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Abstract

It is well-known that GADTs do not admit standard map functions of the kind supported by ADTs and nested types. In addition,
standard map functions are insufficient to distribute their data-changing argument functions over all of the structure present in
elements of deep GADTs, even just deep ADTs or nested types. This paper develops an algorithm for detecting exactly which
functions are mappable over data whose types are (deep) GADTs. The algorithm takes as input a term t whose type is an instance
of a deep GADT D and a function f to be mapped over t. It detects a minimal possible shape of t as an element of D, and returns
a minimal set of constraints f must satisfy to be mappable over t. The crux of the algorithm is its ability to separate t’s essential
structure as an element of D — i.e., the part of t that is essential for it to have the shape of an element of D — from its incidental
structure as an element of D — i.e., the part of t that is simply data in the positions of this shape. The algorithm ensures that the
constraints on f come only from t’s essential structure. This work is part of an ongoing effort to define initial algebra semantics for
GADTs that properly generalizes the usual semantics for ADTs and nested types as least fixpoints of higher-order endofunctors.

1 Introduction
Initial algebra semantics [6] is one of the cornerstones of the modern theory of data types. It has long been
known to deliver practical programming tools — such as pattern matching, induction rules, and structured
recursion operators — as well as principled reasoning techniques — like relational parametricity [23] — for
algebraic data types (ADTs). Initial algebra semantics has also been developed for the syntactic generalization
of ADTs known as nested types [7], and it has been shown to deliver analogous tools and techniques for them
as well [16]. Generalized algebraic data types (GADTs) [22,24,25] generalize nested types — and thus further
generalize ADTs — syntactically:

ADTs nested types GADTs
syntactically

generalized by

syntactically

generalized by
(1)

Given their ubiquity in modern functional programming, an important open question is whether or not an
initial algebra semantics exists for GADTs.

The starting point for initial algebra semantics is to interpret types as objects in a suitably structured
category C, and to interpret open type expressions as endofunctors on this category. An ADT is interpreted as
the least fixpoint of the endofunctor on C interpreting its underlying type expression. For example, the type
expression underlying the standard data type 1

data List : Set → Set where

nil : ∀A → List A

cons : ∀A → A → List A → List A

(2)

of lists of data of type A is LA X = 1+ A× X. This is essentially the unfolding of the definition of a type X
parameterized on A recognizing that an element of X can be constructed either from no data using the data
constructor nil, or from one datum of type A and one already-constructed datum of type X using the data
constructor cons. Replacing X by List A in (2) gives a recursive equation defining this type, so if A interprets
A then the least fixpoint of the endofunctor LAX = 1 +A×X on C interpreting LA interprets List A.

1 Although our results apply to GADTs in any programming language, we will use Agda syntax for all code in this paper unless
otherwise specified. But whereas Agda allows type parameters in the types of GADT data constructors to be implicit, we will
always write all type parameters explicitly. We use sans serif font for code snippets and italic font for mathematics.
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Nested types generalize ADTs by allowing their constructors to take as arguments data whose types involve
instances of the nested type other than the one being defined. The return type of each of its data construc-
tors must still be precisely the instance being defined, though. This is illustrated by the following standard
definitions of the nested types PTree of perfect trees and Bush of bushes:

data PTree : Set → Set where data Bush : Set → Set where

pleaf : ∀A → A → PTree A bnil : ∀A → Bush A

pnode : ∀A → PTree (A× A) → PTree A bcons : ∀A → A → Bush (Bush A) → Bush A

A nested type N with at least one data constructor at least one of whose argument types involves an instance of
N that itself involves an instance of N is called a truly nested type. The type of the data constructor bcons thus
witnesses that Bush is a truly nested type. Because the recursive calls to a nested type’s type constructor can be
at instances of the type other than the one being defined, a nested type thus defines an entire family of types that
must be constructed simultaneously. That is, a nested type defines an inductive family of types. By contrast,
an ADT is usually understood as a family of inductive types, one for each choice of its type arguments. This is
because every recursive call to an ADT’s type constructor must be at the same instance as the one being defined.

Like ADTs, (truly) nested types can still be interpreted as least fixpoints of endofunctors. But because the
recursive calls in a nested type’s definition are not necessarily at the instance being defined, the endofunctor in-
terpreting its underlying type expression must necessarily be a higher-order endofunctor on C. For example, the
endofunctor interpreting the type expression underlying PTree is P F X = X+F (X×X) and the endofunctor
interpreting the type expression underlying Bush is B F X = 1+F (F X). The fact that fixpoints of higher-order
endofunctors are themselves necessarily functors thus entails that nested types are interpreted as endofunctors
on, rather than elements of, C. This ensures that the fixpoint interpretation of a nested type has a functorial
action and, moreover, that the map function for a nested type — such as is required to establish the nested type
as an instance of Haskell’s Functor class 2 — can be obtained as its syntactic reflection. For example, mapPTree is
the syntactic reflection of the functorial action of the fixpoint of P , and mapBush is the syntactic reflection of the
functorial action of the fixpoint of B. Because nested types, including ADTs and truly nested types, are defined
polymorphically, we can think of each element of such a type N as a “container” for data arranged at various
positions in the underlying shape determined by the data constructors of N used to build it. Given a function
f : A → B, the function mapN f is then the expected shape-preserving-but-possibly-data-changing function that
transforms an element of N with shape S containing data of type A into another element of N also of shape S but
containing data of type B by applying f to each of its elements. The standard map functions for ADTs can be
obtained in the very same way— i.e., by interpreting them as fixpoints of (now trivially) higher-order endofunc-
tors, rather than of first-order endofunctors, on C and reflecting the functorial actions of those fixpoints back
into syntax. For example, the usual map function mapList for lists is nothing more than the syntactic reflection
of the functorial action of the fixpoint of the higher-order endofunctor L′ F X = 1+X × F X underlying List.

Since GADTs syntactically subsume nested types, they would also require higher-order endofunctors for
their interpretation. We might therefore expect GADTs to have functorial initial algebra semantics, and thus
to support shape-preserving-but-possibly-data-changing map functions, just like nested types do. But because
the shape of an element of a proper GADT — i.e., a GADT that is not a nested type (and thus is not an ADT)
— is not independent of the data it contains, and is, in fact, determined by this data, not all GADTs do. For
example, the GADT

data Seq : Set → Set where

const : ∀A → A → SeqA

pair : ∀AB → SeqA → SeqB → Seq (A× B)

of sequences does not support a standard structure-preserving-but-possibly-data-changing map function like
ADTs and nested types do. If it did, then the clause of mapSeq for an element of Seq of the form pair x y for x : A
and y : B would be such that if f : (A× B) → C then mapSeq f (pair x y) = pair u v : SeqC for some appropriately
typed u and v. But there is no way to achieve this unless C is of the form A′ × B′ for some A′ and B′, u : SeqA′

and v : SeqB′, and f = f1 × f2 for some f1 : A → A′ and f2 : B → B′. The non-uniformity in the type-indexing
of proper GADTs — which is the very reason a GADT programmer is likely to use GADTs in the first place
— thus turns out to be precisely what prevents them from supporting standard map functions.

