
CROTTS, LARRY JOSHUA, M.S. Construction and Evaluation of a Gold Standard

Syntax for Formal Logic Formulas and Systems. (2022)

Directed by Dr. Stephen R. Tate. 62 pp.

Classical logic plays a significant role in computer science where formal proofs

eventually make their way into a student’s curriculum via discrete mathematics,

philosophy logic, or some other medium. We traditionally see propositional logic

in Boolean algebra, conditional statements, program and data structure definitions

and invariants, and much more. In fact, everyday language is easily expressible in

first-order logic. Accordingly, a solid understanding of classical logic is paramount.

Natural deduction, as the name suggests, is a method of reasoning about an argument

using natural intuition, and as a result, it appears quite frequently as a topic of

study in introductory logic courses. Due to its relevance, natural deduction intelligent

tutors and solvers are widespread on the internet and in the classroom to improve the

pedagogical appeal of logic. In this thesis, we present and solve two questions. The first

is a proposed research question wherein we evaluate the efficacy of publicly-available

natural deduction tutors/solvers with the prospect of determining what inherently

defines understandability and difficulty in natural deduction proofs. In the second

question, we investigate the problem of unnecessary intermingling of logic syntaxes.

With this, we propose a gold standard language for zeroth and first-order logic with the

goal and hope of tutor/proof systems adapting to said language to ease the currently

laborious task of system evaluation and comparison.

CONSTRUCTION AND EVALUATION OF A GOLD STANDARD SYNTAX FOR

FORMAL LOGIC FORMULAS AND SYSTEMS

by

Larry Joshua Crotts

A Thesis Submitted to
the Faculty of The Graduate School at

The University of North Carolina at Greensboro
in Partial Fulfillment

of the Requirements for the Degree
Master of Science

Greensboro

2022

Approved by

Stephen R. Tate

Committee Chair

DEDICATION

To my Viola.

ii

APPROVAL PAGE

This thesis written by Larry Joshua Crotts has been approved by the following

committee of the Faculty of The Graduate School at The University of North Carolina

at Greensboro.

Committee Chair

Stephen R. Tate

Committee Members

Insa R. Lawler

Chun Jiang Zhu

Date of Acceptance by Committee

Date of Final Oral Examination

iii

ACKNOWLEDGMENTS

I would like to extend my gratitude and thanks to the esteemed Dr. Steve Tate for

not only overseeing and advising this thesis, but also for being a fantastic mentor and

professor throughout my time at UNC Greensboro. I sincerely appreciate Dr. Nancy

Green for introducing me to the wonderful world of academic-level computer science

research, as well as Dr. Insa Lawler in the Philosophy department for introducing

me to the exciting adventure that is formal logic and its pedagogical impact. Their

unwavering guidance, mentorship, and insight influenced me to pursue graduate school.

Outside of UNCG, I thank my parents for their love and support throughout my

education. I also thank two of my best friends: Audree Logan and Andrew Matzureff,

for their love, support, and friendship from high school to now.

It also cannot go without saying that I am forever grateful for the support from

my loving wife Viola. You never let me down.

Finally, I am deeply indebted to Mr. Tony Smith: my former Advanced Placement1

Computer Science teacher. Without him, I would not be where I am now. Thank you

for seeing (and ultimately helping me reach) my potential.

1https://ap.collegeboard.org/

iv

https://ap.collegeboard.org/

PREFACE

The basis for this research stems from my love of teaching. When I took my first

introduction to formal logic course as an undergraduate, I was taken aback by its

amazing appeal and relation to computer science. From my semesters serving as a

tutor/teaching assistant in the Philosophy department at UNC Greensboro, I saw

many students that struggled with this material. The problems ranged from its

confusing syntax, proof techniques, and esoteric notation. At that time, I thought to

myself, “Why not make a tool that helps students understand it better?” Of course,

that question had already been answered and deeply investigated across multiple

disciplines, but I knew that there had to be more. Once I began my exploration, I

quickly realized that online solvers, theorem provers, proof assistants, and similar

tools do not have a systematized input format, and testing their algorithms was far

more cumbersome than I initially expected and anticipated. This evolved into the

desire for a gold standard syntax for both zeroth and first-order logic systems.

v

Table of Contents

List of Figures . ix

List of Tables . x

I. Introduction . 1

1. Overview . 1

2. Contribution . 2

3. Thesis Content . 2

4. Terminology . 3

II. Related Work . 5

1. Formal Logic Tutors . 6

1.1. Propositional Logic . 6

1.2. First-Order Logic . 9

1.3. Problem/Solution Generators 10

2. Specialized Logic/Theorem-Proving Programming Languages 11

3. Standardizing Logic Syntax . 13

4. Boolean Satisfiability Solver Input Formats 14

III. Methods . 16

vi

1. Evaluation of Natural Deduction Systems 16

1.1. Experiment 1: A Student-Driven Approach for Difficulty Metrics 17

1.2. Experiment 2: Determining the Efficacy of Natural Deduction

Software . 18

1.2.1. FLAT: Formal Logic Aiding Tutor 19

1.2.2. ANDTaP: Automatic Natural Deduction Tutor and

Prover . 20

1.2.3. System Comparison Results 27

2. Gold Standard for Formal Logic System Syntax 29

2.1. Zeroth-Order Logic Well-Formed Formula Representation . . . 30

2.1.1. Zeroth-Order Logic Example 1 33

2.1.2. Zeroth-Order Logic Example 2 34

2.1.3. Precedence Mapping Example 36

2.1.4. Associativity Mapping Example 37

2.1.5. Natural Deduction Extension 37

2.1.6. Natural Deduction Example 38

2.2. First-Order Logic Well-Formed Formula Representation 39

2.2.1. First-Order Logic Example 42

IV. Discussion and Future Direction . 43

1. Experiment 1 . 43

2. Experiment 2 . 44

3. Future Work . 47

3.1. Gold Standard Extendability via Non-Classical Logic Systems 47

3.2. Intelligent Tutors . 47

vii

4. Conclusion . 48

References . 49

A. Propositional Logic Natural Deduction Algorithm 56

B. Result Graphs . 59

C. Reference URLs . 62

viii

List of Figures

1. DIMACS Format Example Input . 15

2. Two Natural Deduction Proofs Generated by FLAT 19

3. ANDTaP Tutoring System . 23

4. LIGLAB’s Natural Deduction . 24

5. NaturalDeduction Windows Application Solving a Proof 26

6. TautLogic’s Predicate Natural Deduction 27

7. Proof of P = {A↔ B,C ↔ B}, c = A↔ C 45

8. Example of Finding a Valid Proof using Satisfaction Algorithm 58

9. All Systems Natural Deduction Proof Line Count 60

10. Propositional Logic Natural Deduction Line Count 61

11. Predicate Logic Line Count . 61

ix

List of Tables

1. Common Notation in Propositional Logic 6

2. ISO Logic Symbols . 14

3. Subset of Implemented Algorithms in FLAT 21

4. FLAT Natural Deduction Axioms . 22

5. Data Analysis of Propositional and First-Order Logic Proofs 28

6. Data Analysis of Propositional Logic Proofs 28

7. Data Analysis of Predicate Logic Proofs 28

8. Non-Zero Data Analysis of All Proofs 29

9. Required Syntax to Parse Proof (P, c) 31

10. Connective Symbols for Zeroth-Order Logic Gold Standard 32

11. Connective Symbols for First-Order Logic Gold Standard 40

x

CHAPTER I

INTRODUCTION

1 Overview

Classical formal logic is a subset of philosophy that branches into related disciplines

such as computer science, statistics, mathematics, and similar sciences. Logic, however,

is taught in non-science fields like communication studies to reinforce critical thinking

and improve deductive skills for argumentation. Per the Stanford Encyclopedia on

Classical Logic [45], logic is a tool used for studying correct and analytical reasoning

in both formal and informal languages. Its existence spawned questions ranging from

its use in mathematics as an aid to disambiguate problems and proofs to considering

it as an extension to natural language. As Hatcher [20] states, due to an increased

viewing of rhetoric and opinion versus factual knowledge in modern social media,

the need for strong logical thinking abilities is crucial for evaluating, analyzing, and

debating against arguments and claims. Hatcher, likewise, mentions that standard

logical deductive forms such as methods of inference and syllogisms serve as critical

components for a student’s ability to determine the validity of an argument and the

relation (or lack thereof) of premises to conclusions. A desire for valid and sound

arguments from students constitutes and contributes to wider adoption of formal

logic classes in universities, or at the very least, the pedagogy of invalid arguments

1

on how to refute incorrect and, sometimes egregious, contentions. Formal logic’s

relation to computer science, in particular, is extensively prevalent when dealing with

Boolean logic via sequential and iteration statements, mathematical proofs, set theory,

reasoning about program correctness, and so much more. The relevance of logic in

our daily lives is unprecedented and sometimes understated.

2 Contribution

We produce several key contributions in this thesis, including:

• FLAT: Formal Logic Aiding Tutor, a tool for formal logic pedagogy.

• ANDTaP: Automatic Natural Deduction Tutor and Prover, a web-based natural

deduction tutor.

• Comparison and evaluation of three publicly-available natural deduction proof

tools.

• Creation of a gold standard syntax for zeroth and first-order logics.

3 Thesis Content

This thesis is broken up into four primary components. Chapter I introduces

definitions, background, and our problem definitions. Chapter II reviews the related

literature for prior work in this area. Chapter III discusses our two methods of research,

being our natural deduction and formal logic tutoring system: FLAT (Formal Logic

Aiding Tutor), as well as the creation of a gold standard for formal logic syntax and

semantics (i.e., the creation of a standardized grammar for logic language evaluation).

2

Finally, chapter IV discusses and analyzes the results outlined in chapter III, as well

as future work and consequences of our research.

4 Terminology

Before we continue, we will define some terms frequently used in formal logic-related

work.

Definition 1 (Logic). A philosophical definition of logic is that it is a scheme of

deductive reasoning defined by the laws of validity. In computer science, its definition

extends this idea to electrical circuitry (i.e., how a computer ought to perform a given

task).

Definition 2 (Well-Formed Formula). A well-formed formula, according to [42] is a

string (formula) of syntactically-correct characters which conform (well-formed) to a

language grammar.

Definition 3 (Proposition). A proposition is a thought expressed by a statement or

claim.

Definition 4 (Proof). A proof is a style of argument which establishes the truth of a

proposition.

Definition 5 (Theorem). A theorem is either a well-known and proven proposition,

or one that can be proven.

Definition 6 (Natural Deduction). Natural deduction [16] is a form of proof where

the method of reasoning stems from human, or natural, intuition.

Definition 7 (Syntax). Syntax defines the well-formed property of a formula in a

language grammar.

3

Definition 8 (Grammar). A grammar is the definition of syntax rules of a language.

Largely in computer science contexts, grammars determine whether a string of char-

acters belongs to a language. Context-free grammars are used to describe natural

language, which were later adapted to structurally define programming languages [2].

4

CHAPTER II

RELATED WORK

In this chapter, we will discuss the related work and prior contributions to the

discipline of natural deduction pedagogy, as well as efforts to modernize and increase

its effectiveness for students with less background in, for example, mathematics.

