  (1) list the problems and (2) prioritize treatment. First, 

subtask (1) summarized the findings and listed the orthodontic problems of each patient. Then, 

subtask (2) ranked each problem listed in subtask (1) in terms of treatment priority. After 

accomplishing the subtasks, the system automatically created a treatment plan from the findings 

contained in the medical certificate. 

Kajiwara et al. examined 990 dental certificates. According to the dataset, each patient 

had an average of 15.4 orthodontic problems. These 990 documents were randomly divided into 

810 for training, 90 for validation, and 90 for evaluation. 

The researchers developed an NLP system that solved the two aforementioned subtasks 

using the given dataset. Subtask (1) was regarded as a text generation task that generated a 

summary of medical findings. Compared to the millions of datasets commonly used in text 

generation tasks, such as machine translation and automatic summarization, the researchers’ 

dataset of 990 documents was significantly smaller. Therefore, Kajiwara et al. added an 

annotation (shown in Figure 7(c)) and tackled subtask (1) as a multi-label classification problem. 

In the annotation, one dentist organized orthodontic problems into 423 classes. Each patient 

problem corresponded to one class. Subtask (2) ranked each problem listed in subtask (1) in 

terms of treatment priority. After solving the two subtasks, the AI system generated a treatment 

plan from the findings in the medical certificate. 
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Figure 7. Annotation of orthodontic problem classes to the medical certificate. 

The researchers developed classification models of orthodontic problems on the datasets 

shown in Figure 7(a) and (c). These models recorded the text of the findings as inputs and 

generated a list of class labels as outputs (shown in Figure 7(c)). Kajiwara et al. converted the 

inputs into vector representation using a natural language processing approach and performed 

supervised learning of multi-label classification with them as features. The following methods 

were used to vectorize each document. 

• BoW (Bag-of-Words):  The BoW representations have dimensions corresponding to the 
number of vocabulary words in the training dataset, and each dimension has a value of 1 
if the corresponding word appears in the input text or 0 if it does not. These are high-
dimensional sparse vectors. 
 

• USE (Universal Sentence Encoder):  The researchers construct feature vectors from the 
text using the cross-lingual version of the universal sentence encoder.27 These are 512-
dimensional dense vectors. 

 

For the BoW model, each sentence was divided into words using the text segmentation 

library MeCab.28 The vocabulary size was 2,075 because only words appearing five or more 

times in the training dataset were used. Semantically equivalent classes were grouped, and 151 

class labels were used. In machine learning, the perceptron is an algorithm for the supervised 
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learning of binary classifiers. For this research, a multi-layer perceptron was implemented on the 

deep learning framework Chainer29 for a multi-label classifier. In the output layer, a sigmoid 

function was used instead of the softmax function in the single-label classification. 

The performance of each model was automatically evaluated using the F-measure, which 

is the harmonic average of the precision and the recall. The experimental results showed that the 

simple BoW model achieved higher performance (0.59) than the USE model (0.54). Unique 

structures, such as bullets and incomplete sentences, may have had a negative impact on the 

sentence encoder. BoW models, on the other hand, treated documents as a set of words, so they 

were not affected by these unique sentence structures. 

Kajiwara et al. developed a prioritization model of treatment on the datasets shown in 

Figure 7(b) and (c). This model recorded lists of text representing the orthodontic problems or 

classes as inputs and generated lists of treatment priority for each problem as outputs. 

Again, the researchers converted each problem into vector representation using a natural 

language processing approach and performed learning-to-rank with them as features. The 

following three methods were used to vectorize each problem: 

• BoW (Bag-of-Words): They constructed feature vectors from the text of the problem. 
These vector representations had dimensions corresponding to the number of vocabulary 
words in the training dataset, and each dimension had a value of 1 if the corresponding 
word appeared in the input text, or 0 if it did not. 

• OoK (One-of-K): They constructed feature vectors from the labels that represented the 
problem. These vector representations had dimensions corresponding to numbers of 
labels appearing in the training dataset, and only one of the dimensions corresponding to 
the input class had a value of 1 and the other dimensions had a value of 0. 

• USE (Universal Sentence Encoder): They constructed feature vectors from the text of the 
problem using the cross-lingual version of universal sentence encoder.27 These were 512-
dimensional dense vectors. 
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In the BoW model, each sentence was divided into words using MeCab.28 Since the 

training dataset had 146 vocabulary words and 320 classes, the feature vectors of each model 

were 146 dimensions for BoW, 320 dimensions for OoK, and 512 dimensions for USE. 

