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Abstract

UNDERSTANDING HARDWARE-ACCELERATED

2D VECTOR GRAPHICS

Spencer C. Imbleau
B.S., Western Carolina University
M.S., Appalachian State University

Chairperson: R. Mitchell Parry, Ph.D

With the rising support of compute kernels and low-level GPU architecture access

over the past few years, friction with general-purpose GPU computing is fading. With

new accessibility, new analytics methods for hardware-accelerated vector rasterization

are being tried with new leverage. There are compelling reasons to optimize performance

given the resolution-independent imaging model and inherent benefits. However, there

is a noticeable lack of comparison between algorithms, techniques, and libraries which

gauge the modern rendering capability. Analyzing the performance of vector graphics on

the GPU is challenging, primarily when various technologies may compete for differing

scarce computer resources. This thesis examines the contention found with modern

vector graphic rendering and expands on analysis techniques used to deobfuscate efficacy

by providing an analytic benchmarking framework for hardware-accelerated renderers.
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Preface

This research aims to survey modern 2D vector graphic rendering contention and

provide an analysis thereof. The subject matter is themed around modern rendering

techniques and detailing the architecture and design of a benchmarking framework, vgpu-

bench, engineered to provide the tooling for CPU and GPU-centric benchmarking. Parts

of this work serve to provide code snippets, data artifacts, and theories supported by

vgpu-bench. This research assumes an intermediate understanding of computer graphics

and graduate knowledge of computer science.
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Chapter 1

Introduction

1.1 Problem Statement

The plumbing of video-card architecture has been historically optimized for triangle arith-
metic and data flow. This specificity has led to rigid render pipelines and difficulty with
generalized parallel computation. Hence, this ingrained rigidity is why vector graphics
are considered GPU-hostile. Given that vector images are formatted implicitly as “equa-
tions” rather than discrete pixel rows of color data, a different approach is necessary
for GPU rendering; flexibility is required to parallelize the rasterization processing of
vector graphics on the GPU. Moreover, processing implicit data adds a level of indirec-
tion, prompting a substantial overhead for rendering not similarly experienced in raster
graphics.

With the rise of support for compute kernels and low-level GPU architecture
access over the past few years, friction with general-purpose GPU computing is fading.
With this new access to low-level hardware features comes experimentation. The field
of hardware-accelerated vector graphics seems optimistic, with new attempts to leverage
these features. However, there is a noticeable lack of comparison between techniques and
libraries which gauge the modern rendering capability. This lack of comparison is partly
due to the highly complex strategy required to precisely sample GPU metrics. Therefore,
relative comparisons, time metrics, and Big-O is typically provided as a decent proxy.

Analyzing the performance of vector graphics on the GPU is hard. Various ren-
derers and approaches are tuned for fonts, mobile power consumption, or other scarce
computer resources. Given new technologies attempting to solve these issues, it is an
appropriate step to respond with an analysis of the model and how to measure it. We
can provide optics, encourage further research, and de-obfuscate the field by providing
an analytic framework to measure hardware-accelerated vector graphics.

1.2 Research Outline

This research thesis will begin with required background information in Chapter 2 and a
literature review of prior techniques relative to vector rendering in Chapter 3, provided for

1



comprehension. Afterward, we consolidate considerations of vector graphic analytics with
synthesized theories. These theories accentuate a methodology and design section for an
analytic framework we build to evaluate vector graphic rendering efficacy. We begin by
introducing functional and non-function requirements for our analytic framework, which
constitutes the basis for the methodology and architecture of our framework. We then
defend our design choices, supplemented by diagrams and thorough reasoning. Finally,
we provide results to prove our product through trial in a test case.

Ultimately, our product is theory and an analytic framework, vgpu-bench, which
orchestrates sequential execution of small, independent test containers, augmented with
atomically synchronized monitors to collect measurements in partial satisfaction of our
requirements. Furthermore, our product is an extensible, open-source benchmarking tool,
befitting the rapidly changing field of hardware-accelerated vector graphics.

2



Chapter 2

Background

Vector graphics are a unique image model, ideal for simple graphics that can be resolution
independent, lightweight, and dynamic. This section will overview history, contention,
and how to benefit from the image model.

2.1 Image Models

Contrary to vector graphics, raster images are established and used eagerly among com-
puters today; raster graphics are likely what comes to mind when we think of images.
Raster images are rendered by reading pixels or data fragments containing color and
tonal information, typically stored in rows. These images are stored explicitly, inher-
ently requiring no additional arithmetic to copy and display to a screen buffer during
rasterization. Explicit storage makes the memory model of raster graphics exemplary for
performant, elementary graphics. The first implementation of raster graphics was pub-
lished in March of 1971 by Michael A. Noll in his publication Scanned-Display Computer
Graphics [1]. The philosophy remains simple: store images in memory as discrete pixels,
pre-computed such that rendering requires no additional computational overhead.

On the contrary, vector images are formatted and stored as geometric primitives
in an implicit form. Generally speaking, vector images store points, lines, and equations
rather than pixels. During the rasterization stage of vector graphic rendering, varyings,
such as scale, are applied to the data to produce a discrete image. The first successful
implementation of this concept was noticeably earlier than raster, presented by Turing
award laureate Ivan Sutherland [2] in his seminal work Sketchpad [3] (1963).

2.2 Contention in Vector Graphics

Analytic vector graphic rendering brings hardship. This section will attempt to summa-
rize friction encountered with vector graphics.

3



2.2.1 Image Encoding

Vector image encoding has many well-known implementations, such as pdf or ai by Adobe
Inc. Open source standards for vector image encoding also exist, namely The World Wide
Web Consortium’s (W3C) svg, or Scalable Vector Graphics, established as a standard for
the web.

W3C designed SVG particularly to target static image content at first. Unfortu-
nately, to this day, it is a highly complex specification that is slow to establish rendering
support. Most modern web browsers have support for rendering svg files, although a full
implementation is not guaranteed and is comparatively rare to find.

Yevhenii Reizner (RazrFalcon1), created a test suite poised to test svg compliance
and edge cases while developing their own svg renderer named resvg . Yevhenii’s tests
encompass common web browsers and renderers, which quantify the lack of the spec’s
implementation [4]. As of March 2022, the results of their test suite cover more than
1400 edge cases and are shown in Figure 2.1 below.

Figure 2.1: SVG specification adherence test results compiled in resvg.2

2.2.2 Locality

Vector images suffer from a locality issue. Unlike raster graphics with color and fill
information encoded explicitly, determining the fill of a pixel fragment in a vector image
model requires knowledge of the entire image. Every pixel requires a calculated winding
number, or how many turns a curve takes around a point (pixel). After computing
winding numbers, the image requires a presentation attribute called a fill-rule which

1see: https://github.com/RazrFalcon
2attribution: By Yevhenii Reizner, modifications by Spencer C. Imbleau, MPLv2.0
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determines if a winding number is interpreted as inside or outside of a shape. In simple
terms, a renderer requires information about all paths to determine any given pixel’s fill.

Figure 2.2: Two differing fill-rules.3

The locality issue negates certain advantages in the classic GPU parallel render-
ing structure. Moreover, this issue implies that rendering vector graphics might be a
sequentially solved problem, difficult to parallelize.

2.2.3 The Bézier Curve

Efficient parallelism of path tracing is difficult. While the concept of the universal curve
was engineered with relative simplicity, handling a system of curves non-atomically is
complex.

The curve concept is intuitive, being that a curve is simply a linear interpolation
between control points. The basics begin with De Casteljau’s algorithm [5], given in
Equation 2.1. De Casteljau algorithm defines the shape of a Bézier curve B to be within
t ∈ [0, 1] of an arbitrary degree n, where n is the number of control points β0, . . . , βn.

B(t) =
n∑

i=0

βibi,n(t) (2.1)

where b is a Bernstein basis polynomial.

bi,n(t) =

(
n

i

)
(1− t)n−iti.

Tracing a curve’s pixels is as simple as solving this equation in small increments,
or steps, and connecting the dots. Increments should be small enough to minimize visual
error during rasterization for a given display. Interpolating a quadratic (N = 3) curve
from 10 segments is shown below in Figure 2.3.

3attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Figure 2.3: Visualizing linear interpolation of a quadratic Bézier curve.4

The concept of Bézier curves has been static for decades, and the lack of GPU
features and flexibility in the pipeline have barred most experimentation. Complexity fur-
ther increases with image processing, such as stroking, compositing, blending, or styling
shapes, which are conventional necessities to the image model.

2.3 Benefits of Vector Graphics

One should be aware of the implications of vector graphics and hence why we choose
to examine them today. Given the effortless performance and tailored pipeline of raster
graphics, it is a reasonable response to wonder why or how we can improve the imaging
model with vector graphics. In the following sections, we will discuss the benefits of
vector graphics.

2.3.1 Lossless Graphic Fidelity

Phones, televisions, and desktops have various resolutions and pixel densities, creating
the need for resolution-independent graphics. We can solve this problem and show the

4attribution: By Cmglee, modifications by Spencer C. Imbleau, CC-BY-SA-3.0
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benefit of lossless graphic fidelity with scaling in Figure 2.4 below. Vector graphics
retain infinitesimal graphic fidelity at any scale or resolution, which implicates resolution
independence. Although this is not a zero-cost abstraction for rendering, vector graphics
are more portable across devices.

Raster Vector

GIF, JPEG, PNG SVG

Figure 2.4: Scaling comparison between vector and raster types.5

2.3.2 Storage Savings

Given that raster images are encoded pixel data, up-scaling raster images will grow the
file size increasingly. On the contrary, vector graphics do not intrinsically encode concrete
dimensions, and thus, file size is constant.

To prove this, we present a graphic of impossible cubes in Figure 2.5 and corre-
sponding storage bloat in Table 2.1 below. The graphic file is canonically encoded in
svg format, a common vector format. It is then scaled and encoded as a lossless raster
format, png. While svg can grow and shrink without adjustments to file data, png can
not. As such, we grow the svg to larger sizes and measure how the storage footprint
changes for the png format.

5attribution: By Yug, modifications by Cfaerber et al., CC BY-SA 2.5
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Figure 2.5: Impossible cubes.6

SVG vs PNG File Storage
SVG PNG @ 1x PNG @3x PNG @6x

Size (KB) 9.4 61 210 474
Bloat 649% 2234% 5042%

Table 2.1: PNG file bloat from Figure 2.5.

The methodology for Table 2.1 is explained in Appendix A. The results show
that vector types possess distinguished encoding supremacy resilient to scaling. Storage
footprint has significant benefits when a file size incurs empirical consequences, such as
latency incurred over network loading (e.g., web pages). It is also worth briefly mention-
ing svg is an xml format, which characteristically has significant amounts of repeated
data. Compression algorithms, such as svgz, can make these results better.