Extending formal logic to a technological education is not a new idea — there exist

many online solvers, provers, and programming languages designed to suit the needs

of logic students, or those that use formal logic in some manner. In addition to these,

we will also mention more powerful theorem provers that are aimed at experts/more

experienced users.

Many of the systems we describe below, including our own, are a type of intelligent

interactive tutor. A goal of such a system is to mimic the relationship between

instructors and their student(s). Correspondingly, if a student starts to struggle with

any given topic, the tutor ought to recognize the mistakes made, correct them, and

then lead them down the intended path. Similarly, it should provide accurate and

customized hints to a problem when requested, even if the student has not necessarily

yet gone astray. Taking this a step further may call for dynamic generation of questions

tailored to the individual student based on current progress. Automatic tutors and

more so intelligent interactive tutors have a host of benefits, including reduced stress

5

on teachers by not having to create unique content for all students (a feat almost

impossible unless the class size is appropriately small), and research has demonstrated

that students perform better on assessments in one-on-one tutoring sessions [54].

1 Formal Logic Tutors

1.1 Propositional Logic

According to Hein [21], propositional logic, which we will interchangeably refer to

as zeroth-order logic (or in other disciplines as sentence logic, sentential logic, Boolean

logic, combinatorial logic, or propositional calculus) is a language of propositions

that conform to rules. Propositional logic is comparatively simpler than first-order

predicate logic described in section II.1.2 — it does not use variables, constants, or

quantifiers of any kind. Rather, in this language, there are four binary (two-place/two-

arity) connectives: logical conjunction, logical disjunction, logical implication, and the

biconditional, as well as one unary (one-place/one-arity) operator: logical negation.

While connective semantics are standard, a variety of notations exist to represent

them, as shown in table 1.

Table 1. Common Notation in Propositional Logic

Semantic Meaning Operator/Connective

Logical Conjunction ∧, &, ·, “and”
Logical Disjunction ∨, |, ∥, +, “or”
Logical Implication ⊃, →, ⇒, >, =⇒ “if”, “then”
Logical Biconditonal ↔, ⇐⇒ , ≡, ⇔, “iff”, “if and only if”
Logical Negation ¬, −, !, ∼, “not”

Because of the reducible nature of propositional logic to simple structures and

representations, there exist plentiful online truth table generators that provide detailed

6

and immediate feedback for users while solving problems and well-formed formulas.

Further, such generators work well not only for formal logic, but also computer science,

mathematics, and electrical engineering, allowing students to enter a Boolean truth

value (i.e., true/false) for an operand or proposition and the computer will determine

if it is valid or invalid for an arbitrary cell [13]. An apparent drawback is that they

require a student to have prior experience with the underlying logic or preexisting

knowledge of entering values into a truth table [29], a sometimes undesired prerequisite.

The problem is that many systems are not aimed at teaching, but rather serve as a

solution or complementary aid to students or others who have a full understanding of

the material.

Lukins et al. [31] developed the P-Logic Tutor: a propositional logic tutor with

several key functions including a truth table generator, parse tree viewer, tautol-

ogy/satisfiability determiners, a built-in theorem prover, all of which are supplemented

with learning adaptability that generates feedback for students. It was developed as a

Java Web Start (JNLP) applet. In their report, they describe an experiment where

students across two discrete mathematics courses evaluated its performance, where

they received generally positive reviews with some small limitations that students

found cumbersome. Unfortunately, their provided link is now offline, meaning there is

no way to investigate either the source code or even use the application in attempt to

test it against modern alternatives. One other significant downside to the P-Logic

Tutor is that while it covers propositional logic well as its name suggest, it completely

lacks support for first-order logic. Additionally, the system had the requirement where

students (or any user) had to log in for performance monitoring purposes. This, in

turn, severely limits the testability to only those at, in this instance, Wake Forest

University.

7

Another stand-alone software-based solution (i.e., executable outside the browser)

is LEGEND by Vlist [50]. LEGEND is untestable as it is closed-source and unavailable

to the public, but it allows the user to prove and generate proofs from a (simple) given

propositional formula.

Lodder et al. [30] created LOGAX, which is a tool for students to learn and

construct axiomatic proofs with feedback and hints. While useful in its specific domain,

we focus on natural deduction proofs instead of axiomatic proofs for simplicity and

approachability for non-computer science students.

Mostafavi et al. [33] have written several papers on their Deep Thought tool with

several iterations of improvement ranging from on-demand step hint generation to

data-driven approaches to problem generation. Their work largely aims to improve

the pedagogy of deductive logic via mastery learning leveling components which

dynamically change based on student performance, with higher proficiency in problem

solving leading to harder problems e.g., longer proofs, different axioms, etc. Their

system also modifies the difficulty of problems to fit a student’s mastery level (e.g., if a

student has trouble answering a particular proof, they are given an easier alternative).

An eventual conclusion reached was as the “intelligence” of a tutor increased, the

number of successful students likewise increased.

In [46], Siev describes the Automated Proof Search system AProS: a proof genera-

tion system which works in tandem with their proof tutor. It is used in their Open

Learning Initiative1 project at Carnegie Mellon University. Though, their system and

pedagogical pipeline strays away from only propositional and first-order logic in favor

of theory of computing topics such as Turing machines, computability, set theory,

and others. In addition, the links provided on their website are either out of date or
1https://oli.cmu.edu/

8

https://oli.cmu.edu/

incorrect, because when trying to access their Logic & Proofs course, it redirects users

to the OLI website instead. Plus, the fully-featured tool is not provided, and their

Java Web Start version is not easily accessible in the modern web, where Java in the

browser is, to a great extent, deprecated.

In [52], Verwer et al. briefly describe their propositional logic tutor Bop: a Fitch-

style proving system. As an aside, Fitch-style calculus is a common method of proof for

natural deduction, using lines to separate premises, derivations, and sub-derivations

[14]. Like many other systems, their provided link is also offline, so we had no way of

assessing its performance.

1.2 First-Order Logic

Cerna et al. [6] developed AXolotl: a unique tutor due to its Android implementa-

tion. AXolotl includes several types of proofs and tutorials, though its reliance on a

file protocol to load problem sets or questions is a bit cumbersome for the non-savvy

student or instructor as they describe. Plus, its curriculum is aimed at computer

scientists with what appears to be a strong background in logic, lambda calculus, and

type theory.

In [12] and [32], Mauco and Felice et al. show educational software for increasing

the appeal of first-order logic to introductory students. With this idea, they devel-

oped FOLST and LogicChess. The former, FOLST, is a graphical application that

shows an illustrated scene with predicates that define said scene e.g., isSleeping(x),

isOnTheGrass(x) when referring to a farm. Students must enter facts that describe

the illustration using these given predicates. LogicChess is similar in that students

are provided predicates to describe a scene, but with the difference that it the scene is

modeled as a chess board with chess pieces. According to their reports, students may

9

modify the model which updates the underlying logic formulas, which may then be

checked for validity and satisfiability.

Perikos et al. in [38] developed a web-based system to help students translate

sentences from natural language to first-order logic. Specifically, their approach is to

ask students to find verbs, adjectives, and nouns from the text. Then, find connectives,

predicates, and quantifiers. Finally, create groups of related predicates and repeatedly

connect them until a final formula is achieved. They conclude with a suggestion to the

broader research community that announces the problem of dynamically-generated

hints. Creating static hints for an individual formula by analyzing all possible comes

is far too laborious to be practical and beneficial for students.

Dostálová et al. [10] describe ORGANON: a web-based tutoring system for both

propositional and predicate logic with randomly-generated mutations from a database

of problems. Unfortunately, from the time that their paper was written, the system

had very limited functionality, only supporting conjunctive/disjunctive/prenex normal

form conversion exercises, with others in the works. We could not find any current

information about ORGANON.

1.3 Problem/Solution Generators

In this section, we will briefly mention work related to automated problem gen-

eration (i.e., automatic creation of problems for students to solve). Practice makes

perfect with logic, and textbooks often only provide final answers; not the complete

answer with shown work. As such, unmotivated students may merely copy the the

answer without retaining any relevant information, an undesired outcome. A tool,

or algorithm, that dynamically generates problems and solutions thereof serves as

excellent remediation or recitation.

10

In [1], Ahmed et al. created a framework and tool for automatically generated

natural deduction problems and solutions. They explain the significance of problem

generation on the grounds that it prevents rampant plagiarism, and copyright infring-

ment from publishers. Plus, they reiterate the idea that not only does practice help,

but practice tailored to the student satisfies that role to a greater extent.

Other work has gone into generating algebra practice problems (see [47]), in

addition to random boolean expressions for SAT and SMT solvers (see [3]).

2 Specialized Logic/Theorem-Proving Programming Languages

What is a theorem prover? Characteristically, it is a system that uses a combination

of built-in rules, axioms, to prove a provided formula or theorem. It searches for an

ordering of rules, axioms, and intermediate formulas which satisfy the theorem and

show it holds true.

A historical theorem-proving logic programming language is Prolog, which uses

Horn clauses, or a sequence of literals separated by disjunctions, to deductively prove

goals. It was popularized behind the belief that logic programming ought not to

be restricted to human intellect and architecture, but rather be structured around

solving provided problems and assumptions that a human may easily understand when

reading. Execution of a Prolog program, as hinted above, instructs the system to,

satisfy a goal, given relevant background information, i.e., facts and rules [48].

Another form of theorem proving which is affiliated with artificial intelligence

is inductive logic programming, coined by Muggleton in [34]. In summary, with

inductive logic programming, we are provided with a data set of facts and hypotheses

to inductively prove an general observation from the specific. A commonly-presented

11

equation is, we have a set of positive examples E+, a set of negative examples E−,

background knowledge B, and we wish to find a hypothesis H such that B ∧H ⊢ E+

and B ∧H ⊬ E− [5].

Coq is a functional programming language that at its core is a proof assistant

[39]. It has been historically used for program verification in compiler optimization

with LLVM (Low-Level Virtual Machine) and C, cryptographic security environment

reasoning, and even fundamental breakthroughs in group theory and the famous

four-color theorem [17]. To complement this description, the four-color theorem is a

map-coloring problem where no more than four colors are needed to color the map such

that no two adjacent sides share a color [18]. Because Coq is a functional language, it

is trivial to reason about the consequences of a function or a segment of code. That is,

functions should not, for example, produce side effects, and thus have the sole purpose

of computing a result.

Isabelle [36] is a proof assistant with built-in functional programming that predom-

inately focuses on higher-order logic via induction proofs, lists, and natural numbers.

It also allows for inductively-defined sets, and logic proofs similar to those we de-

scribe in our report. Finally, it supports lambda calculus expressions, recursion, and

proofs thereof which parallel to type theory paradigms. As a consequence, it bears

resemblance to functional languages e.g., ML, F#, and OCaml. While it is a powerful

language and tool, we find it to be bulky, similar to that of Coq’s presentation for

introductory logic students. Villadsen et al. [53] created NaDeA: a natural deduction

system which integrates with Isabelle to generate and verify theorems. Their premise

states that students should be provided with a background to formally verify the

correctness of software, and NaDeA helps build these prerequisite skills.

Floyd-Hoare logic is a system of reasoning used to prove statements about programs,

12

and otherwise verify the correctness of software. With Hoare logic, we state pre-

conditions and post-conditions of an arbitrary segment of code, then prove those

conditions. In [39], Pierce et al. implement Hoare logic in Coq, but it originates back

to the mid-20th century in [25].