The researchers used the machine learning technique known as learning-to-rank in order 

to rank the orthodontic problems or classes. Specifically, they employed SVM-rank30 with a 

linear kernel, a standard toolkit. For a given set of features, they examined a hyper-parameter 

among C ∈ {1, 5, 10, 50, 100, 500, 1000, 5000} on the validation dataset. Spearman’s rank 

correlation coefficient was used to evaluate the performance of each model. When the correlation 

coefficient between the human ranking and the estimated ranking exceeded 0.4, the estimation 

result of the model was interpreted as having a positive correlation with human evaluation. 

The experimental results are shown in Figure 8. Each method has a Spearman’s rank 

correlation coefficient exceeding 0.4. Therefore, it can be interpreted that these estimation results 

have a positive correlation with human evaluation. Unlike the BoW model, the OoK model can 

obtain feature vectors that reflect an annotator's expertise, so it is considered that high 

performance has been achieved. The USE model achieved the highest performance because the 

dense vectors obtained by deep learning can represent rich information. 
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Figure 8. Automatic evaluation of treatment ranking models by Spearman’s rho. 

The above algorithm can also be applied to the automated planning of treatment protocols 

(Figure 9). The system can train a series of transformation models using pairs of relevant 

treatment protocol summaries and consent form documents. First, relevant sentence pairs would 

be automatically extracted from the relevant documents using an NLP method of sentence 

alignment. Next, statistical machine translation or neural machine translation techniques would 

be used to automatically translate experts’ language into simpler language that can be understood 

by patients. 
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Figure 9. Overview of the fully automated orthodontic diagnosis system. 
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CONCLUSIONS 
 

Artificial intelligence, including ML and DL, is rapidly expanding into multiple facets of 

society. Orthodontics may very well be one of the fastest branches of dentistry to adapt AI for 

three reasons. First, patient encounters during treatment generate many types of data. 

Cephalometric landmarks, digital photographs, intraoral and extraoral features are just a few 

types of data generated in the dental clinic. AI can perform analytics to decipher this information 

and aid in efficient diagnosis and treatment planning. Second, the standardization in the field of 

dentistry is low compared to other areas of healthcare. A range of valid treatment options exist 

for any given case. Using AI and large datasets (that include diagnostic results, treatments, and 

outcomes), one can now empirically measure the effectiveness of different treatment modalities 

given very specific clinical findings and conditions. Third, orthodontics is largely practiced by 

independent dentists in their own clinics. These dentists have the autonomy to adopt beneficial 

technologies without the bureaucracy often found in large healthcare organizations. In order to 

remain competitive in the modern dental market, orthodontists must be proactive in seeking 

innovation and adopting various technologies. Despite the promise of AI, the volume of 

orthodontic research in this field is relatively low. Further, the clinical accuracy of AI must be 

improved with an increased number and variety of cases. Before AI can take on a more 

important role in making diagnostic recommendations, the volume and quality of research data 

will need to increase. 
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3D MORPHOMETRIC QUANTIFICATION OF MAXILLAE AND PALATAL 

DEFECTS FOR PATIENTS WITH UNILATERAL CLEFT LIP AND PALATE VIA 
IMAGE AUTO-SEGMENTATION 

 
Introduction 

Cleft lip and palate is a common congenital maxillofacial hypoplasia that exhibits 

multifactorial inheritance. The resultant defect, caused by genetic and/or environmental influences, 

is characterized by the incomplete formation of the lip, alveolar bone, hard palate, and soft palate. 

The deficient soft tissue and skeletal formation can result in perinatal death. For survivors, it often 

results in some combination of feeding, deglutition, speaking, hearing, and/or cognitive 

difficulties.1 Unilateral cleft lip and palate (UCLP), the focus of this research, can present as an 

isolated anomaly or as part of a sequence of congenital anomalies associated with different 

syndromes.2 Data for 7.5 million births from the international perinatal database of typical oral 

clefts (IPDTOC) showed that the prevalence of cleft lip and palate was 6.64 per 10,000 births 

worldwide.1 The Chinese national birth defects monitoring network reported an even higher 

prevalence of 7.62 per 10,000 births in the Chinese population, based on 4.9 million newborn 

records.3   

The use of cone-beam computed tomography (CBCT) for preoperative volumetric 

assessment of alveolar bone grafts (ABGs) has been well established, and its accuracy has been 

demonstrated extensively in the literature. ABGs are considered necessary for the treatment and 

improvement of life quality for patients affected by cleft defects. With 75% of cleft patients 

presenting alveolar bone involvement, both esthetics and function are targeted by correctional 