6attribution: OpenClipart, SVG ID: 33931 , Public Domain
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2.3.3 Powerful Primitives

Vector images amalgamate several primitives, such as points, lines, and Bézier curves.
Bézier curves will be of particular interest, engineered as a “universal curve.” The primi-
tive’s inherent malleability attributes this moniker; curves may be mutated directly with
many abstract geometric transformations and through the control points, such as shown
in Subsection §2.3.3.

P0

P1

P2

P3

Figure 2.6: A cubic Bézier curve with four control points: P0, P1, P2, and P3.7

All curves can deform via affine transformations, such as translation and rotation.
Curves also support sophisticated operations such as warping. Vector graphics also typ-
ically have support for complex set operations, z-ordering, and rich styling [6], shown in
Subsection §2.3.3, although implementation support varies. Curves are the crux of vector
graphics because of their complex features and mathematical properties, such as being
able to be recursively subdivided into piecewise Bézier curves.

7attribution: Wikimedia Commons, Public domain
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Figure 2.7: Compositing examples in vector graphics.8

Moreover, the ability to bend and deform Bézier curves losslessly leads to exciting
implications for physics and animation. Finally, because vectors are independent of
scale, we benefit from infinitesimally-precise data, valuable for scientific visualization
and modeling.

8attribution: SVG Compositing Specification by W3C©, W3C©License
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2.4 Disadvantages of Vector Graphics

While the vector imaging model can benefit us, there are cons to the model which impact
a user’s decision to adopt it.

2.4.1 Indirection Costs

It is generally much slower to process the vector imaging model. The raster model’s
performance is a symptom of image data stored in a readily accessible map of color data,
called a bitmap. Unlike a bitmap, vector image data is stored implicitly as path data.
This path data then must undergo processing in addition to rasterization. This processing
expense is unique to vector types. Since the model is not stored in an immediately
readable format, it is not easy to compete with the performance of raster graphics.

This cost is negatively compounded by the locality issue discussed in Subsection
§2.2.2, requiring recalculation of the entire shape for minor alterations. Expensive re-
draws are indeed an obstacle for any dynamic, real-time applications which attempt to
minimize input latency. While computation caching may help processing speed, this
comes at the expense of additional memory.

2.4.2 Realism Storage Bloat

Contradicting the results of Subsection §2.3.2’s Impossible Cubes, vector graphics strug-
gle to reach a graphic fidelity comparable to photo-realism without file bloat, branding
vector graphics hostile for realistic visualization. The file storage savings observed in
Table 2.1 can be misleading due to the lack of complexity in the image. SVG is poor
at compressing complexity. Algorithms used to convert raster formats (jpg, png, etc.)
to vector formats (svg) produce high-volume output, depending on the degree of color
discontinuity. Conversion occurs by joining similarly colored pixels and approximating
areas into shapes, reducing information. The number of color discontinuities found in
the input may produce many paths, even approaching the number of pixels, depending
on the level of the output detail requested. However, due to poor vector image encoding
standards cited in Subsection §2.2.1, conversions are magnitudes larger than the origi-
nal raster image. Despite larger storage requirements, information is never gained and
ironically lost typically, making the resulting vector file less useful than expected.

To prove this point, we present a vectorized image experiencing bloat, “Landscape
with the Castle of Massa di Carrara.” This image, shown in Figure 2.8, displays a raster
variant (left) and vectorized format (right). The original raster dimensions are 791x600
pixels and formatted as a png. Storage sizes of the variants are found in Table 2.2.
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Figure 2.8: A raster (left) and vectorization (right) of famous art.9

Realism in PNG vs SVG File Storage
PNG SVG SVGZ

Size (KB) 979.1 7266.4 2563.1
Bloat 742.15% 261.77%

Table 2.2: Vectorization file bloat from Figure 2.8.

2.5 Tessellation

Tessellation, also called triangulation, may perhaps be the most famous, straightforward,
and naive solution for 2D rendering. Tessellation is the conversion of complex paths
into discrete triangles for use in a traditional rendering engine. This computation flat-
tens curve primitives into line segments to connect all vertices into triangles, which is
often a significant computation. Tessellation facilitates easy integration with any GPU
graphics engine and requires few GPU features, making it an attractive option. Gener-
ally speaking, the complexity of paths is abstracted away. A tessellator ingests complex
shapes as input and generates triangle geometry easily consumed by graphics APIs such
as OpenGL, Vulkan or Direct3D.

9attribution: By Leo von Klenze, 1827
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Figure 2.9: A visualization of tessellation.10

Vector tessellators do have special needs, however, because they must operate on
curves. To allow this, libraries like Lyon perform curve flattening, which uses a linear
approximation to generate line segments [7].

→

Figure 2.10: Curve flattening of a cubic Bézier curve.11

Curve flattening is a function of tolerance, the maximum distance between a curve
and its linear approximation. Tolerance directly affects precision, and hence, a smaller
tolerance provides higher precision and more segments. This variable is usually chosen
in conjunction as a function of zoom level.

Figure 2.11: Permitted approximation error (tolerance) in curve flattening.12

10attribution: Lyon, MIT/Apache 2.0
11attribution: Lyon, MIT/Apache 2.0

13

https://github.com/nical/lyon
https://github.com/nical/lyon/blob/540a29c3726cdc79ffeb8a7ac3fbc793e63dc87b/crates/geom/src/lib.rs#L24
https://github.com/nical/lyon/blob/540a29c3726cdc79ffeb8a7ac3fbc793e63dc87b/crates/geom/src/lib.rs#L24


Using tessellation as a fulcrum or supplement in vector pipelines is quite common.
For example, one can find parts of Microsoft’s Direct2D API [8] leverage a tessellation-
based approach.

2.6 Conclusion

Vector graphics promise extraordinary benefits over raster graphics, such as lossless
graphic fidelity, storage savings, and powerful primitives. These benefits make vector
graphics a flexible image model worth further analysis.

12attribution: Lyon, MIT/Apache 2.0
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Chapter 3

Literature review

Modern 2D GPU vector graphic rendering on the GPU is a culmination of impressive
research. Insights include tessellation triangle-batching [7], stencil-buffer curve rendering
[9], random-access vector graphics [10], a massively parallel pipeline [11], novel scan-
line algorithms [12], and GPU architecture leveraging [13]. These findings have been
integrated into many technologies, both individuals and entities. This section aims to
survey notable vector rendering methods that expose field advancements to the modern-
day. We attempt to qualify significance at a high level.

3.1 Technologies

Listed below are projects of significance due to popularity, performance, or variance in
methodology. These technologies would justify first-class support in our analytic tool.

3.1.1 Skia

Skia1 is the most widely used C++ 2D hardware-accelerated graphics library with sup-
port for vector graphics. The library has had commercial support from Google since 2005
while being open source [14]. Skia is used for rendering in Mozilla Firefox and Google
Chrome web browsers, making it one of the most established graphic libraries.

The greatest difficulty with Skia is complexity. Skia is very feature-rich, support-
ing CPU and GPU rendering, multiple input and output formats, filters, color spaces,
and color types. The project is over 370,000 lines of code, excluding dependencies. With
dependencies, the project amasses over 7,000,000 lines of code and requires 8 gigabytes
of disk space to be built. In addition, the final binary is 3-8 megabytes, depending on
enabled features, causing contention for those optimizing bundle size. In addition, Skia
can only be built with clang2 and requires an obscure build system called gn3 which uses
Python 2. The complex library is old and complicated to work with, while most con-

1see: https://skia.org
2see: https://clang.llvm.org/
3see: https://gn.googlesource.com/gn/
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tributions originate from Google engineers and affiliates directly, rather than interested
volunteers. The renderer technology features a vector logo, shown below in Figure 3.1.

Figure 3.1: The Skia Logo.4

3.1.2 Pathfinder

Pathfinder 5 is a new, sophisticated 2D renderer designed for vector and font rendering.
The renderer gains applause because it renders paths in a performant, analytic way.
Pathfinder decomposes a very complex vector object into many smaller and simpler
objects stored in a tiled lattice. Next, the library determines which tiles are occluded
and enforces a culling policy on occluded shapes. These opaque tiles are submitted as
a batch of instanced quads, minimizing redraw on pixels encountered in a traditional
painter’s algorithm. Quad batching allows more time to be spent on busier sections of
the image and keeps the rest of the image inexpensive to draw [15].

To visualize how much overdraw a general example incurs with a traditional
painter’s algorithm, we present Figure 3.2 below with two versions of “Ghostscript Tiger.”
The left tiger paths are stripped of color value and replaced with a translucent white fill
to visualize overlapping shapes easily. Hence, the whiter the pixel, the more times the
pixel is drawn without occlusion culling. The methodology for generating this image is
described in Appendix B.

4attribution: https://skia.org/, Fair use
5see: https://github.com/servo/pathfinder
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Figure 3.2: “Ghostscript Tiger” shape overlap without occlusion culling (left) and original
fill (right).7

Historically, Pathfinder was slighted to be used in the Servo8 mission, which once
shared code with Mozilla Firefox as an open-source embedded web engine. However,
Pathfinder has lacked consistent development in its lifetime from the leading developer,
Patrick Walton, and has suffered many backwards incompatible re-writes. Nevertheless,
the project still remains useful for critique and analysis [16]. The renderer technology
features a vector logo, shown below in Figure 3.3.

Figure 3.3: The Pathfinder 3 logo.9

7attribution: By Nicolas Silva, modifications by Spencer C. Imbleau, MIT
8see: https://servo.org/
9attribution: Pathfinder, MIT/Apache 2.0
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3.1.3 piet-gpu

piet-gpu10 is an experimental prototype 2D GPU renderer currently in development, and
relatively stable. The renderer features a novel compute-centric pipeline. The prototype
is a retained-mode renderer, buffering scene-graph fragments on the GPU to acceler-
ate static continuity. In addition, piet-gpu offers a portable runtime and compatibility
fallback, making the renderer relatively general purpose. The research has contributed
impressive results, namely with leveraging a sort-middle GPU architecture11.

3.1.4 Spinel

Lastly, Spinel12 is a perplexing renderer developed by Google, with little outside de-
tails. The future technology is self-described by Google as “a high-performance GPU-
accelerated vector graphics, compositing and image processing pipeline” [17]. The tech-
nology currently exists as a graphics API in Google’s new operating system, Fuchsia13,
but is likely to be integrated into Skia and follows a similar role. For now, the project
is experimental and locked behind Google’s operating system. Moreover, building and
running Spinel is onerous, with little information to an end-user. For these reasons,
working fluidly with Spinel may be oppressively difficult for the discernible future. How-
ever, promises Spinel makes are exciting, such as inexpensive redraw, extensibility for
animation, entirely GPU-processed pipeline, and explicit support for paths, styling, and
composition [18].