In summary, there are several other theorem provers which all serve similar purposes

(see [28], [35], [37], [44]) for program/software verification, hardware verification, formal

logic/higher-order logic proofs, type theory, mathematics with set theory, and other

topics related to automated reasoning due to the impracticality of and error-potential

human proofs. Because this thesis is limited to natural deduction and introductory

formal logic pedagogy, we will omit the remaining discussion of these tools.

3 Standardizing Logic Syntax

Interestingly, the International Organization of Standards has a dedicated section

to logic symbol syntax in their quantities and units for mathematics standard [15].

Alas, it only addresses a very small subset of widely-used connectives as shown in

Table 2. Plus, even though many other mathematical symbols are standardized and

adopted in practice (e.g., set notation), logic notation never received the same level of

attention from its audience.

We could only find one attempt outside the ISO at formally standardizing proposi-

tional and first-order logic syntax, and it was for a classroom mathematics setting. In

[11], Dougherty attempts to standardize logic symbols for his calculus courses. He

noted that several symbols are used, sometimes erroneously, and other times in an un-

derstating context (i.e., using an implication when a biconditional is better suited). He

proposes that the connectives → and ↔ ought to be used when making a small claim

13

Table 2. ISO Logic Symbols

Semantic Meaning Operator

Logical Conjunction ∧
Logical Disjunction ∨
Logical Negation ¬
Logical Implication ⇒
Logical Equivalence ⇔
Universal Quantifier ∀
Existential Quantifier ∃

that returns true or false, whereas =⇒ and ⇐⇒ are for tautological statements.

Dougherty also dislikes implicit precedence, in favor of brackets and parentheses for

grouping binary connectives so as to not unnecessarily confuse students, a shared

sentiment. Importantly, the premise of his paper is that standardizing logic syntax

helps students clarify their arguments and better illustrate the intended idea behind

a proof. The downsides are that students may often worry about what symbol to

use when rather than focusing on the concepts (we present a similar argument in

chapter III with our experimentation of natural deduction software). Additionally,

standardizing logic syntax usage in one class is helpful for that individual class, but

without a universal formalization, the practicality and portability is thereby limited.

4 Boolean Satisfiability Solver Input Formats

Cook proved that the Boolean satisfiability problem SAT is NP-Complete [7],

providing the Cook-Levin theorem used in computational complexity reduction proofs.

Boolean satisfiability answers the question, “Given a Boolean logic formula F , is

there an assignment of truth values that makes F true?”. Because this problem is

NP-Complete, there exists no known (efficient) polynomial-time solution. Because of

14

the usefulness of SAT with program verification, graph coloring, constraint satisfaction,

artificial intelligence, electronic circuitry correctness verification, and more, the need

for heuristically-fast SAT solvers was evident. A lecture by Heule and Martins [24]

describes several SAT solvers including DIMACS, CaDiCaL, SAT4J, UBCSAT, and

PySAT. Though, having a plethora of SAT solvers to choose from is rather meaningless

to those who need them — rather, they want to know which one is the fastest. To

test SAT solvers against one another, SAT Competitions came to light, as did the

benchmark submission guidelines detailing the required input format [23]. For fair

and consistent evaluation, SAT solvers that participate in this competition must use

the standardized DIMACS format. Formulas are entered in conjunctive normal form

where numbers represent literals/atoms. Each line designates a clause in the formula.

Figure 1 shows an example of the DIMACS format alongside its logic (well-formed

formula) representation. As reported by the SAT solver Varisat2, there are several

extensions and variants of DIMACS, but the SAT competitions website3 strictly states

that any deviation from the required input and output formats is unacceptable.

p cnf 3 2
-1 2 -3 0
-3 -1 0

(a) DIMACS Format

(¬x ∨ y ∨ ¬z) ∧ (¬z ∨ ¬x)
(b) Formula Representation

Figure 1. DIMACS Format Example Input

The standard DIMACS format allows for head-to-head comparison of SAT solvers,

while nothing similar exists for logic tutors and theorem provers. So, as contribution of

this thesis, we present a gold standard syntax for zeroth and first-order logics starting

in section 2.1.

2https://jix.github.io/varisat/manual/0.2.0/formats/dimacs.html
3http://www.satcompetition.org/

15

https://jix.github.io/varisat/manual/0.2.0/formats/dimacs.html
http://www.satcompetition.org/

CHAPTER III

METHODS

In this chapter, we explain our evaluation method and metrics for assessing three

publicly-available natural deduction systems against our prover. Additionally, we

construct a formal definition for a standardized and uniform syntax for writing and,

more importantly, testing differing logic systems and algorithms.

1 Evaluation of Natural Deduction Systems

To begin, while plenty of research papers and projects on formal logic tutors,

natural deduction proving systems, and proof assistants exist (see chapter II), they are

few and far between when viewed from the public, non-academic eye. That is, many

only remain relevant in their academic research circle, and have either little purpose

or minimal exposure outside to a “real audience”. Further, current research efforts

focus more on improving their current tool rather than performing direct comparisons

with others. The issue with head-to-head comparisons is the mystery of a reliable

metric: how do we measure “success” in a formal logic tutor without user evaluation?

In other words, what metric is viable for determining the efficiency, or effectiveness, of

a tutoring/proving/assistant system for formal logic?

16

1.1 Experiment 1: A Student-Driven Approach for Difficulty Metrics

All students are not the same, and a formal logic class may contain students across

different disciplines. As a result, what is difficult to one student who has yet to see

logic may be easier to another student who programs or otherwise works with Boolean

operators on a daily basis. Determining what exactly constitutes difficult in a logic

class is tricky for the same reason. In other words, it is a non-trivial job to evaluate

whether one problem or topic is inherently more challenging than another.

Given the varied opinions of students, we wanted to perform an observational study

on our software to determine what kinds of proofs students find difficult, or where they

potentially go astray from an expert’s solution to a problem. In particular, our goal

was to analyze a student’s abilities to complete propositional logic natural deduction

proofs, picking between two sets of premises and conclusions to say which looks harder

to prove, as well as choosing a proof out of two that appears more difficult, with the

hopeful outcome of finding common patterns between proofs/formula choices, then

analyzing said patterns to understand why those were said to be more difficult.

The study was implemented as two Qualtrics surveys. The first consisted of

ten1 carefully-selected pairs of premises that either prove the same conclusion, or a

slightly-altered version of the conclusion. The second survey contained ten2 pairs of

proofs where each proof in the pair derives the same conclusion, but take different

approaches to doing so. Finally, we had a third component where students would use

our ANDTaP system (see section 1.2.2) to prove ten natural deduction problems3. A

cheat-sheet of all rules was provided. We would measure how long the student took
1https://tinyurl.com/QualtricsSurvey-1
2https://tinyurl.com/QualtricsSurvey-2
3https://tinyurl.com/ANDTaP-Questions

17

https://tinyurl.com/QualtricsSurvey-1
https://tinyurl.com/QualtricsSurvey-2
https://tinyurl.com/ANDTaP-Questions

to solve the proof (provided they were able to), what rules were utilized, and what

mistakes were made. Participants who fully completed the study were entered into a

drawing to win a $50 Amazon Gift Card.

Unfortunately, due to a lack of participants in the Qualtrics surveys (n = 2) and

ANDTaP (n = 0), we were unable to perform any significant analysis of the results. It

is unclear why the survey was unsuccessful, but the lack of an incentive or requirement

via a class grade is almost certainly a suspect. Perhaps integrating one of our tools

into a course, similar to other previous experiments, could yield improved participation

results. We will, however, analyze and discuss the data received from the two Qualtrics

survey participants in chapter IV.

1.2 Experiment 2: Determining the Efficacy of Natural Deduction Software

Experimenting between systems that perform related tasks appears easy at first

glance, but quickly diverges into chaos if a consensus on differentiation is not reached.

In this section, we describe the two systems we created, aimed at improving the

pedagogy of introductory formal logic. With this, we also thought about testing the

algorithms and subsystems against other available options to students and teachers.

Of course, as we have mentioned, without students to assess, such a task is quite

challenging because an expert’s opinion on what “is better” may reflect their own

implicit bias and not that of “common users” of the software. Due to this dilemma,

our metric evolved into the complexity of a generated natural deduction proof. But,

then again, what is complexity to an expert versus a beginning, or even intermediate,

student? Is it fair to say that a proof which uses more axioms from its base set is less

complex than another (system)? Should we consider a proof in comparison to what

other systems generate; namely, if one system generates a proof that wildly diverges

18

from an “expert solution”, ought we see this as a negative? In our analysis, we will

answer several of these questions.

1.2.1 FLAT: Formal Logic Aiding Tutor

FLAT began as a collaborative project which extended LLAT: the Logic Learning

Assistance Tool [8]. This extension brought along a core component to formal logic

proofs: the ability to prove or disprove a proposition via natural deduction. Not only

does the system have an algorithm for automatically proving a clause of formulas

(see appendix 1), it also includes a tutoring system allowing students to, step-by-step,

write a proof. FLAT supports both zeroth and first-order logics, with heuristics to

prevent infinite proofs that comes with the semidecidability of first-order logic as

proven by Turing in [49].

(a) Predicate Logic Proof (b) Propositional Logic Proof

Figure 2. Two Natural Deduction Proofs Generated by FLAT

We will briefly explain some algorithms/subsystems, as well as other unique features

of FLAT. For starters, students can export truth tables, truth trees (semantic tableaux)

[41], and natural deduction proofs as .pdf and .tex source files. This allows for easy

submission and modification of, for instance, practice problems.

FLAT is translatable into a number of languages other than English via a Google

Translate API to ease students into the world of the new language of formal logic

19

without having to strictly learn English (note: this feature is highly experimentable

and does not always produce optimal translations).

Table 3 provides a list of a subset of the FLAT algorithms/subsystems that students

can use to practice. Table 4 shows the axiom base set for natural deduction proofs in

FLAT.

Like many existing systems, FLAT has its share of drawbacks. One of those is its

tutoring system is rather primitive compared to others—while it has a “tutoring mode”

for almost all supported algorithms and subsystems, it does not generate exercises nor

learn from an individual student’s mistakes, which deems it non-intelligent according

to the standard definition of an intelligent tutor [54]. Also, there is no rhyme or

reason why some first-order logic well-formed formulas infinitely loop whereas others

do not (we suspect this is due in part to how it selects steps to complete a proof).

Furthermore, the natural deduction system in FLAT is missing several key axioms

e.g., commutativity and associativity as explained in section 1.2.2, which largely limits

the set of solvable proofs. Moreover, when it cannot solve a proof, the system tries

to perform a proof by contradiction, which sometimes leads it astray. We plan to

drastically improve all features in future editions of FLAT.

1.2.2 ANDTaP: Automatic Natural Deduction Tutor and Prover

ANDTaP is a smaller, web-based version of FLAT’s natural deduction implemen-

tation. It supports a subset of its proving capabilities, but a superset of the tutoring

functionality. Some natural deduction rules, e.g., associativity and commutativity,

that are not present in FLAT work as intended in ANDTaP. The choice to use a

web-based client for ANDTaP rather than a desktop application was highly influenced

by the desire to allow students to use it wherever they want instead of being restricted

20

Table 3. Subset of Implemented Algorithms in FLAT

Algorithm Definition

Truth Tree A truth tree is a description of the truth interpretations of a logic formula
F .