ABG procedures. Through 3D analysis, surgeons can better understand the dental and bony 
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conditions around the defect, estimate the amount of bone needed for grafting, and observe the 

locations and quantities of bony bridges formed postoperatively. A study by de Rezende Barbosa 

et al.4 indicated that CBCT volumes proved reliable for the volumetric assessment of alveolar cleft 

defects using different methods. However, the volumetric measurement could not illustrate the 

complex 3D structure variation of the defect. Currently, there are conflicting findings regarding 

preoperative cleft morphology and ABG success. Feng et al.5, Linderup et al.6, and Oberoi et al.7 

found no correlation between initial cleft size and the extent of graft filling. Conversely, van der 

Meij et al.8 and Long et al.9 found significant correlations between initial cleft width and residual 

bone one year postoperatively. In addition, the use of 3D data to calculate grafting volume has 

been confirmed to be reliable. Albuquerque et al. 10 and Amirlak et al.11 performed in vitro research 

on dry skulls and found that data-derived volumes of both cleft and graft bone were accurate 

compared with actual volumes calculated using a water displacement technique. In an in vivo 

study, Shirota et al.12 found a positive correlation between graft bone volume estimated by CBCT 

data and actual bone volume measured by syringe during surgery.         

Given the potential value of preoperative 3D analysis in estimating grafting success as well 

as required grafting volume, coupled with the lack of 3D structure data, further study of maxillae 

and associated clefts is warranted. It is obvious to observe that irregular shapes of maxillae usually 

appear on patients suffering alveolar defects. However, the morphological relationship between 

defects and maxillae is still not clear. Based on this observation, we hypothesize that the defect 

size is positively correlated with the affected maxillary half. In this study, a machine learning 

segmentation method13,14 (LINKS) was adopted to isolate the alveolar cleft defects and maxillae 

from CBCT images to test our hypothesis. This study aims to (1) quantify the 3D structural 

parameters of the maxilla and defect based on CBCT imaging segmentation; (2) investigate the 



 
 

                                                                                                                                                                                                         
30 

 

morphological relationship between the maxilla and defect; and (3) present a probability map to 

characterize the cleft defect. 

Methods 
Subjects 

This study was approved by the institutional review board (IRB: KY2017-072-01) of 

Beijing Tiantan Hospital, Capital Medical University. All CBCT data was obtained from the 

Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University. The 

inclusion criteria were non-syndromic Chinese origin subjects diagnosed with UCLP who received 

initial lip and palate repair. The exclusion criteria were previous orthodontic treatment and 

maxillary dental/skeletal trauma or surgery. All of these CBCT images were routinely acquired for 

dental/skeletal evaluation during orthodontic/surgical planning. A total of 60 subjects were 

included in this study, consisting of 39 men (65%) and 21 women (35%), with a mean age of 12.08 

years (SD=4.83 years; range of 8-33 years), presenting with 41 left-side defects (68%) and 19 

right-side defects (32%).  

All images were acquired on the same CBCT scanner (NewTom, Verona, Italy) (110 kV, 

1-20 mA, 15×15 cm field of view, 0.250 mm voxel size). The subjects were in an upright position 

with the Frankfort plane parallel to the floor. The patients were asked to bite in intercuspation 

position, breathe slowly, and not swallow during the radiograph procedure. 

Maxilla and Defect Segmentation 
The 60 CBCT image sets were exported in DICOM format and imported into the 3D 

imaging analysis software ITK-SNAP15 (Version 3.6.0; www.itksnap.org). To expedite the 

computer algorithm processing, the orientation of each CBCT image was adjusted to have every 

defect on the left side of the maxilla. The maxilla was labeled and reconstructed by selectively 

identifying the suture where it articulated with the adjacent cranial and facial bones, including the 
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frontal, ethmoid, zygomatic, and pterygoid plate of the sphenoid. The defect was marked and 

reconstructed following the contralateral shape to obtain a continuation of the alveolar ridge and 

hard palate.  