3.1.5 Lyon

Lyon14 is not a vector renderer, instead it is a mature tessellator. However, Lyon is very
popular because it abstracts away the difficulty of vector primitives via substitution,
which integrates into a traditional raster pipeline with little to no GPU features [19].
Lyon implements an efficient sweep-line algorithm, traversing a shape from top to bottom
with a knowledge of local geometry [20], although there are many methods. Such methods
include constrained Delaunay triangulation [21] which may be hardware-accelerated [22]
and ear clipping [23].

10see: https://github.com/linebender/piet-gpu
11see: https://raphlinus.github.io/rust/graphics/gpu/2020/06/12/sort-middle.html
12see: https://fuchsia.googlesource.com/fuchsia/+/refs/heads/main/src/graphics/lib/compute/spinel
13see: https://fuchsia.dev/
14see: https://github.com/nical/lyon
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Figure 3.4: The logo for project Lyon.15

3.2 Research

Listed below are significant research advancements in arithmetic, theory, or results. This
research is attractive to those wishing to join the field or seek more detail into the space.

3.2.1 Improved Alpha-Tested Magnification for Vector
Textures and Special Effects

Originally a product of Valve, this research was presented at SIGGRAPH in 2007 as
a novel encoding of raster images to improve the magnification of textures with low
storage requirements efficiently [24]. These encodings are signed distance fields, or SDFs.
Rendering SDFs requires low hardware requirements and a trivial shader for the GPU.
In addition, the model provides support for anti-aliasing and considerable up-scaling to
traditional textures, making the research attractive to game developers. Given multiple
channels, scaling can also be improved [25], shown in Figure 3.5. While SDFs are not
a vector graphics model, the encoding is worth mentioning due to its popularity and
similarity. It is also worth noting that generating an SDF requires a significant amount
of computational resources and is typically done on the CPU, making it a pre-baked asset
not suitable for dynamic rendering.

15attribution: Lyon, modifications by Spencer C. Imbleau, MIT/Apache 2.0
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Figure 3.5: Low-resolution SDF upscaling (left), high-resolution SDF upscaling (middle),
and multi-channel low-resolution SDF upscaling (right).17

3.2.2 Resolution Independent Curve Rendering Using
Programmable Graphics Hardware

Presented at SIGGRAPH Asia in 2005 and published in the ACM Transactions on Graph-
ics (TOG), Microsoft researchers Charles Loop and James Blinn presented the first major
analytic algorithm to render resolution-independent vector graphics using programmable
graphics hardware. The method constructs vector images from mosaics of triangulated
Bézier control points using a newly conceptualized stencil buffer data structure [9]. The
method worked in two passes. First, a hull of triangles constructed asserts the shape’s
fill using a stencil buffer. After fill is determined, a second pass is required to cut out
the fragments with a shader. The shader is, similar to SDFs, trivial. The shader algo-
rithm functions by assigning varyings u, v) to the control points of a quadratic Bézier
curve, discarding the fragment under a retention policy. The shader’s retention policy is
denoted below in Equation 3.1.

Given control points P0, P1, and P2,
apply varyings (u, v) = (0, 0), (0.5, 0), (1, 1),

u2 − v ≥ 0: Discard fragment

u2 − v < 0: Keep fragment
(3.1)

3.2.3 Random Access Vector Graphics

Presented at SIGGRAPH Asia and published by the ACM ToG in 2008, Diego Nehab
and Hugues Hoppe created a tiling approach for vector graphics based on a considerable
upfront computation expense. This pre-computation model enhanced the image’s inter-
activity by providing an approach to redraw mapped vector images on arbitrary objects

17attribution: Improved Corners with Multi-Channel Signed Distance Fields, Fair Use
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inexpensively [10]. This technique significantly extended the ability to render static vec-
tor graphics (with support for transformations) at interactive rates. The pre-computation
method required considerable resources to cache, making the process impossible for in-
teractive applications that may deform the vector texture. In practice, the approach
encoded “Ghostscript Tiger” in 0.44 seconds [10], which is not a challenging render by
modern standards. The image is shown below in Figure 3.6.

Figure 3.6: “Ghostscript Tiger”, the “Hello, World!” of vector graphics.18

3.3 High Performance Software Rasterization on

GPUs

As a precursor in theory to compute-based parallel rendering, authors Samuli Laine and
Tero Karras, researchers from NVIDIA, had their work published at the ACM SIG-
GRAPH Symposium in 2011. Their implementation “CUDA Raster” was easily extensi-
ble and featured a traditionally software-based graphics pipeline on a GPU, which obeyed
ordering constraints from traditional rendering pipelines. Their performance improved
the CPU-based equivalence by 2–8x, comparing the approach to a top-of-the-line GPU
in 2011 [26].

3.3.1 GPU-Accelerated Path Rendering

Presented at SIGGRAPH Asia and published by the ACM ToG in 2012, Mark J. Kilgard
and Jeff Bolz released one of the first analytic rendering approaches to 2D vector graphics
on the GPU. Their approach builds upon existing techniques for curve rendering, specif-
ically the stencil buffer technique19. Kilgard and Bolz however explicitly decouple the
stencil step to determine path fill and stroked coverage with parallelism [27].

18attribution: Ghostscript authors, AGPL
19see: Subsection §3.2.2
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3.3.2 Massively Parallel Vector Graphics

Published in the ACM ToG and Proceedings of ACM SIGGRAPH Asia 2014, Ganacim
et al. reached higher levels of parallelization in vector graphics rendering. This solution
further builds on previous models by Diego Nehab20, which applied deformations and
warps to vector graphics on arbitrary surfaces but optimized the pipeline for dynamism.
The rendering pipeline divides into a pre-processing component that builds a novel,
the shortcut tree, and a rendering component that processes all samples and pixels in
parallel [11]. As a result, tree construction is efficient and parallel at the segment level,
enabling dynamic vector graphics.

Figure 3.7: Massively parallel vector graphics rendered under a perspective warp.21

3.3.3 Efficient GPU Path Rendering Using Scanline
Rasterization

Published in the ACM ToG and presented in SIGGRAPH Asia 2016, Li et al. released
a significant milestone in vector graphics rendering. The solution is parallel, optimized,
and supports dynamism inherently. The methods presented parallelize over boundary
fragments, pixels intersecting the path boundary, while non-boundary pixels process in
bulk, similar to CPU scanline rasterizers [12]. This novel scanline algorithm significantly
saves on the number of winding number computations. To this day, it remains one of the

20see: Subsection §3.2.3
21attribution: Massively-Parallel Vector Graphics by Ganacim et al., Fair Use
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fastest methods for rasterization and GPU efficiency. Moreover, it supports animated
input and outperforms many state-of-the-art alternatives.

3.3.4 Bay Area Rust March 2017: GPU Rasterization

Patrick Walton was given a feature panel in Air Mozilla’s Bay Area Rust event in March
2017, where he discussed his project Pathfinder 22. During his presentation, he exposed
the implementation in an accessible presentation. He noted Pathfinder uses tessellation
to split curved shape edges into small line fragments within an arbitrary tolerance (3
pixels) using tessellation shaders. In the fragment shader, Pathfinder calculates the area
defined by the bound tessellation fragments and stores the area relative to those around
it in a novel way called delta coverage. After computing the delta coverage, Pathfinder
sweeps every column in parallel to calculate the coverage in a prefix sum which translates
to the winding fill rule for every pixel [28]. With this approach, Pathfinder is able to be
more efficient with occlusion culling.

3.3.5 Sort-Middle Architecture

Dr. Raph Levien’s research blog defined a new architecture merged into his renderer
“piet-gpu”, further mentioned in Subsection §3.1.3. As described in the blog post [13],

The architecture calls for sorting in the middle of the pipeline, so that in the
early stage of the pipeline, (2D) triangles can be processed in arbitrary order
to maximally exploit parallelism, but the output (2D) render still correctly
applies the triangles in order.

This research has helped piet-gpu to be a modern, experimental solution to dynamic vec-
tor rendering with support for mass input and animation. The architecture explains that
the motivation for this compute-centric pipeline is to maximize parallelism. Dr. Raph
Levien accomplished this through a multi-stage compute-centric pipeline with a sorting
procedure in the middle. The performance claims and results listed display signifcant
results for piet-gpu on NVIDIA©hardware in Figure 3.8, and work is still ongoing23. Dr.
Raph Levien’s blogs24 have been insightful and reputable as a source of vector graphic
field study and advancement in recent years.

22see also: Subsection §3.1.2
23see: https://github.com/linebender/piet-gpu
24see: https://raphlinus.github.io/
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Figure 3.8: Sort-middle-architecture performance on NVIDIA©hardware25

25attribution: By Raph Levien, AGPL
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Chapter 4

Theory

Presently, hardware-accelerated rendering of vector graphics is fairly onerous for those
unfamiliar with the imaging model. This difficulty leads many to wonder if the 2D
imaging model is nearing uselessness, or can we prove, with testable predictions, that
2D imaging can extend its usefulness? Due to the evolving nature and experimentation
still ongoing, nothing has earned an established reputation or developed with mature
documentation and resources.

The lack of mature resources has imposed a steep learning curve for developers.
Moreover, developers question the certainty of adopting the image model with no main-
stream attention. Hence, we find it to be an appropriate step to provide tooling for such
concerns. The following sections explain patterns that guide our decision-making and
methodology in the following section.

4.1 Diverse Optimization Goals

Analyzing performance for vector graphics on the GPU is complicated due to many opti-
mization goals in varying contexts and dimensional spaces. While 3D graphics typically
optimize for a level of graphic-richness without sacrificing an acceptable frame rate, 2D
graphics have many different cultural applications. Optimization goals may be low la-
tency, power consumption for mobile environments, the contention of scarce resources
(CPU ⇔ GPU bandwidth), or balancing several of these factors.

Conducting a hardware-accelerated performance analysis is a stark contrast to tra-
ditional time trials and discrete measurements such as fps. In typical cases, these metrics
are usually enough, and Big-O is a decent proxy. However, GPU analysis tools should be
more contextually agnostic, offer accurate instrumentation, and support hardware metric
sampling to yield measurements that support varied optimization goals.
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4.2 Rendering Models

Technologies and research examined in our literature review appear diverging and exper-
imental, but there are some similarities between items. Below, we interpret vector ren-
dering classifications but admit there are no strict definitions or generalized approaches.