Truth Table A truth table is a sequence of true and false values evaluated for all
models of a PL formula F .

Quine Tree Con-
structor

Quine’s method [21] analyzes a PL formula F to determine if it is a
tautology, contradiction, or contingency via heuristics to close branches.

Free Variable Detec-
tor

Finds all free variables in a FOPL formula F . An occurrence of a variable
v ∈ F is free iff there is no quantifier Q that binds v in its scope.

Bound Variable De-
tector

Finds all bound variables in a FOPL formula F . An occurrence of a
variable v ∈ F is bound if there is a quantifier Q that binds v in its scope.

Open Sentence De-
terminer

A FOPL formula F is open if ∃v ∈ F such that v is free.

Closed Sentence De-
terminer

A FOPL formula F is closed if ∀v ∈ F , v is bound.

Ground Sentence
Determiner

A FOPL formula F is ground if F does not contain any variables.

Main Operator De-
tector

A unary or binary connective c is the main operator of a logic formula
F if it is the first-parsed operator when recursively evaluating F . If F
contains no connectives, then there is no main operator.

Vacuous Quantifier
Detector

A quantifier q in a FOPL formula F is vacuous if it does not bind any
variable v in its scope.

Logical Tautology
Determiner

A logic formula F is a logical tautology if it is true in every interpreta-
tion/model.

Logical Falsehood
Determiner

A logic formula F is a logical falsehood if it is false in every interpreta-
tion/model.

Logical Contin-
gency Determiner

A logic formula F is a logical contingency if it is neither a logical tautology
or logical falsehood.

Logically Consis-
tent Determiner

Two logic formulas F , F ′ are logically consistent if there a shared model
M such that F and F ′ are true.

Logically Contradic-
tory Determiner

Two logic formulas F , F ′ are logically contradictory if there is no model
M such that FM = F ′

M.
Logically Contrary
Determiner

Two logic formulas F , F ′ are logically contrary if there is at least one
model M where F and F ′ are false and there is no model where both F
and F ′ are true.

Logically Implied
Determiner

Two logic formulas F , F ′ are logically implied if there does not exist a
modelM such that F is true and F ′ is false.

Logically Equiva-
lent Determiner

Two logic formulas F , F ′ are logically equivalent if there does not exist a
modelM such that FM ̸= F ′

M.

21

Table 4. FLAT Natural Deduction Axioms

Axiom Name Definition

Modus Ponens (MP) (ϕ→ ψ) ∧ ϕ ∴ ψ
Modus Tollens (MT) (ϕ→ ψ) ∧ ¬ψ ∴ ¬ϕ
Hypothetical Syllogism (HS) (ϕ→ ψ) ∧ (ψ → γ) ∴ (ϕ→ γ)
Disjunctive Syllogism (DS) (ϕ ∨ ψ) ∧ ¬ϕ ∴ ψ
Disjunction Introduction (∨I) ϕ ∴ (ϕ ∨ ψ)
Conjunction Elimination (∧E) (ϕ ∧ ψ) ∴ ϕ
Conjunction Introduction (∧I) ϕ ∧ ψ ∴ (ϕ ∧ ψ)
Material Implication (MI) (ϕ→ ψ)↔ (¬ϕ ∨ ψ)
Biconditional Breakdown (BCB) (ϕ↔ ψ) ∴ (ϕ→ ψ) ∧ (ψ → ϕ)
Biconditional Introduction (BCI) (ϕ→ ψ) ∧ (ψ → ϕ) ∴ (ϕ↔ ψ)
Double Negation Introduction (DNI) ϕ ∴ ¬¬ϕ
Double Negation Elimination (DNE) ¬¬ϕ ∴ ϕ
Transposition (TP) (ϕ→ ψ)↔ (¬ψ → ¬ϕ)
Constructive Dilemma (CD) (ϕ ∨ ψ) ∧ (ϕ→ γ) ∧ (ψ → ω) ∴ (γ ∨ ω)
Destructive Dilemma (DD) (¬γ ∨ ¬ω) ∧ (ϕ→ γ) ∧ (ψ → ω) ∴ (¬ϕ ∨ ¬ψ)
DeMorgan’s Law (DeM) ¬(ϕ ∧ ψ)↔ (¬ϕ ∨ ¬ψ)

¬(ϕ ∨ ψ)↔ (¬ϕ ∧ ¬ψ)
¬(ϕ↔ ψ)↔ ¬((ϕ→ ψ) ∧ (ψ → ϕ))

¬∃ϕ↔ ∀¬ϕ
¬∀ϕ↔ ∃¬ϕ

Existential Elimination (∃E) ∃xPx ∴ Pα where α is not previously-used
Existential Introduction (∃I) Pα ∴ ∃xPx
Universal Elimination (∀E) ∀xPx ∴ Pα where α is previously-used

to a locally-installed (desktop) program.

Now that we have thoroughly discussed FLAT and ANDTaP, we will now explain

the methods used to investigate several natural deduction systems via head-to-head

comparisons against one another.

Systematically evaluating natural deduction software is complicated. For starters,

as we previously mentioned, we still need a metric of analysis: how to directly compare

one system to another. The best and systematic way to do this, excluding the

possibility of a human study, is via the overall size of a proof (i.e., the number of lines

22

Figure 3. ANDTaP Tutoring System

a generated proof contains). Beginning students that receive a large and unwieldy

result are likely to ignore its significance out of frustration. Though, because the length

of a proof does not strictly correlate with its complexity, we recorded the number of

rules/axioms a system used to solve a proof compared to its base set size. The idea

behind this decision is to provide insight into how often a system takes advantage of

its axiom set, instead of trying to strictly use direct proofs (e.g., in Hilbert systems)

or proofs by contradiction.

We collected and created 288 well-formed formula propositional and first-order

logic proofs from various logic and computer science textbooks [21] [27] [51]. We

manually converted each proof to the required syntax for all four system, then recorded

the number of lines in the annotated proof as well as how many axioms/rules were

used. Before we reveal and explain the results, we will briefly review each investigated

system.

23

The first tool we analyzed was a web application for proving propositional logic

natural deduction formulas by Laboratoire d’Informatique de Grenoble (LIGLAB)

[19]. While their tool includes a few other argument verification tools (e.g., semantic

tabuleaux solver for modal logic S4, a resolution prover for first-order logic), we focused

only on its propositional logic proving ability. Users enter premises as a series of

conjunctions followed by an implication to the conclusion. This syntax follows the

standard proof idea which says if all premises are true, then the conclusion must be

true (in other words, the premises logically imply the conclusion). Beginning students

or those using an ever-so-slightly different notation may be frustrated to discover that

they have to convert their entire input to this rigid standard to parse it correctly. Such

restrictions mean that users must focus on formatting their input to what the system

requires rather than what it outputs as a result. We did find that their prover solved

every propositional logic proof in our suite, but we found that because the system has

a small baseset of theorems/axioms, almost every proof is a proof by contradiction,

resulting in several nested proofs which can be hard to decipher.

Figure 4. LIGLAB’s Natural Deduction
Example proof showing the user interface and proof annotations.

24

NaturalDeduction is a Windows 10 application designed by Jukka Häkkinen, and

is the second natural deduction software we investigated [26]. This system includes

both a proof generator and a proof checker. While it primarily focuses on modal logic

(specifically, the modal logic system S5), it has a propositional logic prover because

modal logic natural deduction semantics are a superset of those of propositional

logic. We noted that its interface is clean and very elegant to use. Likewise, its

ability to prove both theorems and premise-conclusion style proofs is helpful. We

also found its performance on par, if not faster than other similar software. However,

NaturalDeduction has a severe drawback: its proof generation capabilities, or somewhat

of a lack thereof. While it generates short and simple proofs for a subset of our test

suite, for others, the proofs were unmanageably long and so cumbersome that a student

would, realistically, never look through them. In addition to this significant issue,

we discovered that the system places an arbitrary limit on the length of a premise

set and its corresponding conclusion. Along a similar vein, the system refuses any

proof that contains more than seven propositions/atoms, even if the proof contains

no connectives — only atoms (e.g., A, B, C, D, E, F , G, H, ∴ H). Lastly, the

system automatically converts connectives to a recognizable format e.g., > to →, and

uppercases any entered propositions. It gets confused, though, if the user enters a

symbol it does not recognize (e.g., & instead of ∧), and erroneously replaces symbols

that otherwise together represent one into two separate symbols e.g., => into ≡⊃.

These restrictions do not entirely detract students from the application; however, they

exemplify the types of downfalls that other systems do not have.

TAUT-Logic is a web application designed by Ariel Roffé, and assisted by the

Buenos Aires Logic Group [43]. Unlike the first two, TAUT-Logic supports first-order

predicate logic, and is the only easy-to-use system of its kind that we found which is

25

Figure 5. NaturalDeduction Windows Application Solving a Proof

(a) Proof Input to System (b) Proof Output Solution with Annotations

not out of commission or abandoned. In addition to its natural deduction toolset, it

supports basic set theory, truth table generation, and model truth.

One awkward characteristic of this system is that its propositional logic application

only supports lowercase letters for atoms. Additionally, similar to NaturalDeduction,

TAUT-Logic supports a total of nine different atoms, ranging from o to w. Supporting

only nine atoms may be enough for some problems/proofs, but this restriction seems

rather arbitrary for natural deduction, whose problem complexity should not grow

strictly in terms of the number of atoms. Another odd design choice is the preference

of English phrases for connectives instead of symbols such as, for example, “implies”

versus → or ⊃. Because all other systems we tested only utilize symbols (with the

exception of FLAT, as it supports both), the process of converting each formula

and symbol to the appropriate format was tiresome. Lastly, for some reason, the

biconditional connective is not supported, requiring students to either convert them

to a conjunction of implications, or omit the proof altogether.

Regarding TAUT-Logic’s performance, we discovered that it is roughly on par in

terms of speed, but fails on moderately complex propositional and first-order logic

26

proofs. We also saw a general increase in the produced proof size compared to the

other systems.

Figure 6. TautLogic’s Predicate Natural Deduction

1.2.3 System Comparison Results

Table 5 shows the tabulated results, including the average number of applied

distinct rules compared to the base set size, the average length of all proofs, and the

average success rate. Note: systems that did not support first-order logic contributed

to a lower overall success rate. Consequently, we further subdivided the data into two

groups: one with only propositional logic formulas (n = 203), and another with only

27

predicate logic formulas (n = 85). Also note that, when a system cannot solve a proof,

this, in turn, lowers the average number of steps and applied distinct rules as those

count as zero towards the average. Thus, we created another table to show non-zero

total averages.