The automatic segmentation protocol used in this study is based on an advanced machine 

learning technique, sequential random forest classifiers with prior guidance, which Wang et al. 

have described in detail in their previous studies.13,14,16 Since this technique is a supervised learning 

method, 30 randomly selected CBCT images were manually segmented, serving as the ground 

truth. These 30 ground-truth CBCT images were further split into training and test samples. The 

training stage began with acquiring the initial segmentation probability maps of the maxilla and 

defect based on the training samples. Then, the subsequent random forest classifier was iteratively 

trained using the original CBCT features and the segmentation probability maps. In the test stage, 

sequentially trained classifiers were used to estimate corresponding probability maps of the 

maxilla and defect of the test samples. The probability maps (i.e., automatic segmentation) of the 

test samples were compared to the manually segmented samples to evaluate the accuracy of the 

model. The accuracy of the segmentation model was evaluated by the Dice similarity coefficient 

(DSC), defined as follows: 

 

𝐷𝑆𝐶 =
2|𝐴 ∩ 𝐵|
|𝐴| + |𝐵|, 

 

where |𝐴|  and |𝐵|  represent the cardinalities of the learned and manual sets, and |𝐴 ∩ 𝐵| 

represents the intersection of the two sets. A value of 0 indicates no similarity, whereas a value of 

1 indicates perfect agreement. 
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A three-fold cross-validation was performed to evaluate the accuracy of the model. The 30 

ground-truth CBCT images were split into three groups with each group containing ten images. 

One unique group was considered the test group, and the remaining two groups served as training 

groups to create the models. This process was repeated until each group was selected as a test 

group. The accuracy of this method was found by calculating the average DSC of all the testing 

samples. By performing three-fold cross-validation, we determined a reliable set of hyper-

parameters of the random forest algorithm. Then, all 30 ground-truth images were used with these 

hyper-parameters to re-train a set of classifiers. In this way, we obtained the best model possible, 

based on the efficient use of all the ground-truth images. These final, well-trained classifiers were 

then applied to another set of 30 CBCT images to obtain the automatic segmentation results. 

Finally, all 60 pairs of segmented maxilla and defect 3D models were used for regression analysis. 

Description of Measurement 
A coordinate system was established to standardize the orientation of the maxilla and defect 

for the purpose of quantitative analysis. The Frankfort horizontal plane (FH plane) was the plane 

that passed through bilateral Porion (Po) and Orbitale (Or) on the non-defect side. The midsagittal 

plane (MS plane) was the plane perpendicular to the FH plane passing through Nasion (N) and 

Sella (S). The coronal plane (CR plane) was the plane perpendicular to the FH and MS planes 

passing through Nasion (N). The parameters of the maxilla and defect were measured in horizontal, 

midsagittal, and coronal plane projections as well as 3D segmentations, including the length, width, 

height, and volume. The maxilla was separated by the midsagittal plane for measurements on the 

defect and non-defect sides. The six maxillary parameters were as follows:  maxillary length (Lmax), 

maxillary anterior width (AntWmax), maxillary posterior width (PosWmax), maxillary anterior 

height (AntHmax), maxillary posterior height (PosHmax), and maxillary volume (Vmax). The 

maxillary parameters were measured on the defect and non-defect sides (denoted by superscript def 
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and nor), respectively. All parameters are defined in Table 4, while various maxilla and defect 

measurements are shown in Figures 10 and 11. 

Table 4. Definitions and abbreviations of reference planes, maxilla distances, and defect 
distances used for quantitative analysis standardization is shown. 

 Parameter Abbreviation Definition 

Reference 
plane 

Horizontal 
plane 

FH plane 
Plane that passes through the bilateral Porion (Po) 
and Orbitale (Or) on the non-defect side 

Midsagittal 
plane 

MS plane 
Plane perpendicular to the FH plane passing through 
the Nasion (N) and Sella (S) 

Coronal plane CR plane 
Plane perpendicular to the FH and MS plane passing 
through the Nasion (N) 

Maxilla 

Maxillary length LLMN 
Maximum posteroanterior (PA) distance from the 
maxillary tuberosity to the anterior contour of the 
maxilla in lateral view 

Maxillary 
anterior width AntWLMN 

Minimum transverse distance from the outer cortices 
of the root apices of canines to the MS plane 

Maxillary 
posterior width PosWLMN 

Minimum transverse distance from the outer cortices 
of the first molars to the MS plane 

Maxillary 
anterior height AntHLMN 

Vertical distance between the inferior most extent of 
the continuous nasal floor and the inferior orbital rim 

Maxillary 
posterior height PosHLMN 

Vertical distance from the alveolar crest of the first 
molar to the superior most extent of the maxillary 
sinus 