4.2.1 Pre-Computation Models

We define pre-computation rendering models as an umbrella term for rendering tech-
niques that pay computer resources up-front at runtime for a GPU-friendly representa-
tion. These approaches typically leverage GPU caching and re-use of computed assets
in volatile memory (RAM, GPU memory). Pre-computation models almost always op-
timize inexpensive re-draw of static vector graphics and may often be computed on the
CPU before being uploaded to a storage buffer on the GPU. Some examples include:

• Glyph caching for inexpensive text rendering

• CPU Tessellation uploaded to GPU storage buffers

• Random-access vector graphics1

4.2.2 Parallel Models

Contrary to pre-computation models, parallel models are techniques that do not rely
heavily on caching a GPU-friendly version upfront. Hence, these techniques are optimized
better for dynamism, with shape evaluation calculated on the GPU. These techniques
traditionally leverage more GPU features and pipelining such as compute kernels to
circumnavigate the rigidity of the graphics pipeline. Such methods are typically the
only practical filter for dynamism, interactivity, or animation solutions. Some examples
include:

• Parallel winding number calculation2

• piet-gpu3

• Pathfinder 34

4.3 Feature Variance

Rendering techniques are difficult to compare on the GPU because the extent of hardware
leveraging and features used are often elided or not quantified. Providing an analytic
framework to benchmark and measure arbitrary axes of vector graphics seems necessary

1see: Subsection §3.2.3
2see: Subsection §3.3.3
3see: Subsection §3.1.3
4see: Subsection §3.1.2

26



to encourage proving specific models and techniques with context to others. Current
research claims mainly consist of cursory comparisons or time trials. Such claims are
usually anecdotal, failing to provide a complete story and significance to new techniques.

An extensible API which rapidly prototypes benchmarks with visualization sup-
port would understandably mitigate speculation. By benchmarking, performance results
would provide confidence in research and survey the current 2D GPU path-rendering
capability. This capability would hopefully modernize expectations for vector renderers.
These optics on outlying behavior can highlight lacking performance and aid in explaining
obscure phenomena.

4.4 Referential Comparison

As we previously mentioned, there are competing optimization goals and varying hard-
ware leverage in vector rendering. Given this lack of coherence and objective performance
expectations for a vector renderer, a baseline would be helpful: “What are the modern
expectations of a vector graphic renderer?”
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Chapter 5

Design and Methodology

Our product, vgpu-bench, is a benchmarking framework for measuring hardware-accelerated
vector graphics, emphasizing further analysis. Below we will explain our methodology,
steps we take, and justifications for our design decisions. Once we detail our goals and
explain our architecture, we validate and verify our analytic framework through a test
case to prove by construction.

5.1 Requirements

Our analytic framework for hardware-accelerated vector graphics is engineered to be
trustworthy and resourceful, establishing results one might naturally cite as evidence.
To accomplish this vision, we establish functional and non-functional requirements for
vgpu-bench.

Citing diverse optimization goals in Section §4.1, our requirements entertain the
hope that our framework should be extensible and capable of rapidly assessing generic
axes of interest with concrete evidence. One may hypothesize “Where do current vector
graphic approaches maximize graphic richness without sacrificing frame rate across a
range of hardware and scene complexity?” Hence, we present the following requirements
for our framework below to answer questions like these and drive a broad set of design
goals.

5.1.1 Functional Requirements

• The system should be capable of collecting arbitrary measurements.

• The system should be capable of GPU metric sampling.

• The system should be capable of rapid-prototyping.

• The system should provide conveniences such as macros, common trait implemen-
tations, and conversions.
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• The system should be capable of writing collected measurements.

• The system should be capable of visualizing collected measurements.

5.1.2 Non-Functional Requirements

• The system should collect measurements accurately with precise timing and syn-
chronization.

• The system should integrate into proprietary software APIs for GPU metric sam-
pling for GPUs within the last five years.

• The system should provide serializers and writers to write measurements.

• The system should provide plotting utilities to visualize measurements.

• The system should encourage adoption through features and pre-written examples,
with foreign language interfaces.

• The system should incur no costly consequences with foreign function interfacing.

5.2 Architecture

The architecture of our benchmarking framework was designed in part to accentuate
our functional requirements. We chose a design tailored to optimize extensibility and
accuracy in a data flow, deriving the concept of containerization. At the highest level,
our API orchestrates drivers, which are customized runtime executors for benchmarks.
Benchmarks are containerized function closures that return something discretely mea-
surable. Benchmarks also allow augmentation via monitors, which poll supplementary
measurements at specified frequencies. Measurements are then output by writers and
plotters conveniently for the developer. See Figure 5.1 below for a simplified organiza-
tional diagram.
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Figure 5.1: A simplified organization of vgpu-bench.1

5.2.1 Data Flow

A driver’s runtime will orchestrate the execution of independent benchmark closures
sequentially to prevent interference among benchmarks, with resulting measurements
collected synchronously. If benchmarks are augmented with monitors, monitors will poll
supplemental measurements in parallel during the runtime of a benchmark. Various
atomics and barriers synchronize events because of the parallelism at runtime between
monitors and benchmarks. After benchmarks are complete, measurements collected by
all entities are passed as a bundle to writers and plotters for the archiving of data and
visualizations, respectively.

Below in Figure 5.2, we present a simplified sequence diagram of the general
data flow in vgpu-bench, starting with the Driver. Note that this diagram is purely
supplemental for reference. Refined explanations are presented in the following sections.

1attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Figure 5.2: The sequencing of vgpu-bench.2

Measurable

One should primarily be acquainted with the Measurable trait. This trait is the only
way to collect data through vgpu-bench. Measurable is, however, simply a trait alias
for the constraints Serialize3, Debug4, Send5, and Sync6. These traits are derivable
for every primitive, complex structs, and enums within Rust. Most of what one consid-
ers serializable intrinsically could be automatically derived into a Measurable through
macros. Our library provides metaprogramming macros making it trivial to derive this
behavior, explained later in a Subsection §5.2.5.

2attribution: By Spencer C. Imbleau, MIT/Apache 2.0
3see: https://docs.serde.rs/serde/trait.Serialize.html
4see: https://doc.rust-lang.org/std/fmt/trait.Debug.html
5see: https://doc.rust-lang.org/std/marker/trait.Send.html
6see: https://doc.rust-lang.org/std/marker/trait.Sync.html
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BenchmarkFn

Once a developer has something to measure, a benchmark is written in the form of a
function closure that returns Measurements, a data structure that collects Measurable
trait objects. This closure is encapsulated in a BenchmarkFn, preserving the behav-
ior and measurements, but automatically annotating GPU tracers around the closure,
compatible with NVIDIA©’s Tools Extension SDK, further referred to as NVTX. In
simpler terms, BenchmarkFn is synonymous with a function closure with GPU NVTX
annotations. When a binary executes a BenchmarkFn through NVIDIA©tools such as
NVIDIA©Nsight Systems7, these GPU tracers are observed, making GPU metric sam-
pling and integration trivial for developers.

Benchmark

A Benchmark is the wrapping data structure which encapsulates a BenchmarkFn. The
parent benchmark struct performs execution of the inner BenchmarkFn and allows parallel
supplemental measurement polling through one or more Monitor data structures.

Monitors

The Monitor trait requires a frequency for polling and a function closure that returns
something Measurable. Then, during runtime execution, time-sensitive wake-ups or-
chestrated by the Benchmark request the Monitor to poll and return a measurement.
These polled Measurements are collected automatically. A Monitor is a way to extend a
benchmark’s behavior easily by tacking-on supplemental measurements to record.

Driver

Finally, the Driver is a runtime executor responsible for one or more Benchmarks.
Drivers are created through a DriverBuilder which builds the runtime execution be-
havior with various options. Options include writing mode, target directory, and others,
such as whether to continue on errors.

Writers and Plotters

Writers and plotters are avenues of outputting data in desired formats. A Writer does ex-
actly what its name implies, write Measurements to a file, while a Plotter outputs graphs
through foreign function interfacing (FFI ) to Python’s graphing library matplotlib.
Several plotters are provided for general use cases, such as numeric line graphs, which
abstract the difficulty of FFI away from the developer. In general cases, few requirements
are imposed on the developer, such as ceremoniously choosing configuration parameters
for plotting. One may also ignore these conveniences and plot through one’s favorite
spreadsheet or data visualization application.

7see: https://developer.nvidia.com/nsight-systems
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5.2.2 Data Sampling

Data collection and sampling accuracy are paramount concerns in building a benchmark-
ing framework. The following sections will explain what instrumentation we integrate
for GPU metrics and how we guarantee the accuracy for polled CPU metrics.

GPU Instrumentation

We briefly introduced BenchmarkFn in Subsection §5.2.1, where we exposed that each
function closure in wrapped in GPU tracer annotations. These tracer annotations are
invocations to the NVIDIA©Tools Extension SDK (NVTX)8. NVTX performs GPU
and CPU profiling for NVIDIA©line hardware through a feature-rich CLI and GUI
profiler, which can identify hardware starvation, insufficient parallelization, expensive
algorithms, and more. Integrating our analytic framework into NVTX is a necessity,
given NVIDIA©’s market share across desktop-grade GPUs.

NVTX provides a C-based API for annotating events, code ranges, and resources
in applications. Although it is a C-based API, we can interface the C API in Rust
with identical behavior and no overhead through foreign function interfacing (FFI) [29].
Our library will leverage tracer annotations automatically for the developer across the
architecture. We also provide this FFI binding to developers with the respective imple-
mentation details elided. This binding allows developers to add additional annotations
and markers using our framework without knowledge of NVTX. See Code Example 5.1
below for example code and Figure 5.3 for the code observed in NVIDIA©Nsight Sys-
tems9.

8see: https://docs.nvidia.com/gamework.../nvtx/nvidia tools extension library nvtx.htm
9see: https://developer.nvidia.com/nsight-systems
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Code Example 5.1: NVTX markers through macros provided in vgpu-bench.

use std::{thread, time::Duration};

use vgpu_bench::prelude::*;

#[measurement]

struct TessellationMeasurement {

tessellation_time: f32,

}

pub fn main() -> Result<()> {

BenchmarkFn::new(|| {

let mut measurements = Measurements::new();

// Annotating steps of a benchmark...

nvtx::mark!("Step 1 - Begin");

thread::sleep(Duration::from_secs_f32(0.5));

measurements.push(TessellationMeasurement {

tessellation_time: 0.5,

});

nvtx::mark!("Step 2 - Begin");

thread::sleep(Duration::from_secs_f32(0.35));

measurements.push(TessellationMeasurement {

tessellation_time: 0.35,

});

// Benchmarking done!

Ok(measurements)

})

.run("Benchmark Test")?;

Ok(())

}
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Figure 5.3: NVTX annotations observed in Code Example 5.1.10

GPU Metric Sampling

GPU metric samples may be necessary to collect to prove the efficacy of varying parallel
models11. For example, one may need to dissect hardware starvation, count compute
shaders in flight, recognize poor parallelization, or identify expensive algorithms across
hardware in a benchmark. Hence, this is why we provide NVIDIA©instrumentation
automatically to our library so we may annotate these anomalies with annotations. In
Figure 5.4 below we show a GPU metric sample example on an NVIDIA©GeForce RTX
3060.