Table 5. Data Analysis of Propositional and First-Order Logic Proofs

System Avg. Success Rate Avg. No. Steps Avg. No. Distinct

FLAT 84.72% 5.86 2.79
TeachingLogic 70.49% 12.41 3.77

NaturalDeduction 56.60% 13.50 3.38
TAUT-Logic 73.96% 13.34 4.46

Table 6. Data Analysis of Propositional Logic Proofs

System Avg. Success Rate Avg. No. Steps Avg. No. Distinct Rules

FLAT 85.22% 5.94 2.67
TeachingLogic 99.01% 17.48 5.30

NaturalDeduction 79.31% 19.03 4.73
TAUT-Logic 76.35% 15.59 4.71

Table 7. Data Analysis of Predicate Logic Proofs

System Avg. Success Rate Avg. No. Steps Avg. No. Distinct Rules

FLAT 83.53% 5.62 3.05
TAUT-Logic 68.24% 7.46 3.76

In chapter IV we will discuss the findings to our experiment, as well as the challenges

we encountered when formatting and inputting the formulas from our dataset.

28

Table 8. Non-Zero Data Analysis of All Proofs

System Avg. No. Steps Avg. No. Distinct Rules

FLAT 6.92 3.30
TeachingLogic 17.61 5.35

NaturalDeduction 23.85 5.96
TAUT-Logic 18.04 6.03

2 Gold Standard for Formal Logic System Syntax

There are several reasons why a standardized grammar does not necessarily already

exist for formal logic. Firstly, symbol usage varies widely from one subject to the

next. Case in point, notation used in computer science may contain subtle yet

important differences from philosophy-esque logics. Secondly, preexisting sources

such as textbooks, websites, professors, and others all use preferential notation (i.e.,

they use what they think is correct, what they were taught, or what is otherwise

preferred in their respective discipline), providing an amalgamation of symbols for

students to use and reference which, therefore, leads students and automatic systems

astray when expecting one syntax yet receive something completely different. Thirdly,

propositional logic learning platforms may or may not include certain operators. For

example, because it is trivial to represent the biconditional (if and only if) binary

operator as a conjunction of implications, it is certainly possible, albeit rather rare, to

omit its symbolic representation from a language. Such omissions cause problems when

evaluating formulas either automatically or by hand due to the extended requirement

of deriving an equivalent format in a language. In terms of computability, this

does not pose a significant issue because any connective in zeroth-order logic can be

equivalently represented by, for instance, either {∧, ¬} (NAND) {∨, ¬} (NOR) due

29

to their functional completeness property as proved by Post in [40]. While not an

algorithmic problem, it is inconvenient to rewrite formulas by hand to fit a restrictive

system when, for instance, testing different automatic logic systems (see Table 9,

TAUT-Logic).

We propose a formal definition that aims to solve most of these problems. One

component of this definition allows users to create their own logic language definition

as they see fit for their situation. This language is then translatable into a gold

standard format, which we will define syntactically and semantically.

The reason we formalize the language definition is to allow different logic systems

with varying syntax — some use lower-case atomic formulas, while others may restrict

the alphabet to a subset. This definition allows different connective alphabets to map

to the same symbol in the gold standard which provides a seamless translation to

and from various host logic languages (i.e., the language of the implementing systems,

assuming it does not, by default, use the gold standard internally). Another benefit

of using prefix connective notation is its disambiguation of precedence, which we

will supplement with further discussion at the end of the next section. Some may

argue that creating a gold standard from scratch, rather than improving upon and

spreading the ISO standard (see table 2), is more trouble than it is worth. As a

counterargument, we state that a gold standard allows for more than ISO currently

provides via associativity and precedence definitions, as well as the relative ease of

converting to and from arbitrary logic languages.

2.1 Zeroth-Order Logic Well-Formed Formula Representation

We will start with a small example and then generalize the approach to achieve

a well-defined representation. Suppose we have a set of premises P = {(A ↔

30

B), ¬(C ∧ D), C, ¬B} with the conclusion c = (¬A ∧ D). Converting this proof

into the three systems we tested is laborious at best and is increasingly tiresome the

more systems we wish to evaluate. Table 9 displays the required syntax to parse an

equivalent representation of w. The desire for a uniform standard to rapidly test

multiple systems without manual intervention is readily apparent.

Table 9. Required Syntax to Parse Proof (P, c)

Natural Deduction System Syntax

TeachingLogic (p <=> q) & -(r& s) & r & -q => (-p& -s)
NaturalDeduction (A ≡ B), ¬(C ∧ D), C, ¬B ∴ (¬A ∧ ¬D)
TAUT-Logic (A impliesB) and (B impliesA), not(C andD),

C, notB ∴ (notA and notD)

Let M(L, w) be the operation that “applies” the zeroth-order logic language L to

the well-formed formula w. Let L be a pair (δ, ζ) where δ is an connective mapping

function, and ζ is an atomic literal mapping function.

The bijective function δ maps two sets δ: X → Y , where X is the set of input

connectives defined by L, and Y ⊆ {N, C, D, E, I, B, T, F} is the set of output

connectives defined by our grammar, where |X| = |Y |. Table 10 shows the meaning

of each connective in Y . Note that the arity of any connective ϕ ∈ X must match the

arity of its corresponding output connective ψ ∈ Y .

The bijective function ζ maps two sets ζ: A→ B, where A is the set of all atomic

literals ϕ ∈ A where ϕ is an atomic literal used in w, and B is the set of output

atomic formulas aj where j ∈ [1, |A|]. One property of ζ is that the mapping need

not to be linear, i.e., ϕ1 ∈ A does not necessarily have to map to a1 ∈ B; as long

as the bijective property holds, any mapping is valid. To put it another way, ζ

is a non-order-preserving map. In following examples, we assume that A is finite,

31

Table 10. Connective Symbols for Zeroth-Order Logic Gold Standard

Semantic Meaning Connective Symbol

Logical Negation N
Logical Conjunction C
Logical (Inclusive) Disjunction D
Logical Exclusive Disjunction E
Logical Implication I
Logical Biconditional B
Logical Tautology T
Logical Falsehood F

but for languages which allow a countably infinite number of atomic literals, e.g.,

A = {ϕ1, ϕ2, ϕ3, ...}, a solution is to map A to a one-to-one set of positive integers

(i.e., ϕn ∈ A 7→ am ∈ B where n, m ∈ Z+).

We can now define the Polish (Łukasiewicz), or prefix notation grammar G used to

create a standardized notation for zeroth-order logic. This notation takes inspiration

from the syntax of the programming language Scheme with its parenthesization of

connectives and operands. For this, we must extend the definition of typical Extended

Backus-Naur Form to account for multiple-arity connectives. Thus, we introduce the

notation <x—R> to indicate that x is a variable used in the EBNF rule R, and {Λ}x

to denote exactly x applications of Λ. In the grammar, α is the arity of a connective.

⟨atomic⟩ ::= ‘a’ (‘1’ | ‘2’ | ...)

⟨connective⟩ ::= ‘N’ | ‘C’ | ‘D’ | ‘E’ | ‘I’ | ‘B’ | ‘T’ | ‘F’

⟨α—wff ⟩ ::= ⟨atomic⟩ | (⟨connective⟩ [‘ ’] {⟨wff ⟩}α)

We shall reiterate that our goal is to create a language pipeline that allows for easy

conversion between one language L, the gold standard M(L, w), and another arbitrary

language of the same class L′. Symbolically, L ⇔M(L, w)⇒ L′. We will now make

32

note of converting a gold-standard formula w′ to a language L′ such that Y ′, the

connective set of w′ is disjoint from the connective set of L′: Y (that is, there exists

an operator in the gold standard not supported by the target language L′). In this

scenario, L′ must augment its definition with a pattern-matching replacement function

R. R should take a connective as input, and output an equivalent representation

that satisfies the grammar of language L′. As an example, suppose w′ = (B a1 a2).

When converting w′ to a target language not identical to the original source language

(i.e., L′ ̸= L) that does not support the biconditional connective, we could define

R(B) = (ϕ → ψ) ∧ (ψ → ϕ) where →, ∧ ∈ Y , and ϕ, ψ are arbitrary well-formed

formulas in L′. So, when we convert from the gold standard into a target language,

any instance of the biconditional B is replaced by R into a recognizable format. At

a minimum, any set of connectives Y for any zeroth-order logic language must be

functionally complete to achieve this goal [40]. One note regarding the expansion

well-formed formulas via R is its growth rate consequence. Namely, if the transformed

formula is reflective (i.e., (A→ B) ∧ (B → A)), the size grows exponentially in the

number of replacements.

2.1.1 Zeroth-Order Logic Example 1

Let us take a “standard” propositional logic language L and a formula w. L consists

of two functions δ and ζ where

δ: {⊃, ∧, ∨, ↔, ¬} 7→ {I, C, D, B, N}

ζ: {A, B, C, ..., Z} 7→ {a1, a2, a3, ..., a26}

33

We will let w = A ⊃ (B ↔ ¬C). Thus,

M(L, w) = (I a1 (B a2 (N a3)))

This representation reads naturally from left-to-right as follows: “An implication of a1

and a biconditional of a2 and negated a3”. We consider all connectives as first-class

functions in our definition.

While prefix notation is not as readable as the infix w, it creates a uniform standard

for testing zeroth-order logic systems. What is more is that this application process

is reversible; given M−1(L′, w′) where L′ = (δ−1, ζ−1) and w′ = M(L, w), we can

reproduce w using a simple stack-and-pop parsing evaluation approach (deterministic

push-down automaton).

2.1.2 Zeroth-Order Logic Example 2

Quine’s syntax in [51] for propositional logic is slightly different from modern

variants. Specifically, his use of dots and colons removes superfluous parentheses when

defining operator precedence. Largely, we will ignore this notation in favor of his

parenthesized form. In addition, Quine uses an empty string ε to represent conjunction

(e.g., S1S2 represents a conjunction between two well-formed formulas S1 and S2).

Finally, negations on a single atom p are condensed with a vertical overbar p. To

compensate for the digital representation, we will keep the negation in front of the

atom (e.g., −S1 where S1 is a well-formed formula). Now, we define L with functions

34

δ and ζ where

δ: {⊃, ε, ∨, ≡, −} 7→ {I, C, D, B, N}

ζ: {p, q, r, s, ..., z} 7→ {a1, a2, a3, a4, ..., a11}

We will let w = −((p ∨ q)(−r ∨ s)) ⊃ (−(p ∨ q)s). Thus,

M(L, w) = (I (C (N (D a1 a2)) (D (N a3) a4))

(C (N a1 a2) a4))

This representation reads as “An implication where the left-hand side is a conjunction

between a negated disjunction of a1 and a2, and a disjunction of negated a3 and a4.

The right-hand side of the implication is a conjunction between a negated disjunction

of a1 and a2, and a4.”

We assume the incoming formula is unambiguous according to its language grammar

specification out of simplicity, but for completeness, we will define a precedence

mapping function for the incoming formula Γ. By enforcing prefix notation in the

gold standard, we no longer have to deal with the inherent complexities of operator

precedence present in the commonly-used infix notation.

Let Γ be an injective function that maps the set of connectives δ to N, namely

δ 7→ N. Γ is designed to give connectives in δ a priority level, where the closer its

mapped natural number is to zero, the higher its priority. We define priority as the

precedence of a connective. When a system defines Γ, it implies that any ambiguous

well-formed formula in its corresponding language is parsable without parenthesization.

Γ, as an algorithm, automatically adds parentheses to disambiguate the formula.