Maxillary 
volume VLMN Volume of the segmented individual maxilla 

Defect 

Defect length LXYZ Maximum posteroanterior (PA) distance of the defect 

Defect width WXYZ Maximum transverse distance of the defect 

Defect height HXYZ Maximum vertical distance of the defect 

Defect volume VXYZ Volume of the segmented defect 
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Figure 10. Maxillary volume, anterior height, and length. The measurement of maxillary anterior 
height (AntHmax) is defined by the vertical distance between the inferior most extent of the 
continuous nasal floor and the inferior orbital rim. The measurement of maxillary length (Lmax) is 
defined by the maximum posteroanterior (PA) distance from the posterior most extend of the 
anterior contour of the maxilla to the posterior most extent of the maxillary tuberosity. 

 

 

 

 

 

 

 

 

 

Figure 11. Maxillary anterior width, posterior width, and posterior height. To the left, AntWmax 
indicates maxillary anterior width (defect side). To the right, PosWmax indicates maxillary 
posterior width (defect side) and PosHmax indicates maxillary posterior height (defect side).  
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The length, width, and height were measured by calculating the distance between the 

position (voxel coordinates) of landmarks, and the volume of the maxilla and defect were measured 

based on the segmentation voxel counting. These measurements were carried out using ITK-SNAP. 

All distances were measured twice (i.e., landmarks were selected twice) on two separate 

occasions two weeks apart by one observer. The mean values were used for statistical analysis. 

The intra-observer reliability was assessed using the intra-class correlation coefficient (ICC), 

yielding an ICC greater than 0.88 (95% confidence interval).  

Defect Distribution  

From the superimposed 3D models, the distribution map of the defects was presented 

visually and multi-directionally, allowing for visualization of the distribution probability. The 

defect distribution probability is shown in Figure 12. The superimposition of all 60 segmentations 

of the defect were completed with each voxel. 

 

Figure 12. Defect distribution probability maps from superimposed 3D models.  

Statistical Analysis 
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The data is presented as mean values and standard deviations. The maxillary asymmetry 

between the defect and non-defect sides was compared using the Paired-Samples t Test with a 

significance level of p<0.05. A multiple linear regression was carried out to analyze the 

relationship between the parameters of the defect and parameters of the defect side of the maxilla. 

The age and gender of subjects were also included in the regression. All statistical analyses were 

done with SPSS (Version 19.0; IBM Co., Armonk, NY, USA). 

 
Results 

Maxilla and Defect Segmentation 
The Dice similarity coefficients of the maxilla and defect between the manual and 

automatic segmentations in the test samples were 0.852±0.02 and 0.75±0.07, respectively, 

suggesting that the model was accurate. The manual segmentation of both the maxilla and defect 

in test samples and their corresponding automatic segmentations were compared and shown in 

Figures 13 and 14, where the auto-segmented maxilla and defect were observed to have features 

morphologically similar to those obtained via manual segmentation.  
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Figure 13. Maxilla (red) and defect (blue) renderings using 3D imaging software. Both manual 
segmentation (MS) and automatic segmentation (AS) results are shown.  
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Figure 14. Defect renderings using 3D imaging software. Both manual segmentation (MS) and 
automatic segmentation (AS) results are shown.  

Statistically significant differences were observed upon maxillary asymmetry analysis, 

shown in Table 5. There were several differences in the measurements between the defect and non-

defect sides, mostly concerning the anterior maxilla around the defect region. The defect side 

demonstrated a significant decrease in maxillary length LLMN , anterior width AntWLMN , and 

volume VLMN  with mean measurements of 34.31±2.56mm, 17.83±2.06mm, and 
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18.02±3.24x103mm3, respectively. In comparison, the non-defect side had mean measurements of 

41.27±3.72mm, 20.31±2.48mm, and 19.32±3.53x103mm3, respectively for these parameters. A 

significant increase in maxillary anterior height AntHLMN  was demonstrated for the defect side, 

with a mean of 25.91±4.12mm as compared to the non-defect side at 21.50±3.45mm. The 

maxillary posterior width PosWLMN  and height PosHLMN  demonstrated no statistically significant 

differences between the defect and non-defect sides. 

Table 5. Measurement and analysis of the defect and non-defect sides of the maxilla. 
Measurements were obtained as the mean and standard deviation (SD). Significance of p<0.05 is 
denoted with an asterisk. 