10attribution: By Spencer C. Imbleau, MIT/Apache 2.0
11see: Subsection §4.2.2
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Figure 5.4: GPU metric sampling on an NVIDIA©GeForce RTX 3060.12

While the architecture in vgpu-benchis open and flexible, there are some restric-
tions to access GPU sampling through NVIDIA©Nsight Systems13, imposed by the
hardware developers, namely:

Operating system The currently supported operating systems for NSight Systems
are given below.

• Ubuntu 18.04 and 20.04

• CentOS 7+

• Red Hat Enterprise Linux 7+

Hardware and drivers Graphics cards required must be at least Turing architecture
or newer, with minimum driver versions provided below.

• NVIDIA Turing architecture TU10x, TU11x - r440

• NVIDIA Ampere architecture GA100 - r450

• Ampere architecture GA100 MIG - r470 TRD1

• Ampere architecture GA10x - r455

Accuracy guarantees

One philosophy exercised was to elect Rust’s nightly features14 if those features encour-
aged a subjectively better API. However, we restricted code impacting data handling to

12attribution: By Spencer C. Imbleau, MIT/Apache 2.0
13see: https://developer.nvidia.com/nsight-systems
14see: https://doc.rust-lang.org/rustdoc/unstable-features.html
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stable, standard library features exclusively. This philosophy allows us to make a strong
guarantee of memory integrity and safety.

While data integrity is a non-issue, parallelized data sampling across Monitors
was susceptible to race conditions. Therefore, we enforced atomic synchronization at
execution start with the use of a Barrier15. During parallel data sampling, Montiors
have a set frequency for polling. For every measurement collected by a Monitor, a delta-
time is measured to ensure data collection was delivered in the strict frequency specified
by the Monitor, while logs emit warnings if deadlines are not kept. Reported time error
may be visualized with built-in support for standard deviation within given Plotters.

5.2.3 Language Choice

This section aims to justify our decisions on language choice. We chose Rust as the
programming language for a benchmarking framework for many reasons. Among those
concerns are speed, safety, utility, and popularity.

Speed

The first reason we chose Rust is because of speed. Rust is built on the notion of zero-cost
abstractions. Zero-cost abstractions give the ability to move certain behaviors to compile-
time execution or analysis, incurring no runtime cost [30]. This guarantee provides
ergonomic abstractions by providing easy to understand code without runtime overhead.
Hence, runtime speed is approximately equivalent to that of C++. In addition, method
calls and hooks through foreign function interfaces to another language’s application
binary interface with identical speed to the foreign language itself [29]. These zero-cost
abstractions make benchmarking overhead agnostic to the target language.

Safety

Rust was the first language to popularize a memory-safe programming model that tries
to guarantee no undefined behavior. Undefined behavior can lead to misleading measure-
ments, unstable control flow, or really anything. Although unsafe code is permissible with
explicit annotations, unlike C and C++, the language is built to guarantee the integrity
of memory, with operations such as dereferencing raw pointers being disallowed [31].

Utility

Among the most important use-cases for vector graphics is web rendering, given its high
impact among daily web browsing users. Fortunately, the companies which own the
two most major web browsers currently use Rust to test their research, providing added
portability. One company, Google, is developing Spinel16 partly with Rust. The other

15see: https://doc.rust-lang.org/std/sync/struct.Barrier.html
16see also: Subsection §3.1.4
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company, Mozilla, has written Firefox core and Servo [32] in Rust, with Mozilla engineers
being the original creator of Rust [33].

Web rendering also begs the consideration of portability. Thankfully, Rust is
a cross-platform systems programming language with fine control over memory where
needed, and is capable of targeting all major operating systems with transpilation while
featuring tiered support to several architectures.

Popularity

Rust is an elective choice for most new technologies in the experimental and academic
corner involving hardware-accelerated vector graphics. In fact, many of the modern
pieces we discuss in the recent years such as Pathfinder, piet-gpu, and Lyon are written
entirely in Rust. Rust has also been voted the most loved language for over five years in
the annual Stack Overflow developer survey [34].

5.2.4 Extensibility

Extensibility is a concern with our framework because of varying contexts and opti-
mization goals in vector graphics, discussed in Section §4.1. We aim for a “plug-n-play”
solution that fits into almost any existing solution with an effort to minimize glue required
by a developer.

Generics

We have provided the Driver, Benchmark, and BenchmarkFn to return generics to al-
low the developer to specify user-defined accuracy returning user-defined measurements.
Technically, these data structures are implemented as Driver<M>, Benchmark<M>, and
BenchmarkFn<M>, such that M implements Measurable. Use of generics here allows arbi-
trary accuracy and data control to the developer.

Serialization

One of the only constraints of a Measurable data structure is implementation of Serialize17.
The constraint requires the data structure to have a defined policy to convert data into
an easily transmittable form, such that it may be ingested by a Writer or Plotter.

5.2.5 Software API

The ergonomics of our architecture should lead to an intuitive, decoupled API for devel-
opers which makes sense and enables rapid prototyping. We will provide code examples
and show how we accomplish these goals to fit our functional requirements.

17see: https://docs.serde.rs/serde/trait.Serialize.html
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Intuitiveness

Our software API follows all conventions and API guidelines established by the Rust-
language team [35]. These guidelines include eagerly implementing common traits which
play well with other libraries, providing documentation, and following best practices, such
as semantic versioning18, to ensure user-friendliness. We go beyond the checklist, dually
specializing in rapid prototyping. We support rapid prototyping by reducing boilerplate
code where possible. We provide a prelude, well-behaved macros, and take advantage of
our architecture’s indirection with support for conversions.

Prelude Providing a prelude allows easy and quick access to almost all significant types
through a universal import. Although this is not practical if the binary size is a concern,
it can be an excellent way to quickly import everything one may use in a benchmark.

Code Example 5.2: The prelude import statement for vgpu-bench.

use vgpu_bench::prelude::*;

Macros Macros provide code that writes other code, also known as metaprogram-
ming. Rust has macro-support that enables functionality similar to functions but with-
out runtime cost. Building upon Rust’s philosophy of zero-cost abstractions and rapid
prototyping, our software supports many well-behaved macros which increase developer
productivity.

For example, the architecture of Measurable is a type alias constrained to any data
structure which may be serialized, debugged, and is safe to send and synchronize across
thread boundaries. These requirements alias the traits Serialize19, Debug20, Send21,
and Sync22. These are many trait constraints, and hence, it would often be burdensome
and anti-thetic to the idea of rapid prototyping as a requirement to implement every
trait. As a solution, we provide a procedural macro attribute, ##[measurement], among
others, to automatically derive these traits in-line at compile time. See Code Example
5.3 below for an example.

18see: https://semver.org/
19see: https://docs.serde.rs/serde/trait.Serialize.html
20see: https://doc.rust-lang.org/std/fmt/trait.Debug.html
21see: https://doc.rust-lang.org/std/marker/trait.Send.html
22see: https://doc.rust-lang.org/std/marker/trait.Sync.html
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Code Example 5.3: Deriving the Measurable trait with a procedural macro.

#[measurement]

struct ToleranceMeasurement {

tolerance: f32,

polygons: u32,

}

Indirection Our API attempts to reduce boilerplate and complexity where possible by
taking advantage of indirection. One may easily opt-out of extended features available in
the architectural wrappers Driver and Benchmark. For example, a BenchmarkFn closure
may be executed alone if there is no need for Monitor orchestration provided by the
Benchmark wrapper. A BenchmarkFn will still incur the benefits of automated GPU
annotations on behalf of vgpu-bench. See Code Example 5.4 below for an example.
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Code Example 5.4: Rapid-prototyping execution using only BenchmarkFn.

use vgpu_bench::prelude::*;

#[measurement]

struct ToleranceMeasurement {

tolerance: f32,

polygons: u32,

}

pub fn main() -> Result<()> {

BenchmarkFn::new(|| {

let mut measurements = Measurements::new();

// Collect real measurements here...

for i in 0..10 {

measurements.push(ToleranceMeasurement {

tolerance: 1_f32 / i as f32,

polygons: i * i,

});

}

// Benchmarking done!

Ok(measurements)

})

.run("Tolerance Test")?

.write("output/tolerance.csv")?;

Ok(())

}

Effortless conversion Conversions traits are eagerly implemented, allowing individ-
uals requiring additional complexity to easily upgrade items such as a closure into
BenchmarkFn, into a Benchmark, into a Driver. See Code Example 5.5 below for an
example.
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Code Example 5.5: Effortless conversions of data structures in vgpu-bench.

use std::{thread, time::Duration};

use vgpu_bench::{monitors::CpuUtilizationMonitor, prelude::*};

#[measurement]

struct RenderTime {

render_time: u32,

}

pub fn main() -> Result<()> {

let closure = || {

let mut measurements = Measurements::new();

// Collect real measurements here...

for i in 0..5 {

let render_time_ms = 1.0 + 0.5 * (i as f32).sin();

measurements.push(RenderTime { render_time_ms });

thread::sleep(Duration::from_secs_f32(render_time_ms));

}

// Benchmarking done!

Ok(measurements)

};

// Convert closure into GPU-annotated `BenchmarkFn`

let benchmk_fn: BenchmarkFn<RenderTime> = closure.into();

// Create `Benchmark` from `BenchmarkFn`

let benchmark: Benchmark<RenderTime> = Benchmark::from(benchmk_fn)

// Attach a monitor

.monitor(CpuUtilizationMonitor {

name: "CPU Utilization Monitor",

frequency: MonitorFrequency::Hertz(1),

});

// Convert `Benchmark` into `Driver`

let driver: Driver<RenderTime> = benchmark.into();

// Execute

Ok(driver.run()?)

}

5.2.6 Features

Our product vgpu-benchoffers additional features for various reasons. As of this publica-
tion, our product offers an svg generator, tessellation renderer, and pre-written rendering
and tessellation benchmarks.

Including these features only requires the developer specify the desired features to
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their project’s Cargo.toml file. See Code Example 5.6 for an example Cargo.toml file.

Code Example 5.6: Importing feature dependencies from vgpu-bench.

[package]

name = "An example benchmark"

version = "0.1.0"

authors = ["Spencer C. Imbleau <spencer@imbleau.com>"]

edition = "2021"

[dependencies]

vgpu_bench = {

version = "*",

features = ["svg-generator",

"render-kit",

"tessellation-kit"]

}

Cargo.toml Features
Feature Provides Default?
svg-generator An svg file generator with options for scale,

amount, and primitive used.
No

render-kit Access to pre-written benchmarks and a base-
line GPU-centric renderer for comparison.

No

tessellation-kit Access to pre-written benchmarks and a base-
line tessellator for comparison.

No

Table 5.1: Features of vgpu-bench.