Despite this, GADTs are currently known to support two different functorial initial algebra semantics,
namely, the discrete semantics of [17] and the functorial completion semantics of [20]. The problem is that
neither of these leads to a satisfactory uniform theory of type-indexed data types. On the one hand, the dis-
crete semantics of [17] interprets GADTs as fixpoints of higher-order endofunctors on the discretization of the

2 We write mapD for the syntactic function fmap :: (A → B) → (DA → DB) witnessing that the type constructor D is an instance
of Haskell’s Functor class. Such functions are expected to satisfy syntactic reflections of the functor laws — i.e., preservation of
identity functions and composition of functions — even though there is no compiler mechanism to enforce this.
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category C interpreting types, rather than on C itself. In this semantics, the map function for every GADT is
necessarily trivial. Viewing nested types as particular GADTs thus gives a functorial initial algebra semantics
for them that does not coincide with the expected one. In other words, the discrete interpretation of [17] results
in a semantic situation that does not reflect the syntactic one depicted in (1), and is thus inadequate. On the
other hand, the functorial completion semantics of [20] interprets GADTs as endofunctors on C itself. Each
GADT thus, like every nested type, has a non-trivial map function. This is, however, achieved at the cost
of adding new “junk” elements, unreachable in syntax but interpreting elements in the “map closure” of its
syntax, to the interpretation of every proper GADT. Functorial completion for Seq, e.g., adds interpretations
of elements of the form map f (pair x y) even though these may not be of the form pair u v for any terms u and
v. Importantly, functorial completion adds no junk to interpretations of nested types or ADTs, so unlike the
semantics of [17], that of [20] does indeed properly extend the usual functorial initial algebra semantics for
them. But since the interpretations of [20] are bigger than expected for proper GADTs, this semantics, too,
is unacceptable. Although they are at the two extremes of the junk vs. functoriality spectrum, both known
functorial initial algebra semantics for GADTs are fundamentally unsatisfactory.

In this paper we pursue a middle ground and ask: how much functoriality can we salvage for GADTs while
still ensuring that their interpretations contain no junk? We already know that not every function on a proper
GADT’s type arguments will be mappable over it. But this paper answers this question more precisely by
developing an algorithm for detecting exactly which functions are. Our algorithm takes as input a term t whose
type is (an instance of) a GADT G and a function f to be mapped over t. It then detects the minimal possible
shape of t as an element of G, and returns a minimal set of constraints f must satisfy in order to be mappable
over t. The crux of the algorithm is its ability to separate t’s essential structure as an element of G — i.e.,
the part of t that is essential for it to have the shape of an element of G — from its incidental structure as an
element of G — i.e., the part of t that is simply data in the positions of this shape. The algorithm then ensures
that the constraints ensuring that f is mappable come only from t’s essential structure as an element of G.

The separation of a term into essential and incidental structure relative to a given specification is far from
trivial, however. In particular, it is considerably more involved than simply inspecting the return types of G’s
constructors. As for ADTs and other nested types, a subterm built using one of G’s data constructors can be an
input term to another one (or to itself again), and this creates a kind of “feedback loop” in the well-typedness
computation for the overall term. Moreover, if G is a proper GADT, then such a loop can force structure to be
essential in the overall term even though it would be incidental in the subterm if the subterm were considered in
isolation, and this can impose constraints on the functions mappable over it. This is illustrated in Examples 2.2
and 2.3 below, both of which involve a GADT G whose data constructor pairing can construct a term suitable
as input to projpair.

Our algorithm is actually far more flexible than we have just described. Rather than simply considering t
to be an element of the top-level GADT in its type, it can instead take as a third argument a specification,
in the form of a perhaps deeper 3 data type D, one of whose instances it should be considered an element of.
The algorithm will still return a minimal set of constraints f must satisfy in order to be mappable over t, but
now these constraints are relative to the deep specification D rather than to the “shallow” specification Gβ.
The feedback loops in and between the data types appearing in the specification D can, however, significantly
complicate the separation of essential and incidental structure in terms. For example, if a term’s specification
is G (Gβ) then we will first need to compute which functions are mappable over its relevant subterms relative
to Gβ before we can compute those mappable over the term itself relative to G (Gβ). Runs of our algorithm
on deep specifications are given in Examples 2.5 and 4.5 below, as well as in our accompanying code [8].

This paper is organized as follows. Motivating examples highlighting the delicacies of the problem our
algorithm solves are given in Section 2. Our algorithm is given in Section 3, and fully worked out sample runs
of it are given in Section 4. Our conclusions, related work, and some directions for future work are discussed in
Section 5. Our Agda implementation of our algorithm is available at [8], along with a collection of examples on
which it has been run. This collection includes examples involving deep specifications and mutually recursively
defined GADTs, as well as other examples that go beyond just the illustrative ones appearing in this paper.

2 The Problem and Its Solution: An Overview

In this section we use well-chosen example instances of the mapping problem for GADTs and deep data struc-
tures both to highlight its subtlety and to illustrate the key ideas underlying our algorithm that solves it. For
each example considering a function f to be mapped over a term t relative to the essential structure specified
by D we explain, intuitively, how to obtain the decomposition of t into the essential and incidental structure
specified by D and what the minimal constraints are that ensure that f is mappable over t relative to it. By

3 An ADT/nested type/GADT is deep if it is (possibly mutually inductively) defined in terms of other ADTs/nested types/GADTs
(including, possibly, itself). For example, List (ListN) is a deep ADT, Bush (List (PTree A)) is a deep nested type, and Seq (PTree A),
and List (Seq A) are deep GADTs.
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design, we handle the examples only informally in this section. The results obtained by running our algorithm
on their formal representations are given in Section 4.