Parameter 
Defect side Non-defect side 

P 
Mean SD Mean SD 

LLMN (mm) 34.31 2.56 41.27 3.72 0.000* 

AntWLMN (mm) 17.83 2.06 20.31 2.48 0.000* 

PosWLMN (mm) 29.08 2.47 29.22 2.29 0.652 

AntHLMN (mm) 25.91 4.12 21.50 3.45 0.000* 

PosHLMN (mm) 42.92 5.13 42.72 5.15 0.380 

VLMN (×103 mm3) 18.02 3.24 19.32 3.53 0.000* 

 

Defect Distribution 
Superimposition of the defect illustrated a tendency toward concentrated distribution.  The 

defect distribution probability was high at the alveolar bone region and gradually decreased toward 

the margin of the defect, with the extended hard palate portion of the defect illustrating a low 

distribution probability, as shown in Figure 15. The defect structure parameters of length, width, 

height, and volume are shown in Table 6. 
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Table 6. Defect structure parameters and measurements. Measurements were obtained as the 
mean and standard deviation (SD). 

Parameter Mean SD 

LXYZ (mm) 22.84 5.07 

WXYZ (mm) 18.01 2.08 

HXYZ (mm) 16.94 2.59 

VXYZ  (×103 mm3) 1.24 0.29 

 

Multiple Linear Regression 

Since cleft lip and palate can be caused by genetics, we considered defect parameters as 

independent variables and maxillary parameters on the defect side as dependent variables. Each 

analysis was adjusted for age and gender. After performing a multiple linear regression, it was 

found that the defect-side maxillary length (LLMNXYZ ), posterior height (PosHLMNXYZ ), and volume (VLMNXYZ ) 

were significantly related to the defect height (Hdef) with p=0.022, 0.001, and 0.029, respectively. 

Moreover, it was also found that the defect-side maxillary posterior width (PosWLMN
XYZ ) was 

significantly related to the defect length (Ldef) with p=0.040, and that the maxillary anterior width 

on the defect side (AntWLMN
XYZ ) was slightly related to the defect width (Wdef) with p=0.054. 

Furthermore, no significant relationship was found between the maxillary anterior height (AntHLMNXYZ ) 

and any defect variables. The linear regression analysis results between the maxillary and defect 

parameters are presented in Table 7. The volume of the defect was also significantly related to the 

defect length, width, and height with p=0.006, 0.000, and 0.000, respectively (see Table 8).    

Table 7. Results of multiple linear regression analysis regarding the defect and relationship to the 
maxilla with adjusted age and gender. Significance of p<0.05 is denoted with an asterisk. 

Dependent variable Independent variable Coefficient Standard  error P R2 adjusted 
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LLMNXYZ
 (mm) LXYZ (mm) -0.007 0.069 0.920 0.191 

 WXYZ (mm) -0.125 0.194 0.522 -- 

 HXYZ (mm) 0.348 0.147 0.022* -- 

 VXYZ  (×103 mm3) -0.945 1.674 0.575 -- 

AntWLMN
XYZ

 (mm) LXYZ  (mm) -0.058 0.060 0.333 0.059 

 WXYZ  (mm) 0.332 0.169 0.054 -- 

 HXYZ (mm) 0.097 0.127 0.450 -- 

 VXYZ  (×103 mm3) -0.906 1.451 0.535 -- 

PosWLMN
XYZ

 (mm) LXYZ  (mm) -0.1471 0.070 0.040* 0.112 

 WXYZ (mm) 0.289 0.197 0.148 -- 

 HXYZ (mm) 0.183 0.149 0.224 -- 

 VXYZ  (×103 mm3) 0.156 1.695 0.927 -- 

AntHLMNXYZ
 (mm) LXYZ  (mm) -0.035 0.094 0.711 0.415 

 WXYZ (mm) 0.163 0.266 0.542 -- 

 HXYZ (mm) 0.089 0.201 0.661 -- 

 VXYZ  (×103 mm3) 3.078 2.290 0.185 -- 

 PosHLMNXYZ  (mm) LXYZ (mm) -0.093 0.111 0.405 0.479 

 WXYZ (mm) -0.317 0.313 0.316 -- 

 HXYZ (mm) 0.842 0.237 0.001* -- 

 VXYZ  (×103 mm3) 3.081 2.697 0.258 -- 

VLMNXYZ
 (×103 mm3) LXYZ (mm) -0.099 0.075 0.191 0.399 
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 WXYZ (mm) 0.022 0.212 0.916 -- 

 HXYZ (mm) 0.359 0.160 0.029* -- 

 VXYZ  (×103 mm3) 1.976 1.826 0.284 -- 

 

Table 8. Results of multiple linear regression analysis regarding the defect volume and 
relationship to the defect length, width, and height. Significance of p<0.05 is denoted with an 
asterisk. 