SVG Generator

The svg-generator feature injects an svg generator crate into the root library. This
crate allows the generation of svg files with varying primitives, amounts, and rotations.
This handy crate quickly mocks svg data, which is the established vector standard for
web rendering. These files can be manipulated or used directly in tests. It is also possible
to define and generate custom primitives.
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Figure 5.5: A generated svg file containing fifty curves.23

Render Kit

The render-kit feature injects a crate full of pre-written tests which accept a data
structure implementing the Renderer trait, as well as a proto-type GPU-centric renderer
as a baseline reference that already implements the Renderer trait. The Renderer trait
intends to link an arbitrary renderer into a collection of pre-written tests with a small
amount of implementation glue. Moreover, the trait and renderer facilitate easy inte-
gration for competitors wishing to test against each other quickly; adding a test that
operates on a discrete Renderer extends all implementations.

The render-kit feature also provides an in-house renderer implementing the Renderer
trait. The provided renderer transmutes vector data through tessellation and provides
basic hardware acceleration. The renderer can adjust zoom, pan, wireframe view, and
anti-aliasing at runtime. Otherwise, the GPU features include read-only storage buffers
purposed to read tessellation data and MSAA. The implementation depends on on wgpu-
rs24 as a graphics abstraction, which is an implementation of the WebGPU specification
in Rust. Moreover, wgpu-rs can be transpiled and chooses a backend such as Vulkan

23attribution: By Spencer C. Imbleau, MIT/Apache 2.0
24see: https://wgpu.rs/
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or Metal deterministically according to the user’s hardware. This backend provides an
optimized runtime performance but may fall back to a software rendering implementa-
tion. In addition, the renderer provided in render-kit requests minimal GPU features
as a benefit of tessellation, and MSAA. This renderer is engineered as a baseline to
record the minimum time necessary for rendering a tessellated model while still being
hardware-accelerated with GPU caching.

Figure 5.6: Our render-kit GPU-centric tessellation renderer showing svg rendering
(left) and wireframe svg rendering (right).26

Tessellation Kit

Similar to the render-kit, the tessellation-kit feature injects a crate full of pre-written
tests which accept a data structure implementing the Tessellator trait. However,
contrary to the render-kit, we do not provide an in-house minimalist tessellator. Instead,
we expose Lyon [19] with glued trait implementation, which dually provides libtess2
through Lyon as an alternative backend. The intention for the Tessellator trait is to
link an arbitrary tessellator into a collection of pre-written tests with a small amount of
implementation glue, just as is the purpose for the render-kit’s Renderer trait.

26attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Chapter 6

Results

As a method of verification of our work, we ask “Are we building our framework right?.”
One way to verify our framework is to use it in a test trial and thereby prove through
construction. Therefore, we will offer a test trial to prove our framework’s concept,
design, and resourcefulness. We will then discuss the results in the following discussion
section.

6.1 Test Case

This section describes the test case scenario, poses analysis questions, and describes the
benchmarks performed with data used.

6.1.1 The “Web Browser” Case

Web browsers are a deserving application for vector graphic analysis because of how
ubiquitously used the browser technology is. Currently, Skia, discussed in Subsection
§3.1.1, is the graphics library that is used in modern web browsers. There is significant
ongoing development that goes into optimizing web image rendering, given the empirical
consequences. While formats such as SVG are generally smaller and faster to travel over
the net in web pages1, a slow rendering speed negates these benefits.

Our test trial will analyze a classic user story of vector graphics: static svg content
rendering. We will quantify the use of tessellation by rendering static graphics against
three renderers which test if a pre-computation model such as tessellation may have
usefulness in such a case.

6.1.2 Questions for Analysis

We provide several questions that vgpu-benchwill utilize to pilot our test case.

• What are some consequences of tessellation?

1see: Subsection §2.3.2
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• What are some consequences of a pre-computation model?

• Can hardware acceleration improve performance?

6.1.3 Benchmarks

We have coded several benchmarks using the vgpu-benchlibrary to answer the above-
mentioned questions. All benchmark source code in the “thesis” branches of the vgpu-
benchrepository2, however results are taken from varying development stages of vgpu-
bench, so our examples on the “master” branch3 may provide the forward reader better
content examples.

• Path command output for several vector examples

• Tessellation triangle output for several vector examples

• Tessellation timing for several primitives and amounts

• First frame output time of several vector examples

• Continuous frame times of several vector examples

• CPU Utilization of a complex example

6.1.4 Instrumentation

Below we provide justifications for our test data, tessellation backend, and rendering
backends.

Hardware

Unless otherwise specified, all GPU benchmarks are recorded with an NVIDIA©GeForce
1060 3GB, a middle-grade desktop-class GPU released in 2016.

Test data

We use practical examples with varying complexity for a test set of vector graphics, sup-
plemented with dynamically generated examples. Our dynamic examples have varying
amounts of rotated primitives at a constant scale, generated with svg-generator 4 to more
consistently assess scalability.

In Figure 6.1 we present five images that are practical in complexity and encoun-
tered naturally on the web. These images were chosen to represent assets such as logos,
icons, and designs. Such images are purposed to represent the organic complexity of
generalized vector graphics.

2see: https://github.com/simbleau/vgpu-bench
3see: https://github.com/simbleau/vgpu-bench/tree/main/examples
4see: Subsection §5.2.6
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Figure 6.1: Several common vector graphics encountered on the web.5

We also acknowledge that the web has apps that may utilize more paths and data
than the images above. Fields such as graphic design, geographic information systems,
and computer-aided design may require more computer resources. As such, we have
cherry-picked one such example for analysis to represent a complex, resource-greedy
image, which we present in Figure 6.2.

Figure 6.2: A complex vector image, “København 512.svg”, for benchmarking.6

5attribution: By Spencer C. Imbleau, MIT/Apache 2.0
6attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Tessellation

In all benchmarks involving tessellation, Lyon7 will be used as a backend library, given its
academic profile [7], performance [20], and modern application8. We will use a tolerance
of 0.1 in all aspects where needed, which is a subjectively okay approximation.

Rendering

We will use three backend renderers to render all the provided test data above at the
same scale and resolution. The first of which is resvg9, an optimized CPU-based ren-
derer paralleling Skia. Secondly, we use Pathfinder 10, a compute-centric sophisticated
hardware-accelerated rendering library. Finally we use render-kit ’s own renderer11 as a
tessellation-based renderer. Additional reasons and justifications may be found below,
such that we may draw apt comparisons from varying rendering approaches.

resvg We have chosen resvg because it is an abstraction over Skia12, closely paralleling
the optimization. Using a small subset of bindings from CPU-based Skia rendering,
donned tiny-skia13, tiny-skia is about 20-100% less efficient than Skia14. Despite using
no GPU features, resvg is still one of the fastest CPU-based renderers for svg images. We
will also ignore any caching potential and produce every image as a dry run to provide
optics on how beneficial caching may be.

Render-Kit As a feature of vgpu-bench, the “render-kit” feature provides a minimal
tessellation-based GPU renderer described in Subsection §5.2.6. Since Pathfinder uses
an implementation of WebGPU 15, it is portable and may compile to Web Assembly
(WASM)16 as a hardware-accelerated web target, making this a practical candidate run-
time for web browsers. WebGPU is developed by the W3C GPU for the Web Community
Group with engineers from Apple, Mozilla, Microsoft, Google, and others [36], such to
extend hardware acceleration to the respective company’s web browsers. Pathfinder also
uses minimal GPU features, namely a storage buffer for caching and multi-sample anti-
aliasing.

Pathfinder Our last renderer for instrumentation is Pathfinder, with examination in
Subsection §3.1.2. Pathfinder was engineered for work in Servo, an embedded web en-
gine project. Pathfinder offers an analytic approach to GPU-centric rendering, defended

7see: https://github.com/nical/lyon
8see: Subsection §3.1.5
9see: https://github.com/RazrFalcon/resvg

10see: https://github.com/servo/pathfinder
11see: Subsection §5.2.6
12see: https://skia.org
13see: https://github.com/RazrFalcon/tiny-skia
14see: https://razrfalcon.github.io/tiny-skia/x86 64.html
15see: https://www.w3.org/TR/webgpu/
16see: https://webassembly.org/
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academically and publicly [28]. Pathfinder, as a parallel model17, would provide a stark
contrast to a tessellation-based model such as Render-Kit, or a heavily optimized CPU-
based approach such as resvg.

6.2 Data Collection

Data collected from the benchmarks in Subsection §6.1.3 are given here. A discussion of
these results will be found our discussion, Chapter 7.

6.2.1 Profiling

Results in this section are designed to profile several svg images to classify images into a
frame of reference for complexity.

SVG complexity

In Figure 6.3 below, we plot data corresponding to the amount of path commands in each
respective svg image. Files are located on the x-axis. The volume of path commands in
the respective file is plotted on the y-axis.

17see: Subsection §4.2.2
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Figure 6.3: Total path commands in various svg examples.18

SVG tessellation complexity

In Figure 6.4 below, we plot data corresponding to the amount of output triangles for
each respective svg image after tessellation. Files are located on the x-axis. The volume
of triangles produced in the respective file is plotted on the y-axis.

18attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Figure 6.4: Total tessellated triangles in various svg examples.19

6.2.2 Tessellation

Results in this section are designed to collect time trials relating to tessellation to under-
stand more about the consequences of tessellation using our instrumentation tessellator,
Lyon.

Low primitive count

In Figure 6.5, Figure 6.6, and Figure 6.7, we plot the amount of time performed both
in initialization and tessellation for low amounts of traditional vector primitives. The
amount of primitives tessellated is located on the x-axis. The total time expense of both
initialization and tessellation is recorded on the y-axis.

19attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Figure 6.5: Loading and tessellation time for low amounts of svg triangle primitives.20

20attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Figure 6.6: Loading and tessellation time for low amounts of svg quadratic Bézier curve
primitives.22

22attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Figure 6.7: Loading and tessellation time for low amounts of svg cubic Bézier curve
primitives.24

High primitive count

In Figure 6.8, Figure 6.9, and Figure 6.10, we plot the amount of time performed both
in initialization and tessellation for high amounts of traditional vector primitives. The
amount of primitives tessellated is located on the x-axis. The total time expense of both
initialization and tessellation is recorded on the y-axis.

24attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Figure 6.8: Loading and tessellation time for high amounts of svg triangle primitives.25

25attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Figure 6.9: Loading and tessellation time for high amounts of svg quadratic Bézier curve
primitives.27

27attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Figure 6.10: Loading and tessellation time for high amounts of svg cubic Bézier curve
primitives.29

6.2.3 Rendering Trials

Results in this section are designed to collect time trials relating to rendering to un-
derstand more about the the performance of the differing renderers we use for instru-
mentation in Subsection §6.1.4. We do so by benchmarking dry frametimes, which are
frametimes without any former computation, and wet frametimes, which may be accel-
erated through caching or initial processing.

Dry frametime for test data

In Table 6.1, Table 6.2, and Table 6.3, we record the amount of time required to render
each svg image file one time as a dry run without any previous caching. These statistics
include any required setup such as tessellation.

29attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Dry Frametime, Render-Kit
File Frametime

ASU.svg 111.122763ms
Ferris.svg 110.129153ms

Flag of Denmark.svg 113.356655ms
Ghostscript Tiger.svg 119.625961ms
København 512.svg 813.996279ms

NASA.svg 110.726647ms

Table 6.1: Dry frametime rendering for test data images with Pathfinder.

Dry Frametime, Resvg
File Frametime

ASU.svg 0.845686ms
Ferris.svg 2.819766ms

Flag of Denmark.svg 0.149882ms
Ghostscript Tiger.svg 5.847163ms
København 512.svg 883.884497ms

NASA.svg 6.051327ms

Table 6.2: Dry frametime rendering for test data images with resvg.

Dry Frametime, Pathfinder
File Frametime

ASU.svg 2.328747ms
Ferris.svg 2.279044ms

Flag of Denmark.svg 2.116318ms
Ghostscript Tiger.svg 3.38733ms
København 512.svg 80.38817ms

NASA.svg 5.456171ms

Table 6.3: Dry frametime rendering for test data images with Pathfinder.

Wet frametimes for test data

In Figure 6.11, Figure 6.12, and Figure 6.13, we plot the frametimes of our test data.
Frames are measured by continuously rendering after setup steps such as tessellation,
staging, or initialization. The frame rendered is recorded on the x-axis. The total time
expense of rendering is recorded on the y-axis.
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Figure 6.11: Frametime stability of all test data over 50 frames, rendered by Pathfinder.31

31attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Figure 6.12: Frametime stability of all test data over 50 frames, rendered by resvg.32

32attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Figure 6.13: Frametime stability of all test data over 50 frames, rendered by Pathfinder.34

Wet frametimes for a simple image

In Figure 6.14, Figure 6.15, and Figure 6.16, we plot the frametimes of our most simple
item of test data, “Flag of Denmark.svg.” Frames are measured by continuously render-
ing after setup steps such as tessellation, staging, or initialization. The frame rendered
is recorded on the x-axis. The total time expense of rendering is recorded on the y-axis.

34attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Figure 6.14: Frametime stability of a simple svg “Flag of Denmark.svg” over 50 frames,
rendered by Pathfinder.36

36attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Figure 6.15: Frametime stability of a simple svg “Flag of Denmark.svg” over 50 frames,
rendered by resvg.38

38attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Figure 6.16: Frametime stability of a simple svg “Flag of Denmark.svg” over 50 frames,
rendered by Pathfinder.40

Wet frametimes for a complex image

In Figure 6.17, Figure 6.18, and Figure 6.19, we plot the frametimes of our most complex
item of test data, “København 512.svg.” Frames are measured by continuously rendering
after setup steps such as tessellation, staging, or initialization. The frame rendered is
recorded on the x-axis. The total time expense of rendering is recorded on the y-axis.

40attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Figure 6.17: Frametime stability of a complex svg “København 512.svg” over 50 frames,
rendered by Render-Kit.42

42attribution: By Spencer C. Imbleau, MIT/Apache 2.0

66



Figure 6.18: Frametime stability of a complex svg “København 512.svg” over 50 frames,
rendered by resvg.44

44attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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Figure 6.19: Frametime stability of a complex svg “København 512.svg” over 50 frames,
rendered by Pathfinder.46

6.2.4 Monitoring

Results in this section are designed to monitor consequences incurred by a file with a
heavy resource footprint.

In Table 6.4, Table 6.5, and Table 6.6, we record the cpu utilization for ten seconds
while rendering our most complex item of test data, “København 512.svg.” The process
responsible for rendering is initiated by a user.

46attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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CPU Utilization Rendering København 512.svg, Render-Kit
Second Idle Interrupt Nice System User

1 0.467693 0.0 0.0 0.037544124 0.49476284
2 0.39563155 0.0 0.0 0.067370936 0.5369975
3 0.495704 0.0 0.0 0.021988489 0.48169076
4 0.53159183 0.0 0.0 0.02529972 0.44310844
5 0.5278983 0.0 0.0 0.02840928 0.44369245
6 0.46954525 0.0 0.0 0.045535572 0.4849192
7 0.45059177 0.0 0.0 0.0710343 0.47837391
8 0.50600004 0.0 0.0 0.09704739 0.39521644
9 0.5059884 0.0 0.0 0.051762626 0.41293645
10 0.46378028 0.0 0.0 0.034738675 0.50148106

Table 6.4: CPU Utilization over ten seconds of rendering a complex svg
“København 512.svg” with Render-Kit.

CPU Utilization Rendering København 512.svg, Resvg
Second Idle Interrupt Nice System User

1 0.84086835 0.0 0.0 0.023640312 0.1219778
2 0.85577947 0.0 0.0 0.0039034719 0.13270414
3 0.8671819 0.0 0.0 0.0009431307 0.12520833
4 0.85061646 0.0 0.0 0.020844596 0.12853892
5 0.78110397 0.0 0.0 0.054991208 0.16390486
6 0.85544133 0.0 0.0 0.014675165 0.1298835
7 0.84812915 0.0 0.0 0.014469341 0.13740154
8 0.80173135 0.0 0.0 0.013854485 0.13774753
9 0.8667649 0.0 0.0 0.04184088 0.091394216
10 0.85680187 0.0 0.0 0.0139503265 0.12924781

Table 6.5: CPU Utilization over ten seconds of rendering a complex svg
“København 512.svg” with resvg.
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CPU Utilization Rendering København 512.svg, Pathfinder
Second Idle Interrupt Nice System User

1 0.92592514 0.0 0.0 0.013025147 0.06104972
2 0.7673017 0.0 0.0 0.16913769 0.06356061
3 0.97890556 0.0 0.0 0.00616342 0.014931006
4 0.97474915 0.0 0.0 0.007291886 0.017959006
5 0.8870437 0.0 0.0 0.0076014614 0.052989975
6 0.85821474 0.0 0.0 0.011255654 0.063322365
7 0.91479445 0.0 0.0 0.005 0.08020559
8 0.9161637 0.0 0.0 0.017694628 0.06614172
9 0.9035666 0.0 0.0 0.025771506 0.070661925
10 0.93193793 0.0 0.0 0.00093627756 0.06712583

Table 6.6: CPU Utilization over ten seconds of rendering a complex svg
“København 512.svg” with Pathfinder.

6.3 Test Case Analysis

This section interprets the several benchmarks and data collected in the results above.
Precisely, we will frame findings in the context of our analysis questions in the test case.

6.3.1 Consequences of Tessellation

In our questions for analysis, we asked “What are some consequences of tessellation?.”
Below we will explain our findings for this query.

Primitive count

Tessellation does not always output more complexity than the original vector image. In
the example of “Flag of Denmark.svg” in our profiling results47 we notice the original file
contains 18 path commands, and the tessellation outputs 12 triangles. This intuitively
makes sense, as the flag may be represented with two triangles for each rectangle, with
the flag being able to be described as six rectangles.

Tolerance

One may point out that “Ferris.svg” has far less path commands than “ASU.svg” in
their original svg files, but produces far more triangles during tessellation. Upon further
investigation, this is because of curve flattening and a tolerance, described more in Section
§2.5. “ASU.svg” has many more paths due to the text “Mountaineers” over the logo,
which are subtracted away during curve flattening simplification, a function of tolerance.

47see: Subsection §6.2.1
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Tessellation costs

Given an svg with varying amounts of primitives, tessellation costs a lot. If we ignore all
initialization cost required to de-serialize an svg, which is usually higher than tessellation
cost itself according to our results, tessellation is still expensive. Performing a simple
linear regression on time residuals gives fairly precise predictions of tessellation time cost
as volume of primitives increases. These results suggest that a few thousand primitives
will start to incur several milliseconds of cost regardless of type.

Triangle tessellation cost

f(x) = 0.00044ms ∗ x− 0.1022ms (6.1)

where x is the amount of triangle primitives to tessellate.
Correlation: r = 0.996
R-squared: r2 = 0.993

Quadratic Bézier curve tessellation cost

f(x) = 0.00035ms ∗ x+ 1.0694ms (6.2)

where x is the amount of quadratic Bézier curve primitives to tessellate.
Correlation: r = 0.998
R-squared: r2 = 0.997

Cubic Bézier curve tessellation cost

f(x) = 0.00039ms ∗ x+ 3.9174ms (6.3)

where x is the amount of cubic Bézier curve primitives to tessellate.
Correlation: r = 0.968
R-squared: r2 = 0.937

6.3.2 Consequences of Pre-Computation

In our questions for analysis, we asked “What are the consequences of a pre-computation
model?.” Below we will explain our findings for this query.

Cache-friendliness

Pre-computation is proven useful in situations where vectors do not have to be deformed
or rescaled, such as in the web browser case. Furthermore, Pre-computation may use
caching to reduce computation in future rendering iterations. For example, in our bench-
marks recording continuous “dry” and “wet” frametimes, we recorded a single frame
turnaround and continuous frametimes for three renderers. Since we did not use any
caching features with resvg, resvg ’s dry frametimes are approximately equal to its wet
frametimes. On the contrary, render-kit’s only GPU feature is a storage buffer binding
to tessellation data for computation re-use. This removed the need to re-tessellate per
frame, improving the frametime of subsequent frames by a magnitude of 10.
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Interactivity

While pre-computation may help to reduce recalculation and improve performance through
recycling, the model is anti-thetic to interactivity such as animation or live deformation
such as scaling. A reasonable goal is to render an image within 16ms, the reciprocal of
60fps (frames per second), a standard convention for interactivity. In our case we only
consider static content, so this is not such an issue, but it should be noted that our test
case is both narrow and naive for brevity.

6.3.3 Hardware-Acceleration

In our questions for analysis, we asked “How can hardware-acceleration improve perfor-
mance?” Below we will explain our findings for this query.

GPU latency

Hardware acceleration always brings latency when interacting with the GPU, so in some
cases, hardware acceleration is not the magic solution some believe. In elementary vector
images with low complexity, resvg beat both Pathfinder and Render-Kit which both
leverage the GPU. In the case of Render-Kit, there is an nonnegotiable 110ms of submit
latency in buffer allocation and transfer required for an initial frame. Viewing the NVTX
annotations while running Pathfinder provides us with the details to prove this. We have
annotated the first frame as “Strange Behavior” in NVIDIA©Nsight Systems48 to show
this behavior in Figure 6.20. The metric samples show a build-up to a GPU queue
submit, thereby triggering a compute dispatch to commit DRAM for reading subsequent
frames.

48see: https://developer.nvidia.com/nsight-systems
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Figure 6.20: Initial GPU latency of Render-Kit, annotated by vgpu-bench.49

Since Pathfinder interprets vector graphics mainly through shaders, there is minor
caching or pre-computation, and less ceremony is required for an initial frame. However,
even with no caching, there still exists an unnegotiable 2ms of GPU latency on our test
hardware.