Our algorithm will treat all GADTs in the class G, whose elements have the following general form when
written in Agda:

data G : Setk→ Set where

c1 : t1
...

cm : tm

(3)

where k and m can be any natural numbers, including 0. Writing v for a tuple (v1, ..., vl) when its length
l is clear from context, and identifying a singleton tuple with its only element, each data constructor ci,
i ∈ {1, ...,m}, has type ti of the form

∀α →F ci
1 α → ... →F ci

n α → G (Kci
1 α, ...,Kci

k α) (4)

Here, for each j ∈ {1, ..., n}, F ci
j α is either a closed type, or is αd for some d ∈ {1, ..., |α|}, or is Dci

j (φci
j α)

for some user-defined data type constructor Dci
j and tuple φci

j α of type expressions at least one of which is

not closed. The types F ci
j α must not involve any arrow types. However, each Dci

j can be any GADT in G,

including G itself, and each of the type expressions in φci
j α can involve such GADTs as well. On the other

hand, for each ℓ ∈ {1, ..., k}, Kci
ℓ α is a type expression whose free variables come from α, and that involves

neither G itself nor any proper GADTs. 4 When |α| = 0 we suppress the initial quantification over types in (4).
All of the GADTs appearing in this paper are in the class G. All GADTs we are aware of from the literature
whose constructors’ argument types do not involve arrow types are also in G. Our algorithm is easily extended
to GADTs without this restriction provided all arrow types involved are strictly positive.

Our first example picks up the discussion for Seq on page 2. Because pair is the only restricted data
constructor for Seq, so that the feedback dependencies for Seq are simple, it is entirely straightforward.

Example 2.1 The functions f mappable over

t = pair (pair (const tt) (const 2)) (const 5) : Seq ( (Bool× Int)× Int) (5)

relative to the specification Seq β are exactly those of the form f = (f1 × f2) × f3 for some f1 : Bool → X1,
f2 : Int → X2, and f1 : Int → X3, and some types X1, X2, and X3. Intuitively, this follows from two analyses
similar to that on page 2, one for each occurrence of pair in t. Writing the part of a term comprising its essential
structure relative to the given specification in blue and the parts of the term comprising its incidental structure
in black, our algorithm also deduces the following essential structure for t:

pair (pair (const tt) (const 2)) (const 5) : Seq ( (Bool× Int)× Int)

The next two examples are more involved because G has purposely been crafted so that its data constructor
pairing can construct a term suitable as input to projpair.

Example 2.2 Consider the GADT

data G : Set → Set where

const : GN

flat : ∀A → List (GA) → G (List A)

inj : ∀A → A → GA

pairing : ∀AB → GA → GB → G (A× B)

projpair : ∀AB → G (GA× G (B × B)) → G (A× B)

The functions mappable over

t = projpair ( inj (inj (cons 2 nil), pairing (inj 2) const) ) : G (ListN × N)

relative to the specification Gβ are exactly those of the form f = f1 × idN for some type X and function
f1 : ListN → X . This makes sense intuitively: The call to projpair requires that a mappable function f must

4 Formally, a GADT is a proper GADT if it has at least one restricted data constructor, i.e., at least one data constructor ci with
type as in (4) for which K

ci
ℓ
α 6= α for at least one ℓ ∈ {1, ..., k}.
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at top level be a product f1 × f2 for some f1 and f2, and the outermost call to inj imposes no constraints on
f1 × f2. In addition, the call to inj in the first component of the pair argument to the outermost call to inj
imposes no constraints on f1, and neither does the call to cons or its arguments. On the other hand, the call
to pairing in the second component of the pair argument to the second call to inj must produce a term of type
G (N × N), so the argument 2 to the rightmost call to inj and the call to const require that f2 = idN. Our
algorithm also deduces the following essential structure for t:

projpair ( inj (inj (cons 2 nil), pairing (inj 2) const) ) : G (ListN × N) (6)

Note that, although the argument to projpair decomposes into essential structure and incidental structure as
inj (inj (cons 2 nil), pairing (inj 2) const) when considered as a standalone term relative to the specification Gβ,
the feedback loop between pairing and projpair ensures that t has the decomposition in (6) relative to Gβ when
this argument is considered in the context of projpair. Similar comments apply throughout this paper.

Example 2.3 The functions f mappable over

t = projpair ( inj (flat (cons const nil), pairing (inj 2) const) ) : G (ListN × N)

relative to the specification Gβ for G as in Example 2.2 are exactly those of the form f = mapList idN × idN.
This makes sense intuitively: The call to projpair requires that a mappable function f must at top level be a
product f1×f2 for some f1 and f2, and the outermost call to inj imposes no constraints on f1×f2. In addition,
the call to flat in the first component of the pair argument to inj requires that f1 = mapList f3 for some f3, and
the call to cons in flat’s argument imposes no constraints on f3, but the call to const as cons’s first argument
requires that f3 = idN. On the other hand, by the same analysis as in Example 2.2, the call to pairing in the
second component of the pair argument to inj requires that f2 = idN. Our algorithm also deduces the following
essential structure for t:

projpair ( inj (flat (cons const nil), pairing (inj 2) const) ) : G (ListN × N)

The feedback loop between constructors in the GADT G in the previous two examples highlights the
importance of the specification relative to which a term is considered. But this can already be seen for ADTs,
which feature no such loops. This is illustrated in Examples 2.4 and 2.5 below.

Example 2.4 The functions f mappable over

t = cons (cons 1 (cons 2 nil)) (cons (cons 3 nil) nil) : List (ListN)

relative to the specification Listβ are exactly those of the form f : ListN → X for some type X . This makes
sense intuitively since any function from the element type of a list to another type is mappable over that list.
The function need not satisfy any particular structural constraints. Our algorithm also deduces the following
essential structure for t:

cons (cons 1 (cons 2 nil)) (cons (cons 3 nil) nil)

Example 2.5 The functions f mappable over

t = cons (cons 1 (cons 2 nil)) (cons (cons 3 nil) nil) : List (ListN)

relative to the specification List (Listβ) are exactly those of the form f = mapList f
′ for some type X ′ and

function f ′ : N → X ′. This makes sense intuitively: The fact that any function from the element type of a list
to another type is mappable over that list requires that f : ListN → X for some type X as in Example 2.4. But
if the internal list structure of t is also to be preserved when f is mapped over it, as indicated by the essential
structure List (Listβ), then X must itself be of the form ListX ′ for some type X ′. This, in turn, entails that
f = mapListf

′ for some f ′ : N → X ′. Our algorithm also deduces the following essential structure for t:

cons (cons 1 (cons 2 nil)) (cons (cons 3 nil) nil) : List (ListN)

The specification List (Listβ) determining the essential structure in Example 2.5 is deep by instantiation,
rather than by definition. That is, inner occurrence of List in this specification is not forced by the definition
of the data type List that specifies its top-level structure. The quintessential example of a data type that is
deep by definition is the ADT

data Rose : Set → Set where

rnil : ∀A → Rose A

rnode : ∀A → A → List (Rose A) → Rose A

of rose trees, whose data constructor rnode takes as input an element of Rose at an instance of another ADT.
Reasoning analogous to that in the examples above suggests that no structural constraints should be required
to map appropriately typed functions over terms whose specifications are given by nested types that are deep
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by definition. We will see in Example 4.4 that, although the runs of our algorithm are not trivial on such input
terms, this is indeed the case.