Dependent 
variable 

Independent 
variable 

Coefficient Standard  error P R2 adjusted 

VXYZ  (×103 mm3) LXYZ  (mm) 0.015 0.005 0.006* 0.579 

 WXYZ  (mm) 0.060 0.014 0.000* -- 

 HXYZ (mm) 0.040 0.011 0.000* -- 

 
 

Discussion 

This study conducted automatic segmentation of the maxilla and cleft defect using CBCT 

images, quantified the 3D structural parameters of the maxilla and defect, and investigated the 

morphological relationship between them. Achieving a deeper understanding of defect variability 

and the defect’s anatomical relationship with the maxilla was the major goal, contributing to the 

limited body of information regarding 3D assessment of craniofacial anomalies, namely non-

syndromic unilateral cleft lip and palate (UCLP). This study had a relatively large sample size, 

with 60 CBCT image sets. The subjects consisted of 65% men and 35% women, of which 68% 

presented with left-side defects and 32% with right-side defects. Sex and location preferences were 

observed from the composition of the sample studied. Similar results have also been reported in 

several other large scale surveys. For example, Xiong et al.17 and Wenzhe et al.18  reported in their 
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retrospective reviews that both the sex ratio of men and women and the ratio of left- and right-side 

defects were approximately 2:1. Although many genetic and environmental factors related to the 

cleft lip and palate were identified,19  the mechanism underlying these conditions is still unknown. 

The use of CBCT for preoperative volumetric assessment of ABGs has been well 

established, and its accuracy has been demonstrated extensively in the literature.11 De Rezende et 

al.4 indicated that CBCT volumes proved reliable for the volumetric assessment of alveolar cleft 

defects using different methods. However, these methods involved the threshold-selected auto-

segmentation of CBCT images, which could not easily separate the maxilla from other bony 

structures of the skull. One possible method to overcome this gap is a machine-learning based 

segmentation algorithm because it takes into account not only intensity but also morphological 

characteristics from each voxel. 

With the aid of CBCT, it seems simple to conclude that the defect side of the maxilla is 

obviously hypoplastic, although comprehensive analysis is still deficient in the literature. In this 

study, the quantitative assessment indicated that the maxillary volume, length, and anterior width 

were significantly smaller on the defect side. In addition, the maxillary posterior width and height 

demonstrated no statistically significant differences on either side. These findings are not 

surprising as the defect is located in the anterior portion of the maxilla, and there is no evidence 

that the posterior portion of the maxilla is affected. Suri et al.20 and Li et al.21 compared the 

asymmetry of the defect and non-defect sides using spiral CT. They both concluded that significant 

differences between the defect and non-defect sides were displayed in the area near the defect and 

not in the deeper regions of the maxilla. The maxilla is an irregular bone with one body and four 

processes. Thus, it is difficult to thoroughly evaluate the complex 3D maxillary structure with 

conventional linear measurements. Volume is, therefore, the best index with which to assess the 
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amount of overall maxillary hypoplasia. Agarwal et al.22 calculated maxillary volume by manual 

segmentation of the individual maxilla and found reduced values on the defect side, which mirrors 

our results in this study. Furthermore, it is interesting to note that the value of the maxillary anterior 

height on the defect side is significantly larger than that on the non-defect side. The difference is 

most likely due to the nasal floor, which exhibits tilting toward the defect side (see Figure 10). A 

similar phenomenon was also described in a previous study by Schneiderman et al.23  