35

2.1.3 Precedence Mapping Example

We will use the same functions δ and ζ from the first propositional logic example

in section 2.1.1. We will also define Γ as

Γ: {⊃, ∧, ∨, ↔, ¬} 7→ {3, 1, 2, 4, 0}

Now, suppose w = A → ¬B → C ∧ ¬A. The precedence function parenthe-

sizes/disambiguates w to ((A→ ¬B)→ (C ∧ ¬A)), which is then converted into the

gold standard as

M(L, w) = (I (I a1 (N a2)) (C a3 (N a1)))

Since we consider Γ to be optional (opting for a default precedence of logical negation,

logical conjunction, logical disjunction, logical implication, then logical biconditional),

a system without a defined Γ should, optimally, output a warning when it parses an

ambiguous well-formed formula. Defining Γ allows for any ambiguous formula to be

converted into one that is unambiguous, as we previously stated, and also allows for

“custom precedence” levels (i.e., if we want to bind logical disjunction higher than

logical conjunction, it is trivial to do so). Finally, some may question the associativity

of connectives. We assume that all operators are left-associative, similar to traditional

addition, subtraction, multiplication, and division. For those who wish to not always

strictly assume left-associativity for connectives, we will now define the associativity

function γ.

Let γ be a surjective function that maps the set of binary connectives XB ⊆ X to

the set {L, R}, where L and R designate left and right-associativity respectively.

36

2.1.4 Associativity Mapping Example

We will use the same functions δ and ζ from the previous precedence mapping

function example. In addition, we will define γ as

δ: {⊃, ∧, ∨, ↔, ¬} 7→ {I, C, D, B, N}

ζ: {A, B, C, ..., Z} 7→ {a1, a2, a3, ..., a26}

γ: {⊃, ∧, ∨, ↔, ¬} 7→ {L, R}

Where ∀C ∈ XB, γ(C) = L (i.e., every binary connective is left-associative). Now,

suppose w = (A→ B → C) ∧ (¬A ∧ ¬B). The associativity function disambiguates

w to ((A→ B)→ C) ∧ (¬A ∧ ¬B). This is converted into the gold standard as

M(L, w) = (C (I (I a1 a2) a3) (C (N a1) (N a2)))

Finally, some systems do not distinguish between different casing of atoms. That is,

suppose there is a zeroth-order language L where lower-case and upper-cased letters

correspond to the same atom, (e.g., A and a are, semantically, identical). In our

current definition of the gold standard, we assume all languages are case-sensitive,

meaning two atoms A and a map to two different gold standard atoms. In future

iterations of this research, we plan to generalize the definition and allow for any atom

casing.

2.1.5 Natural Deduction Extension

It is simple to extend G to support premises and conclusions using the same syntax.

We can define a new function N(L, P, c), where L is the same definition as before,

37

P is a set of well-formed formula acting as the premises of the proof, and c is the

well-formed formula acting as the conclusion of the proof. Our new grammar G′ is as

follows:

⟨atomic⟩ ::= ‘a’ (‘1’ | ‘2’ | ...)

⟨connective⟩ ::= ‘N’ | ‘C’ | ‘D’ | ‘E’ | ‘I’ | ‘B’ | ‘T’ | ‘F’

⟨α—wff ⟩ ::= ⟨atomic⟩ | (⟨connective⟩ [‘ ’] {⟨wff ⟩}α)

⟨premise⟩ ::= (‘P’ ⟨wff ⟩)

⟨conclusion⟩ ::= (‘H’ ⟨wff ⟩)

⟨proof ⟩ ::= (⟨conclusion⟩ {⟨premise⟩})

The preceding grammar states that a premise is preceded by the letter P standing for

premise, conclusions are preceded by H for hence, and a proof is a conclusion followed

by zero or more premises (a proof with zero premises is a theorem).

2.1.6 Natural Deduction Example

Let us create a proof where P = {¬(C ∨D), D ↔ (E ∨ F),¬A ⊃ (C ∨ F)}, and

c = A. We will, again, use ζ from section 2.1.1. Therefore,

N(L, P, c) = ((H a1)

(P (N (D a3 a4)))

(P (B a4 (D a5 a6)))

(P (I (N a1) (D a3 a6))))

We read this as “Hence a1 if P1 is true and P2 is true and P3 is true”, where P1, P2,

and P3 are the individual premises that comprise the argument. This style largely

38

resembles the way we write Prolog (conditional) rules.

2.2 First-Order Logic Well-Formed Formula Representation

First-order logic is a superset of zeroth-order logic, meaning we can reuse most of

our definitions from the previous section. We will, however, need to slightly redefine

L to allow for mapping predicate definitions, constants, and variables. Further, so

as to not confuse the function definitions from zeroth-order logic, we will instead use

new letters to represent mapping functions unique to first-order logic semantics.

Let M(L, w) be an operation that applies the first-order gold standard to a

logic language L and a well-formed formula w. Let L be a quadruple (δ, ς, χ, η)

where δ is a connective mapping function, ς is a predicate mapping function, χ is

a constant mapping function, and η is a variable mapping function. For first-order

logic, we slightly modify δ from its zeroth-order definition in the sense that it now

maps two sets δ: X → Y , where X is the set of input connectives defined by L, and

Y ⊆ {N, C, D, E, I, B, T, F, Z, X, V } is the set of output connectives defined by

our grammar, where |X| = |Y |. N , C, D, E, I, B, T , and F are identical in both

syntactic and semantic meaning to zeroth-order logic as referenced in Table 10. Table

11 shows the new operators added by first-order logic. Note that Z and X have arities

dependent on the formula used, so we cannot restrict it syntactically. Identity V ,

on the other hand, is a special predicate for connecting constants and variables. To

simplify its syntactic usage, we will include V in δ definitions for first-order logic.

The bijective function ς maps two sets ς: A→ B, where A is the set of predicate

letters ϕ ∈ A where ϕ is a predicate letter used in the wff w, and B is the set of output

predicate letters Li where i ∈ [1, |A|].

The bijective function χ maps two sets χ: C → D, where C is the set of constant

39

Table 11. Connective Symbols for First-Order Logic Gold Standard

Semantic Meaning Connective Symbol

Universal Quantifier Z
Existential Quantifier X
Identity V

letters ψ ∈ C where ψ is a constant identifier used in w, and D is the set of output

constant identifiers ci where i ∈ [1, |C|].

Lastly, the bijective function η maps two sets η: E → F , where E is the set of

variable letters ρ ∈ E where ρ is a variable identifier used in w and F is the set of

output variable identifiers vi where i ∈ [1, |E|].

Like the atomic literal mapping function ζ from zeroth-order logic, ς, χ, and η

must define every predicate letter, constant letter, and variable letter respectively

supported by their language to represent a valid mapping.

Now, similar to zeroth-order logic, we will construct the gold standard Polish

notation grammar G for first-order logic. Likewise, we will utilize the previously-

defined notation <x—R> to eliminate ambiguity with operator arity. Two points to

note are that, because identity is a special connective in first-order logic, we restrict

its syntactic definition to only constants and variables. Additionally, quantifiers have

a restriction in that they must have at least one variable following their declaration,

as well as a bound well-formed formula.

⟨constant⟩ ::= ‘c’ (‘1’ | ‘2’ | ...)

⟨variable⟩ ::= ‘v’ (‘1’ | ‘2’ | ...)

⟨literal⟩ ::= ⟨constant⟩ | ⟨variable⟩

40

⟨predicate⟩ ::= ‘L’ (‘1’ | ‘2’ | ...)

⟨connective⟩ ::= ‘N’ | ‘C’ | ‘D’ | ‘E’ | ‘I’ | ‘B’ | ‘T’ | ‘F’

⟨identity⟩ ::= ‘V’

⟨quantifier⟩ ::= ‘Z’ | ‘X’

⟨α—wff ⟩ ::= (⟨predicate⟩ ⟨literal⟩ {⟨literal⟩})

| (⟨connective⟩ [‘ ’] ⟨wff ⟩α)

| (⟨quantifier⟩ ⟨variable⟩ ⟨wff ⟩)

| (⟨identity⟩ ⟨literal⟩ [‘ ’] ⟨literal⟩)

The above grammar states the following rules: constants use the prefix c with a

uniquely identifying successive integer. Variables follow the same rules with the

exception that variables are prefixed by v. Literals are either constants or variables.

Predicates, likewise, use the same identifying principle except that they use L as

a prefix. As aforesaid, the identity and quantifier operators are special in the wff

definition, in that a quantifier binds a variable to a well-formed formula, and an

identifier wraps two literals together. In addition to these special cases, predicates

bind at least one literal, and a connective contains as many well-formed formula

operands as its arity requires.

41

2.2.1 First-Order Logic Example

We will, once again, use a “standard” first-order logic language L and a formula w.

L is a quadruple of the four functions δ, ς, χ, and η where

δ: {⊃, ∧, ∨, ↔, ¬, ∀, ∃, =} 7→ {I, C, D, B, N, Z, X, V }

ς: {P, Q, R, ..., Z} 7→ {L1, L2, L3, ..., L11}

χ: {a, b, ..., t} 7→ {c1, c2, ..., c20}

η: {u, v, ..., z} 7→ {v1, v2, ..., v6}

Suppose w = ∀x∀y¬Pxyc ∧ (Qcd ∨ ∃zRz). Thus,

M(L, w) = (C (Z v4 (Z v5 (N (L1 v4 v5 c3))))

(D (L2 c3 c4) (X v6 (L3 v6))))

We read this as “A conjunction of a universal quantifier that binds v4, a universal

quantifier binding v5, bound to the negation of L1 v4 v5 c3 and a disjunction of the

following: L2 c3 c4 and an existential quantifier which binds v6, bound to L3 v6.”

42

CHAPTER IV

DISCUSSION AND FUTURE DIRECTION

In chapter III, we detailed our methods of experimentation, including a survey-

focused and student-driven methodology, a head-to-head comparison of publicly-

available natural deduction proving software, and a gold standard syntax definition for

both zeroth and first-order logics. In this chapter, we will discuss our general findings,

and analyze future research potential.

1 Experiment 1

Despite only receiving two submissions to our surveys for the proof interpretation

study, we will still analyze their data. Both participants are computer science majors

who have a background in formal logic (propositional and first-order), proofs, and

otherwise discrete mathematics.

Regarding survey 1 (premises and conclusion interpretation), we consistently saw

the theme that larger conclusions (i.e., conclusions with more clauses) were said to

appear more difficult than those with smaller conclusions. Additionally, premises and

conclusions which had more negations and disjunctions compared to implications and

biconditionals were viewed similarly (e.g., P = {A→ B, B → C}, c = A→ C versus

P = {¬A ∨ B, ¬B ∨ C}, c = ¬A ∨ C). We suspect this is due to easily-applicable

43

axioms that involve implications such as modus ponens, modus tollens, hypothetical

syllogism, and more. There was a disparity between the participants when choosing

premises which were distributive opposites via DeMorgan’s law, but we can only

narrow this down to individual preference with such a low participant count.

Regarding survey 2 (proof interpretation), we observed an almost identical pattern

as survey 1 showed—participants commonly noted that proofs with negated proposi-

tions and fewer implications appeared harder to understand. Also, as we predicted,

longer proofs were considered more difficult than shorter proofs. We still are not sure

if these decisions are out of interpreting the proofs or personal preference, but we hope

to expand upon this study and the idea of computing a viable metric of difficulty for

formal logic in future research.