With more tedious algorithmic bookkeeping, results similar to those of the above examples can be obtained
for data types — e.g., Bush (List (PTree A)), Seq (PTree A), and List (SeqA) — that are deep by instantiation [8].

3 The Algorithm

In this section we give our algorithm for detecting mappable functions. The algorithm adm takes as input a
data structure t, a tuple of functions to be mapped over t, and a specification — i.e., a (deep) data type —
Φ. It detects the minimal possible shape of t relative to Φ and returns a minimal set C of constraints f must
satisfy in order to be mappable over t viewed as an element of an instance of Φ. A call

adm t f Φ

is to be made only if there exists a tuple (Σ1β, ...,Σkβ) of type expressions such that

• Φ = G (Σ1β, ...,Σkβ) for some data type constructor G ∈ G ∪ {×,+} and some type expressions Σℓβ, for
ℓ ∈ {1, ..., k}

and

• if Φ = ×(Σ1β,Σ2β), then t = (t1, t2), and k = 2, f = (f1, f2)

• if Φ = +(Σ1β,Σ2β) and t = inl t1, then k = 2, f = (f1, f2)

• if Φ = +(Σ1β,Σ2β) and t = inr t2, then k = 2, f = (f1, f2)

• if Φ = G (Σ1β, ...,Σkβ) for some G ∈ G then
1) t = c t1...tn for some appropriately typed terms t1, ..., tn and some data constructor c for G with type

of the form in (4),
2) t : G (Kc

1w, ...,K
c
kw) for some tuple w = (w1, ..., w|α|) of type expressions, and G (Kc

1w, ...,K
c
kw) is

exactly G (Σ1s, ...,Σks) for some tuple s = (s1, ..., s|β|) of types, and

3) for each ℓ ∈ {1, ..., k}, fℓ has domain Kc
ℓw

These invariants are clearly preserved for each recursive call to adm.

As an optimization, the free variables in the type expressions Σℓβ for ℓ ∈ {1, ..., k} can be taken merely to

be among the variables in β, since the calls adm t f G (Σ1β, ...,Σkβ) and adm t f G (Σ1β+, ...,Σkβ+) return

the same set C (up to renaming) whenever β is a subtuple of the tuple β+. We therefore always take β to have
minimal length below.

The algorithm is given as follows by enumerating each of its legal calls. Each call begins by initializing a
set C of constraints to ∅.

A. adm (t1, t2) (f1, f2) ×(Σ1β,Σ2β)
(i) Introduce a tuple g = g1, ..., g|β| of fresh function variables, and add the constraints 〈Σ1g, f1〉 and

〈Σ2g, f2〉 to C.

(ii) For j ∈ {1, 2}, if Σjβ = βi for some i then do nothing and go to the next j if there is one. Otherwise,

Σjβ = D (ζ1β, ..., ζrβ), where D is a data type constructor in G ∪ {×,+} of arity r, so make the

recursive call adm tj (ζ1g, ..., ζrg) D (ζ1β, ..., ζrβ) and add the resulting constraints to C.
(iii) Return C.

B. adm (inl t) (f1, f2) +(Σ1β,Σ2β)
(i) Introduce a tuple g = (g1, ..., g|β|) of fresh function variables, and add the constraints 〈Σ1g, f1〉 and

〈Σ2g, f2〉 to C.
(ii) If Σ1β = βi for some i then do nothing. Otherwise, Σ1β = D (ζ1β, ..., ζrβ), where D is a data type

constructor in G ∪ {×,+} of arity r, so make the recursive call adm t (ζ1g, ..., ζrg) D (ζ1β, ..., ζrβ)
and add the resulting constraints to C.

(iii) Return C.

C. adm (inr t) (f1, f2) +(Σ1β,Σ2β)
(i) Introduce a tuple g = (g1, ..., g|β|) of fresh function variables, and add the constraints 〈Σ1g, f1〉 and

〈Σ2g, f2〉 to C.
(ii) If Σ2β = βi for some i then do nothing. Otherwise, Σ2β = D (ζ1β, ..., ζrβ), where D is a data type

constructor in G ∪ {×,+} of arity r, so make the recursive call adm t (ζ1g, ..., ζrg) D (ζ1β, ..., ζrβ)
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and add the resulting constraints to C.
(iii) Return C.

D. adm (c t1, ..., tn) (f1, ..., fk) G (Σ1β, ...,Σkβ)
(i) Introduce a tuple g = (g1, ..., g|β|) of fresh function variables and add the constraints 〈Σℓg, fℓ〉 to C

for each ℓ ∈ {1, ..., k}.
(ii) If c t1, ..., tn : G (Kc

1w, ...,K
c
kw) for some tuple w = (w1, ..., w|α|) of types, let γ = (γ1, ..., γ|α|) be a

tuple of fresh type variables and solve the system of matching problems

Σ1β ≡ Kc
1γ

Σ2β ≡ Kc
2γ

...

Σkβ ≡ Kc
kγ

to get a set of assignments, each of the form β ≡ ψγ or σβ ≡ γ for some type expression ψ or σ. This
yields a (possibly empty) tuple of assignments βi ≡ ψiγ for each i ∈ {1, ..., |β|}, and a (possibly empty)

tuple of assignments σi′β ≡ γi′ for each i′ ∈ {1, . . . , |γ|}. Write βi ≡ ψi,pγ for the pth component of

the former and σi′,qβ ≡ γi′ for the q
th component of the latter. An assignment βi ≡ γi′ can be seen as

having form βi ≡ ψγi′ or form σβi ≡ γi′ , but always choose the latter representation. (This is justified
because adm would return an equivalent set of assignments — i.e., a set of assignments yielding the
same requirements on f — were the former chosen. The latter is chosen because it may decrease the
number of recursive calls to adm.)

(iii) For each i′ ∈ {1, . . . , |γ|}, define τi′βγ to be either σi′,1β if this exists, or γi′ otherwise.

(iv) Introduce a tuple h = (h1, ..., h|γ|) of fresh function variables for i′ ∈ {1, ..., |γ|}.

(v) For each i ∈ {1, . . . , |β|} and each constraint βi ≡ ψi,pγ, add the constraint 〈ψi,ph, gi〉 to C.