To the best of our knowledge, ours is the first study to evaluate the defect distribution 

probability. The results (see Figure 12) showed that the distribution of the defect had certain 

predictable characteristics, specifically regarding a concentrated distribution at the alveolar bone 

region which decreased toward the defect margins, with the extended hard palate portion of the 

defect illustrating a low distribution probability. Many studies of various designs have been used 

to investigate defects with the common goal of evaluating defect volume, regardless of the defect 

shape, alveolar bone graft, or simulant volume.10,24 This limitation is likely due to the fact that the 

defect lacks anatomical features. So far, there is no widely accepted method to study the cleft 

defect due to its varying size and shape. For treatment planning, previous studies have mainly 

focused on the accuracy of the graft volume. The powdered or small granule forms of bone, or its 

substitutes, were most commonly used in ABG.25,26 Thus, compared with its shape, the defect 

volume was deemed as the key factor associated with optimal surgical outcomes. With 3D printed 

biomaterial scaffolds increasing in popularity, there is a growing need for new methods of 

morphological assessment. To help meet this need, the defect distribution probability map used in 

this study could provide relatively detailed information regarding two different aspects. The first 

is visualization of the map’s distribution probability per voxel. The second aspect is the visual and 

multi-directional morphology and volume of the defect at a certain percentage of the distribution 



 
 

                                                                                                                                                                                                         
45 

 

probability. In the future, defect distribution probability mapping could provide a solid foundation 

for comprehensive morphological analysis.  

Determining which defect factors are responsible for maxillary variability has proved 

challenging. Barbosa et al.2 revealed some clues indicating that the defect volume is related to the 

gap, arch form, nasal base defect, and dental parameters to a certain degree. Their study presented 

a classification system for UCLP based on CBCT images and evaluated the relationship between 

the maxillary volume and gap (or cleft size) as well as the defect size in the nasal base 

region/piriform margin. Although a statistically significant relationship was not observed, the 

researchers did find a growing trend demonstrating that the larger the defect size, the larger the 

maxillary volume.  

A multiple linear regression was used in this study to further investigate the underlying 

relationship between the maxilla and the defect, with the results demonstrating a complicated 

relationship (see Table 7). In general, the maxilla on the cleft side has decreased width, height, 

length, and volume. Among the results, the cleft height likely has a pivotal role in the variability 

of the maxilla. The lowered nasal floor on the defect side is a structure that is characteristically 

deformed in almost all UCLP subjects in this study. Cleft patients typically have a defect in the 

area of the nasal floor caudal to the pyriform fossa, which correpsonds to the cleft itself. Since the 

projection of the maxilla is also deficient in this area, the result is an alar base depression. The 

decreased length of the maxilla on the cleft side indicates that the anterolateral surface of the 

maxilla and area around the pyriform margin are hypoplastic. The defect length, width, and height 

exhibited a positive correlation with the cleft volume (see Table 8). However, it should be noted 

that the low adjusted R2 values suggest a relatively weak relationship between the maxilla and 
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defect, as shown in Tables 7 and 8. Thus, more variables should be taken into account in future 

studies to identify factors responsible for the variability of the maxilla. 

One major limitation of this study is automatic segmentation accuracy. Although our 

accuracy is comparable to that found in other medical fields (i.e., averaged DSC is roughly 0.75 

for the defect), it still needs improvement, particularly for the defects characterized by a long, 

extended hard palate (see No. 23 and 30 in Figures 13 and 14) due to their relatively low proportion. 

In addition, as UCLP is commonly concomitant with malocclusion resulting from crowding or 

teeth dislocations, the difficulty of accurate segmentation is increased. We have also performed 

another automatic segmentation using a deep learning method, U-Net27,28, for comparison. 

However, the results revealed that U-Net provided comparable accuracy. To further improve the 

accuracy of segmentation, the inclusion of more training subjects and more advanced machine 

learning algorithms are suggested in future studies. 

 
Conclusions 

We conducted a 3D automatic segmentation for CBCT images of non-syndromic unilateral 

cleft lip and palate (UCLP). Based on the resultant auto-segmented models, the anterior portion of 

the maxilla was found to be significantly smaller on the defect side as compared to the non-defect 

side. The defect distribution probability map showed a concentrated distribution in the alveolar 

bone region and a low distribution probability toward the margin of the defect. Furthermore, 

certain structures of the anterior maxilla may likely contribute to the variability of defect, though 

additional studies are needed. This study accurately quantified each unique cleft defect in 3D to 

increase UCLP understanding and demonstrated the potential for large scale clinical applications.  

The auto-segmented 3D model and morphometric quantification of the defect allows a 

quick estimation of the extent and complexity of ABG surgery. The models have the potential to 
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serve as templates for 3D printed biomaterial scaffolds. Furthermore, the maxillary parameters and 

their relationship with the defect parameters help with estimating the magnitude of the maxillary 

asymmetry and whether additional preoperative preparation is necessary, such as orthodontic 

expansion or nasal floor augmentation. 
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