2 Experiment 2

As Tables 5, 6, 7, 8, and the graphs in Figures 9, 10, 11 show, our system, FLAT,

has a higher percentage of proofs that are what we consider digestable for a beginning

logic student. It is desirable for a natural deduction proof to be understandable,

comprehensible, and condensed enough where details are not omitted, but rather are

fleshed out to provide a clear path to the solution.

While TeachingLogic’s system has a greater percentage of solved proofs than FLAT,

NaturalDeduction, and TAUTLogic, we found its user interface to be unintuitive

particularly when entering a formula with unrecognizable syntax according to their

language grammar. This odd requirement strongly deters those who wish to use a

natural deduction proving software, but perhaps focus more time modifying their

input to fit the system specifications than that spent understanding the generated

44

proof(s). Moreover, its limited axiom base set upper-bounds the kinds of proofs

it can generate—resulting in several nested subproofs and proofs by contradiction.

Importantly, the generated proofs are syntactically and semantically correct, but to

someone with little prior experience in formal logic or mathematical proofs, it may

come across as overwhelming.

A severe problem with NaturalDeduction, as we previously mentioned, is its

unnecessary inconsistency—the generated proofs range from perfect (in that they

match the intended expert solution) to absolutely out of control nose dives into

confusion. As an illustration, suppose we want to prove P = {(A↔ B), (C ↔ B)},

c = A↔ C. FLAT’s solution, which we consider the optimal solution under our axiom

set (see table 4), has twelve lines including the premises and conclusion (see Figure 7).

NaturalDeduction, on the contrary, has 247 lines. The absurd length we discovered is

not exclusive to this proof; we found several other sets of premises and conclusions

which caused the system to generate unimaginably long and incomprehensible proofs.

Furthermore, its input requirements are unreasonably restrictive: only allowing eight

Figure 7. Proof of P = {A↔ B,C ↔ B}, c = A↔ C

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

A↔ B
B ↔ C

(A→ B) ∧ (B → A)
A→ B
B → A

(B → C) ∧ (C → B)
B → C
C → B
A→ C
C → A

(A→ C) ∧ (C → A)
A↔ C

P
P
1 BCB
3 ∧E
3 ∧E
2 BCB
6 ∧E
6 ∧E
4, 7 HS
3, 8 HS
9, 10 ∧I
11 BCI

45

unique atoms and fourteen identical atoms combined via binary connectives e.g.,

A ∧ A ∧ ... ∧ A. We are unsure if these limitations are due to the proof generation

system that NaturalDeduction uses, but because the instructions do not provide this

information, we can, at best, only speculate. One additional problem we discovered

is that NaturalDeduction omits premises that do not impact the final proof (i.e.,

premises that it deems are unnecessary), even if they were listed as premises in the

original premise set P . We feel that this omission is problematic due to the relative

importance of initial premises to an argument. Plus, this can lead to confusion and

thoughts of “What happened to premise X?” from students.

Moreover, neither NaturalDeduction or TeachingLogic support first-order predicate

logic. Oddly enough, NaturalDeduction, instead, supports S5 Modal Logic.

Lastly, TAUT-Logic was, as mentioned before, the only system that we tested

which supports both zeroth and first-order logics. It too, though, comes with its share

of cons. We provided an example of a logic system in section 2.1 which does not

support the biconditional operator, requiring instead to write it as a conjunction of

implications (see Table 9). Its performance is similar in that to FLAT, but we found

it times out on both zeroth and first-order logic proofs for sometimes no apparent

reason with an error stating that it simply could not solve the proof.

While each system that we evaluated has its share of advantages and disadvantages,

the most profound problem was the inconsistency in entering proofs and well-formed

formulas. Each system uses a slight variation of logic syntax which in turn means we

had to convert each formula from the original format into four separate standards

(FLAT, TeachingLogic, NaturalDeduction, TAUT-Logic). Our gold standard as

detailed in chapter III aims to rectify these issues with long-term goals of systems

either adopting the gold standard, or creating the language pipeline for formulas to be

46

converted from the gold standard into their syntax, so as to be an automatic process

rather than manual. While it is relatively unrealistic to expect current state-of-the-art

systems to rewrite their input pipeline to only support the gold standard, this is not

necessarily our goal. Instead, we aspire to have the gold standard be an intermediate

representation for formulas which are fed, or piped, to and from testable systems.

Such an increase in standardization will undoubtedly raise the automatic testability

and evaluation of logic systems.

3 Future Work

3.1 Gold Standard Extendability via Non-Classical Logic Systems

This thesis is only concerned with classical logic: zeroth and first-order logics.

Though, we propose that creating a gold standard for other logics which are, perhaps,

supersets of classical logic (e.g., modal) is relatively straightforward with our provided

groundwork. Modal logic, however, is different from classical logics in that its necessity

and possibility unary connective extensions (i.e., □ and ♢ respectively) are the

dominant standard.

3.2 Intelligent Tutors

Circling back to formal logic tutors, there is still a significant amount of work to

be had on the intelligence of logic tutoring systems (see chapter II). We, in particular,

would like to completely move FLAT (see section 1.2.1) into the browser so students

do not have to download an application on their computer. This transition is in-

progress via ANDTaP (see section 1.2.2), but has much room for improvement. A

responsive and clean UI is all but mandatory in today’s world of web and mobile

47

applications, and while ANDTaP is clean, it does not scale well to the mobile platform

(e.g., sizing issues, button clicks). Further, we wish to improve the tutoring system by

supplementing the user with hints similar to other tutoring systems across different

disciplines. Unlike many other systems which specialize in one area of logic e.g.,

natural deduction, however, FLAT has several tools (see Table 3) wherein each could

use a pedagogical upgrade via hints, automatic (satisfiable) problem generation, and

classroom integration. We plan to continuously update and upgrade both systems,

as well as research into improved methods of teaching logic with special emphasis on

non-computer science or mathematics students.

4 Conclusion

In this thesis, we discussed FLAT: the Formal Logic Aiding Tutor, and ANDTaP

(Automatic Natural Deduction Tutor and Prover). With this, we performed a head-to-

head experiment comparing the efficacy of other publicly-available natural deduction

systems against FLAT. We described our proposed experiment to uncover a metric of

difficulty for natural deduction proofs via student intervention. Most importantly, we

transitioned this discussion into the desire for a gold standard for classical logic syntax

to ease logic system automated testing and evaluation. We explained a systematic

method of defining the gold standard for differing logic languages as well as its

associated customizability and flexibility. Both logic and, more broadly, mathematical

notation serve the purpose of easy expressing ideas. Pushing efforts towards a gold

standard syntax to reduce the time spent wondering about what symbols ought to be

used when enhances said expressibility.

48

References

[1] Ahmed, U. Z., Gulwani, S., and Karkare, A. Automatically Generating

Problems and Solutions for Natural Deduction. In IJCAI ’13 Proceedings of the

Twenty-Third international joint conference on Artificial Intelligence (August

2013), pp. 1968–1975.

[2] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. Compilers: Principles,

Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co.,

Inc., USA, 2006.

[3] Amendola, G., Ricca, F., and Truszczynski, M. Generating hard random

boolean formulas and disjunctive logic programs. In Proceedings of the 26th

International Joint Conference on Artificial Intelligence (2017), IJCAI’17, AAAI

Press, pp. 532–538.

[4] Autexier, S., Dietrich, D., and Schiller, M. R. G. Towards an Intel-

ligent Tutor for Mathematical Proofs. In Proceedings First Workshop on CTP

Components for Educational Software, THedu’11, Wroclaw, Poland, 31th July

2011 (2011), P. Quaresma and R. Back, Eds., vol. 79 of EPTCS, pp. 1–28.

[5] Bratko, I. Prolog Programming for Artificial Intelligence, 2nd ed. Addison-

Wesley Longman Publishing Co., Inc., USA, 1990.

49

[6] Cerna, D. M., Kiesel, R. P., and Dzhiganskaya, A. A Mobile Application

for Self-Guided Study of Formal Reasoning. Electronic Proceedings in Theoretical

Computer Science 313 (Feb 2020), 35–53.

[7] Cook, S. A. The Complexity of Theorem-Proving Procedures. In Proceedings

of the Third Annual ACM Symposium on Theory of Computing (New York, NY,

USA, 1971), STOC ’71, Association for Computing Machinery, pp. 151–158.

[8] Crotts, J., Altamimi, A., Brantley, H. B. C., and Salou-Doudou, N.

A Visual Improvement to the Pedagogy of Introductory Logic, 2021.

[9] Croy, M., Barnes, T., and Stamper, J. Towards an Intelligent Tutoring

System for Propositional Proof Construction. In Proceedings of the 2008 Confer-

ence on Current Issues in Computing and Philosophy (NLD, 2008), IOS Press,

pp. 145–155.

[10] Dostálová, L., and Lang, J. ORGANON — The Web Tutor for Basic Logic

Courses. Logic Journal of the IGPL 15, 4 (2007), 305–311.

[11] Dougherty, M. M. A Standardized Logic Notation for Everyday Classroom

Use.

[12] Felice, L., and Leonardi, M. C. Motivating Students through Educational

Software Development, 2017.

[13] Fennell, B., Lee, E., and Kim, T. Truth table creator, 2020. Accessed:

2021-07-04.

[14] Fitch, F. B. Symbolic Logic: An Introduction. New York, Ronald Press Co.,

1952.

50

[15] for Standardization, I. O. Quantities and units - Part 2: Mathematical signs

and symbols to be used in the natural sciences and technology, January 2010.

[16] Gentzen, G. Investigations into logical deduction. American Philosophical

Quarterly 1, 4 (1964), 288–306.

[17] Gonthier, G. Formal Proof - The Four-Color Theorem. Notices of the American

Mathematical Society 55, 11 (December 2008).

[18] Gonthier, G. Formal Proof—The Four-Color Theorem.

[19] Grenoble Computer Science Laboratory. Natural Deduction, 2021.

[20] Hatcher, D. L. Why Formal Logic is Essential for Critical Thinking. Informal

Logic 19 (1999).

[21] Hein, J. L. Discrete Structures, Logic, and Computability, 2nd ed. Jones and

Bartlett Publishers, Inc., USA, 2002.

[22] Hein, J. L. Prolog Experiments in Discrete Mathematics, Logic, and Computabil-

ity. Portland State University, 2009.

[23] Heule, M., Iser, M., Jarvisalo, M., Suda, M., and Balyo, T. SAT

Competition 2011: Benchmark Submission Guidelines, 2011.

[24] Heule, M. J., and Martins, R. SAT and SMT Solvers in Practice, September

2020.

[25] Hoare, C. A. R. An Axiomatic Basis for Computer Programming. Commun.

ACM 12, 10 (oct 1969), 576–580.

51

[26] Häkkinen, J. NaturalDeduction, 01 2017.

[27] Jackson, R. L., and McLeod, M. L. The Logic of our Language: An

Introduction to Symbolic Logic. Broadview Press, November 2014.

[28] Kaufmann, M., Moore, J. S., and Manolios, P. Computer-Aided Reasoning:

An Approach. Kluwer Academic Publishers, USA, 2000.