(vi) For each i′ ∈ {1, . . . , |γ|} and each constraint σi′,qβ ≡ γi′ with q > 1, add the constraint 〈σi′,qg, σi′,1g〉
to C.

(vii) For each j ∈ {1, . . . , n}, let Rj = F c
j (τ1βγ, ..., τ|γ|βγ).

– if Rj is a closed type, then do nothing and go to the next j if there is one.
– if Rj = βi for some i or Rj = γi′ for some i′, then do nothing and go to the next j if there is one.

– otherwise Rj = D (ζj,1βγ, ..., ζj,rβγ), where D is a type constructor in G ∪ {×,+} of arity r, so make
the recursive call

adm tj (ζj,1gh, ..., ζj,rgh) Rj

and add the resulting constraints to C.
(viii) Return C.

We note that the matching problems in Step (ii) in the last bullet point above do indeed lead to a set of
assignments of the specified form. Indeed, since invariant 2) on page 6 ensures that G (Kc

1w, ...,K
c
kw) is exactly

G (Σ1s, ...,Σks), each matching problem Σℓβ ≡ Kℓγ whose left- or right-hand side is not already just one of the
βs or one of the γs must necessarily have left- and right-hand sides that are top-unifiable [11], i.e., have identical
symbols at every position that is a non-variable position in both terms. These symbols can be simultaneously
peeled away from the left- and right-hand sides to decompose each matching problem into a unifiable set of
assignments of one of the two forms specified in Step (ii). We emphasize that the set of assignments is not
itself unified in the course of running adm.

It is only once adm is run that the set of constraints it returns is to be solved. Each such constraint must
be either of the form 〈Σℓg, fℓ〉, of the form 〈ψi,ph, gi〉, or of the form 〈σi′,qg, σi′,1g〉. Each constraint of the
first form must have top-unifiable left- and right-hand components by virtue of invariant 2) on page 6. It
can therefore be decomposed in a manner similar to that described in the preceding paragraph to arrive at a
unifiable set of constraints. Each constraint of the second form simply assigns a replacement expression ψi,ph
to each newly introduced variable gi. Each constraint of the third form must again have top-unifiable left- and
right-hand components. Once again, invariant 2) on page 6 ensures that these constraints are decomposable
into a unifiable set of constraints specifying replacement functions for the gs.

Performing first-order unification on the entire system of constraints resulting from the decompositions
specified above, and choosing to replace more recently introduced gs and hs with ones introduced later whenever
possible, yields a solved system comprising exactly one binding for each of the fs in terms of those later-occurring
variables. These bindings actually determine the collection of functions mappable over the input term to adm
relative to the specification Φ. It is not hard to see that our algorithm delivers the expected results for ADTs
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and nested types (when Φ is the type itself), namely, that all appropriately typed functions are mappable over
each elements of such types. (See Theorem 3.1 below.) For GADTs, however, there is no existing understanding
of which functions should be mappable over their terms. We therefore regard the solved system’s bindings for
the fs as actually defining the class of functions mappable over a given term relative to a specification Φ.

Theorem 3.1 Let N be a nested type of arity k in G, let w = (w1, . . . , wk) comprise instances of nested types

in G, let t : Nw where Nw contains n free type variables, let β = (β1, . . . , βn), and let N (Σ1β, . . . ,Σkβ) be in G.
The solved system resulting from the call adm t (Σ1f, . . . ,Σkf) N (Σ1β, . . . ,Σkβ) for f = (f1, . . . , fn) has the
form

⋃n
i=1{〈gi,1, fi〉, 〈gi,2, gi,1〉, . . . , 〈gi,ri−1, gi,ri〉}, where each ri ∈ N and the gi,j are pairwise distinct function

variables. It thus imposes no constraints on the functions mappable over terms of ADTs and nested types.

Proof. The proof is by cases on the form of the given call to adm. The constraints added to C if this call is
of the form A, B, or C are all of the form 〈Σjg,Σjf〉 for j = 1, 2, and the recursive calls made are all of the

form adm t′ (ζ1g, ..., ζrg) D (ζ1β, ..., ζrβ) for some t′, some (ζ1, ..., ζr), and some nested type D. Now suppose
the given call is of the form D. Then Step (i) adds the constraints 〈Σig,Σif〉 for i = 1, . . . , k to C. In Step (ii),
|α| = k, and Kc

iw = wi for i = 1, . . . , k for every data constructor c for every nested type, so that the matching

problems to be solved are Σiβ ≡ γi for i = 1, . . . , k. In Step (iii) we therefore have τiβγ = Σiβ for i = 1, . . . , k.
No constraints involving the variables h introduced in Step (iv) are added to C in Step (v), and no constraints
are added to C in Step (vi) since the γs are all fresh and therefore pairwise distinct. For each Rj that is of the

form D (ζj,1βγ, . . . , ζj,rβγ), where D is a nested type, the recursive call added to C in Step (vii) is of the form

adm tj (ζj,1gh, . . . , ζj,rgh) D (ζj,1βγ, . . . , ζj,rβγ), which is again of the same form as in the statement of the
theorem. For Rjs not of this form there are no recursive calls, so nothing is added to C. Hence, by induction on

the first argument to adm, all of the constraints added to C are of the form 〈Ψφ,Ψψ〉 for some type expression
Ψ and some φs and ψs, where the φs and ψs are all pairwise distinct from one another.

Each constraint of the form 〈Ψφ,Ψψ〉 is top-unifiable and thus leads to a sequence of assignments of the
form 〈φi, ψi〉. Moreover, the fact that τiβγ = Σiβ in Step (iii) ensures that no hs appear in any ζj,igh, so the
solved constraints introduced by each recursive call can have as their right-hand sides only gs introduced in the
call from which they spawned. It is not hard to see that the entire solved system resulting from the original
call must comprise the assignments 〈g1,1, f1〉, ..., 〈g1,n, fn〉 from the top-level call, as well as the assignments
〈gji+1,1, gji,1〉, ..., 〈gji+1,n, gji,n〉, for ji = 0, ...,mi− 1 and i = 1, ..., n, where mi is determined by the subtree of
recursive calls spawned by fi. Re-grouping this “breadth-first” collection of assignments “depth-first” by the
trace of each fi for i = 1, ..., n, we get a solved system of the desired form. ✷