Compute-centricity

Pathfinder mollifies historical pipeline rigidity by utilizing compute shaders for parallel
winding number computation. This pipeline results in efficient rendering on the GPU
in almost all cases, except for elementary ones. Against a traditional raster pipeline,
Render-Kit provided no competition, with Pathfinder being exceptionally better in all
cases.

49attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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CPU Utilization

There is also significantly lower CPU utilization monitored with a compute-centric ap-
proach, suggesting an intention of increased GPU leveraging and parallelization.

GPU-caching

Although resvg offers one of the most optimized backends for rasterizing vector graphics,
the renderer failed to outperform the minimal tessellation-based renderer in render-kit
by a lack of caching ability.
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Chapter 7

Discussion

Our discussion connects interesting findings and discourse on our test case results and
interprets our analytic framework’s performance in a test trial.

7.1 Test Case Discussion

In the context of our test case, we analyzed several axes of measurement for static svg
content. We extrapolated many patterns and consequences for our analysis questions
through many data artifacts and plots provided by vgpu-bench. These artifacts proved
how dated tessellation is in a modern context for static content. Additionally, results
support compute-centric approaches may provide better results.

When tessellation input was a simple svg file, obstacles such as tessellation costs,
initialization costs, and GPU latency crushed any potential of a fast initial frame. As a
pre-computation model, tessellation also suffers from obstruction by other means, such as
hostility towards deformations and rescaling. Benefits of hardware acceleration benefit-
ting tessellation were only noticed with Render-Kit ’s GPU cache on subsequent frames,
even outperforming an extremely optimized renderer like resvg. However, these benefits
came at the cost of higher computer resources. Moreover, the results of GPU leveraging in
Render-Kit paled comparatively to Pathfinder ’s sophisticated compute-centric rendering
in every benchmark.

The test case implies that a compute-centric approach provides faster initial frame-
time and subsequent frame times with evidence. Compute-centricity in Pathfinder was
capable of higher parallelization and utilizing fewer CPU resources, mitigating the impact
on business logic and system performance. While faster initial frame times were observed
with CPU rendering by resvg in the most simple examples, this observed benefit only
exists until render time exceeds GPU latency.

Specifically, hardware acceleration shows incredible benefits for rendering vector
graphics for our test case, especially with compute-centric approaches. Tessellation stood
dominated in our test case results by compute-centric pipeline, and feels dated as a
symptom.
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7.2 Product Retrospective

Our research is our product and methodology. We prove our framework’s ingenuity
through use; the benchmarks deliberated to support our synthesized theories and test
cases prove that. An extended test trial rewarded itself through valid results and feed-
back, and the features and API provided are useful.

We feel successful in engineering a product to analyze vector graphics with finer
granularity. Our framework made capturing benchmarks on image complexity, tessella-
tion costs, and rendering easy. Moreover, all aspects of our framework’s methodology
were utilized in our test case, including integration into NVIDIA©Nsight Systems1 for
further analysis in the discussion, proving value to each design choice.

1see: https://developer.nvidia.com/nsight-systems
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Chapter 8

Conclusion

8.1 Review

Vector graphics pose unique properties which make the imaging model ideal for users
who value resolution independence, storage footprint, or seek to benefit from implicit
modeling. While the field is optimistic with experimentation and research, new and
old technologies lack comprehensive performance comparison. Users seeking to integrate
a rendering backend have little more than cursory time trials or Big-O to encourage
adoption, which is often insufficient.

This entanglement of information among technology is an opportunity for fur-
ther understanding. Analyzing performance on the GPU is hard. Our research sets a
precedent to deobfuscate the field of hardware-accelerated vector graphics with a novel
benchmarking framework. Our tool’s extensible design and integration into GPU anal-
ysis tools will begin to rectify the inadequate comparative research. We justified our
framework’s design decisions through methodology and a pilot test trial, which collected
results defending our synthesized theories.

While vgpu-benchis the first step in bringing enhanced optics and context to eclec-
tic options, there is still available work.

8.2 Future Work

In this section, we provide opinions on how to improve both the imaging model for vector
graphics and our framework’s usefulness.

8.2.1 Research Focus

Results presented in our test case support a theory that compute-centric approaches
which extend the flexibility of compute-shaders to leverage more parallelism in the vector
imaging model are promising. On the contrary, tessellation and pre-computation-based
approaches may be convenient for static vector rendering but do not encourage further
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research, given their anti-thetic consequences to the imaging model. New research is
needed to extend the flexibility of low-level GPU features and maximize parallelism in a
way that does not inhibit any benefits discussed in Chapter 2.

8.2.2 Tooling

Currently, tooling for vector graphics is poor. Most people may be familiar with excellent
software such as Adobe Illustrator1 or Inkscape2 for composing vector graphics, but there
is almost no free or open-source tooling for animation. This lack of tooling has likely
discouraged adoption for artists and developers alike. Failed standards on how to encode
animation such as the “SMIL” format have also come and gone, failing to reach adoption
with eventual deprecation3.

8.2.3 Encoding

The svg specification is built on xml, an extremely verbose format with repeating tags
and redundant information. While this format is still generally more lightweight than
raster graphics, further elaborated in Subsection §2.3.2, compression can improve file
storage and empirical benefits such as network throughput.

Another issue is standardization. The bloated svg specification is an inhibitor
of vector graphic rendering implementations, with full implementations being relatively
rare, even in web browsers with commercial support. Future specifications should abbre-
viate current features, such as subdividing higher-dimension Bézier curves into piece-wise
quadratic Bézier curves or flattening text into paths. A simpler specification would fa-
cilitate faster standardization but require tooling to adopt such output formats, which is
a hard sell.

8.2.4 API Enhancements

Since Rust is still in its infancy as a language, it is missing some key language features
which would empower a more intuitive API.

Integration

As the framework’s ecosystem receives adoption, people will want to test against certain
renderers or tessellators. The traits provided in the “render-kit” and “tessellation-kit”
features provide a convenient interface and pre-written tests, although it would be ben-
eficial if users could add modular dependencies which provide certain renderers, such as
Pathfinder 4, or certain tessellators, such as Lyon5, to test against.

1see: https://www.adobe.com/products/illustrator.html
2see: https://inkscape.org/
3see: https://developer.mozilla.org/en-US/docs/Web/SVG/SVG animation with SMIL
4see: https://github.com/servo/pathfinder
5see: https://github.com/nical/lyon
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Variadic generics

Variadic generics are the ability to enable traits, functions, and data structures to be
generic over a variable number of types. Currently, a monitor delegated to a Benchmark

is passed as a Box<dyn Monitor>, where Monitor is a trait. Thus, trait objects are
handled by a collection (Vec) for dispatch when polling the collection of monitors.

This relatively minor inconvenience incurs some runtime overhead due to dynamic
dispatch. On the other hand, variadic generics would make polling invocations and
memory access slightly faster with static dispatch and stack-allocated monitors. An
example of what variadic generics could be semantically is in Code Example 8.1 below.

Code Example 8.1: Theoretic variadic generic usage in vgpu-bench.

fn poll_monitors<...M: Monitor>(monitors: (...M)) {

for monitor in ...monitors {

monitor.poll();

}

}

let cpu_mon = (CpuUtilizationMonitor::new());

let hb_mon = (HeartbeatMonitor::new());

let mixed_mon = (CpuUtilizationMonitor::new(),

HeartbeatMonitor::new());

poll_monitors(cpu_mon);

poll_monitors(hb_mon);

poll_monitors(mixed_mon);

Parallel runtime execution in Driver

The Driver is designed in such a way to execute benchmarks sequentially, as to eliminate
interference. However, one may be a concerned with “how x performs while y.” In such
a case, this can currently be performed by launching two threads with two drivers, or
two threads within a closure, but this is tedious ceremony that we would like to provide
an API for.

Asynchronous API

Currently, our Driver data structure is a synchronous runtime executor for bench-
marks. While this works, extending the runtime further with parallel computing and
asynchronous programming should be possible. Independent tasks, such as polling with
a Monitor, could be faster and less resource-hungry asynchronously than with multi-
threading.
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Currently, async closures are unstable as of Rust 1.59. Our methodology prohib-
ited using unstable features in data collection code as a design philosophy. Therefore,
vgpu-benchmust wait for feature stabilization to declare asynchronous benchmark decla-
rations. Async closures would also provide the ability for users to run async benchmarks
in differing runtime executors built for futures, rather than relying on Driver as the only
option. See Code Example 8.2 for a theoretical example.

Code Example 8.2: Async flow in vgpu-bench.

use futures::executor::block_on;

use vgpu_bench::prelude::*;

pub async fn benchmark() -> AsyncBenchmark {

AsyncBenchmarkFn::new(async || {

let mut measurements = Measurements::new();

measurements.push(something_to.await);

Ok(measurements)

})

}

fn main() -> Result<()> {

block_on(benchmark())?.write("results.csv")?;

Ok(())

}

Live Monitoring

Sometimes visualization is more important than accuracy, and in such cases, we want
to provide the ability to visualize a live, updating plot. This has the benefit of seeing
live impact in an interactive demo, as opposed to annotating the behavior. Such a plot
would update when a Monitor returns a polled value.
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A Methodology for Table 2.1

This explains the methodology for Table 2.1. All files used to replicate results can be
found at https://github.com/simbleau/simbleau/tree/research/thesis-master. We used
linux system binaries and inkscape for SVG → PNG file exporting.

First we parsed the file “assets/Impossible Cubes.svg” for viewport information to
obtain the canonical size the svg was saved in. The metadata in the image indicates the
dimensions are roughly 375x429.

viewBox="0 0 374.95 429.34"

Thus, to export at 1x scale, we used the following inkscape command:

inkscape -w 375 -h 429 Impossible_Cubes.svg -e Impossible_Cubes.png

Upscaled dimensions are modified through the -w and -h options. File savings
were measured in bytes with the formula f(x, y) = 100(1 − x

y
), where f(x, y) is the

percentage of storage savings, x is the amount of original file bytes, and y is the new
amount of file bytes.

B Methodology for Figure 3.2

There are many ways to simulate an image without occlusion culling. The first option is
to use the blending hardware; when rendering geometry with any GPU API, specify the
“add” blending operator and render “1” into the target. The target will result in a map
containing the number of writes per pixel. Afterward, one can then take that as input of
another shader that translates that number into a color that is easy to see.

That being said, we took a rudimentary approach, as detail was not imperative.
We took an svg, “GhostScript Tiger.svg”, and ungrouped all paths in Inkscape. We then
selected all paths and modified the opacity to 0.2 and the fill color to white. This process
is shown in Figure 1.
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Figure 1: Changing fill and opacity for paths in Inkscape.6

6attribution: By Spencer C. Imbleau, MIT/Apache 2.0
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