[29] Koedinger, K. R., Aleven, V., Heffernan, N., McLaren, B., and Hock-

enberry, M. Opening the Door to Non-programmers: Authoring Intelligent

Tutor Behavior by Demonstration. Lester J.C., Vicari R.M., Paraguaçu F. (eds)

Intelligent Tutoring Systems 3220 (2004).

[30] Lodder, J., Heeren, B., and Jeuring, J. Generating Hints and Feedback

for Hilbert-Style Axiomatic Proofs. In Proceedings of the 2017 ACM SIGCSE

Technical Symposium on Computer Science Education (New York, NY, USA,

2017), SIGCSE ’17, Association for Computing Machinery, pp. 387–392.

[31] Lukins, S., Levicki, A., and Burg, J. A Tutorial Program for Propositional

Logic with Human/Computer Interactive Learning. SIGCSE Bull. 34, 1 (February

2002), 381–385.

[32] Mauco, V., Ferrante, E., and Felice, L. Educational Software for First

Order Semantics in Introductory Logic Courses. In Information Systems Education

Journal (2014), vol. 12, pp. 15–23.

[33] Mostafavi, B., and Barnes, T. Evolution of an Intelligent Deductive Logic

Tutor Using Data-Driven Elements. International Journal of Artificial Intelligence

in Education 27 (04 2016).

52

[34] Muggleton, S. Inductive Logic Programming, February 1991.

[35] Near, J. P., Byrd, W. E., and Friedman, D. P. αleanTAP: A Declarative

Theorem Prover for First-Order Classical Logic. In Logic Programming (Berlin,

Heidelberg, 2008), M. Garcia de la Banda and E. Pontelli, Eds., Springer Berlin

Heidelberg, pp. 238–252.

[36] Nipkow, T., Paulson, L. C., and Wenzel, M. Isabelle/HOL: A Proof

Assistant for Higher-Order Logic, vol. 2283. Springer Science & Business Media,

2002.

[37] Owre, S., Rushby, J. M., and Shankar, N. PVS: A Prototype Verification

System, 1992.

[38] Perikos, I., Grivokostopoulou, F., and Hatzilygeroudis, I. Teaching

Assistant Tools for NL to FOL Conversion, 01 2011.

[39] Pierce, B. C., de Amorim, A. A., Casinghino, C., Gaboardi, M., Green-

berg, M., Hriţcu, C., Sjöberg, V., Tolmach, A., and Yorgey, B.

Programming Language Foundations, vol. 2 of Software Foundations. Electronic

textbook, 2021. Version 6.1, http://softwarefoundations.cis.upenn.edu.

[40] Post, E. L. The Two-Valued Iterative Systems of Mathematical Logic. London:

Oxford University PRess, 1941.

[41] Priest, G. An Introduction to Non-Classical Logic: From If to Is, 2 ed. Cam-

bridge Introductions to Philosophy. Cambridge University Press, 2008.

[42] Ralston, A., Reilly, E. D., and Hemmendinger, D. Encyclopedia of

Computer Science. John Wiley and Sons Ltd., GBR, 2003.

53

http://softwarefoundations.cis.upenn.edu

[43] Roffé, A. Propositional Logic - Natural Deduction.

[44] Schürmann, C. The Twelf Proof Assistant. In Proceedings of the 22nd Interna-

tional Conference on Theorem Proving in Higher Order Logics (Berlin, Heidelberg,

2009), TPHOLs ’09, Springer-Verlag, pp. 79–83.

[45] Shapiro, Stewart, and Kissel, T. K. Classical Logic. The Stanford Ency-

clopedia of Philosophy (Spring 2021) (2021).

[46] Sieg, W. The AProS Project: Strategic Thinking and Computational Logic.

Logic Journal of the IGPL 15, 4 (2007), 359–368.

[47] Singh, R., Gulwani, S., and Rajamani, S. Automatically generating algebra

problems. In AAAI (April 2012), Microsoft Research.

[48] Sterling, L., and Shapiro, E. The Art of Prolog (2nd Ed.): Advanced

Programming Techniques. MIT Press, Cambridge, MA, USA, 1994.

[49] Turing, A. M. On computable numbers, with an application to the Entschei-

dungsproblem. Proceedings of the London Mathematical Society 2, 42 (1936),

230–265.

[50] van der Vlist, C. A solver and tutoring tool for logical proofs in natural

deduction, 2019. Bachelor’s Thesis.

[51] van Orman Quine, W. Methods of Logic. Harvard University Press, 1950.

[52] Verwer, S., Weerdt, M., and Zutt, J. A Tutoring System to Practice

Theorem Proving in Fitch, 01 2005.

54

[53] Villadsen, J., From, A. H., and Schlichtkrull, A. Natural Deduction

and the Isabelle Proof Assistant. In ThEdu@CADE (2017).

[54] Woolf, B. P. Building Intelligent Interactive Tutors: Student-Centered Strate-

gies for Revolutionizing e-Learning. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2008.

55

CHAPTER A

PROPOSITIONAL LOGIC NATURAL DEDUCTION ALGORITHM

This appendix describes the algorithm we used to find a natural deduction proof for

propositional logic. The idea is to use a “satisfiability” algorithm (not to be confused

with the Boolean satisfiability problem SAT). A wff w is satisfied when it is used in the

reduction or expansion of another well-formed formula w′. In essence, if w is used to

construct w′, then w is satisfied. At a high level, we recursively compute goals for each

premise, and if we can satisfy each goal, then the premise is satisfied. The procedure

Satisfy uses rules for each axiom to determine if a premise can be either simplified or

if, as a goal, it can be constructed using other premises. For example, suppose we have

two premises A and B and we want to satisfy A ∧B. Satisfy will recursively search

through the well-formed formula (i.e., attempt to satisfy its operands from left-to-right)

to determine if either have been previously satisfied. Given that A and B are already

premises, and premises are, by default, satisfied, we can conlude that A∧B is satisfiable.

As another example, let us take the argument P = {A ⊃ (B ∧ ¬C), ¬(B ∧ ¬C)}

and c = ¬A. It is trivial to see that we can conclude c from the premises in P via

a modus tollens rule. Satisfy works slightly different when this type of situation

occurs. Because there is no way to individually solve intermediate formulas e.g., B,

¬C, the algorithm searches for transformations and elimination rules e.g., modus

56

ponens, modus tollens, disjunctive syllogism, transposition, material implication, etc.,

that may be applied to premises. In our provided example, we can apply modus tollens

to the two premises and consequently satisfy ¬A. ¬A is, therefore, added to P . The

terminating condition is when c is satisfied, or equivalently, c ∈ P . Because there are

numerous transformations that may be applied to premises, we will omit their direct

inclusion in favor of a broad description of behaviors. To prevent unnecessary premises,

once a premise is satisfied, it can never be “unsatisfied”. Moreover, if a premise was

constructed, it cannot be redundantly destructed or vice versa. For instance, suppose

we have premises A and B. We can use a conjunction introduction ∧I rule to satisfy

A ∧ B. The algorithm could, in theory, use a conjunction elimination ∧E rule to

break A∧B back down into its original components. Since such repeated applications

blows up the size of P (leading to a potentially infinitely long proof), we heuristically

prevent its occurrence.

Algorithm 1 Propositional Natural Deduction Satisfaction Algorithm
1: procedure Prove(P, c) ▷ P is a list of premises, c is conclusion
2: while c is not satisfied do
3: for i← 1 to P .length do
4: if Satisfy(P [i]) then
5: P [i].satisfied← true
6: if Satisfy(c) then
7: c.satisfied← true

We have described how the algorithm generates a proof, but there lies the issue

that unnecessary premises may have been generated as part of the path to said proof.

In other words, there may be steps that contributed to a later step, but ultimately

do not contribute to the proof path which derived the conclusion, deeming them as

superfluous steps. Each step in the proof has parent steps which generate the child.

For example, if A and B are steps to generate A∧B, we denote A and B as its parent

57

steps. These are used in a backwards path walk from the conclusion to find a solution

to the proof. Note that there may be more than one solution to a proof; our algorithm

simply picks the path which explores all parent steps until the original assumptions

are reached. We denote an original assumption as the premises which were provided

as part of the proof.

(a) Propositional Logic Proof Example (b) Path From Conclusion to Premises to Find
Proof of (a)

Figure 8. Example of Finding a Valid Proof using Satisfaction Algorithm

58

CHAPTER B

RESULT GRAPHS

59

F
ig

ur
e

9.
A

ll
Sy

st
em

s
N

at
ur

al
D

ed
uc

ti
on

P
ro

of
Li

ne
C

ou
nt

60

Figure 10. Propositional Logic Natural Deduction Line Count

Figure 11. Predicate Logic Line Count

61

CHAPTER C

REFERENCE URLS

The following is a list of URLs defined in footnotes from the thesis. We use

TinyURL to shorten the links, but because they may not be permanent, the full links

are provided below.

1. Qualtrics Survey 1 Questions: https://github.com/JoshuaCrotts/MastersT

hesis/blob/main/data/qualtricssurvey1.txt

2. Qualtrics Survey 2 Questions: https://github.com/JoshuaCrotts/MastersT

hesis/blob/main/data/qualtricssurvey2.txt

3. ANDTaP Questions: https://github.com/JoshuaCrotts/MastersThesis/

blob/main/data/andtapquestions.txt

62

https://github.com/JoshuaCrotts/MastersThesis/blob/main/data/qualtrics_survey_1.txt
https://github.com/JoshuaCrotts/MastersThesis/blob/main/data/qualtrics_survey_1.txt
https://github.com/JoshuaCrotts/MastersThesis/blob/main/data/qualtrics_survey_2.txt
https://github.com/JoshuaCrotts/MastersThesis/blob/main/data/qualtrics_survey_2.txt
https://github.com/JoshuaCrotts/MastersThesis/blob/main/data/andtap_questions.txt
https://github.com/JoshuaCrotts/MastersThesis/blob/main/data/andtap_questions.txt

	List of Figures
	List of Tables
	Introduction
	Overview
	Contribution
	Thesis Content
	Terminology

	Related Work
	Formal Logic Tutors
	Propositional Logic
	First-Order Logic
	Problem/Solution Generators

	Specialized Logic/Theorem-Proving Programming Languages
	Standardizing Logic Syntax
	Boolean Satisfiability Solver Input Formats

	Methods
	Evaluation of Natural Deduction Systems
	Experiment 1: A Student-Driven Approach for Difficulty Metrics
	Experiment 2: Determining the Efficacy of Natural Deduction Software
	FLAT: Formal Logic Aiding Tutor
	ANDTaP: Automatic Natural Deduction Tutor and Prover
	System Comparison Results

	Gold Standard for Formal Logic System Syntax
	Zeroth-Order Logic Well-Formed Formula Representation
	Zeroth-Order Logic Example 1
	Zeroth-Order Logic Example 2
	Precedence Mapping Example
	Associativity Mapping Example
	Natural Deduction Extension
	Natural Deduction Example

	First-Order Logic Well-Formed Formula Representation
	First-Order Logic Example

	Discussion and Future Direction
	Experiment 1
	Experiment 2
	Future Work
	Gold Standard Extendability via Non-Classical Logic Systems
	Intelligent Tutors

	Conclusion

	References
	Propositional Logic Natural Deduction Algorithm
	Result Graphs
	Reference URLs