4 Examples

Example 4.1 For t as in Example 2.1, the call adm t f Seq β1 results in the sequence of calls:

call 1 adm t f Seqβ1

call 2.1 adm pair (const tt) (const 2) h1
1 Seq γ1

1

call 2.2 adm const 5 h1
2 Seq γ1

2

call 2.1.1 adm const tt h2.1
1 Seq γ2.1

1

call 2.1.2 adm const 2 h2.1
2 Seq γ2.1

2

The steps of adm corresponding to these call are given in the table below, with the most important components
of these steps listed explicitly:

step matching τ R ζ constraints

no. problems added to C

1 β1 ≡ γ1
1 × γ1

2 τ1β1γ
1
1γ

1
2 = γ1

1

τ2β1γ
1
1γ

1
2 = γ1

2

R1 = Seq γ1
1

R2 = Seq γ1
2

ζ1,1β1γ
1
1γ

1
2 = γ1

1

ζ2,1β1γ
1
1γ

1
2 = γ1

2

〈g11 , f〉
〈h1

1 × h1
2, g

1
1〉

2.1 γ1
1 ≡ γ2.1

1 × γ2.1
2 τ1γ

1
1γ

2.1
1 γ2.1

2 = γ2.1
1

τ2γ
1
1γ

2.1
1 γ2.1

2 = γ2.1
2

R1 = Seq γ2.1
1

R2 = Seq γ2.1
2

ζ1,1γ
1
1γ

2.1
1 γ2.1

2 = γ2.1
1

ζ2,1γ
1
1γ

2.1
1 γ2.1

2 = γ2.1
2

〈g2.11 , h1
1〉

〈h2.1
1 × h2.1

2 , g2.11 〉

2.2 γ2
1 ≡ γ2.2

1 τ1γ
1
2γ

2.2
1 = γ1

2 R1 = γ1
2 〈g2.21 , h1

2〉

2.1.1 γ2.1
1 ≡ γ2.1.1

1 τ1γ
2.1
1 γ2.1.1

1 = γ2.1
1 R1 = γ2.1

1 〈g2.1.11 , h2.1
1 〉

2.1.2 γ2.1
2 ≡ γ2.1.2

1 τ1γ
2.1
2 γ2.1.2

1 = γ2.1
2 R1 = γ2.1

2 〈g2.1.21 , h2.1
2 〉
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Since the solution to the generated set of constraints imposes the requirement that f = (g2.1.11 × g1.2.11 )× g2.21 ,
we conclude that the most general functions mappable over t relative to the specification Seq β1 are those of
the form f = (f1 × f2)× f3 for some types X1, X2, and X3 and functions f1 : Bool → X1, f2 : Int → X2, and
f3 : Int → X3. This is precisely the result obtained informally in Example 2.1.

Example 4.2 For G and t as in Example 2.2 and f : ListN × N → X the call adm t f Gβ1 results in the
sequence of calls:

call 1 adm t f Gβ1

call 2 adm t2 Gh1
1 × G(h1

2 × h1
2) G(Gγ1

1 × G(γ1
2 × γ1

2))

call 3 adm t3 (Gg21 ,G(g
2
2 × g22)) Gγ1

1 × G(γ1
2 × γ1

2)

call 4.1 adm inj (cons 2 nil) g31 Gγ2
1

call 4.2 adm pairing (inj 2) const g32 × g32 G(γ2
2 × γ2

2)

call 4.2.1 adm inj 2 g4.21 Gγ2
2

call 4.2.2 adm const g4.21 Gγ2
2

where
t = projpair ( inj ( inj (cons 2 nil), pairing (inj 2) const ) )

t2 = inj ( inj (cons 2 nil), pairing (inj 2) const )

t3 = ( inj (cons 2 nil), pairing (inj 2) const )

The steps of adm corresponding to these call are given in Table 1, with the most important components of
these steps listed explicitly. Since the solution to the generated set of constraints imposes the requirement that
f = g4.11 × idN, we conclude that the most general functions mappable over t relative to the specification Gβ1

are those of the form f = f ′ × idN for some type X and some function f ′ : ListN → X . This is precisely the
result obtained intuitively in Example 2.2.

Example 4.3 For G and t as in Example 2.3 and f : ListN × N → X we have

Kconst = N

Kflat α = Listα

K inj α = α

Kpairing α1 α2 = α1 × α2

Kprojpair α1 α2 = α1 × α2

The call adm t f Gβ1 results in the sequence of calls:

call 1 adm t f Gβ1

call 2 adm t2 Gh1
1 × G(h1

2 × h1
2) G(Gγ1

1 × G(γ1
2 × γ1

2))

call 3 adm t3 (Gg21 ,G(g
2
2 × g22)) Gγ1

1 × G(γ1
2 × γ1

2)

call 4.1 adm flat (cons const nil) g31 Gγ2
1

call 4.2 adm pairing (inj 2) const g32 × g32 G(γ2
2 × γ2

2)

call 4.1.1 adm cons const nil Gh4.1
1 List (Gγ4.1

1 )

call 4.2.1 adm inj 2 g4.21 Gγ2
2

call 4.2.2 adm const g4.21 Gγ2
2

call 4.1.1.1 adm const g4.1.11 G γ4.1
1

call 4.1.1.2 adm nil Gg4.1.11 List(Gγ4.1
1 )

where
t = projpair ( inj ( flat (cons const nil), pairing (inj 2) const ) )

t2 = inj ( flat (cons const nil), pairing (inj 2) const )

t3 = ( flat (cons const nil), pairing (inj 2) const )



call matching τ R ζ constraints

no. problems added to C

1 β1 ≡ γ1
1 × γ1

1 τ1β1γ
1
1γ

1
2 = γ1

1

τ2β1γ
1
1γ

1
2 = γ1

2

R1 = G (Gγ1
1 ×G(γ1

2 ×γ1
2)) ζ1,1β1γ

1
1γ

1
2 = Gγ1

1×G(γ1
2×γ1

2) 〈g11 , f〉
〈h1

1 × h1
2, g

1
1〉

2 Gγ1
1 × G(γ1

2 × γ1
2) ≡ γ2

1 τ1γ
1
1γ

1
2γ

2
1 = Gγ1

1 ×G(γ1
2 × γ1

2) R1 = Gγ1
1 × G(γ1

2 × γ1
2) ζ1,1γ

1
1γ

1
2γ

2
1 = Gγ1

1

ζ1,2γ
1
1γ

1
2γ

2
1 = G(γ1

2 × γ1
2)

〈Gg21 × G(g22 × g22),Gh
1
1 × G(h1

2 × h1
2)〉

3 ζ1γ
2
1γ

2
2 = γ2

1

ζ2γ
2
1γ

2
2 = γ2

2 × γ2
2

〈Gg31 ,Gg
2
1〉

〈G(g32 × g32),G(g
2
2 × g22)〉

4.1 γ2
1 ≡ γ4.1

1 τ1γ
2
1γ

4.1
1 = γ2

1 R1 = γ2
1 〈g4.11 , g31〉

4.2 γ2
2 × γ2

2 ≡ γ4.2
1 × γ4.2

2 τ1γ
2
2γ

4.2
1 γ4.2

2 = γ2
2

τ2γ
2
2γ

4.2
1 γ4.2

2 = γ2
2

R1 = Gγ2
2

R2 = Gγ2
2

ζ1,1γ
2
1γ

4.2
1 γ4.2

2 = γ2
2

ζ2,1γ
2
1γ

4.2
1 γ4.2

2 = γ2
2

〈g4.21 × g4.21 , g32 × g32〉

4.2.1 γ2
2 ≡ γ4.2.1

1 τ1γ
2
2γ

4.2.1
1 = γ2

2 R1 = γ2
2 〈g4.2.11 , g4.21 〉

4.2.2 γ2
2 ≡ N R1 = 1 〈g4.2.21 , g4.21 〉

〈idN, g
4.2.2
1 〉

Table 1: Calls for Example 4.2

call matching τ R ζ constraints

no. problems added to C

1 β1 ≡ γ1
1 × γ1

1 τ1β1γ
1
1γ

1
2 = γ1

1

τ2β1γ
1
1γ

1
2 = γ1

2

R1 = G (Gγ1
1 ×G(γ1

2 ×γ1
2)) ζ1,1β1γ

1
1γ

1
2 = Gγ1

1×G(γ1
2×γ1

2) 〈g11 , f〉
〈h1

1 × h1
2, g

1
1〉

2 Gγ1
1 × G(γ1

2 × γ1
2) ≡ γ2

1 τ1γ
1
1γ

1
2γ

2
1 = Gγ1

1 ×G(γ1
2 × γ1

2) R1 = Gγ1
1 × G(γ1

2 × γ1
2) ζ1,1γ

1
1γ

1
2γ

2
1 = Gγ1

1

ζ1,2γ
1
1γ

1
2γ

2
1 = G(γ1

2 × γ1
2)

〈Gg21 × G(g22 × g22),Gh
1
1 × G(h1

2 × h1
2)〉

3 ζ1γ
2
1γ

2
2 = γ2

1

ζ2γ
2
1γ

2
2 = γ2

2 × γ2
2

〈Gg31 ,Gg
2
1〉

〈G(g32 × g32),G(g
2
2 × g22)〉

4.1 γ2
1 ≡ List γ4.1

1 τ1γ
2
1γ

4.1
1 = γ4.1

1 R1 = List (Gγ4.1
1 ) ζ1,1γ

2
1γ

4.1
1 = Gγ4.1

1 〈g4.11 , g31〉
〈Listh4.1

1 , g4.11 〉

4.2 γ2
2 × γ2

2 ≡ γ4.2
1 × γ4.2

2 τ1γ
2
2γ

4.2
1 γ4.2

2 = γ2
2

τ2γ
2
2γ

4.2
1 γ4.2

2 = γ2
2

R1 = Gγ2
2

R2 = Gγ2
2

ζ1,1γ
2
1γ

4.2
1 γ4.2

2 = γ2
2

ζ2,1γ
2
1γ

4.2
1 γ4.2

2 = γ2
2

〈g4.21 × g4.21 , g32 × g32〉

4.1.1 Gγ4.1
1 ≡ γ4.1.1

1 τ1γ
4.1
1 γ4.1.1

1 = Gγ4.1
1 R1 = Gγ4.1

1

R2 = List(Gγ4.1
1 )

ζ1,1γ
4.1
1 γ4.1.1

1 = γ4.1
1

ζ2,1γ
4.1
1 γ4.1.1

1 = Gγ4.1
1

〈Gg4.1.11 ,Gh4.1
1 〉

4.2.1 γ2
2 ≡ γ4.2.1

1 τ1γ
2
2γ

4.2.1
1 = γ2

2 R1 = γ2
2 〈g4.2.11 , g4.21 〉

4.2.2 γ2
2 ≡ N R1 = 1 〈g4.2.21 , g4.21 〉

〈idN, g
4.2.2
1 〉

4.1.1.1 γ4.1
1 ≡ N R1 = 1 〈g4.1.1.11 , g4.1.11 〉

〈idN, g
4.1.1.1
1 〉

4.1.1.2 Gγ4.1
1 ≡ γ4.1.1.2

1 τ1γ
4.1
1 γ4.1.1.2

1 = Gγ4.1
1 R1 = 1 〈Gg4.1.1.21 ,Gg4.1.11 〉

Table 2: Calls for Example 4.3
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The steps of adm corresponding to these call are given in Table 2, with the most important components of
these steps listed explicitly. Since the solution to the generated set of constraints imposes the requirement that
f = mapList idN × idN, we conclude that the only function mappable over t relative to the specification Gβ1

is this f . This is precisely the result obtained informally in Example 2.3.

Example 4.4 For t as in Example 2.4 the call adm t f Listβ1 results in the sequence of calls:

call 1 adm t f Listβ1

call 2 adm cons (cons 3 nil) nil) g11 Listβ1

call 2.1 adm nil g21 Listβ1

The steps of adm corresponding to these call are given in the table below, with the most important components
of these steps listed explicitly:

step matching τ R ζ constraints

no. problems added to C

1 β1 ≡ γ1
1 τ1β1γ

1
1 = β1 R1 = β1

R2 = Listβ1

ζ2,1β1γ
1
1 = β1 〈g11 , f〉

2 β1 ≡ γ2
1 τ1β1γ

2
1 = β1 R1 = β1

R2 = Listβ1

ζ2,1β1γ
2
1 = β1 〈g21 , g

1
1〉

2.1 β1 ≡ γ2.1
1 τ1β1γ

2.1
1 = β1 R1 = 1 〈g2.11 , g21〉

Since the solution to the generated set of constraints imposes the requirement that f = g2.11 , we conclude that
any function f : ListN → X (for some type X) is mappable over t relative to the specification Listβ1.

Example 4.5 For t as in Example 2.5 the call adm t f List (Listβ1) results in the following sequence of calls:

call 1 adm t f Listβ1

call 2.1 adm cons 1 (cons 2 nil) g11 Listβ1

call 2.2 adm cons (cons 3 nil) nil) List g11 List (Listβ1)

call 2.1.1 adm cons 2 nil g2.11 Listβ1

call 2.2.1 adm cons 3 nil g2.21 Listβ1

call 2.2.2 adm nil List g2.21 List (Listβ1)

call 2.1.1.1 adm nil g2.1.11 Listβ1

call 2.2.1.1 adm nil g2.2.11 Listβ1

The steps of adm corresponding to these calls are given in the table below, with the most important components
of these steps listed explicitly:

step matching τ R ζ constraints

no. problems added to C

1 Listβ1 ≡ γ1
1 τ1β1γ

1
1 = Listβ1 R1 = Listβ1

R2 = List (Listβ1)
ζ1,1β1γ

1
1 = β1

ζ2,1β1γ
1
1 = Listβ1

〈List g11 , f〉

2.1 β1 ≡ γ2.1
1 τ1β1γ

2.1
1 = β1 R1 = β1

R2 = Listβ1

ζ2,2β1γ
2.1
1 = β1 〈g2.11 , g11〉

2.2 Listβ1 ≡ γ2.2
1 τ1β1γ

2.2
1 = Listβ1 R1 = Listβ1

R2 = List (Listβ1)
ζ1,1β1γ

2.2
1 = β1

ζ2,1β1γ
2.2
1 = Listβ1

〈List g2.21 , List g11〉

2.1.1 β1 ≡ γ2.1.1
1 τ1β1γ

2.1.1
1 = β1 R1 = β1

R2 = Listβ1

ζ2,2β1γ
2.1.1
1 = β1 〈g2.1.11 , g2.11 〉

2.2.1 β1 ≡ γ2.2.1
1 τ1β1γ

2.2.1
1 = β1 R1 = β1

R2 = Listβ1

ζ2,2β1γ
2.2.1
1 = β1 〈g2.2.11 , g2.21 〉

2.2.2 Listβ1 ≡ γ2.2.2
1 τ1β1γ

2.2.2
1 = Listβ1 R1 = 1 〈List g2.2.21 , List g2.21 〉

2.1.1.1 β1 ≡ γ2.1.1.1
1 τ1β1γ

2.1.1.1
1 = β1 R1 = 1 〈g2.1.1.11 , g2.1.11 〉

2.2.1.1 β1 ≡ γ2.2.1.1
1 τ1β1γ

2.2.1.1
1 = β1 R1 = 1 〈g2.2.1.11 , g2.2.11 〉
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Since the solution to the generated set of constraints imposes the requirement that f = List g2.2.1.11 , we conclude
that the most general functions mappable over t relative to the specification List (Listβ1) are those of the form
f = mapList f

′ for some type X and function f ′ : N → X .

5 Conclusion and Future Directions

The work reported here is part of a larger effort to develop a single, unified categorical theory of data types.
In particular, it can be seen as a first step toward a properly functorial initial algebra semantics for GADTs
that specializes to the standard functorial initial algebra semantics for nested types (which itself subsumes the
standard such semantics for ADTs) whenever the GADTs in question is a nested type (or ADT).

Categorical semantics of GADTs have been studied in [15] and [17]. Importantly, both of these works
interpret a GADT as a fixpoint of a higher-order endofunctor [U , Set] → [U , Set], where the category U is
discrete. As discussed in Section 1, this destroys one of the main benefits of interpreting a data type D as a
fixpoint µFD of a higher-order endofunctor FD, namely the existence of a non-trivial map function. Indeed,
the action on morphisms of µFD should interpret the map function mapD standardly associated with D. But in
the discrete settings of [15] and [17], the resulting endofunctor µFD : U → Set has very little to say about the
interpretation of mapD, since its functorial action need only specify the result of applying mapD to a function
f : A → B when B is A and f is the identity function on A. In addition, [15] cannot handle truly nested data
types such as Bush or the GADT G from Example 2.2. The resulting discrete initial algebra semantics for
GADTs thus do not recover the usual functorial initial algebra semantics of nested types (including ADTs and
truly nested types) when instantiated to these special classes of GADTs.

In [14] an attempt is made to salvage the method from [15] while taking the aforementioned issues into
account. The overall idea is to relax the discreteness requirement on the category U , and to replace dependent
products and sums in the development of [15] with left and right Kan extensions, respectively. But then the
domain of µFD must be the category of all interpretations of types and all morphisms between them, which
in turn leads to the inclusion of unwanted junk elements obtained by map closure, as already described in
Section 1 of [20]. So this solution also fails to bring us closer to a semantics of the kind we are aiming for.

Containers [1,2] provide an entirely different approach to describing the functorial action of an ADT or
nested type. In this approach an element of such a type is described first by its structure, and then by the data
that structure contains. That is, a ADT or nested type D is seen as comprising a set SD of shapes and, for each
shape s ∈ SD, a set PD,s of positions in s. If A is a type, then an element of DA consists of a choice of a shape
s and a labeling of each of position in s by elements of A. Thus, if A interprets A, then DA is interpreted as
a labeling

∑
s∈SD

(PD,s → A). The interpretation D for D simply abstracts this interpretation over D’s input

type, and, for any morphism f : A → B, the functorial action Df :
∑

s∈SD
(PD,s → A) →

∑
s∈SD

(PD,s → B) is
obtained by post-composition. This functorial action does indeed interpret mapD: given a shape and a labeling
of its position by elements of A, we get automatically a data structure of the same shape whose positions are
labeled by elements of B as soon as we have a function f : A → B to translate elements of A to elements of B.

GADTs that go beyond ADTs and nested types have been studied from the container point of view as
indexed containers, both in [4] and again in [15]. The authors of [4] propose encoding strictly positive indexed
data types in terms of some syntactic combinators they consider “categorically inspired”. However, as far as
we understand their claim, map functions and their interpretations as a functorial actions are not worked out
for indexed containers. The encoding in [4] nevertheless remains essential to understanding GADTs and other
inductive families as “structures containing data”. With respect to it, our algorithm can be understood as
determining how “containery” a GADT D written in, say, Haskell or Agda is. Indeed, given a term t whose
type is an instance of D, our algorithm can determine t’s shape and positions, so there is no longer any need
to guess or otherwise divine them. Significantly, there appears to be no general technique for determining the
shapes and positions of the elements of a data type just from the type’s programming language definition, and
the ability to determine appropriate shapes and position sets usually comes only with a deep understanding
of, and extensive experience with, the data structures at play.

We do not know of any other careful study of the functorial action of type-indexed strictly positive inductive
families. The work reported here is the result of such a study for a specific class of such types, namely the
GADTs described in Equations (3) and (4). Our algorithm defines map functions for GADTs that coincide with
the usual ones for GADTs that are ADTs and nested types. The map functions computed by our algorithm
will guide our ongoing efforts to give functorial initial algebra semantics for GADTs that subsume the usual
ones for ADTs and nested types as fixpoints of higher-order endofunctors.
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